9f04f089d8ff5e3d387634ffc6d522efc2c1b164
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
425 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426 # Convert from an sdb register number to an internal gdb register number.
427 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
487 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
488 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
489 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
490 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
491 v:CORE_ADDR:decr_pc_after_break:::0:::0
492
493 # A function can be addressed by either it's "pointer" (possibly a
494 # descriptor address) or "entry point" (first executable instruction).
495 # The method "convert_from_func_ptr_addr" converting the former to the
496 # latter. gdbarch_deprecated_function_start_offset is being used to implement
497 # a simplified subset of that functionality - the function's address
498 # corresponds to the "function pointer" and the function's start
499 # corresponds to the "function entry point" - and hence is redundant.
500
501 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
502
503 # Return the remote protocol register number associated with this
504 # register. Normally the identity mapping.
505 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
506
507 # Fetch the target specific address used to represent a load module.
508 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
509 #
510 v:CORE_ADDR:frame_args_skip:::0:::0
511 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
512 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
513 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
514 # frame-base. Enable frame-base before frame-unwind.
515 F:int:frame_num_args:struct frame_info *frame:frame
516 #
517 M:CORE_ADDR:frame_align:CORE_ADDR address:address
518 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
519 v:int:frame_red_zone_size
520 #
521 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
522 # On some machines there are bits in addresses which are not really
523 # part of the address, but are used by the kernel, the hardware, etc.
524 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
525 # we get a "real" address such as one would find in a symbol table.
526 # This is used only for addresses of instructions, and even then I'm
527 # not sure it's used in all contexts. It exists to deal with there
528 # being a few stray bits in the PC which would mislead us, not as some
529 # sort of generic thing to handle alignment or segmentation (it's
530 # possible it should be in TARGET_READ_PC instead).
531 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
532 # It is not at all clear why gdbarch_smash_text_address is not folded into
533 # gdbarch_addr_bits_remove.
534 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
535
536 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
537 # indicates if the target needs software single step. An ISA method to
538 # implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
541 # breakpoints using the breakpoint system instead of blatting memory directly
542 # (as with rs6000).
543 #
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
545 # target can single step. If not, then implement single step using breakpoints.
546 #
547 # A return value of 1 means that the software_single_step breakpoints
548 # were inserted; 0 means they were not.
549 F:int:software_single_step:struct frame_info *frame:frame
550
551 # Return non-zero if the processor is executing a delay slot and a
552 # further single-step is needed before the instruction finishes.
553 M:int:single_step_through_delay:struct frame_info *frame:frame
554 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
555 # disassembler. Perhaps objdump can handle it?
556 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
557 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
558
559
560 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
561 # evaluates non-zero, this is the address where the debugger will place
562 # a step-resume breakpoint to get us past the dynamic linker.
563 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
564 # Some systems also have trampoline code for returning from shared libs.
565 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
566
567 # A target might have problems with watchpoints as soon as the stack
568 # frame of the current function has been destroyed. This mostly happens
569 # as the first action in a funtion's epilogue. in_function_epilogue_p()
570 # is defined to return a non-zero value if either the given addr is one
571 # instruction after the stack destroying instruction up to the trailing
572 # return instruction or if we can figure out that the stack frame has
573 # already been invalidated regardless of the value of addr. Targets
574 # which don't suffer from that problem could just let this functionality
575 # untouched.
576 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
577 # Given a vector of command-line arguments, return a newly allocated
578 # string which, when passed to the create_inferior function, will be
579 # parsed (on Unix systems, by the shell) to yield the same vector.
580 # This function should call error() if the argument vector is not
581 # representable for this target or if this target does not support
582 # command-line arguments.
583 # ARGC is the number of elements in the vector.
584 # ARGV is an array of strings, one per argument.
585 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
586 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
587 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
588 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
604 # core file into buffer READBUF with length LEN.
605 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
606
607 # If the elements of C++ vtables are in-place function descriptors rather
608 # than normal function pointers (which may point to code or a descriptor),
609 # set this to one.
610 v:int:vtable_function_descriptors:::0:0::0
611
612 # Set if the least significant bit of the delta is used instead of the least
613 # significant bit of the pfn for pointers to virtual member functions.
614 v:int:vbit_in_delta:::0:0::0
615
616 # Advance PC to next instruction in order to skip a permanent breakpoint.
617 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
618
619 # Refresh overlay mapped state for section OSECT.
620 F:void:overlay_update:struct obj_section *osect:osect
621
622 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
623
624 # Handle special encoding of static variables in stabs debug info.
625 F:char *:static_transform_name:char *name:name
626 # Set if the address in N_SO or N_FUN stabs may be zero.
627 v:int:sofun_address_maybe_missing:::0:0::0
628
629 # Signal translation: translate inferior's signal (host's) number into
630 # GDB's representation.
631 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
632 # Signal translation: translate GDB's signal number into inferior's host
633 # signal number.
634 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
635 EOF
636 }
637
638 #
639 # The .log file
640 #
641 exec > new-gdbarch.log
642 function_list | while do_read
643 do
644 cat <<EOF
645 ${class} ${returntype} ${function} ($formal)
646 EOF
647 for r in ${read}
648 do
649 eval echo \"\ \ \ \ ${r}=\${${r}}\"
650 done
651 if class_is_predicate_p && fallback_default_p
652 then
653 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
654 kill $$
655 exit 1
656 fi
657 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
658 then
659 echo "Error: postdefault is useless when invalid_p=0" 1>&2
660 kill $$
661 exit 1
662 fi
663 if class_is_multiarch_p
664 then
665 if class_is_predicate_p ; then :
666 elif test "x${predefault}" = "x"
667 then
668 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
669 kill $$
670 exit 1
671 fi
672 fi
673 echo ""
674 done
675
676 exec 1>&2
677 compare_new gdbarch.log
678
679
680 copyright ()
681 {
682 cat <<EOF
683 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
684
685 /* Dynamic architecture support for GDB, the GNU debugger.
