3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL
=c
; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-
${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev
/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line
="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS
="${IFS}" ; IFS
="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\
${${r}}\" = \"\
\"
95 FUNCTION
=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m
) staticdefault
="${predefault}" ;;
120 M
) staticdefault
="0" ;;
121 * ) test "${staticdefault}" || staticdefault
=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate
="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate
="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate
="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault
="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault
="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p
()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 ||
[ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p
()
194 class_is_function_p
()
197 *f
* |
*F
* |
*m
* |
*M
* ) true
;;
202 class_is_multiarch_p
()
210 class_is_predicate_p
()
213 *F
* |
*V
* |
*M
* ) true
;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol
) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
473 # See gdbint.texinfo. See infcall.c.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # DEPRECATED_REGISTER_SIZE can be deleted.
476 v:=:int:deprecated_register_size
477 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
480 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
487 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
492 v:=:int:believe_pcc_promotion:::::::
494 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
496 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
499 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
500 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
502 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
503 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
505 # It has been suggested that this, well actually its predecessor,
506 # should take the type/value of the function to be called and not the
507 # return type. This is left as an exercise for the reader.
509 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
510 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
511 # (via legacy_return_value), when a small struct is involved.
513 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
515 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
516 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
517 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
521 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
522 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
523 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
524 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
526 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
527 # ABI suitable for the implementation of a robust extract
528 # struct-convention return-value address method (the sparc saves the
529 # address in the callers frame). All the other cases so far examined,
530 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
531 # erreneous - the code was incorrectly assuming that the return-value
532 # address, stored in a register, was preserved across the entire
535 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
536 # the ABIs that are still to be analyzed - perhaps this should simply
537 # be deleted. The commented out extract_returned_value_address method
538 # is provided as a starting point for the 32-bit SPARC. It, or
539 # something like it, along with changes to both infcmd.c and stack.c
540 # will be needed for that case to work. NB: It is passed the callers
541 # frame since it is only after the callee has returned that this
544 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
545 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
549 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
550 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
551 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
552 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
553 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
554 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
556 # A function can be addressed by either it's "pointer" (possibly a
557 # descriptor address) or "entry point" (first executable instruction).
558 # The method "convert_from_func_ptr_addr" converting the former to the
559 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
560 # a simplified subset of that functionality - the function's address
561 # corresponds to the "function pointer" and the function's start
562 # corresponds to the "function entry point" - and hence is redundant.
564 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
566 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
568 # Fetch the target specific address used to represent a load module.
569 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # Return non-zero if the processor is executing a delay slot and a
615 # further single-step is needed before the instruction finishes.
616 M::int:single_step_through_delay:struct frame_info *frame:frame
617 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
618 # disassembler. Perhaps objdump can handle it?
619 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
620 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
623 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
624 # evaluates non-zero, this is the address where the debugger will place
625 # a step-resume breakpoint to get us past the dynamic linker.
626 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
627 # Some systems also have trampoline code for returning from shared libs.
628 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
630 # A target might have problems with watchpoints as soon as the stack
631 # frame of the current function has been destroyed. This mostly happens
632 # as the first action in a funtion's epilogue. in_function_epilogue_p()
633 # is defined to return a non-zero value if either the given addr is one
634 # instruction after the stack destroying instruction up to the trailing
635 # return instruction or if we can figure out that the stack frame has
636 # already been invalidated regardless of the value of addr. Targets
637 # which don't suffer from that problem could just let this functionality
639 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
640 # Given a vector of command-line arguments, return a newly allocated
641 # string which, when passed to the create_inferior function, will be
642 # parsed (on Unix systems, by the shell) to yield the same vector.
643 # This function should call error() if the argument vector is not
644 # representable for this target or if this target does not support
645 # command-line arguments.
646 # ARGC is the number of elements in the vector.
647 # ARGV is an array of strings, one per argument.
648 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
649 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
650 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
651 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
652 v:=:int:cannot_step_breakpoint:::0:0::0
653 v:=:int:have_nonsteppable_watchpoint:::0:0::0
654 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
655 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
656 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
657 # Is a register in a group
658 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
659 # Fetch the pointer to the ith function argument.
660 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
662 # Return the appropriate register set for a core file section with
663 # name SECT_NAME and size SECT_SIZE.
664 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
671 exec > new-gdbarch.log
672 function_list |
while do_read
675 ${class} ${returntype} ${function} ($formal)
679 eval echo \"\ \ \ \
${r}=\
${${r}}\"
681 if class_is_predicate_p
&& fallback_default_p
683 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
687 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
689 echo "Error: postdefault is useless when invalid_p=0" 1>&2
693 if class_is_multiarch_p
695 if class_is_predicate_p
; then :
696 elif test "x${predefault}" = "x"
698 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
707 compare_new gdbarch.log
713 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
715 /* Dynamic architecture support for GDB, the GNU debugger.
