991ea132415663e3ebf83d0a38e72faadb447c2d
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 M:::void:register_read:int regnum, char *buf:regnum, buf:
387 M:::void:register_write:int regnum, char *buf:regnum, buf:
388 #
389 v:2:NUM_REGS:int:num_regs::::0:-1
390 # This macro gives the number of pseudo-registers that live in the
391 # register namespace but do not get fetched or stored on the target.
392 # These pseudo-registers may be aliases for other registers,
393 # combinations of other registers, or they may be computed by GDB.
394 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
395 v:2:SP_REGNUM:int:sp_regnum::::0:-1
396 v:2:FP_REGNUM:int:fp_regnum::::0:-1
397 v:2:PC_REGNUM:int:pc_regnum::::0:-1
398 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
399 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
400 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
401 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
402 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
403 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
404 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
405 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
406 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
407 # Convert from an sdb register number to an internal gdb register number.
408 # This should be defined in tm.h, if REGISTER_NAMES is not set up
409 # to map one to one onto the sdb register numbers.
410 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
411 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
412 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
413 v:2:REGISTER_SIZE:int:register_size::::0:-1
414 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
415 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
416 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
417 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
418 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
419 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
420 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
421 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
422 # MAP a GDB RAW register number onto a simulator register number. See
423 # also include/...-sim.h.
424 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
425 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
426 #
427 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
428 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
429 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
430 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
431 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
432 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
433 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
434 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
435 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
436 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
437 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
438 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
440 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
441 #
442 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
443 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
444 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
445 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
446 #
447 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
448 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
449 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
450 # This function is called when the value of a pseudo-register needs to
451 # be updated. Typically it will be defined on a per-architecture
452 # basis.
453 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
454 # This function is called when the value of a pseudo-register needs to
455 # be set or stored. Typically it will be defined on a
456 # per-architecture basis.
457 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
458 #
459 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
460 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
461 #
462 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
463 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
464 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
465 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
466 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
467 f:2:POP_FRAME:void:pop_frame:void:-:::0
468 #
469 # I wish that these would just go away....
470 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
471 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
472 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
473 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
474 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
475 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
476 #
477 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
478 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
479 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
480 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
481 #
482 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
483 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
484 #
485 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
486 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
487 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
488 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
489 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
490 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
491 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
492 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
493 #
494 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
495 #
496 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
497 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
498 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
499 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
500 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
501 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
502 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
503 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
504 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
505 #
506 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
507 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
508 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
509 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
510 v:2:PARM_BOUNDARY:int:parm_boundary
511 #
512 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
513 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
514 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
515 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
516 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
517 # the target needs software single step. An ISA method to implement it.
518 #
519 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
520 # using the breakpoint system instead of blatting memory directly (as with rs6000).
521 #
522 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
523 # single step. If not, then implement single step using breakpoints.
524 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
525 EOF
526 }
527
528 #
529 # The .log file
530 #
531 exec > new-gdbarch.log
532 function_list | while do_read
533 do
534 cat <<EOF
535 ${class} ${macro}(${actual})
536 ${returntype} ${function} ($formal)${attrib}
537 EOF
538 for r in ${read}
539 do
540 eval echo \"\ \ \ \ ${r}=\${${r}}\"
541 done
542 # #fallbackdefault=${fallbackdefault}
543 # #valid_p=${valid_p}
544 #EOF
545 if class_is_predicate_p && fallback_default_p
546 then
547 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
548 kill $$
549 exit 1
550 fi
551 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
552 then
553 echo "Error: postdefault is useless when invalid_p=0" 1>&2
554 kill $$
555 exit 1
556 fi
557 echo ""
558 done
559
560 exec 1>&2
561 compare_new gdbarch.log
562
563
564 copyright ()
565 {
566 cat <<EOF
567 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
568
569 /* Dynamic architecture support for GDB, the GNU debugger.
570 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
571
572 This file is part of GDB.
573
574 This program is free software; you can redistribute it and/or modify
575 it under the terms of the GNU General Public License as published by
576 the Free Software Foundation; either version 2 of the License, or
577 (at your option) any later version.
578
579 This program is distributed in the hope that it will be useful,
580 but WITHOUT ANY WARRANTY; without even the implied warranty of
581 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
582 GNU General Public License for more details.
583
584 You should have received a copy of the GNU General Public License
585 along with this program; if not, write to the Free Software
586 Foundation, Inc., 59 Temple Place - Suite 330,
587 Boston, MA 02111-1307, USA. */
588
589 /* This file was created with the aid of \`\`gdbarch.sh''.
590
591 The Bourne shell script \`\`gdbarch.sh'' creates the files
592 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
593 against the existing \`\`gdbarch.[hc]''. Any differences found
594 being reported.