686
687 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
688 Free Software Foundation, Inc.
689
690 This file is part of GDB.
691
692 This program is free software; you can redistribute it and/or modify
693 it under the terms of the GNU General Public License as published by
694 the Free Software Foundation; either version 3 of the License, or
695 (at your option) any later version.
696
697 This program is distributed in the hope that it will be useful,
698 but WITHOUT ANY WARRANTY; without even the implied warranty of
699 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
700 GNU General Public License for more details.
701
702 You should have received a copy of the GNU General Public License
703 along with this program. If not, see <http://www.gnu.org/licenses/>. */
704
705 /* This file was created with the aid of \`\`gdbarch.sh''.
706
707 The Bourne shell script \`\`gdbarch.sh'' creates the files
708 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
709 against the existing \`\`gdbarch.[hc]''. Any differences found
710 being reported.
711
712 If editing this file, please also run gdbarch.sh and merge any
713 changes into that script. Conversely, when making sweeping changes
714 to this file, modifying gdbarch.sh and using its output may prove
715 easier. */
716
717 EOF
718 }
719
720 #
721 # The .h file
722 #
723
724 exec > new-gdbarch.h
725 copyright
726 cat <<EOF
727 #ifndef GDBARCH_H
728 #define GDBARCH_H
729
730 struct floatformat;
731 struct ui_file;
732 struct frame_info;
733 struct value;
734 struct objfile;
735 struct obj_section;
736 struct minimal_symbol;
737 struct regcache;
738 struct reggroup;
739 struct regset;
740 struct disassemble_info;
741 struct target_ops;
742 struct obstack;
743 struct bp_target_info;
744 struct target_desc;
745
746 extern struct gdbarch *current_gdbarch;
747 EOF
748
749 # function typedef's
750 printf "\n"
751 printf "\n"
752 printf "/* The following are pre-initialized by GDBARCH. */\n"
753 function_list | while do_read
754 do
755 if class_is_info_p
756 then
757 printf "\n"
758 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
759 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
760 fi
761 done
762
763 # function typedef's
764 printf "\n"
765 printf "\n"
766 printf "/* The following are initialized by the target dependent code. */\n"
767 function_list | while do_read
768 do
769 if [ -n "${comment}" ]
770 then
771 echo "${comment}" | sed \
772 -e '2 s,#,/*,' \
773 -e '3,$ s,#, ,' \
774 -e '$ s,$, */,'
775 fi
776
777 if class_is_predicate_p
778 then
779 printf "\n"
780 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
781 fi
782 if class_is_variable_p
783 then
784 printf "\n"
785 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
786 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
787 fi
788 if class_is_function_p
789 then
790 printf "\n"
791 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
792 then
793 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
794 elif class_is_multiarch_p
795 then
796 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
797 else
798 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
799 fi
800 if [ "x${formal}" = "xvoid" ]
801 then
802 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
803 else
804 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
805 fi
806 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
807 fi
808 done
809
810 # close it off
811 cat <<EOF
812
813 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
814
815
816 /* Mechanism for co-ordinating the selection of a specific
817 architecture.
818
819 GDB targets (*-tdep.c) can register an interest in a specific
820 architecture. Other GDB components can register a need to maintain
821 per-architecture data.
822
823 The mechanisms below ensures that there is only a loose connection
824 between the set-architecture command and the various GDB
825 components. Each component can independently register their need
826 to maintain architecture specific data with gdbarch.
827
828 Pragmatics:
829
830 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
831 didn't scale.
832
833 The more traditional mega-struct containing architecture specific
834 data for all the various GDB components was also considered. Since
835 GDB is built from a variable number of (fairly independent)
836 components it was determined that the global aproach was not
837 applicable. */
838
839
840 /* Register a new architectural family with GDB.
841
842 Register support for the specified ARCHITECTURE with GDB. When
843 gdbarch determines that the specified architecture has been
844 selected, the corresponding INIT function is called.
845
846 --
847
848 The INIT function takes two parameters: INFO which contains the
849 information available to gdbarch about the (possibly new)
850 architecture; ARCHES which is a list of the previously created
851 \`\`struct gdbarch'' for this architecture.
852
853 The INFO parameter is, as far as possible, be pre-initialized with
854 information obtained from INFO.ABFD or the global defaults.
855
856 The ARCHES parameter is a linked list (sorted most recently used)
857 of all the previously created architures for this architecture
858 family. The (possibly NULL) ARCHES->gdbarch can used to access
859 values from the previously selected architecture for this
860 architecture family. The global \`\`current_gdbarch'' shall not be
861 used.
862
863 The INIT function shall return any of: NULL - indicating that it
864 doesn't recognize the selected architecture; an existing \`\`struct
865 gdbarch'' from the ARCHES list - indicating that the new
866 architecture is just a synonym for an earlier architecture (see
867 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
868 - that describes the selected architecture (see gdbarch_alloc()).