717 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
718 Software Foundation, Inc.
720 This file is part of GDB.
722 This program is free software; you can redistribute it and/or modify
723 it under the terms of the GNU General Public License as published by
724 the Free Software Foundation; either version 2 of the License, or
725 (at your option) any later version.
727 This program is distributed in the hope that it will be useful,
728 but WITHOUT ANY WARRANTY; without even the implied warranty of
729 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
730 GNU General Public License for more details.
732 You should have received a copy of the GNU General Public License
733 along with this program; if not, write to the Free Software
734 Foundation, Inc., 51 Franklin Street, Fifth Floor,
735 Boston, MA 02110-1301, USA. */
737 /* This file was created with the aid of \`\`gdbarch.sh''.
739 The Bourne shell script \`\`gdbarch.sh'' creates the files
740 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
741 against the existing \`\`gdbarch.[hc]''. Any differences found
744 If editing this file, please also run gdbarch.sh and merge any
745 changes into that script. Conversely, when making sweeping changes
746 to this file, modifying gdbarch.sh and using its output may prove
767 struct minimal_symbol;
771 struct disassemble_info;
774 struct bp_target_info;
776 extern struct gdbarch *current_gdbarch;
782 printf "/* The following are pre-initialized by GDBARCH. */\n"
783 function_list |
while do_read
788 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
789 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
790 if test -n "${macro}"
792 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
793 printf "#error \"Non multi-arch definition of ${macro}\"\n"
795 printf "#if !defined (${macro})\n"
796 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
805 printf "/* The following are initialized by the target dependent code. */\n"
806 function_list |
while do_read
808 if [ -n "${comment}" ]
810 echo "${comment}" |
sed \
816 if class_is_predicate_p
818 if test -n "${macro}"
821 printf "#if defined (${macro})\n"
822 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
823 printf "#if !defined (${macro}_P)\n"
824 printf "#define ${macro}_P() (1)\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 if test -n "${macro}"
832 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
833 printf "#error \"Non multi-arch definition of ${macro}\"\n"
835 printf "#if !defined (${macro}_P)\n"
836 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
840 if class_is_variable_p
843 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
844 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
845 if test -n "${macro}"
847 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
848 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#if !defined (${macro})\n"
851 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
855 if class_is_function_p
858 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
860 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
861 elif class_is_multiarch_p
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
867 if [ "x${formal}" = "xvoid" ]
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
873 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
874 if test -n "${macro}"
876 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
879 if [ "x${actual}" = "x" ]
881 d
="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
882 elif [ "x${actual}" = "x-" ]
884 d
="#define ${macro} (gdbarch_${function} (current_gdbarch))"
886 d
="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
888 printf "#if !defined (${macro})\n"
889 if [ "x${actual}" = "x" ]
891 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
892 elif [ "x${actual}" = "x-" ]
894 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
896 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
906 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
909 /* Mechanism for co-ordinating the selection of a specific
912 GDB targets (*-tdep.c) can register an interest in a specific
913 architecture. Other GDB components can register a need to maintain
914 per-architecture data.
916 The mechanisms below ensures that there is only a loose connection
917 between the set-architecture command and the various GDB
918 components. Each component can independently register their need
919 to maintain architecture specific data with gdbarch.
923 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
926 The more traditional mega-struct containing architecture specific
927 data for all the various GDB components was also considered. Since
928 GDB is built from a variable number of (fairly independent)
929 components it was determined that the global aproach was not
933 /* Register a new architectural family with GDB.
935 Register support for the specified ARCHITECTURE with GDB. When
936 gdbarch determines that the specified architecture has been
937 selected, the corresponding INIT function is called.
941 The INIT function takes two parameters: INFO which contains the
942 information available to gdbarch about the (possibly new)
943 architecture; ARCHES which is a list of the previously created
944 \`\`struct gdbarch'' for this architecture.
946 The INFO parameter is, as far as possible, be pre-initialized with
947 information obtained from INFO.ABFD or the previously selected
950 The ARCHES parameter is a linked list (sorted most recently used)
951 of all the previously created architures for this architecture
952 family. The (possibly NULL) ARCHES->gdbarch can used to access
953 values from the previously selected architecture for this
954 architecture family. The global \`\`current_gdbarch'' shall not be
957 The INIT function shall return any of: NULL - indicating that it
958 doesn't recognize the selected architecture; an existing \`\`struct
959 gdbarch'' from the ARCHES list - indicating that the new
960 architecture is just a synonym for an earlier architecture (see
961 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
962 - that describes the selected architecture (see gdbarch_alloc()).