595
596 If editing this file, please also run gdbarch.sh and merge any
597 changes into that script. Conversely, when making sweeping changes
598 to this file, modifying gdbarch.sh and using its output may prove
599 easier. */
600
601 EOF
602 }
603
604 #
605 # The .h file
606 #
607
608 exec > new-gdbarch.h
609 copyright
610 cat <<EOF
611 #ifndef GDBARCH_H
612 #define GDBARCH_H
613
614 struct frame_info;
615 struct value;
616
617
618 extern struct gdbarch *current_gdbarch;
619
620
621 /* If any of the following are defined, the target wasn't correctly
622 converted. */
623
624 #if GDB_MULTI_ARCH
625 #if defined (EXTRA_FRAME_INFO)
626 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
627 #endif
628 #endif
629
630 #if GDB_MULTI_ARCH
631 #if defined (FRAME_FIND_SAVED_REGS)
632 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
633 #endif
634 #endif
635 EOF
636
637 # function typedef's
638 printf "\n"
639 printf "\n"
640 printf "/* The following are pre-initialized by GDBARCH. */\n"
641 function_list | while do_read
642 do
643 if class_is_info_p
644 then
645 printf "\n"
646 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
647 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
648 printf "#if GDB_MULTI_ARCH\n"
649 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
650 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
651 printf "#endif\n"
652 printf "#endif\n"
653 fi
654 done
655
656 # function typedef's
657 printf "\n"
658 printf "\n"
659 printf "/* The following are initialized by the target dependent code. */\n"
660 function_list | while do_read
661 do
662 if [ "${comment}" ]
663 then
664 echo "${comment}" | sed \
665 -e '2 s,#,/*,' \
666 -e '3,$ s,#, ,' \
667 -e '$ s,$, */,'
668 fi
669 if class_is_multiarch_p
670 then
671 if class_is_predicate_p
672 then
673 printf "\n"
674 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
675 fi
676 else
677 if class_is_predicate_p
678 then
679 printf "\n"
680 printf "#if defined (${macro})\n"
681 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
682 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
683 printf "#if !defined (${macro}_P)\n"
684 printf "#define ${macro}_P() (1)\n"
685 printf "#endif\n"
686 printf "#endif\n"
687 printf "\n"
688 printf "/* Default predicate for non- multi-arch targets. */\n"
689 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
690 printf "#define ${macro}_P() (0)\n"
691 printf "#endif\n"
692 printf "\n"
693 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
694 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
695 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
696 printf "#endif\n"
697 fi
698 fi
699 if class_is_variable_p
700 then
701 if fallback_default_p || class_is_predicate_p
702 then
703 printf "\n"
704 printf "/* Default (value) for non- multi-arch platforms. */\n"
705 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
706 echo "#define ${macro} (${fallbackdefault})" \
707 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
708 printf "#endif\n"
709 fi
710 printf "\n"
711 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
712 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
713 printf "#if GDB_MULTI_ARCH\n"
714 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
715 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
716 printf "#endif\n"
717 printf "#endif\n"
718 fi
719 if class_is_function_p
720 then
721 if class_is_multiarch_p ; then :
722 elif fallback_default_p || class_is_predicate_p
723 then
724 printf "\n"
725 printf "/* Default (function) for non- multi-arch platforms. */\n"
726 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
727 if [ "${fallbackdefault}" = "0" ]
728 then
729 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
730 else
731 # FIXME: Should be passing current_gdbarch through!
732 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
733 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
734 fi
735 printf "#endif\n"
736 fi
737 printf "\n"
738 if [ "${formal}" = "void" ] && class_is_multiarch_p
739 then
740 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
741 elif class_is_multiarch_p
742 then
743 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
744 else
745 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
746 fi
747 if [ "${formal}" = "void" ]
748 then
749 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
750 else
751 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
752 fi
753 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
754 if class_is_multiarch_p ; then :
755 else
756 printf "#if GDB_MULTI_ARCH\n"
757 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
758 if [ "${actual}" = "" ]
759 then
760 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
761 elif [ "${actual}" = "-" ]
762 then
763 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
764 else
765 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
766 fi
767 printf "#endif\n"
768 printf "#endif\n"
769 fi
770 fi
771 done
772
773 # close it off
774 cat <<EOF
775
776 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
777
778
779 /* Mechanism for co-ordinating the selection of a specific
780 architecture.
781
782 GDB targets (*-tdep.c) can register an interest in a specific
783 architecture. Other GDB components can register a need to maintain
784 per-architecture data.
785
786 The mechanisms below ensures that there is only a loose connection
787 between the set-architecture command and the various GDB
788 components. Each component can independently register their need
789 to maintain architecture specific data with gdbarch.
790
791 Pragmatics:
792
793 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
794 didn't scale.
795
796 The more traditional mega-struct containing architecture specific
797 data for all the various GDB components was also considered. Since
798 GDB is built from a variable number of (fairly independent)
799 components it was determined that the global aproach was not
800 applicable. */
801
802
803 /* Register a new architectural family with GDB.
804
805 Register support for the specified ARCHITECTURE with GDB. When
806 gdbarch determines that the specified architecture has been
807 selected, the corresponding INIT function is called.
808
809 --
810
811 The INIT function takes two parameters: INFO which contains the
812 information available to gdbarch about the (possibly new)
813 architecture; ARCHES which is a list of the previously created
814 \`\`struct gdbarch'' for this architecture.
815
816 The INIT function parameter INFO shall, as far as possible, be
817 pre-initialized with information obtained from INFO.ABFD or
818 previously selected architecture (if similar). INIT shall ensure
819 that the INFO.BYTE_ORDER is non-zero.
820
821 The INIT function shall return any of: NULL - indicating that it
822 doesn't recognize the selected architecture; an existing \`\`struct
823 gdbarch'' from the ARCHES list - indicating that the new
824 architecture is just a synonym for an earlier architecture (see
825 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
826 - that describes the selected architecture (see gdbarch_alloc()).
827
828 The DUMP_TDEP function shall print out all target specific values.
829 Care should be taken to ensure that the function works in both the
830 multi-arch and non- multi-arch cases. */
831
832 struct gdbarch_list
833 {
834 struct gdbarch *gdbarch;
835 struct gdbarch_list *next;
836 };
837
838 struct gdbarch_info
839 {
840 /* Use default: bfd_arch_unknown (ZERO). */
841 enum bfd_architecture bfd_architecture;
842
843 /* Use default: NULL (ZERO). */
844 const struct bfd_arch_info *bfd_arch_info;
845
846 /* Use default: 0 (ZERO). */
847 int byte_order;
848
849 /* Use default: NULL (ZERO). */
850 bfd *abfd;
851
852 /* Use default: NULL (ZERO). */
853 struct gdbarch_tdep_info *tdep_info;
854 };
855
856 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
857 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
858
859 /* DEPRECATED - use gdbarch_register() */
860 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
861
862 extern void gdbarch_register (enum bfd_architecture architecture,
863 gdbarch_init_ftype *,
864 gdbarch_dump_tdep_ftype *);
865
866
867 /* Return a freshly allocated, NULL terminated, array of the valid
868 architecture names. Since architectures are registered during the
869 _initialize phase this function only returns useful information
870 once initialization has been completed. */
871
872 extern const char **gdbarch_printable_names (void);
873
874
875 /* Helper function. Search the list of ARCHES for a GDBARCH that
876 matches the information provided by INFO. */
877
878 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
879
880
881 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
882 basic initialization using values obtained from the INFO andTDEP
883 parameters. set_gdbarch_*() functions are called to complete the
884 initialization of the object. */
885
886 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
887
888
889 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
890 It is assumed that the caller freeds the \`\`struct
891 gdbarch_tdep''. */
892
893 extern void gdbarch_free (struct gdbarch *);
894
895
896 /* Helper function. Force an update of the current architecture. Used
897 by legacy targets that have added their own target specific
898 architecture manipulation commands.