869
870 The DUMP_TDEP function shall print out all target specific values.
871 Care should be taken to ensure that the function works in both the
872 multi-arch and non- multi-arch cases. */
873
874 struct gdbarch_list
875 {
876 struct gdbarch *gdbarch;
877 struct gdbarch_list *next;
878 };
879
880 struct gdbarch_info
881 {
882 /* Use default: NULL (ZERO). */
883 const struct bfd_arch_info *bfd_arch_info;
884
885 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
886 int byte_order;
887
888 /* Use default: NULL (ZERO). */
889 bfd *abfd;
890
891 /* Use default: NULL (ZERO). */
892 struct gdbarch_tdep_info *tdep_info;
893
894 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
895 enum gdb_osabi osabi;
896
897 /* Use default: NULL (ZERO). */
898 const struct target_desc *target_desc;
899 };
900
901 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
902 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
903
904 /* DEPRECATED - use gdbarch_register() */
905 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
906
907 extern void gdbarch_register (enum bfd_architecture architecture,
908 gdbarch_init_ftype *,
909 gdbarch_dump_tdep_ftype *);
910
911
912 /* Return a freshly allocated, NULL terminated, array of the valid
913 architecture names. Since architectures are registered during the
914 _initialize phase this function only returns useful information
915 once initialization has been completed. */
916
917 extern const char **gdbarch_printable_names (void);
918
919
920 /* Helper function. Search the list of ARCHES for a GDBARCH that
921 matches the information provided by INFO. */
922
923 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
924
925
926 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
927 basic initialization using values obtained from the INFO and TDEP
928 parameters. set_gdbarch_*() functions are called to complete the
929 initialization of the object. */
930
931 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
932
933
934 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
935 It is assumed that the caller freeds the \`\`struct
936 gdbarch_tdep''. */
937
938 extern void gdbarch_free (struct gdbarch *);
939
940
941 /* Helper function. Allocate memory from the \`\`struct gdbarch''
942 obstack. The memory is freed when the corresponding architecture
943 is also freed. */
944
945 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
946 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
947 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
948
949
950 /* Helper function. Force an update of the current architecture.
951
952 The actual architecture selected is determined by INFO, \`\`(gdb) set
953 architecture'' et.al., the existing architecture and BFD's default
954 architecture. INFO should be initialized to zero and then selected
955 fields should be updated.
956
957 Returns non-zero if the update succeeds */
958
959 extern int gdbarch_update_p (struct gdbarch_info info);
960
961
962 /* Helper function. Find an architecture matching info.
963
964 INFO should be initialized using gdbarch_info_init, relevant fields
965 set, and then finished using gdbarch_info_fill.
966
967 Returns the corresponding architecture, or NULL if no matching
968 architecture was found. "current_gdbarch" is not updated. */
969
970 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
971
972
973 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
974
975 FIXME: kettenis/20031124: Of the functions that follow, only
976 gdbarch_from_bfd is supposed to survive. The others will
977 dissappear since in the future GDB will (hopefully) be truly
978 multi-arch. However, for now we're still stuck with the concept of
979 a single active architecture. */
980
981 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
982
983
984 /* Register per-architecture data-pointer.
985
986 Reserve space for a per-architecture data-pointer. An identifier
987 for the reserved data-pointer is returned. That identifer should
988 be saved in a local static variable.
989
990 Memory for the per-architecture data shall be allocated using
991 gdbarch_obstack_zalloc. That memory will be deleted when the
992 corresponding architecture object is deleted.
993
994 When a previously created architecture is re-selected, the
995 per-architecture data-pointer for that previous architecture is
996 restored. INIT() is not re-called.
997
998 Multiple registrarants for any architecture are allowed (and
999 strongly encouraged). */
1000
1001 struct gdbarch_data;
1002
1003 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1004 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1005 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1006 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1007 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1008 struct gdbarch_data *data,
1009 void *pointer);
1010
1011 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1012
1013
1014 /* Set the dynamic target-system-dependent parameters (architecture,
1015 byte-order, ...) using information found in the BFD */
1016
1017 extern void set_gdbarch_from_file (bfd *);
1018
1019
1020 /* Initialize the current architecture to the "first" one we find on
1021 our list. */
1022
1023 extern void initialize_current_architecture (void);
1024
1025 /* gdbarch trace variable */
1026 extern int gdbarch_debug;
1027
1028 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1029
1030 #endif
1031 EOF
1032 exec 1>&2
1033 #../move-if-change new-gdbarch.h gdbarch.h
1034 compare_new gdbarch.h
1035
1036
1037 #
1038 # C file
1039 #
1040
1041 exec > new-gdbarch.c
1042 copyright
1043 cat <<EOF
1044
1045 #include "defs.h"
1046 #include "arch-utils.h"
1047
1048 #include "gdbcmd.h"
1049 #include "inferior.h"
1050 #include "symcat.h"
1051
1052 #include "floatformat.h"
1053
1054 #include "gdb_assert.h"
1055 #include "gdb_string.h"
1056 #include "gdb-events.h"
1057 #include "reggroups.h"
1058 #include "osabi.h"
1059 #include "gdb_obstack.h"
1060
1061 /* Static function declarations */
1062
1063 static void alloc_gdbarch_data (struct gdbarch *);
1064
1065 /* Non-zero if we want to trace architecture code. */
1066
1067 #ifndef GDBARCH_DEBUG
1068 #define GDBARCH_DEBUG 0
1069 #endif
1070 int gdbarch_debug = GDBARCH_DEBUG;
1071 static void
1072 show_gdbarch_debug (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c, const char *value)
1074 {
1075 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1076 }
1077
1078 static const char *
1079 pformat (const struct floatformat **format)
1080 {
1081 if (format == NULL)
1082 return "(null)";
1083 else
1084 /* Just print out one of them - this is only for diagnostics. */
1085 return format[0]->name;
1086 }
1087
1088 EOF
1089
1090 # gdbarch open the gdbarch object
1091 printf "\n"
1092 printf "/* Maintain the struct gdbarch object */\n"
1093 printf "\n"
1094 printf "struct gdbarch\n"
1095 printf "{\n"
1096 printf " /* Has this architecture been fully initialized? */\n"
1097 printf " int initialized_p;\n"
1098 printf "\n"
1099 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1100 printf " struct obstack *obstack;\n"
1101 printf "\n"
1102 printf " /* basic architectural information */\n"
1103 function_list | while do_read
1104 do
1105 if class_is_info_p
1106 then
1107 printf " ${returntype} ${function};\n"
1108 fi
1109 done
1110 printf "\n"
1111 printf " /* target specific vector. */\n"
1112 printf " struct gdbarch_tdep *tdep;\n"
1113 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1114 printf "\n"
1115 printf " /* per-architecture data-pointers */\n"
1116 printf " unsigned nr_data;\n"
1117 printf " void **data;\n"
1118 printf "\n"
1119 printf " /* per-architecture swap-regions */\n"
1120 printf " struct gdbarch_swap *swap;\n"
1121 printf "\n"
1122 cat <<EOF
1123 /* Multi-arch values.