964 The DUMP_TDEP function shall print out all target specific values.
965 Care should be taken to ensure that the function works in both the
966 multi-arch and non- multi-arch cases. */
970 struct gdbarch *gdbarch;
971 struct gdbarch_list *next;
976 /* Use default: NULL (ZERO). */
977 const struct bfd_arch_info *bfd_arch_info;
979 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
982 /* Use default: NULL (ZERO). */
985 /* Use default: NULL (ZERO). */
986 struct gdbarch_tdep_info *tdep_info;
988 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
989 enum gdb_osabi osabi;
992 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
993 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
995 /* DEPRECATED - use gdbarch_register() */
996 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
998 extern void gdbarch_register (enum bfd_architecture architecture,
999 gdbarch_init_ftype *,
1000 gdbarch_dump_tdep_ftype *);
1003 /* Return a freshly allocated, NULL terminated, array of the valid
1004 architecture names. Since architectures are registered during the
1005 _initialize phase this function only returns useful information
1006 once initialization has been completed. */
1008 extern const char **gdbarch_printable_names (void);
1011 /* Helper function. Search the list of ARCHES for a GDBARCH that
1012 matches the information provided by INFO. */
1014 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1017 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1018 basic initialization using values obtained from the INFO andTDEP
1019 parameters. set_gdbarch_*() functions are called to complete the
1020 initialization of the object. */
1022 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1025 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1026 It is assumed that the caller freeds the \`\`struct
1029 extern void gdbarch_free (struct gdbarch *);
1032 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1033 obstack. The memory is freed when the corresponding architecture
1036 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1037 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1038 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1041 /* Helper function. Force an update of the current architecture.
1043 The actual architecture selected is determined by INFO, \`\`(gdb) set
1044 architecture'' et.al., the existing architecture and BFD's default
1045 architecture. INFO should be initialized to zero and then selected
1046 fields should be updated.
1048 Returns non-zero if the update succeeds */
1050 extern int gdbarch_update_p (struct gdbarch_info info);
1053 /* Helper function. Find an architecture matching info.
1055 INFO should be initialized using gdbarch_info_init, relevant fields
1056 set, and then finished using gdbarch_info_fill.
1058 Returns the corresponding architecture, or NULL if no matching
1059 architecture was found. "current_gdbarch" is not updated. */
1061 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1064 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1066 FIXME: kettenis/20031124: Of the functions that follow, only
1067 gdbarch_from_bfd is supposed to survive. The others will
1068 dissappear since in the future GDB will (hopefully) be truly
1069 multi-arch. However, for now we're still stuck with the concept of
1070 a single active architecture. */
1072 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1075 /* Register per-architecture data-pointer.
1077 Reserve space for a per-architecture data-pointer. An identifier
1078 for the reserved data-pointer is returned. That identifer should
1079 be saved in a local static variable.
1081 Memory for the per-architecture data shall be allocated using
1082 gdbarch_obstack_zalloc. That memory will be deleted when the
1083 corresponding architecture object is deleted.
1085 When a previously created architecture is re-selected, the
1086 per-architecture data-pointer for that previous architecture is
1087 restored. INIT() is not re-called.
1089 Multiple registrarants for any architecture are allowed (and
1090 strongly encouraged). */
1092 struct gdbarch_data;
1094 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1095 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1096 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1097 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1098 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1099 struct gdbarch_data *data,
1102 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1106 /* Register per-architecture memory region.
1108 Provide a memory-region swap mechanism. Per-architecture memory
1109 region are created. These memory regions are swapped whenever the
1110 architecture is changed. For a new architecture, the memory region
1111 is initialized with zero (0) and the INIT function is called.
1113 Memory regions are swapped / initialized in the order that they are
1114 registered. NULL DATA and/or INIT values can be specified.
1116 New code should use gdbarch_data_register_*(). */
1118 typedef void (gdbarch_swap_ftype) (void);
1119 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1120 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1124 /* Set the dynamic target-system-dependent parameters (architecture,
1125 byte-order, ...) using information found in the BFD */
1127 extern void set_gdbarch_from_file (bfd *);
1130 /* Initialize the current architecture to the "first" one we find on
1133 extern void initialize_current_architecture (void);
1135 /* gdbarch trace variable */
1136 extern int gdbarch_debug;
1138 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1143 #../move-if-change new-gdbarch.h gdbarch.h
1144 compare_new gdbarch.h
1151 exec > new-gdbarch.c
1156 #include "arch-utils.h"
1159 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1162 #include "floatformat.h"
1164 #include "gdb_assert.h"
1165 #include "gdb_string.h"
1166 #include "gdb-events.h"
1167 #include "reggroups.h"
1169 #include "gdb_obstack.h"
1171 /* Static function declarations */
1173 static void alloc_gdbarch_data (struct gdbarch *);
1175 /* Non-zero if we want to trace architecture code. */
1177 #ifndef GDBARCH_DEBUG
1178 #define GDBARCH_DEBUG 0
1180 int gdbarch_debug = GDBARCH_DEBUG;
1182 show_gdbarch_debug (struct ui_file *file, int from_tty,
1183 struct cmd_list_element *c, const char *value)
1185 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1189 pformat (const struct floatformat *format)
1194 return format->name;
1199 # gdbarch open the gdbarch object
1201 printf "/* Maintain the struct gdbarch object */\n"
1203 printf "struct gdbarch\n"
1205 printf " /* Has this architecture been fully initialized? */\n"
1206 printf " int initialized_p;\n"
1208 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1209 printf " struct obstack *obstack;\n"
1211 printf " /* basic architectural information */\n"
1212 function_list |
while do_read
1216 printf " ${returntype} ${function};\n"
1220 printf " /* target specific vector. */\n"
1221 printf " struct gdbarch_tdep *tdep;\n"
1222 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1224 printf " /* per-architecture data-pointers */\n"
1225 printf " unsigned nr_data;\n"
1226 printf " void **data;\n"
1228 printf " /* per-architecture swap-regions */\n"
1229 printf " struct gdbarch_swap *swap;\n"
1232 /* Multi-arch values.
