3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 # Make certain that the script is running in an internationalized
27 LC_ALL
=c
; export LC_ALL
35 echo "${file} missing? cp new-${file} ${file}" 1>&2
36 elif diff -u ${file} new-
${file}
38 echo "${file} unchanged" 1>&2
40 echo "${file} has changed? cp new-${file} ${file}" 1>&2
45 # Format of the input table
46 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
54 if test "${line}" = ""
57 elif test "${line}" = "#" -a "${comment}" = ""
60 elif expr "${line}" : "#" > /dev
/null
66 # The semantics of IFS varies between different SH's. Some
67 # treat ``::' as three fields while some treat it as just too.
68 # Work around this by eliminating ``::'' ....
69 line
="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71 OFS
="${IFS}" ; IFS
="[:]"
72 eval read ${read} <<EOF
77 if test -n "${garbage_at_eol}"
79 echo "Garbage at end-of-line in ${line}" 1>&2
84 # .... and then going back through each field and strip out those
85 # that ended up with just that space character.
88 if eval test \"\
${${r}}\" = \"\
\"
94 FUNCTION
=`echo ${function} | tr '[a-z]' '[A-Z]'`
95 if test "x${macro}" = "x="
97 # Provide a UCASE version of function (for when there isn't MACRO)
99 elif test "${macro}" = "${FUNCTION}"
101 echo "${function}: Specify = for macro field" 1>&2
106 # Check that macro definition wasn't supplied for multi-arch
109 if test "${macro}" != ""
111 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
118 m
) staticdefault
="${predefault}" ;;
119 M
) staticdefault
="0" ;;
120 * ) test "${staticdefault}" || staticdefault
=0 ;;
125 case "${invalid_p}" in
127 if test -n "${predefault}"
129 #invalid_p="gdbarch->${function} == ${predefault}"
130 predicate
="gdbarch->${function} != ${predefault}"
131 elif class_is_variable_p
133 predicate
="gdbarch->${function} != 0"
134 elif class_is_function_p
136 predicate
="gdbarch->${function} != NULL"
140 echo "Predicate function ${function} with invalid_p." 1>&2
147 # PREDEFAULT is a valid fallback definition of MEMBER when
148 # multi-arch is not enabled. This ensures that the
149 # default value, when multi-arch is the same as the
150 # default value when not multi-arch. POSTDEFAULT is
151 # always a valid definition of MEMBER as this again
152 # ensures consistency.
154 if [ -n "${postdefault}" ]
156 fallbackdefault
="${postdefault}"
157 elif [ -n "${predefault}" ]
159 fallbackdefault
="${predefault}"
164 #NOT YET: See gdbarch.log for basic verification of
179 fallback_default_p
()
181 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
182 ||
[ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
185 class_is_variable_p
()
193 class_is_function_p
()
196 *f
* |
*F
* |
*m
* |
*M
* ) true
;;
201 class_is_multiarch_p
()
209 class_is_predicate_p
()
212 *F
* |
*V
* |
*M
* ) true
;;
226 # dump out/verify the doco
236 # F -> function + predicate
237 # hiding a function + predicate to test function validity
240 # V -> variable + predicate
241 # hiding a variable + predicate to test variables validity
243 # hiding something from the ``struct info'' object
244 # m -> multi-arch function
245 # hiding a multi-arch function (parameterised with the architecture)
246 # M -> multi-arch function + predicate
247 # hiding a multi-arch function + predicate to test function validity
251 # The name of the legacy C macro by which this method can be
252 # accessed. If empty, no macro is defined. If "=", a macro
253 # formed from the upper-case function name is used.
257 # For functions, the return type; for variables, the data type
261 # For functions, the member function name; for variables, the
262 # variable name. Member function names are always prefixed with
263 # ``gdbarch_'' for name-space purity.
267 # The formal argument list. It is assumed that the formal
268 # argument list includes the actual name of each list element.
269 # A function with no arguments shall have ``void'' as the
270 # formal argument list.
274 # The list of actual arguments. The arguments specified shall
275 # match the FORMAL list given above. Functions with out
276 # arguments leave this blank.
280 # To help with the GDB startup a static gdbarch object is
281 # created. STATICDEFAULT is the value to insert into that
282 # static gdbarch object. Since this a static object only
283 # simple expressions can be used.
285 # If STATICDEFAULT is empty, zero is used.
289 # An initial value to assign to MEMBER of the freshly
290 # malloc()ed gdbarch object. After initialization, the
291 # freshly malloc()ed object is passed to the target
292 # architecture code for further updates.
294 # If PREDEFAULT is empty, zero is used.
296 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
297 # INVALID_P are specified, PREDEFAULT will be used as the
298 # default for the non- multi-arch target.