1124
1125 When extending this structure you must:
1126
1127 Add the field below.
1128
1129 Declare set/get functions and define the corresponding
1130 macro in gdbarch.h.
1131
1132 gdbarch_alloc(): If zero/NULL is not a suitable default,
1133 initialize the new field.
1134
1135 verify_gdbarch(): Confirm that the target updated the field
1136 correctly.
1137
1138 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1139 field is dumped out
1140
1141 \`\`startup_gdbarch()'': Append an initial value to the static
1142 variable (base values on the host's c-type system).
1143
1144 get_gdbarch(): Implement the set/get functions (probably using
1145 the macro's as shortcuts).
1146
1147 */
1148
1149 EOF
1150 function_list | while do_read
1151 do
1152 if class_is_variable_p
1153 then
1154 printf " ${returntype} ${function};\n"
1155 elif class_is_function_p
1156 then
1157 printf " gdbarch_${function}_ftype *${function};\n"
1158 fi
1159 done
1160 printf "};\n"
1161
1162 # A pre-initialized vector
1163 printf "\n"
1164 printf "\n"
1165 cat <<EOF
1166 /* The default architecture uses host values (for want of a better
1167 choice). */
1168 EOF
1169 printf "\n"
1170 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1171 printf "\n"
1172 printf "struct gdbarch startup_gdbarch =\n"
1173 printf "{\n"
1174 printf " 1, /* Always initialized. */\n"
1175 printf " NULL, /* The obstack. */\n"
1176 printf " /* basic architecture information */\n"
1177 function_list | while do_read
1178 do
1179 if class_is_info_p
1180 then
1181 printf " ${staticdefault}, /* ${function} */\n"
1182 fi
1183 done
1184 cat <<EOF
1185 /* target specific vector and its dump routine */
1186 NULL, NULL,
1187 /*per-architecture data-pointers and swap regions */
1188 0, NULL, NULL,
1189 /* Multi-arch values */
1190 EOF
1191 function_list | while do_read
1192 do
1193 if class_is_function_p || class_is_variable_p
1194 then
1195 printf " ${staticdefault}, /* ${function} */\n"
1196 fi
1197 done
1198 cat <<EOF
1199 /* startup_gdbarch() */
1200 };
1201
1202 struct gdbarch *current_gdbarch = &startup_gdbarch;
1203 EOF
1204
1205 # Create a new gdbarch struct
1206 cat <<EOF
1207
1208 /* Create a new \`\`struct gdbarch'' based on information provided by
1209 \`\`struct gdbarch_info''. */
1210 EOF
1211 printf "\n"
1212 cat <<EOF
1213 struct gdbarch *
1214 gdbarch_alloc (const struct gdbarch_info *info,
1215 struct gdbarch_tdep *tdep)
1216 {
1217 struct gdbarch *gdbarch;
1218
1219 /* Create an obstack for allocating all the per-architecture memory,
1220 then use that to allocate the architecture vector. */
1221 struct obstack *obstack = XMALLOC (struct obstack);
1222 obstack_init (obstack);
1223 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1224 memset (gdbarch, 0, sizeof (*gdbarch));
1225 gdbarch->obstack = obstack;
1226
1227 alloc_gdbarch_data (gdbarch);
1228
1229 gdbarch->tdep = tdep;
1230 EOF
1231 printf "\n"
1232 function_list | while do_read
1233 do
1234 if class_is_info_p
1235 then
1236 printf " gdbarch->${function} = info->${function};\n"
1237 fi
1238 done
1239 printf "\n"
1240 printf " /* Force the explicit initialization of these. */\n"
1241 function_list | while do_read
1242 do
1243 if class_is_function_p || class_is_variable_p
1244 then
1245 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1246 then
1247 printf " gdbarch->${function} = ${predefault};\n"
1248 fi
1249 fi
1250 done
1251 cat <<EOF
1252 /* gdbarch_alloc() */
1253
1254 return gdbarch;
1255 }
1256 EOF
1257
1258 # Free a gdbarch struct.
1259 printf "\n"
1260 printf "\n"
1261 cat <<EOF
1262 /* Allocate extra space using the per-architecture obstack. */
1263
1264 void *
1265 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1266 {
1267 void *data = obstack_alloc (arch->obstack, size);
1268 memset (data, 0, size);
1269 return data;
1270 }
1271
1272
1273 /* Free a gdbarch struct. This should never happen in normal
1274 operation --- once you've created a gdbarch, you keep it around.