899
900 The INFO parameter shall be fully initialized (\`\`memset (&INFO,
901 sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
902 is called. gdbarch_update_p() shall initialize any \`\`default''
903 fields using information obtained from the previous architecture or
904 INFO.ABFD (if specified) before calling the corresponding
905 architectures INIT function.
906
907 Returns non-zero if the update succeeds */
908
909 extern int gdbarch_update_p (struct gdbarch_info info);
910
911
912
913 /* Register per-architecture data-pointer.
914
915 Reserve space for a per-architecture data-pointer. An identifier
916 for the reserved data-pointer is returned. That identifer should
917 be saved in a local static variable.
918
919 The per-architecture data-pointer can be initialized in one of two
920 ways: The value can be set explicitly using a call to
921 set_gdbarch_data(); the value can be set implicitly using the value
922 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
923 called after the basic architecture vector has been created.
924
925 When a previously created architecture is re-selected, the
926 per-architecture data-pointer for that previous architecture is
927 restored. INIT() is not called.
928
929 During initialization, multiple assignments of the data-pointer are
930 allowed, non-NULL values are deleted by calling FREE(). If the
931 architecture is deleted using gdbarch_free() all non-NULL data
932 pointers are also deleted using FREE().
933
934 Multiple registrarants for any architecture are allowed (and
935 strongly encouraged). */
936
937 struct gdbarch_data;
938
939 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
940 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
941 void *pointer);
942 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
943 gdbarch_data_free_ftype *free);
944 extern void set_gdbarch_data (struct gdbarch *gdbarch,
945 struct gdbarch_data *data,
946 void *pointer);
947
948 extern void *gdbarch_data (struct gdbarch_data*);
949
950
951 /* Register per-architecture memory region.
952
953 Provide a memory-region swap mechanism. Per-architecture memory
954 region are created. These memory regions are swapped whenever the
955 architecture is changed. For a new architecture, the memory region
956 is initialized with zero (0) and the INIT function is called.
957
958 Memory regions are swapped / initialized in the order that they are
959 registered. NULL DATA and/or INIT values can be specified.
960
961 New code should use register_gdbarch_data(). */
962
963 typedef void (gdbarch_swap_ftype) (void);
964 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
965 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
966
967
968
969 /* The target-system-dependent byte order is dynamic */
970
971 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
972 is selectable at runtime. The user can use the \`\`set endian''
973 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
974 target_byte_order should be auto-detected (from the program image
975 say). */
976
977 #if GDB_MULTI_ARCH
978 /* Multi-arch GDB is always bi-endian. */
979 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
980 #endif
981
982 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
983 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
984 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
985 #ifdef TARGET_BYTE_ORDER_SELECTABLE
986 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
987 #else
988 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
989 #endif
990 #endif
991
992 extern int target_byte_order;
993 #ifdef TARGET_BYTE_ORDER_SELECTABLE
994 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
995 and expect defs.h to re-define TARGET_BYTE_ORDER. */
996 #undef TARGET_BYTE_ORDER
997 #endif
998 #ifndef TARGET_BYTE_ORDER
999 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1000 #endif
1001
1002 extern int target_byte_order_auto;
1003 #ifndef TARGET_BYTE_ORDER_AUTO
1004 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1005 #endif
1006
1007
1008
1009 /* The target-system-dependent BFD architecture is dynamic */
1010
1011 extern int target_architecture_auto;
1012 #ifndef TARGET_ARCHITECTURE_AUTO
1013 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1014 #endif
1015
1016 extern const struct bfd_arch_info *target_architecture;
1017 #ifndef TARGET_ARCHITECTURE
1018 #define TARGET_ARCHITECTURE (target_architecture + 0)
1019 #endif
1020
1021
1022 /* The target-system-dependent disassembler is semi-dynamic */
1023
1024 #include "dis-asm.h" /* Get defs for disassemble_info */
1025
1026 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1027 unsigned int len, disassemble_info *info);
1028
1029 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1030 disassemble_info *info);
1031
1032 extern void dis_asm_print_address (bfd_vma addr,
1033 disassemble_info *info);
1034
1035 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1036 extern disassemble_info tm_print_insn_info;
1037 #ifndef TARGET_PRINT_INSN
1038 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1039 #endif
1040 #ifndef TARGET_PRINT_INSN_INFO
1041 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1042 #endif
1043
1044
1045
1046 /* Explicit test for D10V architecture.
1047 USE of these macro's is *STRONGLY* discouraged. */
1048
1049 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1050
1051
1052 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1053 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1054 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1055 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1056 #else
1057 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1058 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1059 #endif
1060 #endif
1061
1062
1063 /* Set the dynamic target-system-dependent parameters (architecture,
1064 byte-order, ...) using information found in the BFD */
1065
1066 extern void set_gdbarch_from_file (bfd *);
1067
1068
1069 /* Initialize the current architecture to the "first" one we find on
1070 our list. */
1071
1072 extern void initialize_current_architecture (void);
1073
1074
1075 /* gdbarch trace variable */
1076 extern int gdbarch_debug;
1077
1078 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1079
1080 #endif
1081 EOF
1082 exec 1>&2
1083 #../move-if-change new-gdbarch.h gdbarch.h
1084 compare_new gdbarch.h
1085
1086
1087 #
1088 # C file
1089 #
1090
1091 exec > new-gdbarch.c
1092 copyright
1093 cat <<EOF
1094
1095 #include "defs.h"
1096 #include "arch-utils.h"
1097
1098 #if GDB_MULTI_ARCH
1099 #include "gdbcmd.h"
1100 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1101 #else
1102 /* Just include everything in sight so that the every old definition
1103 of macro is visible. */
1104 #include "gdb_string.h"
1105 #include <ctype.h>
1106 #include "symtab.h"
1107 #include "frame.h"
1108 #include "inferior.h"
1109 #include "breakpoint.h"
1110 #include "gdb_wait.h"
1111 #include "gdbcore.h"
1112 #include "gdbcmd.h"
1113 #include "target.h"
1114 #include "gdbthread.h"
1115 #include "annotate.h"
1116 #include "symfile.h" /* for overlay functions */
1117 #endif
1118 #include "symcat.h"
1119
1120 #include "floatformat.h"
1121
1122 #include "gdb_assert.h"
1123
1124 /* Static function declarations */
1125
1126 static void verify_gdbarch (struct gdbarch *gdbarch);
1127 static void alloc_gdbarch_data (struct gdbarch *);
1128 static void init_gdbarch_data (struct gdbarch *);
1129 static void free_gdbarch_data (struct gdbarch *);
1130 static void init_gdbarch_swap (struct gdbarch *);
1131 static void swapout_gdbarch_swap (struct gdbarch *);
1132 static void swapin_gdbarch_swap (struct gdbarch *);
1133
1134 /* Convenience macro for allocting typesafe memory. */
1135
1136 #ifndef XMALLOC
1137 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1138 #endif
1139
1140
1141 /* Non-zero if we want to trace architecture code. */
1142
1143 #ifndef GDBARCH_DEBUG
1144 #define GDBARCH_DEBUG 0
1145 #endif
1146 int gdbarch_debug = GDBARCH_DEBUG;
1147
1148 EOF
1149
1150 # gdbarch open the gdbarch object
1151 printf "\n"
1152 printf "/* Maintain the struct gdbarch object */\n"
1153 printf "\n"
1154 printf "struct gdbarch\n"
1155 printf "{\n"
1156 printf " /* basic architectural information */\n"
1157 function_list | while do_read
1158 do
1159 if class_is_info_p
1160 then
1161 printf " ${returntype} ${function};\n"
1162 fi
1163 done
1164 printf "\n"
1165 printf " /* target specific vector. */\n"
1166 printf " struct gdbarch_tdep *tdep;\n"
1167 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1168 printf "\n"
1169 printf " /* per-architecture data-pointers */\n"
1170 printf " unsigned nr_data;\n"
1171 printf " void **data;\n"
1172 printf "\n"
1173 printf " /* per-architecture swap-regions */\n"
1174 printf " struct gdbarch_swap *swap;\n"
1175 printf "\n"
1176 cat <<EOF
1177 /* Multi-arch values.