300 # A zero PREDEFAULT function will force the fallback to call
303 # Variable declarations can refer to ``gdbarch'' which will
304 # contain the current architecture. Care should be taken.
308 # A value to assign to MEMBER of the new gdbarch object should
309 # the target architecture code fail to change the PREDEFAULT
312 # If POSTDEFAULT is empty, no post update is performed.
314 # If both INVALID_P and POSTDEFAULT are non-empty then
315 # INVALID_P will be used to determine if MEMBER should be
316 # changed to POSTDEFAULT.
318 # If a non-empty POSTDEFAULT and a zero INVALID_P are
319 # specified, POSTDEFAULT will be used as the default for the
320 # non- multi-arch target (regardless of the value of
323 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325 # Variable declarations can refer to ``current_gdbarch'' which
326 # will contain the current architecture. Care should be
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # An optional expression that convers MEMBER to a value
349 # suitable for formatting using %s.
351 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
352 # (anything else) is used.
354 garbage_at_eol
) : ;;
356 # Catches stray fields.
359 echo "Bad field ${field}"
367 # See below (DOCO) for description of each field
369 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
374 # Number of bits in a char or unsigned char for the target machine.
375 # Just like CHAR_BIT in <limits.h> but describes the target machine.
376 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 # Number of bits in a short or unsigned short for the target machine.
379 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
380 # Number of bits in an int or unsigned int for the target machine.
381 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
382 # Number of bits in a long or unsigned long for the target machine.
383 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
384 # Number of bits in a long long or unsigned long long for the target
386 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388 # The ABI default bit-size and format for "float", "double", and "long
389 # double". These bit/format pairs should eventually be combined into
390 # a single object. For the moment, just initialize them as a pair.
392 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
394 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
396 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399 # For most targets, a pointer on the target and its representation as an
400 # address in GDB have the same size and "look the same". For such a
401 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
402 # / addr_bit will be set from it.
404 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
405 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 # ptr_bit is the size of a pointer on the target
408 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
409 # addr_bit is the size of a target address as represented in gdb
410 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
411 # Number of bits in a BFD_VMA for the target object file format.
412 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
415 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
418 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
419 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
420 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 v:=:int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:=:int:num_pseudo_regs:::0:0::0
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
439 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
440 v:=:int:sp_regnum:::-1:-1::0
441 v:=:int:pc_regnum:::-1:-1::0
442 v:=:int:ps_regnum:::-1:-1::0
443 v:=:int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f:=:const char *:register_name:int regnr:regnr
455 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
456 M::struct type *:register_type:int reg_nr:reg_nr
457 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
458 # register offsets computed using just REGISTER_TYPE, this can be
459 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
460 # function with predicate has a valid (callable) initial value. As a
461 # consequence, even when the predicate is false, the corresponding
462 # function works. This simplifies the migration process - old code,
463 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
464 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
467 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
468 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
469 # DEPRECATED_FP_REGNUM.
470 v:=:int:deprecated_fp_regnum:::-1:-1::0
472 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
473 # replacement for DEPRECATED_PUSH_ARGUMENTS.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
476 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 v:=:int:believe_pcc_promotion:::::::
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
504 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, gdb_byte *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, gdb_byte *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 # Fetch the target specific address used to represent a load module.
571 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 v:=:CORE_ADDR:frame_args_skip:::0:::0
574 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
575 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
576 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
577 # frame-base. Enable frame-base before frame-unwind.
578 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
579 F:=:int:frame_num_args:struct frame_info *frame:frame
581 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
582 # to frame_align and the requirement that methods such as
583 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
585 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
586 M::CORE_ADDR:frame_align:CORE_ADDR address:address
587 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
588 # stabs_argument_has_addr.
589 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
590 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
591 v:=:int:frame_red_zone_size
593 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
594 # On some machines there are bits in addresses which are not really
595 # part of the address, but are used by the kernel, the hardware, etc.
596 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
597 # we get a "real" address such as one would find in a symbol table.
598 # This is used only for addresses of instructions, and even then I'm
599 # not sure it's used in all contexts. It exists to deal with there
600 # being a few stray bits in the PC which would mislead us, not as some
601 # sort of generic thing to handle alignment or segmentation (it's
602 # possible it should be in TARGET_READ_PC instead).
603 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
604 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
606 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
608 # the target needs software single step. An ISA method to implement it.
610 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
611 # using the breakpoint system instead of blatting memory directly (as with rs6000).
613 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
614 # single step. If not, then implement single step using breakpoints.
615 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
616 # Return non-zero if the processor is executing a delay slot and a
617 # further single-step is needed before the instruction finishes.
618 M::int:single_step_through_delay:struct frame_info *frame:frame
619 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
620 # disassembler. Perhaps objdump can handle it?