1275 However, if an architecture's init function encounters an error
1276 building the structure, it may need to clean up a partially
1277 constructed gdbarch. */
1278
1279 void
1280 gdbarch_free (struct gdbarch *arch)
1281 {
1282 struct obstack *obstack;
1283 gdb_assert (arch != NULL);
1284 gdb_assert (!arch->initialized_p);
1285 obstack = arch->obstack;
1286 obstack_free (obstack, 0); /* Includes the ARCH. */
1287 xfree (obstack);
1288 }
1289 EOF
1290
1291 # verify a new architecture
1292 cat <<EOF
1293
1294
1295 /* Ensure that all values in a GDBARCH are reasonable. */
1296
1297 static void
1298 verify_gdbarch (struct gdbarch *gdbarch)
1299 {
1300 struct ui_file *log;
1301 struct cleanup *cleanups;
1302 long dummy;
1303 char *buf;
1304 log = mem_fileopen ();
1305 cleanups = make_cleanup_ui_file_delete (log);
1306 /* fundamental */
1307 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1308 fprintf_unfiltered (log, "\n\tbyte-order");
1309 if (gdbarch->bfd_arch_info == NULL)
1310 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1311 /* Check those that need to be defined for the given multi-arch level. */
1312 EOF
1313 function_list | while do_read
1314 do
1315 if class_is_function_p || class_is_variable_p
1316 then
1317 if [ "x${invalid_p}" = "x0" ]
1318 then
1319 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1320 elif class_is_predicate_p
1321 then
1322 printf " /* Skip verify of ${function}, has predicate */\n"
1323 # FIXME: See do_read for potential simplification
1324 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1325 then
1326 printf " if (${invalid_p})\n"
1327 printf " gdbarch->${function} = ${postdefault};\n"
1328 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1329 then
1330 printf " if (gdbarch->${function} == ${predefault})\n"
1331 printf " gdbarch->${function} = ${postdefault};\n"
1332 elif [ -n "${postdefault}" ]
1333 then
1334 printf " if (gdbarch->${function} == 0)\n"
1335 printf " gdbarch->${function} = ${postdefault};\n"
1336 elif [ -n "${invalid_p}" ]
1337 then
1338 printf " if (${invalid_p})\n"
1339 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1340 elif [ -n "${predefault}" ]
1341 then
1342 printf " if (gdbarch->${function} == ${predefault})\n"
1343 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1344 fi
1345 fi
1346 done
1347 cat <<EOF
1348 buf = ui_file_xstrdup (log, &dummy);
1349 make_cleanup (xfree, buf);
1350 if (strlen (buf) > 0)
1351 internal_error (__FILE__, __LINE__,
1352 _("verify_gdbarch: the following are invalid ...%s"),
1353 buf);
1354 do_cleanups (cleanups);
1355 }
1356 EOF
1357
1358 # dump the structure
1359 printf "\n"
1360 printf "\n"
1361 cat <<EOF
1362 /* Print out the details of the current architecture. */
1363
1364 void
1365 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1366 {
1367 const char *gdb_nm_file = "<not-defined>";
1368 #if defined (GDB_NM_FILE)
1369 gdb_nm_file = GDB_NM_FILE;
1370 #endif
1371 fprintf_unfiltered (file,
1372 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1373 gdb_nm_file);
1374 EOF
1375 function_list | sort -t: -k 3 | while do_read
1376 do
1377 # First the predicate
1378 if class_is_predicate_p
1379 then
1380 printf " fprintf_unfiltered (file,\n"
1381 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1382 printf " gdbarch_${function}_p (gdbarch));\n"
1383 fi
1384 # Print the corresponding value.
1385 if class_is_function_p
1386 then
1387 printf " fprintf_unfiltered (file,\n"
1388 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1389 printf " (long) gdbarch->${function});\n"
1390 else
1391 # It is a variable
1392 case "${print}:${returntype}" in
1393 :CORE_ADDR )
1394 fmt="0x%s"
1395 print="paddr_nz (gdbarch->${function})"
1396 ;;
1397 :* )
1398 fmt="%s"
1399 print="paddr_d (gdbarch->${function})"
1400 ;;
1401 * )
1402 fmt="%s"
1403 ;;
1404 esac
1405 printf " fprintf_unfiltered (file,\n"
1406 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1407 printf " ${print});\n"
1408 fi
1409 done
1410 cat <<EOF
1411 if (gdbarch->dump_tdep != NULL)
1412 gdbarch->dump_tdep (gdbarch, file);
1413 }
1414 EOF
1415
1416
1417 # GET/SET
1418 printf "\n"
1419 cat <<EOF
1420 struct gdbarch_tdep *
1421 gdbarch_tdep (struct gdbarch *gdbarch)
1422 {
1423 if (gdbarch_debug >= 2)
1424 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1425 return gdbarch->tdep;
1426 }
1427 EOF
1428 printf "\n"
1429 function_list | while do_read
1430 do
1431 if class_is_predicate_p
1432 then
1433 printf "\n"
1434 printf "int\n"
1435 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1436 printf "{\n"
1437 printf " gdb_assert (gdbarch != NULL);\n"
1438 printf " return ${predicate};\n"
1439 printf "}\n"
1440 fi
1441 if class_is_function_p
1442 then
1443 printf "\n"
1444 printf "${returntype}\n"
1445 if [ "x${formal}" = "xvoid" ]
1446 then
1447 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1448 else
1449 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1450 fi
1451 printf "{\n"
1452 printf " gdb_assert (gdbarch != NULL);\n"
1453 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1454 if class_is_predicate_p && test -n "${predefault}"
1455 then
1456 # Allow a call to a function with a predicate.