1234 When extending this structure you must:
1236 Add the field below.
1238 Declare set/get functions and define the corresponding
1241 gdbarch_alloc(): If zero/NULL is not a suitable default,
1242 initialize the new field.
1244 verify_gdbarch(): Confirm that the target updated the field
1247 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1250 \`\`startup_gdbarch()'': Append an initial value to the static
1251 variable (base values on the host's c-type system).
1253 get_gdbarch(): Implement the set/get functions (probably using
1254 the macro's as shortcuts).
1259 function_list |
while do_read
1261 if class_is_variable_p
1263 printf " ${returntype} ${function};\n"
1264 elif class_is_function_p
1266 printf " gdbarch_${function}_ftype *${function};\n"
1271 # A pre-initialized vector
1275 /* The default architecture uses host values (for want of a better
1279 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1281 printf "struct gdbarch startup_gdbarch =\n"
1283 printf " 1, /* Always initialized. */\n"
1284 printf " NULL, /* The obstack. */\n"
1285 printf " /* basic architecture information */\n"
1286 function_list |
while do_read
1290 printf " ${staticdefault}, /* ${function} */\n"
1294 /* target specific vector and its dump routine */
1296 /*per-architecture data-pointers and swap regions */
1298 /* Multi-arch values */
1300 function_list |
while do_read
1302 if class_is_function_p || class_is_variable_p
1304 printf " ${staticdefault}, /* ${function} */\n"
1308 /* startup_gdbarch() */
1311 struct gdbarch *current_gdbarch = &startup_gdbarch;
1314 # Create a new gdbarch struct
1317 /* Create a new \`\`struct gdbarch'' based on information provided by
1318 \`\`struct gdbarch_info''. */
1323 gdbarch_alloc (const struct gdbarch_info *info,
1324 struct gdbarch_tdep *tdep)
1326 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1327 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1328 the current local architecture and not the previous global
1329 architecture. This ensures that the new architectures initial
1330 values are not influenced by the previous architecture. Once
1331 everything is parameterised with gdbarch, this will go away. */
1332 struct gdbarch *current_gdbarch;
1334 /* Create an obstack for allocating all the per-architecture memory,
1335 then use that to allocate the architecture vector. */
1336 struct obstack *obstack = XMALLOC (struct obstack);
1337 obstack_init (obstack);
1338 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1339 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1340 current_gdbarch->obstack = obstack;
1342 alloc_gdbarch_data (current_gdbarch);
1344 current_gdbarch->tdep = tdep;
1347 function_list |
while do_read
1351 printf " current_gdbarch->${function} = info->${function};\n"
1355 printf " /* Force the explicit initialization of these. */\n"
1356 function_list |
while do_read
1358 if class_is_function_p || class_is_variable_p
1360 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1362 printf " current_gdbarch->${function} = ${predefault};\n"
1367 /* gdbarch_alloc() */
1369 return current_gdbarch;
1373 # Free a gdbarch struct.
1377 /* Allocate extra space using the per-architecture obstack. */
1380 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1382 void *data = obstack_alloc (arch->obstack, size);
1383 memset (data, 0, size);
1388 /* Free a gdbarch struct. This should never happen in normal
1389 operation --- once you've created a gdbarch, you keep it around.