621 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
622 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
625 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
626 # evaluates non-zero, this is the address where the debugger will place
627 # a step-resume breakpoint to get us past the dynamic linker.
628 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
629 # Some systems also have trampoline code for returning from shared libs.
630 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
632 # A target might have problems with watchpoints as soon as the stack
633 # frame of the current function has been destroyed. This mostly happens
634 # as the first action in a funtion's epilogue. in_function_epilogue_p()
635 # is defined to return a non-zero value if either the given addr is one
636 # instruction after the stack destroying instruction up to the trailing
637 # return instruction or if we can figure out that the stack frame has
638 # already been invalidated regardless of the value of addr. Targets
639 # which don't suffer from that problem could just let this functionality
641 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
642 # Given a vector of command-line arguments, return a newly allocated
643 # string which, when passed to the create_inferior function, will be
644 # parsed (on Unix systems, by the shell) to yield the same vector.
645 # This function should call error() if the argument vector is not
646 # representable for this target or if this target does not support
647 # command-line arguments.
648 # ARGC is the number of elements in the vector.
649 # ARGV is an array of strings, one per argument.
650 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
651 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
652 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
653 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
654 v:=:int:cannot_step_breakpoint:::0:0::0
655 v:=:int:have_nonsteppable_watchpoint:::0:0::0
656 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
657 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
658 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
659 # Is a register in a group
660 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
661 # Fetch the pointer to the ith function argument.
662 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
664 # Return the appropriate register set for a core file section with
665 # name SECT_NAME and size SECT_SIZE.
666 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
673 exec > new-gdbarch.log
674 function_list |
while do_read
677 ${class} ${returntype} ${function} ($formal)
681 eval echo \"\ \ \ \
${r}=\
${${r}}\"
683 if class_is_predicate_p
&& fallback_default_p
685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
695 if class_is_multiarch_p
697 if class_is_predicate_p
; then :
698 elif test "x${predefault}" = "x"
700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
709 compare_new gdbarch.log
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
717 /* Dynamic architecture support for GDB, the GNU debugger.
719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
720 Software Foundation, Inc.
722 This file is part of GDB.
724 This program is free software; you can redistribute it and/or modify
725 it under the terms of the GNU General Public License as published by
726 the Free Software Foundation; either version 2 of the License, or
727 (at your option) any later version.
729 This program is distributed in the hope that it will be useful,
730 but WITHOUT ANY WARRANTY; without even the implied warranty of
731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
732 GNU General Public License for more details.
734 You should have received a copy of the GNU General Public License
735 along with this program; if not, write to the Free Software
736 Foundation, Inc., 59 Temple Place - Suite 330,
737 Boston, MA 02111-1307, USA. */
739 /* This file was created with the aid of \`\`gdbarch.sh''.
741 The Bourne shell script \`\`gdbarch.sh'' creates the files
742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
743 against the existing \`\`gdbarch.[hc]''. Any differences found
746 If editing this file, please also run gdbarch.sh and merge any
747 changes into that script. Conversely, when making sweeping changes
748 to this file, modifying gdbarch.sh and using its output may prove
769 struct minimal_symbol;
773 struct disassemble_info;
777 extern struct gdbarch *current_gdbarch;
783 printf "/* The following are pre-initialized by GDBARCH. */\n"
784 function_list |
while do_read
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
791 if test -n "${macro}"
793 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
794 printf "#error \"Non multi-arch definition of ${macro}\"\n"
796 printf "#if !defined (${macro})\n"
797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "/* The following are initialized by the target dependent code. */\n"
807 function_list |
while do_read
809 if [ -n "${comment}" ]
811 echo "${comment}" |
sed \
817 if class_is_predicate_p
819 if test -n "${macro}"
822 printf "#if defined (${macro})\n"
823 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
824 printf "#if !defined (${macro}_P)\n"
825 printf "#define ${macro}_P() (1)\n"
830 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
831 if test -n "${macro}"
833 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
834 printf "#error \"Non multi-arch definition of ${macro}\"\n"
836 printf "#if !defined (${macro}_P)\n"
837 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
841 if class_is_variable_p
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
845 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
846 if test -n "${macro}"
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#if !defined (${macro})\n"
852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
856 if class_is_function_p
859 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
862 elif class_is_multiarch_p
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
868 if [ "x${formal}" = "xvoid" ]
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
875 if test -n "${macro}"
877 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
878 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 if [ "x${actual}" = "x" ]
882 d
="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
883 elif [ "x${actual}" = "x-" ]
885 d
="#define ${macro} (gdbarch_${function} (current_gdbarch))"
887 d
="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
889 printf "#if !defined (${macro})\n"
890 if [ "x${actual}" = "x" ]
892 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
893 elif [ "x${actual}" = "x-" ]
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
897 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
907 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
910 /* Mechanism for co-ordinating the selection of a specific
913 GDB targets (*-tdep.c) can register an interest in a specific
914 architecture. Other GDB components can register a need to maintain
915 per-architecture data.