1178
1179 When extending this structure you must:
1180
1181 Add the field below.
1182
1183 Declare set/get functions and define the corresponding
1184 macro in gdbarch.h.
1185
1186 gdbarch_alloc(): If zero/NULL is not a suitable default,
1187 initialize the new field.
1188
1189 verify_gdbarch(): Confirm that the target updated the field
1190 correctly.
1191
1192 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1193 field is dumped out
1194
1195 \`\`startup_gdbarch()'': Append an initial value to the static
1196 variable (base values on the host's c-type system).
1197
1198 get_gdbarch(): Implement the set/get functions (probably using
1199 the macro's as shortcuts).
1200
1201 */
1202
1203 EOF
1204 function_list | while do_read
1205 do
1206 if class_is_variable_p
1207 then
1208 printf " ${returntype} ${function};\n"
1209 elif class_is_function_p
1210 then
1211 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1212 fi
1213 done
1214 printf "};\n"
1215
1216 # A pre-initialized vector
1217 printf "\n"
1218 printf "\n"
1219 cat <<EOF
1220 /* The default architecture uses host values (for want of a better
1221 choice). */
1222 EOF
1223 printf "\n"
1224 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1225 printf "\n"
1226 printf "struct gdbarch startup_gdbarch =\n"
1227 printf "{\n"
1228 printf " /* basic architecture information */\n"
1229 function_list | while do_read
1230 do
1231 if class_is_info_p
1232 then
1233 printf " ${staticdefault},\n"
1234 fi
1235 done
1236 cat <<EOF
1237 /* target specific vector and its dump routine */
1238 NULL, NULL,
1239 /*per-architecture data-pointers and swap regions */
1240 0, NULL, NULL,
1241 /* Multi-arch values */
1242 EOF
1243 function_list | while do_read
1244 do
1245 if class_is_function_p || class_is_variable_p
1246 then
1247 printf " ${staticdefault},\n"
1248 fi
1249 done
1250 cat <<EOF
1251 /* startup_gdbarch() */
1252 };
1253
1254 struct gdbarch *current_gdbarch = &startup_gdbarch;
1255 EOF
1256
1257 # Create a new gdbarch struct
1258 printf "\n"
1259 printf "\n"
1260 cat <<EOF
1261 /* Create a new \`\`struct gdbarch'' based on information provided by
1262 \`\`struct gdbarch_info''. */
1263 EOF
1264 printf "\n"
1265 cat <<EOF
1266 struct gdbarch *
1267 gdbarch_alloc (const struct gdbarch_info *info,
1268 struct gdbarch_tdep *tdep)
1269 {
1270 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1271 memset (gdbarch, 0, sizeof (*gdbarch));
1272
1273 alloc_gdbarch_data (gdbarch);
1274
1275 gdbarch->tdep = tdep;
1276 EOF
1277 printf "\n"
1278 function_list | while do_read
1279 do
1280 if class_is_info_p
1281 then
1282 printf " gdbarch->${function} = info->${function};\n"
1283 fi
1284 done
1285 printf "\n"
1286 printf " /* Force the explicit initialization of these. */\n"
1287 function_list | while do_read
1288 do
1289 if class_is_function_p || class_is_variable_p
1290 then
1291 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1292 then
1293 printf " gdbarch->${function} = ${predefault};\n"
1294 fi
1295 fi
1296 done
1297 cat <<EOF
1298 /* gdbarch_alloc() */
1299
1300 return gdbarch;
1301 }
1302 EOF
1303
1304 # Free a gdbarch struct.
1305 printf "\n"
1306 printf "\n"
1307 cat <<EOF
1308 /* Free a gdbarch struct. This should never happen in normal
1309 operation --- once you've created a gdbarch, you keep it around.