1390 However, if an architecture's init function encounters an error
1391 building the structure, it may need to clean up a partially
1392 constructed gdbarch. */
1395 gdbarch_free (struct gdbarch *arch)
1397 struct obstack *obstack;
1398 gdb_assert (arch != NULL);
1399 gdb_assert (!arch->initialized_p);
1400 obstack = arch->obstack;
1401 obstack_free (obstack, 0); /* Includes the ARCH. */
1406 # verify a new architecture
1410 /* Ensure that all values in a GDBARCH are reasonable. */
1412 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1413 just happens to match the global variable \`\`current_gdbarch''. That
1414 way macros refering to that variable get the local and not the global
1415 version - ulgh. Once everything is parameterised with gdbarch, this
1419 verify_gdbarch (struct gdbarch *current_gdbarch)
1421 struct ui_file *log;
1422 struct cleanup *cleanups;
1425 log = mem_fileopen ();
1426 cleanups = make_cleanup_ui_file_delete (log);
1428 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1429 fprintf_unfiltered (log, "\n\tbyte-order");
1430 if (current_gdbarch->bfd_arch_info == NULL)
1431 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1432 /* Check those that need to be defined for the given multi-arch level. */
1434 function_list |
while do_read
1436 if class_is_function_p || class_is_variable_p
1438 if [ "x${invalid_p}" = "x0" ]
1440 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1441 elif class_is_predicate_p
1443 printf " /* Skip verify of ${function}, has predicate */\n"
1444 # FIXME: See do_read for potential simplification
1445 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1447 printf " if (${invalid_p})\n"
1448 printf " current_gdbarch->${function} = ${postdefault};\n"
1449 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1451 printf " if (current_gdbarch->${function} == ${predefault})\n"
1452 printf " current_gdbarch->${function} = ${postdefault};\n"
1453 elif [ -n "${postdefault}" ]
1455 printf " if (current_gdbarch->${function} == 0)\n"
1456 printf " current_gdbarch->${function} = ${postdefault};\n"
1457 elif [ -n "${invalid_p}" ]
1459 printf " if (${invalid_p})\n"
1460 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1461 elif [ -n "${predefault}" ]
1463 printf " if (current_gdbarch->${function} == ${predefault})\n"
1464 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1469 buf = ui_file_xstrdup (log, &dummy);
1470 make_cleanup (xfree, buf);
1471 if (strlen (buf) > 0)
1472 internal_error (__FILE__, __LINE__,
1473 _("verify_gdbarch: the following are invalid ...%s"),
1475 do_cleanups (cleanups);
1479 # dump the structure
1483 /* Print out the details of the current architecture. */
1485 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1486 just happens to match the global variable \`\`current_gdbarch''. That
1487 way macros refering to that variable get the local and not the global
1488 version - ulgh. Once everything is parameterised with gdbarch, this
1492 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1494 const char *gdb_xm_file = "<not-defined>";
1495 const char *gdb_nm_file = "<not-defined>";
1496 const char *gdb_tm_file = "<not-defined>";
1497 #if defined (GDB_XM_FILE)
1498 gdb_xm_file = GDB_XM_FILE;
1500 fprintf_unfiltered (file,
1501 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1503 #if defined (GDB_NM_FILE)
1504 gdb_nm_file = GDB_NM_FILE;
1506 fprintf_unfiltered (file,
1507 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1509 #if defined (GDB_TM_FILE)
1510 gdb_tm_file = GDB_TM_FILE;
1512 fprintf_unfiltered (file,
1513 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1516 function_list |
sort -t: -k 4 |
while do_read
1518 # First the predicate
1519 if class_is_predicate_p
1521 if test -n "${macro}"
1523 printf "#ifdef ${macro}_P\n"
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1526 printf " \"${macro}_P()\",\n"
1527 printf " XSTRING (${macro}_P ()));\n"
1530 printf " fprintf_unfiltered (file,\n"
1531 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1532 printf " gdbarch_${function}_p (current_gdbarch));\n"
1534 # Print the macro definition.
1535 if test -n "${macro}"
1537 printf "#ifdef ${macro}\n"
1538 if class_is_function_p
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1542 printf " \"${macro}(${actual})\",\n"
1543 printf " XSTRING (${macro} (${actual})));\n"
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1547 printf " XSTRING (${macro}));\n"
1551 # Print the corresponding value.
1552 if class_is_function_p
1554 printf " fprintf_unfiltered (file,\n"
1555 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1556 printf " (long) current_gdbarch->${function});\n"
1559 case "${print}:${returntype}" in
1562 print
="paddr_nz (current_gdbarch->${function})"
1566 print
="paddr_d (current_gdbarch->${function})"
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1574 printf " ${print});\n"
1578 if (current_gdbarch->dump_tdep != NULL)
1579 current_gdbarch->dump_tdep (current_gdbarch, file);
1587 struct gdbarch_tdep *
1588 gdbarch_tdep (struct gdbarch *gdbarch)
1590 if (gdbarch_debug >= 2)
1591 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1592 return gdbarch->tdep;
1596 function_list |
while do_read
1598 if class_is_predicate_p
1602 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1604 printf " gdb_assert (gdbarch != NULL);\n"
1605 printf " return ${predicate};\n"
1608 if class_is_function_p
1611 printf "${returntype}\n"
1612 if [ "x${formal}" = "xvoid" ]
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1616 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1619 printf " gdb_assert (gdbarch != NULL);\n"
1620 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1621 if class_is_predicate_p
&& test -n "${predefault}"
1623 # Allow a call to a function with a predicate.