917 The mechanisms below ensures that there is only a loose connection
918 between the set-architecture command and the various GDB
919 components. Each component can independently register their need
920 to maintain architecture specific data with gdbarch.
924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
927 The more traditional mega-struct containing architecture specific
928 data for all the various GDB components was also considered. Since
929 GDB is built from a variable number of (fairly independent)
930 components it was determined that the global aproach was not
934 /* Register a new architectural family with GDB.
936 Register support for the specified ARCHITECTURE with GDB. When
937 gdbarch determines that the specified architecture has been
938 selected, the corresponding INIT function is called.
942 The INIT function takes two parameters: INFO which contains the
943 information available to gdbarch about the (possibly new)
944 architecture; ARCHES which is a list of the previously created
945 \`\`struct gdbarch'' for this architecture.
947 The INFO parameter is, as far as possible, be pre-initialized with
948 information obtained from INFO.ABFD or the previously selected
951 The ARCHES parameter is a linked list (sorted most recently used)
952 of all the previously created architures for this architecture
953 family. The (possibly NULL) ARCHES->gdbarch can used to access
954 values from the previously selected architecture for this
955 architecture family. The global \`\`current_gdbarch'' shall not be
958 The INIT function shall return any of: NULL - indicating that it
959 doesn't recognize the selected architecture; an existing \`\`struct
960 gdbarch'' from the ARCHES list - indicating that the new
961 architecture is just a synonym for an earlier architecture (see
962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
963 - that describes the selected architecture (see gdbarch_alloc()).
965 The DUMP_TDEP function shall print out all target specific values.
966 Care should be taken to ensure that the function works in both the
967 multi-arch and non- multi-arch cases. */
971 struct gdbarch *gdbarch;
972 struct gdbarch_list *next;
977 /* Use default: NULL (ZERO). */
978 const struct bfd_arch_info *bfd_arch_info;
980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
983 /* Use default: NULL (ZERO). */
986 /* Use default: NULL (ZERO). */
987 struct gdbarch_tdep_info *tdep_info;
989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
990 enum gdb_osabi osabi;
993 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
994 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
996 /* DEPRECATED - use gdbarch_register() */
997 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
999 extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1004 /* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1009 extern const char **gdbarch_printable_names (void);
1012 /* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1015 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1018 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1019 basic initialization using values obtained from the INFO andTDEP
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1023 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1026 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1030 extern void gdbarch_free (struct gdbarch *);
1033 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1037 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1042 /* Helper function. Force an update of the current architecture.
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
1049 Returns non-zero if the update succeeds */
1051 extern int gdbarch_update_p (struct gdbarch_info info);
1054 /* Helper function. Find an architecture matching info.
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1062 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1065 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1073 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1076 /* Register per-architecture data-pointer.
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
1088 restored. INIT() is not re-called.
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1093 struct gdbarch_data;
1095 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1103 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1107 /* Register per-architecture memory region.
1109 Provide a memory-region swap mechanism. Per-architecture memory
1110 region are created. These memory regions are swapped whenever the
1111 architecture is changed. For a new architecture, the memory region
1112 is initialized with zero (0) and the INIT function is called.
1114 Memory regions are swapped / initialized in the order that they are
1115 registered. NULL DATA and/or INIT values can be specified.
1117 New code should use gdbarch_data_register_*(). */
1119 typedef void (gdbarch_swap_ftype) (void);
1120 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1121 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1125 /* Set the dynamic target-system-dependent parameters (architecture,
1126 byte-order, ...) using information found in the BFD */
1128 extern void set_gdbarch_from_file (bfd *);
1131 /* Initialize the current architecture to the "first" one we find on
1134 extern void initialize_current_architecture (void);
1136 /* gdbarch trace variable */
1137 extern int gdbarch_debug;
1139 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1144 #../move-if-change new-gdbarch.h gdbarch.h
1145 compare_new gdbarch.h
1152 exec > new-gdbarch.c
1157 #include "arch-utils.h"
1160 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1163 #include "floatformat.h"
1165 #include "gdb_assert.h"
1166 #include "gdb_string.h"
1167 #include "gdb-events.h"
1168 #include "reggroups.h"
1170 #include "gdb_obstack.h"
1172 /* Static function declarations */
1174 static void alloc_gdbarch_data (struct gdbarch *);
1176 /* Non-zero if we want to trace architecture code. */
1178 #ifndef GDBARCH_DEBUG
1179 #define GDBARCH_DEBUG 0
1181 int gdbarch_debug = GDBARCH_DEBUG;
1183 show_gdbarch_debug (struct ui_file *file, int from_tty,
1184 struct cmd_list_element *c, const char *value)
1186 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1190 pformat (const struct floatformat *format)
1195 return format->name;
1200 # gdbarch open the gdbarch object
1202 printf "/* Maintain the struct gdbarch object */\n"
1204 printf "struct gdbarch\n"
1206 printf " /* Has this architecture been fully initialized? */\n"
1207 printf " int initialized_p;\n"
1209 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1210 printf " struct obstack *obstack;\n"
1212 printf " /* basic architectural information */\n"
1213 function_list |
while do_read
1217 printf " ${returntype} ${function};\n"
1221 printf " /* target specific vector. */\n"
1222 printf " struct gdbarch_tdep *tdep;\n"
1223 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1225 printf " /* per-architecture data-pointers */\n"
1226 printf " unsigned nr_data;\n"
1227 printf " void **data;\n"
1229 printf " /* per-architecture swap-regions */\n"
1230 printf " struct gdbarch_swap *swap;\n"
1233 /* Multi-arch values.