1310 However, if an architecture's init function encounters an error
1311 building the structure, it may need to clean up a partially
1312 constructed gdbarch. */
1313
1314 void
1315 gdbarch_free (struct gdbarch *arch)
1316 {
1317 gdb_assert (arch != NULL);
1318 free_gdbarch_data (arch);
1319 xfree (arch);
1320 }
1321 EOF
1322
1323 # verify a new architecture
1324 printf "\n"
1325 printf "\n"
1326 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1327 printf "\n"
1328 cat <<EOF
1329 static void
1330 verify_gdbarch (struct gdbarch *gdbarch)
1331 {
1332 /* Only perform sanity checks on a multi-arch target. */
1333 if (!GDB_MULTI_ARCH)
1334 return;
1335 /* fundamental */
1336 if (gdbarch->byte_order == 0)
1337 internal_error (__FILE__, __LINE__,
1338 "verify_gdbarch: byte-order unset");
1339 if (gdbarch->bfd_arch_info == NULL)
1340 internal_error (__FILE__, __LINE__,
1341 "verify_gdbarch: bfd_arch_info unset");
1342 /* Check those that need to be defined for the given multi-arch level. */
1343 EOF
1344 function_list | while do_read
1345 do
1346 if class_is_function_p || class_is_variable_p
1347 then
1348 if [ "${invalid_p}" = "0" ]
1349 then
1350 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1351 elif class_is_predicate_p
1352 then
1353 printf " /* Skip verify of ${function}, has predicate */\n"
1354 # FIXME: See do_read for potential simplification
1355 elif [ "${invalid_p}" -a "${postdefault}" ]
1356 then
1357 printf " if (${invalid_p})\n"
1358 printf " gdbarch->${function} = ${postdefault};\n"
1359 elif [ "${predefault}" -a "${postdefault}" ]
1360 then
1361 printf " if (gdbarch->${function} == ${predefault})\n"
1362 printf " gdbarch->${function} = ${postdefault};\n"
1363 elif [ "${postdefault}" ]
1364 then
1365 printf " if (gdbarch->${function} == 0)\n"
1366 printf " gdbarch->${function} = ${postdefault};\n"
1367 elif [ "${invalid_p}" ]
1368 then
1369 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1370 printf " && (${invalid_p}))\n"
1371 printf " internal_error (__FILE__, __LINE__,\n"
1372 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1373 elif [ "${predefault}" ]
1374 then
1375 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1376 printf " && (gdbarch->${function} == ${predefault}))\n"
1377 printf " internal_error (__FILE__, __LINE__,\n"
1378 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1379 fi
1380 fi
1381 done
1382 cat <<EOF
1383 }
1384 EOF
1385
1386 # dump the structure
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* Print out the details of the current architecture. */
1391
1392 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1393 just happens to match the global variable \`\`current_gdbarch''. That
1394 way macros refering to that variable get the local and not the global
1395 version - ulgh. Once everything is parameterised with gdbarch, this
1396 will go away. */
1397
1398 void
1399 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1400 {
1401 fprintf_unfiltered (file,
1402 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1403 GDB_MULTI_ARCH);
1404 EOF
1405 function_list | while do_read
1406 do
1407 # multiarch functions don't have macros.
1408 class_is_multiarch_p && continue
1409 if [ "${returntype}" = "void" ]
1410 then
1411 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1412 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1413 else
1414 printf "#ifdef ${macro}\n"
1415 fi
1416 if class_is_function_p
1417 then
1418 printf " fprintf_unfiltered (file,\n"
1419 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1420 printf " \"${macro}(${actual})\",\n"
1421 printf " XSTRING (${macro} (${actual})));\n"
1422 else
1423 printf " fprintf_unfiltered (file,\n"
1424 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1425 printf " XSTRING (${macro}));\n"
1426 fi
1427 printf "#endif\n"
1428 done
1429 function_list | while do_read
1430 do
1431 if class_is_multiarch_p
1432 then
1433 printf " if (GDB_MULTI_ARCH)\n"
1434 printf " fprintf_unfiltered (file,\n"
1435 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1436 printf " (long) current_gdbarch->${function});\n"
1437 continue
1438 fi
1439 printf "#ifdef ${macro}\n"
1440 if [ "${print_p}" = "()" ]
1441 then
1442 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1443 elif [ "${print_p}" = "0" ]
1444 then
1445 printf " /* skip print of ${macro}, print_p == 0. */\n"
1446 elif [ "${print_p}" ]
1447 then
1448 printf " if (${print_p})\n"
1449 printf " fprintf_unfiltered (file,\n"
1450 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1451 printf " ${print});\n"
1452 elif class_is_function_p
1453 then
1454 printf " if (GDB_MULTI_ARCH)\n"
1455 printf " fprintf_unfiltered (file,\n"
1456 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1457 printf " (long) current_gdbarch->${function}\n"
1458 printf " /*${macro} ()*/);\n"
1459 else
1460 printf " fprintf_unfiltered (file,\n"
1461 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1462 printf " ${print});\n"
1463 fi
1464 printf "#endif\n"
1465 done
1466 cat <<EOF
1467 if (current_gdbarch->dump_tdep != NULL)
1468 current_gdbarch->dump_tdep (current_gdbarch, file);
1469 }
1470 EOF
1471
1472
1473 # GET/SET
1474 printf "\n"
1475 cat <<EOF
1476 struct gdbarch_tdep *
1477 gdbarch_tdep (struct gdbarch *gdbarch)
1478 {
1479 if (gdbarch_debug >= 2)
1480 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1481 return gdbarch->tdep;
1482 }
1483 EOF
1484 printf "\n"
1485 function_list | while do_read
1486 do
1487 if class_is_predicate_p
1488 then
1489 printf "\n"
1490 printf "int\n"
1491 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1492 printf "{\n"
1493 if [ "${valid_p}" ]
1494 then
1495 printf " return ${valid_p};\n"
1496 else
1497 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1498 fi
1499 printf "}\n"
1500 fi
1501 if class_is_function_p
1502 then
1503 printf "\n"
1504 printf "${returntype}\n"
1505 if [ "${formal}" = "void" ]
1506 then
1507 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1508 else
1509 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1510 fi
1511 printf "{\n"