1624 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1626 printf " if (gdbarch_debug >= 2)\n"
1627 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1628 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1630 if class_is_multiarch_p
1637 if class_is_multiarch_p
1639 params
="gdbarch, ${actual}"
1644 if [ "x${returntype}" = "xvoid" ]
1646 printf " gdbarch->${function} (${params});\n"
1648 printf " return gdbarch->${function} (${params});\n"
1653 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1654 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1656 printf " gdbarch->${function} = ${function};\n"
1658 elif class_is_variable_p
1661 printf "${returntype}\n"
1662 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1664 printf " gdb_assert (gdbarch != NULL);\n"
1665 if [ "x${invalid_p}" = "x0" ]
1667 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1668 elif [ -n "${invalid_p}" ]
1670 printf " /* Check variable is valid. */\n"
1671 printf " gdb_assert (!(${invalid_p}));\n"
1672 elif [ -n "${predefault}" ]
1674 printf " /* Check variable changed from pre-default. */\n"
1675 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1677 printf " if (gdbarch_debug >= 2)\n"
1678 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1679 printf " return gdbarch->${function};\n"
1683 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1684 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1686 printf " gdbarch->${function} = ${function};\n"
1688 elif class_is_info_p
1691 printf "${returntype}\n"
1692 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1694 printf " gdb_assert (gdbarch != NULL);\n"
1695 printf " if (gdbarch_debug >= 2)\n"
1696 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1697 printf " return gdbarch->${function};\n"
1702 # All the trailing guff
1706 /* Keep a registry of per-architecture data-pointers required by GDB
1713 gdbarch_data_pre_init_ftype *pre_init;
1714 gdbarch_data_post_init_ftype *post_init;
1717 struct gdbarch_data_registration
1719 struct gdbarch_data *data;
1720 struct gdbarch_data_registration *next;
1723 struct gdbarch_data_registry
1726 struct gdbarch_data_registration *registrations;
1729 struct gdbarch_data_registry gdbarch_data_registry =
1734 static struct gdbarch_data *
1735 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1736 gdbarch_data_post_init_ftype *post_init)
1738 struct gdbarch_data_registration **curr;
1739 /* Append the new registraration. */
1740 for (curr = &gdbarch_data_registry.registrations;
1742 curr = &(*curr)->next);
1743 (*curr) = XMALLOC (struct gdbarch_data_registration);
1744 (*curr)->next = NULL;
1745 (*curr)->data = XMALLOC (struct gdbarch_data);
1746 (*curr)->data->index = gdbarch_data_registry.nr++;
1747 (*curr)->data->pre_init = pre_init;
1748 (*curr)->data->post_init = post_init;
1749 (*curr)->data->init_p = 1;
1750 return (*curr)->data;
1753 struct gdbarch_data *
1754 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1756 return gdbarch_data_register (pre_init, NULL);
1759 struct gdbarch_data *
1760 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1762 return gdbarch_data_register (NULL, post_init);
1765 /* Create/delete the gdbarch data vector. */
1768 alloc_gdbarch_data (struct gdbarch *gdbarch)
1770 gdb_assert (gdbarch->data == NULL);
1771 gdbarch->nr_data = gdbarch_data_registry.nr;
1772 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1775 /* Initialize the current value of the specified per-architecture
1779 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1780 struct gdbarch_data *data,
1783 gdb_assert (data->index < gdbarch->nr_data);
1784 gdb_assert (gdbarch->data[data->index] == NULL);
1785 gdb_assert (data->pre_init == NULL);
1786 gdbarch->data[data->index] = pointer;
1789 /* Return the current value of the specified per-architecture
1793 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1795 gdb_assert (data->index < gdbarch->nr_data);
1796 if (gdbarch->data[data->index] == NULL)
1798 /* The data-pointer isn't initialized, call init() to get a
1800 if (data->pre_init != NULL)
1801 /* Mid architecture creation: pass just the obstack, and not
1802 the entire architecture, as that way it isn't possible for
1803 pre-init code to refer to undefined architecture
1805 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1806 else if (gdbarch->initialized_p
1807 && data->post_init != NULL)
1808 /* Post architecture creation: pass the entire architecture
1809 (as all fields are valid), but be careful to also detect
1810 recursive references. */
1812 gdb_assert (data->init_p);
1814 gdbarch->data[data->index] = data->post_init (gdbarch);
1818 /* The architecture initialization hasn't completed - punt -
1819 hope that the caller knows what they are doing. Once
1820 deprecated_set_gdbarch_data has been initialized, this can be
1821 changed to an internal error. */
1823 gdb_assert (gdbarch->data[data->index] != NULL);
1825 return gdbarch->data[data->index];
1830 /* Keep a registry of swapped data required by GDB modules. */
1835 struct gdbarch_swap_registration *source;