1457 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1458 fi
1459 printf " if (gdbarch_debug >= 2)\n"
1460 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1461 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1462 then
1463 if class_is_multiarch_p
1464 then
1465 params="gdbarch"
1466 else
1467 params=""
1468 fi
1469 else
1470 if class_is_multiarch_p
1471 then
1472 params="gdbarch, ${actual}"
1473 else
1474 params="${actual}"
1475 fi
1476 fi
1477 if [ "x${returntype}" = "xvoid" ]
1478 then
1479 printf " gdbarch->${function} (${params});\n"
1480 else
1481 printf " return gdbarch->${function} (${params});\n"
1482 fi
1483 printf "}\n"
1484 printf "\n"
1485 printf "void\n"
1486 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1487 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1488 printf "{\n"
1489 printf " gdbarch->${function} = ${function};\n"
1490 printf "}\n"
1491 elif class_is_variable_p
1492 then
1493 printf "\n"
1494 printf "${returntype}\n"
1495 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1496 printf "{\n"
1497 printf " gdb_assert (gdbarch != NULL);\n"
1498 if [ "x${invalid_p}" = "x0" ]
1499 then
1500 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1501 elif [ -n "${invalid_p}" ]
1502 then
1503 printf " /* Check variable is valid. */\n"
1504 printf " gdb_assert (!(${invalid_p}));\n"
1505 elif [ -n "${predefault}" ]
1506 then
1507 printf " /* Check variable changed from pre-default. */\n"
1508 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1509 fi
1510 printf " if (gdbarch_debug >= 2)\n"
1511 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1512 printf " return gdbarch->${function};\n"
1513 printf "}\n"
1514 printf "\n"
1515 printf "void\n"
1516 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1517 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1518 printf "{\n"
1519 printf " gdbarch->${function} = ${function};\n"
1520 printf "}\n"
1521 elif class_is_info_p
1522 then
1523 printf "\n"
1524 printf "${returntype}\n"
1525 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1526 printf "{\n"
1527 printf " gdb_assert (gdbarch != NULL);\n"
1528 printf " if (gdbarch_debug >= 2)\n"
1529 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1530 printf " return gdbarch->${function};\n"
1531 printf "}\n"
1532 fi
1533 done
1534
1535 # All the trailing guff
1536 cat <<EOF
1537
1538
1539 /* Keep a registry of per-architecture data-pointers required by GDB
1540 modules. */
1541
1542 struct gdbarch_data
1543 {
1544 unsigned index;
1545 int init_p;
1546 gdbarch_data_pre_init_ftype *pre_init;
1547 gdbarch_data_post_init_ftype *post_init;
1548 };
1549
1550 struct gdbarch_data_registration
1551 {
1552 struct gdbarch_data *data;
1553 struct gdbarch_data_registration *next;
1554 };
1555
1556 struct gdbarch_data_registry
1557 {
1558 unsigned nr;
1559 struct gdbarch_data_registration *registrations;
1560 };
1561
1562 struct gdbarch_data_registry gdbarch_data_registry =
1563 {
1564 0, NULL,
1565 };
1566
1567 static struct gdbarch_data *
1568 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1569 gdbarch_data_post_init_ftype *post_init)
1570 {
1571 struct gdbarch_data_registration **curr;
1572 /* Append the new registraration. */
1573 for (curr = &gdbarch_data_registry.registrations;
1574 (*curr) != NULL;
1575 curr = &(*curr)->next);
1576 (*curr) = XMALLOC (struct gdbarch_data_registration);
1577 (*curr)->next = NULL;
1578 (*curr)->data = XMALLOC (struct gdbarch_data);
1579 (*curr)->data->index = gdbarch_data_registry.nr++;
1580 (*curr)->data->pre_init = pre_init;
1581 (*curr)->data->post_init = post_init;
1582 (*curr)->data->init_p = 1;
1583 return (*curr)->data;
1584 }
1585
1586 struct gdbarch_data *
1587 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1588 {
1589 return gdbarch_data_register (pre_init, NULL);
1590 }
1591
1592 struct gdbarch_data *
1593 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1594 {
1595 return gdbarch_data_register (NULL, post_init);
1596 }
1597
1598 /* Create/delete the gdbarch data vector. */
1599
1600 static void
1601 alloc_gdbarch_data (struct gdbarch *gdbarch)
1602 {
1603 gdb_assert (gdbarch->data == NULL);
1604 gdbarch->nr_data = gdbarch_data_registry.nr;
1605 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1606 }
1607
1608 /* Initialize the current value of the specified per-architecture
1609 data-pointer. */
1610
1611 void
1612 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1613 struct gdbarch_data *data,
1614 void *pointer)
1615 {
1616 gdb_assert (data->index < gdbarch->nr_data);
1617 gdb_assert (gdbarch->data[data->index] == NULL);
1618 gdb_assert (data->pre_init == NULL);
1619 gdbarch->data[data->index] = pointer;
1620 }
1621
1622 /* Return the current value of the specified per-architecture
1623 data-pointer. */
1624
1625 void *
1626 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1627 {
1628 gdb_assert (data->index < gdbarch->nr_data);
1629 if (gdbarch->data[data->index] == NULL)
1630 {
1631 /* The data-pointer isn't initialized, call init() to get a
1632 value. */
1633 if (data->pre_init != NULL)
1634 /* Mid architecture creation: pass just the obstack, and not
1635 the entire architecture, as that way it isn't possible for