1235 When extending this structure you must:
1237 Add the field below.
1239 Declare set/get functions and define the corresponding
1242 gdbarch_alloc(): If zero/NULL is not a suitable default,
1243 initialize the new field.
1245 verify_gdbarch(): Confirm that the target updated the field
1248 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1251 \`\`startup_gdbarch()'': Append an initial value to the static
1252 variable (base values on the host's c-type system).
1254 get_gdbarch(): Implement the set/get functions (probably using
1255 the macro's as shortcuts).
1260 function_list |
while do_read
1262 if class_is_variable_p
1264 printf " ${returntype} ${function};\n"
1265 elif class_is_function_p
1267 printf " gdbarch_${function}_ftype *${function};\n"
1272 # A pre-initialized vector
1276 /* The default architecture uses host values (for want of a better
1280 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1282 printf "struct gdbarch startup_gdbarch =\n"
1284 printf " 1, /* Always initialized. */\n"
1285 printf " NULL, /* The obstack. */\n"
1286 printf " /* basic architecture information */\n"
1287 function_list |
while do_read
1291 printf " ${staticdefault}, /* ${function} */\n"
1295 /* target specific vector and its dump routine */
1297 /*per-architecture data-pointers and swap regions */
1299 /* Multi-arch values */
1301 function_list |
while do_read
1303 if class_is_function_p || class_is_variable_p
1305 printf " ${staticdefault}, /* ${function} */\n"
1309 /* startup_gdbarch() */
1312 struct gdbarch *current_gdbarch = &startup_gdbarch;
1315 # Create a new gdbarch struct
1318 /* Create a new \`\`struct gdbarch'' based on information provided by
1319 \`\`struct gdbarch_info''. */
1324 gdbarch_alloc (const struct gdbarch_info *info,
1325 struct gdbarch_tdep *tdep)
1327 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1328 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1329 the current local architecture and not the previous global
1330 architecture. This ensures that the new architectures initial
1331 values are not influenced by the previous architecture. Once
1332 everything is parameterised with gdbarch, this will go away. */
1333 struct gdbarch *current_gdbarch;
1335 /* Create an obstack for allocating all the per-architecture memory,
1336 then use that to allocate the architecture vector. */
1337 struct obstack *obstack = XMALLOC (struct obstack);
1338 obstack_init (obstack);
1339 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1340 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1341 current_gdbarch->obstack = obstack;
1343 alloc_gdbarch_data (current_gdbarch);
1345 current_gdbarch->tdep = tdep;
1348 function_list |
while do_read
1352 printf " current_gdbarch->${function} = info->${function};\n"
1356 printf " /* Force the explicit initialization of these. */\n"
1357 function_list |
while do_read
1359 if class_is_function_p || class_is_variable_p
1361 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1363 printf " current_gdbarch->${function} = ${predefault};\n"
1368 /* gdbarch_alloc() */
1370 return current_gdbarch;
1374 # Free a gdbarch struct.
1378 /* Allocate extra space using the per-architecture obstack. */
1381 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1383 void *data = obstack_alloc (arch->obstack, size);
1384 memset (data, 0, size);
1389 /* Free a gdbarch struct. This should never happen in normal
1390 operation --- once you've created a gdbarch, you keep it around.