1512 printf " if (gdbarch->${function} == 0)\n"
1513 printf " internal_error (__FILE__, __LINE__,\n"
1514 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1515 printf " if (gdbarch_debug >= 2)\n"
1516 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1517 if [ "${actual}" = "-" -o "${actual}" = "" ]
1518 then
1519 if class_is_multiarch_p
1520 then
1521 params="gdbarch"
1522 else
1523 params=""
1524 fi
1525 else
1526 if class_is_multiarch_p
1527 then
1528 params="gdbarch, ${actual}"
1529 else
1530 params="${actual}"
1531 fi
1532 fi
1533 if [ "${returntype}" = "void" ]
1534 then
1535 printf " gdbarch->${function} (${params});\n"
1536 else
1537 printf " return gdbarch->${function} (${params});\n"
1538 fi
1539 printf "}\n"
1540 printf "\n"
1541 printf "void\n"
1542 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1543 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1544 printf "{\n"
1545 printf " gdbarch->${function} = ${function};\n"
1546 printf "}\n"
1547 elif class_is_variable_p
1548 then
1549 printf "\n"
1550 printf "${returntype}\n"
1551 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1552 printf "{\n"
1553 if [ "${invalid_p}" = "0" ]
1554 then
1555 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1556 elif [ "${invalid_p}" ]
1557 then
1558 printf " if (${invalid_p})\n"
1559 printf " internal_error (__FILE__, __LINE__,\n"
1560 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1561 elif [ "${predefault}" ]
1562 then
1563 printf " if (gdbarch->${function} == ${predefault})\n"
1564 printf " internal_error (__FILE__, __LINE__,\n"
1565 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1566 fi
1567 printf " if (gdbarch_debug >= 2)\n"
1568 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1569 printf " return gdbarch->${function};\n"
1570 printf "}\n"
1571 printf "\n"
1572 printf "void\n"
1573 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1574 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1575 printf "{\n"
1576 printf " gdbarch->${function} = ${function};\n"
1577 printf "}\n"
1578 elif class_is_info_p
1579 then
1580 printf "\n"
1581 printf "${returntype}\n"
1582 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1583 printf "{\n"
1584 printf " if (gdbarch_debug >= 2)\n"
1585 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1586 printf " return gdbarch->${function};\n"
1587 printf "}\n"
1588 fi
1589 done
1590
1591 # All the trailing guff
1592 cat <<EOF
1593
1594
1595 /* Keep a registry of per-architecture data-pointers required by GDB
1596 modules. */
1597
1598 struct gdbarch_data
1599 {
1600 unsigned index;
1601 gdbarch_data_init_ftype *init;
1602 gdbarch_data_free_ftype *free;
1603 };
1604
1605 struct gdbarch_data_registration
1606 {
1607 struct gdbarch_data *data;
1608 struct gdbarch_data_registration *next;
1609 };
1610
1611 struct gdbarch_data_registry
1612 {
1613 unsigned nr;
1614 struct gdbarch_data_registration *registrations;
1615 };
1616
1617 struct gdbarch_data_registry gdbarch_data_registry =
1618 {
1619 0, NULL,
1620 };
1621
1622 struct gdbarch_data *
1623 register_gdbarch_data (gdbarch_data_init_ftype *init,
1624 gdbarch_data_free_ftype *free)
1625 {
1626 struct gdbarch_data_registration **curr;
1627 for (curr = &gdbarch_data_registry.registrations;
1628 (*curr) != NULL;
1629 curr = &(*curr)->next);
1630 (*curr) = XMALLOC (struct gdbarch_data_registration);
1631 (*curr)->next = NULL;
1632 (*curr)->data = XMALLOC (struct gdbarch_data);
1633 (*curr)->data->index = gdbarch_data_registry.nr++;
1634 (*curr)->data->init = init;
1635 (*curr)->data->free = free;
1636 return (*curr)->data;
1637 }
1638
1639
1640 /* Walk through all the registered users initializing each in turn. */
1641
1642 static void
1643 init_gdbarch_data (struct gdbarch *gdbarch)
1644 {
1645 struct gdbarch_data_registration *rego;
1646 for (rego = gdbarch_data_registry.registrations;
1647 rego != NULL;
1648 rego = rego->next)
1649 {
1650 struct gdbarch_data *data = rego->data;
1651 gdb_assert (data->index < gdbarch->nr_data);
1652 if (data->init != NULL)
1653 {
1654 void *pointer = data->init (gdbarch);
1655 set_gdbarch_data (gdbarch, data, pointer);
1656 }
1657 }
1658 }
1659
1660 /* Create/delete the gdbarch data vector. */
1661
1662 static void
1663 alloc_gdbarch_data (struct gdbarch *gdbarch)
1664 {
1665 gdb_assert (gdbarch->data == NULL);
1666 gdbarch->nr_data = gdbarch_data_registry.nr;
1667 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1668 }
1669
1670 static void
1671 free_gdbarch_data (struct gdbarch *gdbarch)
1672 {
1673 struct gdbarch_data_registration *rego;
1674 gdb_assert (gdbarch->data != NULL);
1675 for (rego = gdbarch_data_registry.registrations;
1676 rego != NULL;
1677 rego = rego->next)
1678 {
1679 struct gdbarch_data *data = rego->data;
1680 gdb_assert (data->index < gdbarch->nr_data);
1681 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1682 {
1683 data->free (gdbarch, gdbarch->data[data->index]);
1684 gdbarch->data[data->index] = NULL;
1685 }
1686 }
1687 xfree (gdbarch->data);
1688 gdbarch->data = NULL;
1689 }
1690
1691
1692 /* Initialize the current value of thee specified per-architecture
1693 data-pointer. */
1694
1695 void
1696 set_gdbarch_data (struct gdbarch *gdbarch,
1697 struct gdbarch_data *data,
1698 void *pointer)
1699 {
1700 gdb_assert (data->index < gdbarch->nr_data);
1701 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1702 data->free (gdbarch, gdbarch->data[data->index]);
1703 gdbarch->data[data->index] = pointer;
1704 }
1705
1706 /* Return the current value of the specified per-architecture
1707 data-pointer. */
1708
1709 void *
1710 gdbarch_data (struct gdbarch_data *data)
1711 {
1712 gdb_assert (data->index < current_gdbarch->nr_data);
1713 return current_gdbarch->data[data->index];
1714 }
1715
1716
1717
1718 /* Keep a registry of swapped data required by GDB modules. */
1719
1720 struct gdbarch_swap
1721 {
1722 void *swap;
1723 struct gdbarch_swap_registration *source;
1724 struct gdbarch_swap *next;
1725 };
1726
1727 struct gdbarch_swap_registration
1728 {
1729 void *data;
1730 unsigned long sizeof_data;
1731 gdbarch_swap_ftype *init;