1836 struct gdbarch_swap *next;
1839 struct gdbarch_swap_registration
1842 unsigned long sizeof_data;
1843 gdbarch_swap_ftype *init;
1844 struct gdbarch_swap_registration *next;
1847 struct gdbarch_swap_registry
1850 struct gdbarch_swap_registration *registrations;
1853 struct gdbarch_swap_registry gdbarch_swap_registry =
1859 deprecated_register_gdbarch_swap (void *data,
1860 unsigned long sizeof_data,
1861 gdbarch_swap_ftype *init)
1863 struct gdbarch_swap_registration **rego;
1864 for (rego = &gdbarch_swap_registry.registrations;
1866 rego = &(*rego)->next);
1867 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1868 (*rego)->next = NULL;
1869 (*rego)->init = init;
1870 (*rego)->data = data;
1871 (*rego)->sizeof_data = sizeof_data;
1875 current_gdbarch_swap_init_hack (void)
1877 struct gdbarch_swap_registration *rego;
1878 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1879 for (rego = gdbarch_swap_registry.registrations;
1883 if (rego->data != NULL)
1885 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1886 struct gdbarch_swap);
1887 (*curr)->source = rego;
1888 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1890 (*curr)->next = NULL;
1891 curr = &(*curr)->next;
1893 if (rego->init != NULL)
1898 static struct gdbarch *
1899 current_gdbarch_swap_out_hack (void)
1901 struct gdbarch *old_gdbarch = current_gdbarch;
1902 struct gdbarch_swap *curr;
1904 gdb_assert (old_gdbarch != NULL);
1905 for (curr = old_gdbarch->swap;
1909 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1910 memset (curr->source->data, 0, curr->source->sizeof_data);
1912 current_gdbarch = NULL;
1917 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1919 struct gdbarch_swap *curr;
1921 gdb_assert (current_gdbarch == NULL);
1922 for (curr = new_gdbarch->swap;
1925 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1926 current_gdbarch = new_gdbarch;
1930 /* Keep a registry of the architectures known by GDB. */
1932 struct gdbarch_registration
1934 enum bfd_architecture bfd_architecture;
1935 gdbarch_init_ftype *init;
1936 gdbarch_dump_tdep_ftype *dump_tdep;
1937 struct gdbarch_list *arches;
1938 struct gdbarch_registration *next;
1941 static struct gdbarch_registration *gdbarch_registry = NULL;
1944 append_name (const char ***buf, int *nr, const char *name)
1946 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1952 gdbarch_printable_names (void)
1954 /* Accumulate a list of names based on the registed list of
1956 enum bfd_architecture a;
1958 const char **arches = NULL;
1959 struct gdbarch_registration *rego;
1960 for (rego = gdbarch_registry;
1964 const struct bfd_arch_info *ap;
1965 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1967 internal_error (__FILE__, __LINE__,
1968 _("gdbarch_architecture_names: multi-arch unknown"));
1971 append_name (&arches, &nr_arches, ap->printable_name);
1976 append_name (&arches, &nr_arches, NULL);
1982 gdbarch_register (enum bfd_architecture bfd_architecture,
1983 gdbarch_init_ftype *init,
1984 gdbarch_dump_tdep_ftype *dump_tdep)
1986 struct gdbarch_registration **curr;
1987 const struct bfd_arch_info *bfd_arch_info;
1988 /* Check that BFD recognizes this architecture */
1989 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1990 if (bfd_arch_info == NULL)
1992 internal_error (__FILE__, __LINE__,
1993 _("gdbarch: Attempt to register unknown architecture (%d)"),
1996 /* Check that we haven't seen this architecture before */
1997 for (curr = &gdbarch_registry;
1999 curr = &(*curr)->next)
2001 if (bfd_architecture == (*curr)->bfd_architecture)
2002 internal_error (__FILE__, __LINE__,
2003 _("gdbarch: Duplicate registraration of architecture (%s)"),
2004 bfd_arch_info->printable_name);
2008 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2009 bfd_arch_info->printable_name,
2012 (*curr) = XMALLOC (struct gdbarch_registration);
2013 (*curr)->bfd_architecture = bfd_architecture;
2014 (*curr)->init = init;
2015 (*curr)->dump_tdep = dump_tdep;
2016 (*curr)->arches = NULL;
2017 (*curr)->next = NULL;
2021 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2022 gdbarch_init_ftype *init)
2024 gdbarch_register (bfd_architecture, init, NULL);
2028 /* Look for an architecture using gdbarch_info. Base search on only
2029 BFD_ARCH_INFO and BYTE_ORDER. */
2031 struct gdbarch_list *
2032 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2033 const struct gdbarch_info *info)
2035 for (; arches != NULL; arches = arches->next)
2037 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2039 if (info->byte_order != arches->gdbarch->byte_order)
2041 if (info->osabi != arches->gdbarch->osabi)
2049 /* Find an architecture that matches the specified INFO. Create a new
2050 architecture if needed. Return that new architecture. Assumes
2051 that there is no current architecture. */
2053 static struct gdbarch *
2054 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2056 struct gdbarch *new_gdbarch;
2057 struct gdbarch_registration *rego;
2059 /* The existing architecture has been swapped out - all this code
2060 works from a clean slate. */