1391 However, if an architecture's init function encounters an error
1392 building the structure, it may need to clean up a partially
1393 constructed gdbarch. */
1396 gdbarch_free (struct gdbarch *arch)
1398 struct obstack *obstack;
1399 gdb_assert (arch != NULL);
1400 gdb_assert (!arch->initialized_p);
1401 obstack = arch->obstack;
1402 obstack_free (obstack, 0); /* Includes the ARCH. */
1407 # verify a new architecture
1411 /* Ensure that all values in a GDBARCH are reasonable. */
1413 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1414 just happens to match the global variable \`\`current_gdbarch''. That
1415 way macros refering to that variable get the local and not the global
1416 version - ulgh. Once everything is parameterised with gdbarch, this
1420 verify_gdbarch (struct gdbarch *current_gdbarch)
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1426 log = mem_fileopen ();
1427 cleanups = make_cleanup_ui_file_delete (log);
1429 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1430 fprintf_unfiltered (log, "\n\tbyte-order");
1431 if (current_gdbarch->bfd_arch_info == NULL)
1432 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1433 /* Check those that need to be defined for the given multi-arch level. */
1435 function_list |
while do_read
1437 if class_is_function_p || class_is_variable_p
1439 if [ "x${invalid_p}" = "x0" ]
1441 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1442 elif class_is_predicate_p
1444 printf " /* Skip verify of ${function}, has predicate */\n"
1445 # FIXME: See do_read for potential simplification
1446 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1448 printf " if (${invalid_p})\n"
1449 printf " current_gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1452 printf " if (current_gdbarch->${function} == ${predefault})\n"
1453 printf " current_gdbarch->${function} = ${postdefault};\n"
1454 elif [ -n "${postdefault}" ]
1456 printf " if (current_gdbarch->${function} == 0)\n"
1457 printf " current_gdbarch->${function} = ${postdefault};\n"
1458 elif [ -n "${invalid_p}" ]
1460 printf " if (${invalid_p})\n"
1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462 elif [ -n "${predefault}" ]
1464 printf " if (current_gdbarch->${function} == ${predefault})\n"
1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1470 buf = ui_file_xstrdup (log, &dummy);
1471 make_cleanup (xfree, buf);
1472 if (strlen (buf) > 0)
1473 internal_error (__FILE__, __LINE__,
1474 _("verify_gdbarch: the following are invalid ...%s"),
1476 do_cleanups (cleanups);
1480 # dump the structure
1484 /* Print out the details of the current architecture. */
1486 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1487 just happens to match the global variable \`\`current_gdbarch''. That
1488 way macros refering to that variable get the local and not the global
1489 version - ulgh. Once everything is parameterised with gdbarch, this
1493 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1495 const char *gdb_xm_file = "<not-defined>";
1496 const char *gdb_nm_file = "<not-defined>";
1497 const char *gdb_tm_file = "<not-defined>";
1498 #if defined (GDB_XM_FILE)
1499 gdb_xm_file = GDB_XM_FILE;
1501 fprintf_unfiltered (file,
1502 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1504 #if defined (GDB_NM_FILE)
1505 gdb_nm_file = GDB_NM_FILE;
1507 fprintf_unfiltered (file,
1508 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1510 #if defined (GDB_TM_FILE)
1511 gdb_tm_file = GDB_TM_FILE;
1513 fprintf_unfiltered (file,
1514 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1517 function_list |
sort -t: -k 4 |
while do_read
1519 # First the predicate
1520 if class_is_predicate_p
1522 if test -n "${macro}"
1524 printf "#ifdef ${macro}_P\n"
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1527 printf " \"${macro}_P()\",\n"
1528 printf " XSTRING (${macro}_P ()));\n"
1531 printf " fprintf_unfiltered (file,\n"
1532 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1533 printf " gdbarch_${function}_p (current_gdbarch));\n"
1535 # Print the macro definition.
1536 if test -n "${macro}"
1538 printf "#ifdef ${macro}\n"
1539 if class_is_function_p
1541 printf " fprintf_unfiltered (file,\n"
1542 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1543 printf " \"${macro}(${actual})\",\n"
1544 printf " XSTRING (${macro} (${actual})));\n"
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1548 printf " XSTRING (${macro}));\n"
1552 # Print the corresponding value.
1553 if class_is_function_p
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1557 printf " (long) current_gdbarch->${function});\n"
1560 case "${print}:${returntype}" in
1563 print
="paddr_nz (current_gdbarch->${function})"
1567 print
="paddr_d (current_gdbarch->${function})"
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1575 printf " ${print});\n"
1579 if (current_gdbarch->dump_tdep != NULL)
1580 current_gdbarch->dump_tdep (current_gdbarch, file);
1588 struct gdbarch_tdep *
1589 gdbarch_tdep (struct gdbarch *gdbarch)
1591 if (gdbarch_debug >= 2)
1592 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1593 return gdbarch->tdep;
1597 function_list |
while do_read
1599 if class_is_predicate_p
1603 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1605 printf " gdb_assert (gdbarch != NULL);\n"
1606 printf " return ${predicate};\n"
1609 if class_is_function_p
1612 printf "${returntype}\n"
1613 if [ "x${formal}" = "xvoid" ]
1615 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1617 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1620 printf " gdb_assert (gdbarch != NULL);\n"
1621 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1622 if class_is_predicate_p
&& test -n "${predefault}"
1624 # Allow a call to a function with a predicate.