1732 struct gdbarch_swap_registration *next;
1733 };
1734
1735 struct gdbarch_swap_registry
1736 {
1737 int nr;
1738 struct gdbarch_swap_registration *registrations;
1739 };
1740
1741 struct gdbarch_swap_registry gdbarch_swap_registry =
1742 {
1743 0, NULL,
1744 };
1745
1746 void
1747 register_gdbarch_swap (void *data,
1748 unsigned long sizeof_data,
1749 gdbarch_swap_ftype *init)
1750 {
1751 struct gdbarch_swap_registration **rego;
1752 for (rego = &gdbarch_swap_registry.registrations;
1753 (*rego) != NULL;
1754 rego = &(*rego)->next);
1755 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1756 (*rego)->next = NULL;
1757 (*rego)->init = init;
1758 (*rego)->data = data;
1759 (*rego)->sizeof_data = sizeof_data;
1760 }
1761
1762
1763 static void
1764 init_gdbarch_swap (struct gdbarch *gdbarch)
1765 {
1766 struct gdbarch_swap_registration *rego;
1767 struct gdbarch_swap **curr = &gdbarch->swap;
1768 for (rego = gdbarch_swap_registry.registrations;
1769 rego != NULL;
1770 rego = rego->next)
1771 {
1772 if (rego->data != NULL)
1773 {
1774 (*curr) = XMALLOC (struct gdbarch_swap);
1775 (*curr)->source = rego;
1776 (*curr)->swap = xmalloc (rego->sizeof_data);
1777 (*curr)->next = NULL;
1778 memset (rego->data, 0, rego->sizeof_data);
1779 curr = &(*curr)->next;
1780 }
1781 if (rego->init != NULL)
1782 rego->init ();
1783 }
1784 }
1785
1786 static void
1787 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1788 {
1789 struct gdbarch_swap *curr;
1790 for (curr = gdbarch->swap;
1791 curr != NULL;
1792 curr = curr->next)
1793 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1794 }
1795
1796 static void
1797 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1798 {
1799 struct gdbarch_swap *curr;
1800 for (curr = gdbarch->swap;
1801 curr != NULL;
1802 curr = curr->next)
1803 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1804 }
1805
1806
1807 /* Keep a registry of the architectures known by GDB. */
1808
1809 struct gdbarch_registration
1810 {
1811 enum bfd_architecture bfd_architecture;
1812 gdbarch_init_ftype *init;
1813 gdbarch_dump_tdep_ftype *dump_tdep;
1814 struct gdbarch_list *arches;
1815 struct gdbarch_registration *next;
1816 };
1817
1818 static struct gdbarch_registration *gdbarch_registry = NULL;
1819
1820 static void
1821 append_name (const char ***buf, int *nr, const char *name)
1822 {
1823 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1824 (*buf)[*nr] = name;
1825 *nr += 1;
1826 }
1827
1828 const char **
1829 gdbarch_printable_names (void)
1830 {
1831 if (GDB_MULTI_ARCH)
1832 {
1833 /* Accumulate a list of names based on the registed list of
1834 architectures. */
1835 enum bfd_architecture a;
1836 int nr_arches = 0;
1837 const char **arches = NULL;
1838 struct gdbarch_registration *rego;
1839 for (rego = gdbarch_registry;
1840 rego != NULL;
1841 rego = rego->next)
1842 {
1843 const struct bfd_arch_info *ap;
1844 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1845 if (ap == NULL)
1846 internal_error (__FILE__, __LINE__,
1847 "gdbarch_architecture_names: multi-arch unknown");
1848 do
1849 {
1850 append_name (&arches, &nr_arches, ap->printable_name);
1851 ap = ap->next;
1852 }
1853 while (ap != NULL);
1854 }
1855 append_name (&arches, &nr_arches, NULL);
1856 return arches;
1857 }
1858 else
1859 /* Just return all the architectures that BFD knows. Assume that
1860 the legacy architecture framework supports them. */
1861 return bfd_arch_list ();
1862 }
1863
1864
1865 void
1866 gdbarch_register (enum bfd_architecture bfd_architecture,
1867 gdbarch_init_ftype *init,
1868 gdbarch_dump_tdep_ftype *dump_tdep)
1869 {
1870 struct gdbarch_registration **curr;
1871 const struct bfd_arch_info *bfd_arch_info;
1872 /* Check that BFD recognizes this architecture */
1873 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1874 if (bfd_arch_info == NULL)
1875 {
1876 internal_error (__FILE__, __LINE__,
1877 "gdbarch: Attempt to register unknown architecture (%d)",
1878 bfd_architecture);
1879 }
1880 /* Check that we haven't seen this architecture before */
1881 for (curr = &gdbarch_registry;
1882 (*curr) != NULL;
1883 curr = &(*curr)->next)
1884 {
1885 if (bfd_architecture == (*curr)->bfd_architecture)
1886 internal_error (__FILE__, __LINE__,
1887 "gdbarch: Duplicate registraration of architecture (%s)",
1888 bfd_arch_info->printable_name);
1889 }
1890 /* log it */
1891 if (gdbarch_debug)
1892 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1893 bfd_arch_info->printable_name,
1894 (long) init);
1895 /* Append it */
1896 (*curr) = XMALLOC (struct gdbarch_registration);
1897 (*curr)->bfd_architecture = bfd_architecture;
1898 (*curr)->init = init;
1899 (*curr)->dump_tdep = dump_tdep;
1900 (*curr)->arches = NULL;
1901 (*curr)->next = NULL;
1902 /* When non- multi-arch, install whatever target dump routine we've
1903 been provided - hopefully that routine has been written correctly
1904 and works regardless of multi-arch. */
1905 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1906 && startup_gdbarch.dump_tdep == NULL)
1907 startup_gdbarch.dump_tdep = dump_tdep;
1908 }
1909
1910 void
1911 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1912 gdbarch_init_ftype *init)
1913 {
1914 gdbarch_register (bfd_architecture, init, NULL);
1915 }
1916
1917
1918 /* Look for an architecture using gdbarch_info. Base search on only
1919 BFD_ARCH_INFO and BYTE_ORDER. */
1920
1921 struct gdbarch_list *
1922 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1923 const struct gdbarch_info *info)
1924 {
1925 for (; arches != NULL; arches = arches->next)
1926 {
1927 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1928 continue;
1929 if (info->byte_order != arches->gdbarch->byte_order)
1930 continue;
1931 return arches;
1932 }
1933 return NULL;
1934 }
1935
1936
1937 /* Update the current architecture. Return ZERO if the update request
1938 failed. */
1939
1940 int
1941 gdbarch_update_p (struct gdbarch_info info)
1942 {
1943 struct gdbarch *new_gdbarch;
1944 struct gdbarch_list **list;
1945 struct gdbarch_registration *rego;
1946