2061 gdb_assert (current_gdbarch == NULL);
2063 /* Fill in missing parts of the INFO struct using a number of
2064 sources: "set ..."; INFOabfd supplied; and the existing
2066 gdbarch_info_fill (old_gdbarch, &info);
2068 /* Must have found some sort of architecture. */
2069 gdb_assert (info.bfd_arch_info != NULL);
2073 fprintf_unfiltered (gdb_stdlog,
2074 "find_arch_by_info: info.bfd_arch_info %s\n",
2075 (info.bfd_arch_info != NULL
2076 ? info.bfd_arch_info->printable_name
2078 fprintf_unfiltered (gdb_stdlog,
2079 "find_arch_by_info: info.byte_order %d (%s)\n",
2081 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2082 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2084 fprintf_unfiltered (gdb_stdlog,
2085 "find_arch_by_info: info.osabi %d (%s)\n",
2086 info.osabi, gdbarch_osabi_name (info.osabi));
2087 fprintf_unfiltered (gdb_stdlog,
2088 "find_arch_by_info: info.abfd 0x%lx\n",
2090 fprintf_unfiltered (gdb_stdlog,
2091 "find_arch_by_info: info.tdep_info 0x%lx\n",
2092 (long) info.tdep_info);
2095 /* Find the tdep code that knows about this architecture. */
2096 for (rego = gdbarch_registry;
2099 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2104 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2105 "No matching architecture\n");
2109 /* Ask the tdep code for an architecture that matches "info". */
2110 new_gdbarch = rego->init (info, rego->arches);
2112 /* Did the tdep code like it? No. Reject the change and revert to
2113 the old architecture. */
2114 if (new_gdbarch == NULL)
2117 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2118 "Target rejected architecture\n");
2122 /* Is this a pre-existing architecture (as determined by already
2123 being initialized)? Move it to the front of the architecture
2124 list (keeping the list sorted Most Recently Used). */
2125 if (new_gdbarch->initialized_p)
2127 struct gdbarch_list **list;
2128 struct gdbarch_list *this;
2130 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2131 "Previous architecture 0x%08lx (%s) selected\n",
2133 new_gdbarch->bfd_arch_info->printable_name);
2134 /* Find the existing arch in the list. */
2135 for (list = ®o->arches;
2136 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2137 list = &(*list)->next);
2138 /* It had better be in the list of architectures. */
2139 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2142 (*list) = this->next;
2143 /* Insert THIS at the front. */
2144 this->next = rego->arches;
2145 rego->arches = this;
2150 /* It's a new architecture. */
2152 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2153 "New architecture 0x%08lx (%s) selected\n",
2155 new_gdbarch->bfd_arch_info->printable_name);
2157 /* Insert the new architecture into the front of the architecture
2158 list (keep the list sorted Most Recently Used). */
2160 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2161 this->next = rego->arches;
2162 this->gdbarch = new_gdbarch;
2163 rego->arches = this;
2166 /* Check that the newly installed architecture is valid. Plug in
2167 any post init values. */
2168 new_gdbarch->dump_tdep = rego->dump_tdep;
2169 verify_gdbarch (new_gdbarch);
2170 new_gdbarch->initialized_p = 1;
2172 /* Initialize any per-architecture swap areas. This phase requires
2173 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2174 swap the entire architecture out. */
2175 current_gdbarch = new_gdbarch;
2176 current_gdbarch_swap_init_hack ();
2177 current_gdbarch_swap_out_hack ();
2180 gdbarch_dump (new_gdbarch, gdb_stdlog);
2186 gdbarch_find_by_info (struct gdbarch_info info)
2188 /* Save the previously selected architecture, setting the global to
2189 NULL. This stops things like gdbarch->init() trying to use the
2190 previous architecture's configuration. The previous architecture
2191 may not even be of the same architecture family. The most recent
2192 architecture of the same family is found at the head of the
2193 rego->arches list. */
2194 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2196 /* Find the specified architecture. */
2197 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2199 /* Restore the existing architecture. */
2200 gdb_assert (current_gdbarch == NULL);
2201 current_gdbarch_swap_in_hack (old_gdbarch);
2206 /* Make the specified architecture current, swapping the existing one
2210 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2212 gdb_assert (new_gdbarch != NULL);
2213 gdb_assert (current_gdbarch != NULL);
2214 gdb_assert (new_gdbarch->initialized_p);
2215 current_gdbarch_swap_out_hack ();
2216 current_gdbarch_swap_in_hack (new_gdbarch);
2217 architecture_changed_event ();
2218 flush_cached_frames ();
2221 extern void _initialize_gdbarch (void);
2224 _initialize_gdbarch (void)
2226 struct cmd_list_element *c;
2228 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2229 Set architecture debugging."), _("\\
2230 Show architecture debugging."), _("\\
2231 When non-zero, architecture debugging is enabled."),
2234 &setdebuglist, &showdebuglist);
2240 #../move-if-change new-gdbarch.c gdbarch.c
2241 compare_new gdbarch.c