1625 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1627 printf " if (gdbarch_debug >= 2)\n"
1628 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1629 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1631 if class_is_multiarch_p
1638 if class_is_multiarch_p
1640 params
="gdbarch, ${actual}"
1645 if [ "x${returntype}" = "xvoid" ]
1647 printf " gdbarch->${function} (${params});\n"
1649 printf " return gdbarch->${function} (${params});\n"
1654 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1655 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1657 printf " gdbarch->${function} = ${function};\n"
1659 elif class_is_variable_p
1662 printf "${returntype}\n"
1663 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1665 printf " gdb_assert (gdbarch != NULL);\n"
1666 if [ "x${invalid_p}" = "x0" ]
1668 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1669 elif [ -n "${invalid_p}" ]
1671 printf " /* Check variable is valid. */\n"
1672 printf " gdb_assert (!(${invalid_p}));\n"
1673 elif [ -n "${predefault}" ]
1675 printf " /* Check variable changed from pre-default. */\n"
1676 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1678 printf " if (gdbarch_debug >= 2)\n"
1679 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1680 printf " return gdbarch->${function};\n"
1684 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1685 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1687 printf " gdbarch->${function} = ${function};\n"
1689 elif class_is_info_p
1692 printf "${returntype}\n"
1693 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1695 printf " gdb_assert (gdbarch != NULL);\n"
1696 printf " if (gdbarch_debug >= 2)\n"
1697 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1698 printf " return gdbarch->${function};\n"
1703 # All the trailing guff
1707 /* Keep a registry of per-architecture data-pointers required by GDB
1714 gdbarch_data_pre_init_ftype *pre_init;
1715 gdbarch_data_post_init_ftype *post_init;
1718 struct gdbarch_data_registration
1720 struct gdbarch_data *data;
1721 struct gdbarch_data_registration *next;
1724 struct gdbarch_data_registry
1727 struct gdbarch_data_registration *registrations;
1730 struct gdbarch_data_registry gdbarch_data_registry =
1735 static struct gdbarch_data *
1736 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1737 gdbarch_data_post_init_ftype *post_init)
1739 struct gdbarch_data_registration **curr;
1740 /* Append the new registraration. */
1741 for (curr = &gdbarch_data_registry.registrations;
1743 curr = &(*curr)->next);
1744 (*curr) = XMALLOC (struct gdbarch_data_registration);
1745 (*curr)->next = NULL;
1746 (*curr)->data = XMALLOC (struct gdbarch_data);
1747 (*curr)->data->index = gdbarch_data_registry.nr++;
1748 (*curr)->data->pre_init = pre_init;
1749 (*curr)->data->post_init = post_init;
1750 (*curr)->data->init_p = 1;
1751 return (*curr)->data;
1754 struct gdbarch_data *
1755 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1757 return gdbarch_data_register (pre_init, NULL);
1760 struct gdbarch_data *
1761 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1763 return gdbarch_data_register (NULL, post_init);
1766 /* Create/delete the gdbarch data vector. */
1769 alloc_gdbarch_data (struct gdbarch *gdbarch)
1771 gdb_assert (gdbarch->data == NULL);
1772 gdbarch->nr_data = gdbarch_data_registry.nr;
1773 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1776 /* Initialize the current value of the specified per-architecture
1780 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1781 struct gdbarch_data *data,
1784 gdb_assert (data->index < gdbarch->nr_data);
1785 gdb_assert (gdbarch->data[data->index] == NULL);
1786 gdb_assert (data->pre_init == NULL);
1787 gdbarch->data[data->index] = pointer;
1790 /* Return the current value of the specified per-architecture
1794 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 if (gdbarch->data[data->index] == NULL)
1799 /* The data-pointer isn't initialized, call init() to get a
1801 if (data->pre_init != NULL)
1802 /* Mid architecture creation: pass just the obstack, and not
1803 the entire architecture, as that way it isn't possible for
1804 pre-init code to refer to undefined architecture
1806 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1807 else if (gdbarch->initialized_p
1808 && data->post_init != NULL)
1809 /* Post architecture creation: pass the entire architecture
1810 (as all fields are valid), but be careful to also detect
1811 recursive references. */
1813 gdb_assert (data->init_p);