1947 /* Fill in any missing bits. Most important is the bfd_architecture
1948 which is used to select the target architecture. */
1949 if (info.bfd_architecture == bfd_arch_unknown)
1950 {
1951 if (info.bfd_arch_info != NULL)
1952 info.bfd_architecture = info.bfd_arch_info->arch;
1953 else if (info.abfd != NULL)
1954 info.bfd_architecture = bfd_get_arch (info.abfd);
1955 /* FIXME - should query BFD for its default architecture. */
1956 else
1957 info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
1958 }
1959 if (info.bfd_arch_info == NULL)
1960 {
1961 if (target_architecture_auto && info.abfd != NULL)
1962 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1963 else
1964 info.bfd_arch_info = current_gdbarch->bfd_arch_info;
1965 }
1966 if (info.byte_order == 0)
1967 {
1968 if (target_byte_order_auto && info.abfd != NULL)
1969 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1970 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1971 : 0);
1972 else
1973 info.byte_order = current_gdbarch->byte_order;
1974 /* FIXME - should query BFD for its default byte-order. */
1975 }
1976 /* A default for abfd? */
1977
1978 /* Find the target that knows about this architecture. */
1979 for (rego = gdbarch_registry;
1980 rego != NULL;
1981 rego = rego->next)
1982 if (rego->bfd_architecture == info.bfd_architecture)
1983 break;
1984 if (rego == NULL)
1985 {
1986 if (gdbarch_debug)
1987 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1988 return 0;
1989 }
1990
1991 if (gdbarch_debug)
1992 {
1993 fprintf_unfiltered (gdb_stdlog,
1994 "gdbarch_update: info.bfd_architecture %d (%s)\\n",
1995 info.bfd_architecture,
1996 bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
1997 fprintf_unfiltered (gdb_stdlog,
1998 "gdbarch_update: info.bfd_arch_info %s\\n",
1999 (info.bfd_arch_info != NULL
2000 ? info.bfd_arch_info->printable_name
2001 : "(null)"));
2002 fprintf_unfiltered (gdb_stdlog,
2003 "gdbarch_update: info.byte_order %d (%s)\\n",
2004 info.byte_order,
2005 (info.byte_order == BIG_ENDIAN ? "big"
2006 : info.byte_order == LITTLE_ENDIAN ? "little"
2007 : "default"));
2008 fprintf_unfiltered (gdb_stdlog,
2009 "gdbarch_update: info.abfd 0x%lx\\n",
2010 (long) info.abfd);
2011 fprintf_unfiltered (gdb_stdlog,
2012 "gdbarch_update: info.tdep_info 0x%lx\\n",
2013 (long) info.tdep_info);
2014 }
2015
2016 /* Ask the target for a replacement architecture. */
2017 new_gdbarch = rego->init (info, rego->arches);
2018
2019 /* Did the target like it? No. Reject the change. */
2020 if (new_gdbarch == NULL)
2021 {
2022 if (gdbarch_debug)
2023 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2024 return 0;
2025 }
2026
2027 /* Did the architecture change? No. Do nothing. */
2028 if (current_gdbarch == new_gdbarch)
2029 {
2030 if (gdbarch_debug)
2031 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2032 (long) new_gdbarch,
2033 new_gdbarch->bfd_arch_info->printable_name);
2034 return 1;
2035 }
2036
2037 /* Swap all data belonging to the old target out */
2038 swapout_gdbarch_swap (current_gdbarch);
2039
2040 /* Is this a pre-existing architecture? Yes. Swap it in. */
2041 for (list = &rego->arches;
2042 (*list) != NULL;
2043 list = &(*list)->next)
2044 {
2045 if ((*list)->gdbarch == new_gdbarch)
2046 {
2047 if (gdbarch_debug)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2050 (long) new_gdbarch,
2051 new_gdbarch->bfd_arch_info->printable_name);
2052 current_gdbarch = new_gdbarch;
2053 swapin_gdbarch_swap (new_gdbarch);
2054 return 1;
2055 }
2056 }
2057
2058 /* Append this new architecture to this targets list. */
2059 (*list) = XMALLOC (struct gdbarch_list);
2060 (*list)->next = NULL;
2061 (*list)->gdbarch = new_gdbarch;
2062
2063 /* Switch to this new architecture. Dump it out. */
2064 current_gdbarch = new_gdbarch;
2065 if (gdbarch_debug)
2066 {
2067 fprintf_unfiltered (gdb_stdlog,
2068 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2069 (long) new_gdbarch,
2070 new_gdbarch->bfd_arch_info->printable_name);
2071 }
2072
2073 /* Check that the newly installed architecture is valid. Plug in
2074 any post init values. */
2075 new_gdbarch->dump_tdep = rego->dump_tdep;
2076 verify_gdbarch (new_gdbarch);
2077
2078 /* Initialize the per-architecture memory (swap) areas.
2079 CURRENT_GDBARCH must be update before these modules are
2080 called. */
2081 init_gdbarch_swap (new_gdbarch);
2082
2083 /* Initialize the per-architecture data-pointer of all parties that
2084 registered an interest in this architecture. CURRENT_GDBARCH
2085 must be updated before these modules are called. */
2086 init_gdbarch_data (new_gdbarch);
2087
2088 if (gdbarch_debug)
2089 gdbarch_dump (current_gdbarch, gdb_stdlog);
2090
2091 return 1;
2092 }
2093
2094
2095 /* Disassembler */
2096
2097 /* Pointer to the target-dependent disassembly function. */
2098 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2099 disassemble_info tm_print_insn_info;
2100
2101
2102 extern void _initialize_gdbarch (void);
2103
2104 void
2105 _initialize_gdbarch (void)
2106 {
2107 struct cmd_list_element *c;
2108
2109 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2110 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2111 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2112 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2113 tm_print_insn_info.print_address_func = dis_asm_print_address;
2114
2115 add_show_from_set (add_set_cmd ("arch",
2116 class_maintenance,
2117 var_zinteger,
2118 (char *)&gdbarch_debug,
2119 "Set architecture debugging.\\n\\
2120 When non-zero, architecture debugging is enabled.", &setdebuglist),
2121 &showdebuglist);
2122 c = add_set_cmd ("archdebug",
2123 class_maintenance,
2124 var_zinteger,
2125 (char *)&gdbarch_debug,
2126 "Set architecture debugging.\\n\\
2127 When non-zero, architecture debugging is enabled.", &setlist);
2128
2129 deprecate_cmd (c, "set debug arch");
2130 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2131 }
2132 EOF
2133
2134 # close things off
2135 exec 1>&2
2136 #../move-if-change new-gdbarch.c gdbarch.c
2137 compare_new gdbarch.c
This page took 0.093801 seconds and 4 git commands to generate.