1636 pre-init code to refer to undefined architecture
1637 fields. */
1638 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1639 else if (gdbarch->initialized_p
1640 && data->post_init != NULL)
1641 /* Post architecture creation: pass the entire architecture
1642 (as all fields are valid), but be careful to also detect
1643 recursive references. */
1644 {
1645 gdb_assert (data->init_p);
1646 data->init_p = 0;
1647 gdbarch->data[data->index] = data->post_init (gdbarch);
1648 data->init_p = 1;
1649 }
1650 else
1651 /* The architecture initialization hasn't completed - punt -
1652 hope that the caller knows what they are doing. Once
1653 deprecated_set_gdbarch_data has been initialized, this can be
1654 changed to an internal error. */
1655 return NULL;
1656 gdb_assert (gdbarch->data[data->index] != NULL);
1657 }
1658 return gdbarch->data[data->index];
1659 }
1660
1661
1662 /* Keep a registry of the architectures known by GDB. */
1663
1664 struct gdbarch_registration
1665 {
1666 enum bfd_architecture bfd_architecture;
1667 gdbarch_init_ftype *init;
1668 gdbarch_dump_tdep_ftype *dump_tdep;
1669 struct gdbarch_list *arches;
1670 struct gdbarch_registration *next;
1671 };
1672
1673 static struct gdbarch_registration *gdbarch_registry = NULL;
1674
1675 static void
1676 append_name (const char ***buf, int *nr, const char *name)
1677 {
1678 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1679 (*buf)[*nr] = name;
1680 *nr += 1;
1681 }
1682
1683 const char **
1684 gdbarch_printable_names (void)
1685 {
1686 /* Accumulate a list of names based on the registed list of
1687 architectures. */
1688 enum bfd_architecture a;
1689 int nr_arches = 0;
1690 const char **arches = NULL;
1691 struct gdbarch_registration *rego;
1692 for (rego = gdbarch_registry;
1693 rego != NULL;
1694 rego = rego->next)
1695 {
1696 const struct bfd_arch_info *ap;
1697 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1698 if (ap == NULL)
1699 internal_error (__FILE__, __LINE__,
1700 _("gdbarch_architecture_names: multi-arch unknown"));
1701 do
1702 {
1703 append_name (&arches, &nr_arches, ap->printable_name);
1704 ap = ap->next;
1705 }
1706 while (ap != NULL);
1707 }
1708 append_name (&arches, &nr_arches, NULL);
1709 return arches;
1710 }
1711
1712
1713 void
1714 gdbarch_register (enum bfd_architecture bfd_architecture,
1715 gdbarch_init_ftype *init,
1716 gdbarch_dump_tdep_ftype *dump_tdep)
1717 {
1718 struct gdbarch_registration **curr;
1719 const struct bfd_arch_info *bfd_arch_info;
1720 /* Check that BFD recognizes this architecture */
1721 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1722 if (bfd_arch_info == NULL)
1723 {
1724 internal_error (__FILE__, __LINE__,
1725 _("gdbarch: Attempt to register unknown architecture (%d)"),
1726 bfd_architecture);
1727 }
1728 /* Check that we haven't seen this architecture before */
1729 for (curr = &gdbarch_registry;
1730 (*curr) != NULL;
1731 curr = &(*curr)->next)
1732 {
1733 if (bfd_architecture == (*curr)->bfd_architecture)
1734 internal_error (__FILE__, __LINE__,
1735 _("gdbarch: Duplicate registraration of architecture (%s)"),
1736 bfd_arch_info->printable_name);
1737 }
1738 /* log it */
1739 if (gdbarch_debug)
1740 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1741 bfd_arch_info->printable_name,
1742 (long) init);
1743 /* Append it */
1744 (*curr) = XMALLOC (struct gdbarch_registration);
1745 (*curr)->bfd_architecture = bfd_architecture;
1746 (*curr)->init = init;
1747 (*curr)->dump_tdep = dump_tdep;
1748 (*curr)->arches = NULL;
1749 (*curr)->next = NULL;
1750 }
1751
1752 void
1753 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1754 gdbarch_init_ftype *init)
1755 {
1756 gdbarch_register (bfd_architecture, init, NULL);
1757 }
1758
1759
1760 /* Look for an architecture using gdbarch_info. */
1761
1762 struct gdbarch_list *
1763 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1764 const struct gdbarch_info *info)
1765 {
1766 for (; arches != NULL; arches = arches->next)
1767 {
1768 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1769 continue;
1770 if (info->byte_order != arches->gdbarch->byte_order)
1771 continue;
1772 if (info->osabi != arches->gdbarch->osabi)
1773 continue;
1774 if (info->target_desc != arches->gdbarch->target_desc)
1775 continue;
1776 return arches;
1777 }
1778 return NULL;
1779 }
1780
1781
1782 /* Find an architecture that matches the specified INFO. Create a new
1783 architecture if needed. Return that new architecture. Assumes
1784 that there is no current architecture. */
1785
1786 static struct gdbarch *
1787 find_arch_by_info (struct gdbarch_info info)
1788 {
1789 struct gdbarch *new_gdbarch;
1790 struct gdbarch_registration *rego;
1791
1792 /* The existing architecture has been swapped out - all this code
1793 works from a clean slate. */
1794 gdb_assert (current_gdbarch == NULL);
1795
1796 /* Fill in missing parts of the INFO struct using a number of
1797 sources: "set ..."; INFOabfd supplied; and the global
1798 defaults. */
1799 gdbarch_info_fill (&info);
1800
1801 /* Must have found some sort of architecture. */
1802 gdb_assert (info.bfd_arch_info != NULL);
1803
1804 if (gdbarch_debug)
1805 {
1806 fprintf_unfiltered (gdb_stdlog,
1807 "find_arch_by_info: info.bfd_arch_info %s\n",
1808 (info.bfd_arch_info != NULL
1809 ? info.bfd_arch_info->printable_name
1810 : "(null)"));
1811 fprintf_unfiltered (gdb_stdlog,
1812 "find_arch_by_info: info.byte_order %d (%s)\n",
1813 info.byte_order,
1814 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1815 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1816 : "default"));
1817 fprintf_unfiltered (gdb_stdlog,
1818 "find_arch_by_info: info.osabi %d (%s)\n",
1819 info.osabi, gdbarch_osabi_name (info.osabi));
1820 fprintf_unfiltered (gdb_stdlog,
1821 "find_arch_by_info: info.abfd 0x%lx\n",
1822 (long) info.abfd);
1823 fprintf_unfiltered (gdb_stdlog,
1824 "find_arch_by_info: info.tdep_info 0x%lx\n",
1825 (long) info.tdep_info);
1826 }
1827
1828 /* Find the tdep code that knows about this architecture. */
1829 for (rego = gdbarch_registry;
1830 rego != NULL;
1831 rego = rego->next)
1832 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1833 break;
1834 if (rego == NULL)
1835 {
1836 if (gdbarch_debug)
1837 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1838 "No matching architecture\n");
1839 return 0;
1840 }
1841
1842 /* Ask the tdep code for an architecture that matches "info". */
1843 new_gdbarch = rego->init (info, rego->arches);
1844
1845 /* Did the tdep code like it? No. Reject the change and revert to
1846 the old architecture. */
1847 if (new_gdbarch == NULL)
1848 {
1849 if (gdbarch_debug)
1850 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1851 "Target rejected architecture\n");
1852 return NULL;
1853 }
1854
1855 /* Is this a pre-existing architecture (as determined by already
1856 being initialized)? Move it to the front of the architecture
1857 list (keeping the list sorted Most Recently Used). */
1858 if (new_gdbarch->initialized_p)
1859 {
1860 struct gdbarch_list **list;
1861 struct gdbarch_list *this;
1862 if (gdbarch_debug)
1863 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1864 "Previous architecture 0x%08lx (%s) selected\n",
1865 (long) new_gdbarch,
1866 new_gdbarch->bfd_arch_info->printable_name);
1867 /* Find the existing arch in the list. */
1868 for (list = &rego->arches;
1869 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1870 list = &(*list)->next);
1871 /* It had better be in the list of architectures. */
1872 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1873 /* Unlink THIS. */
1874 this = (*list);
1875 (*list) = this->next;
1876 /* Insert THIS at the front. */
1877 this->next = rego->arches;
1878 rego->arches = this;
1879 /* Return it. */
1880 return new_gdbarch;
1881 }
1882
1883 /* It's a new architecture. */
1884 if (gdbarch_debug)
1885 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1886 "New architecture 0x%08lx (%s) selected\n",
1887 (long) new_gdbarch,
1888 new_gdbarch->bfd_arch_info->printable_name);
1889
1890 /* Insert the new architecture into the front of the architecture
1891 list (keep the list sorted Most Recently Used). */
1892 {
1893 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1894 this->next = rego->arches;
1895 this->gdbarch = new_gdbarch;
1896 rego->arches = this;
1897 }
1898
1899 /* Check that the newly installed architecture is valid. Plug in
1900 any post init values. */
1901 new_gdbarch->dump_tdep = rego->dump_tdep;
1902 verify_gdbarch (new_gdbarch);
1903 new_gdbarch->initialized_p = 1;
1904
1905 if (gdbarch_debug)
1906 gdbarch_dump (new_gdbarch, gdb_stdlog);
1907
1908 return new_gdbarch;
1909 }
1910
1911 struct gdbarch *
1912 gdbarch_find_by_info (struct gdbarch_info info)
1913 {
1914 struct gdbarch *new_gdbarch;
1915
1916 /* Save the previously selected architecture, setting the global to
1917 NULL. This stops things like gdbarch->init() trying to use the
1918 previous architecture's configuration. The previous architecture
1919 may not even be of the same architecture family. The most recent
1920 architecture of the same family is found at the head of the
1921 rego->arches list. */
1922 struct gdbarch *old_gdbarch = current_gdbarch;
1923 current_gdbarch = NULL;
1924
1925 /* Find the specified architecture. */
1926 new_gdbarch = find_arch_by_info (info);
1927
1928 /* Restore the existing architecture. */
1929 gdb_assert (current_gdbarch == NULL);
1930 current_gdbarch = old_gdbarch;
1931
1932 return new_gdbarch;
1933 }
1934
1935 /* Make the specified architecture current. */
1936
1937 void
1938 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1939 {
1940 gdb_assert (new_gdbarch != NULL);
1941 gdb_assert (current_gdbarch != NULL);
1942 gdb_assert (new_gdbarch->initialized_p);
1943 current_gdbarch = new_gdbarch;
1944 architecture_changed_event ();
1945 reinit_frame_cache ();
1946 }
1947
1948 extern void _initialize_gdbarch (void);
1949
1950 void
1951 _initialize_gdbarch (void)
1952 {
1953 struct cmd_list_element *c;
1954
1955 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1956 Set architecture debugging."), _("\\
1957 Show architecture debugging."), _("\\
1958 When non-zero, architecture debugging is enabled."),
1959 NULL,
1960 show_gdbarch_debug,
1961 &setdebuglist, &showdebuglist);
1962 }
1963 EOF
1964
1965 # close things off
1966 exec 1>&2
1967 #../move-if-change new-gdbarch.c gdbarch.c
1968 compare_new gdbarch.c
This page took 0.104325 seconds and 4 git commands to generate.