1815 gdbarch->data[data->index] = data->post_init (gdbarch);
1819 /* The architecture initialization hasn't completed - punt -
1820 hope that the caller knows what they are doing. Once
1821 deprecated_set_gdbarch_data has been initialized, this can be
1822 changed to an internal error. */
1824 gdb_assert (gdbarch->data[data->index] != NULL);
1826 return gdbarch->data[data->index];
1831 /* Keep a registry of swapped data required by GDB modules. */
1836 struct gdbarch_swap_registration *source;
1837 struct gdbarch_swap *next;
1840 struct gdbarch_swap_registration
1843 unsigned long sizeof_data;
1844 gdbarch_swap_ftype *init;
1845 struct gdbarch_swap_registration *next;
1848 struct gdbarch_swap_registry
1851 struct gdbarch_swap_registration *registrations;
1854 struct gdbarch_swap_registry gdbarch_swap_registry =
1860 deprecated_register_gdbarch_swap (void *data,
1861 unsigned long sizeof_data,
1862 gdbarch_swap_ftype *init)
1864 struct gdbarch_swap_registration **rego;
1865 for (rego = &gdbarch_swap_registry.registrations;
1867 rego = &(*rego)->next);
1868 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1869 (*rego)->next = NULL;
1870 (*rego)->init = init;
1871 (*rego)->data = data;
1872 (*rego)->sizeof_data = sizeof_data;
1876 current_gdbarch_swap_init_hack (void)
1878 struct gdbarch_swap_registration *rego;
1879 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1880 for (rego = gdbarch_swap_registry.registrations;
1884 if (rego->data != NULL)
1886 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1887 struct gdbarch_swap);
1888 (*curr)->source = rego;
1889 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1891 (*curr)->next = NULL;
1892 curr = &(*curr)->next;
1894 if (rego->init != NULL)
1899 static struct gdbarch *
1900 current_gdbarch_swap_out_hack (void)
1902 struct gdbarch *old_gdbarch = current_gdbarch;
1903 struct gdbarch_swap *curr;
1905 gdb_assert (old_gdbarch != NULL);
1906 for (curr = old_gdbarch->swap;
1910 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1911 memset (curr->source->data, 0, curr->source->sizeof_data);
1913 current_gdbarch = NULL;
1918 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1920 struct gdbarch_swap *curr;
1922 gdb_assert (current_gdbarch == NULL);
1923 for (curr = new_gdbarch->swap;
1926 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1927 current_gdbarch = new_gdbarch;
1931 /* Keep a registry of the architectures known by GDB. */
1933 struct gdbarch_registration
1935 enum bfd_architecture bfd_architecture;
1936 gdbarch_init_ftype *init;
1937 gdbarch_dump_tdep_ftype *dump_tdep;
1938 struct gdbarch_list *arches;
1939 struct gdbarch_registration *next;
1942 static struct gdbarch_registration *gdbarch_registry = NULL;
1945 append_name (const char ***buf, int *nr, const char *name)
1947 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1953 gdbarch_printable_names (void)
1955 /* Accumulate a list of names based on the registed list of
1957 enum bfd_architecture a;
1959 const char **arches = NULL;
1960 struct gdbarch_registration *rego;
1961 for (rego = gdbarch_registry;
1965 const struct bfd_arch_info *ap;
1966 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1968 internal_error (__FILE__, __LINE__,
1969 _("gdbarch_architecture_names: multi-arch unknown"));
1972 append_name (&arches, &nr_arches, ap->printable_name);
1977 append_name (&arches, &nr_arches, NULL);
1983 gdbarch_register (enum bfd_architecture bfd_architecture,
1984 gdbarch_init_ftype *init,
1985 gdbarch_dump_tdep_ftype *dump_tdep)
1987 struct gdbarch_registration **curr;
1988 const struct bfd_arch_info *bfd_arch_info;
1989 /* Check that BFD recognizes this architecture */
1990 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1991 if (bfd_arch_info == NULL)
1993 internal_error (__FILE__, __LINE__,
1994 _("gdbarch: Attempt to register unknown architecture (%d)"),
1997 /* Check that we haven't seen this architecture before */
1998 for (curr = &gdbarch_registry;
2000 curr = &(*curr)->next)
2002 if (bfd_architecture == (*curr)->bfd_architecture)
2003 internal_error (__FILE__, __LINE__,
2004 _("gdbarch: Duplicate registraration of architecture (%s)"),
2005 bfd_arch_info->printable_name);
2009 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2010 bfd_arch_info->printable_name,
2013 (*curr) = XMALLOC (struct gdbarch_registration);
2014 (*curr)->bfd_architecture = bfd_architecture;
2015 (*curr)->init = init;
2016 (*curr)->dump_tdep = dump_tdep;
2017 (*curr)->arches = NULL;
2018 (*curr)->next = NULL;
2022 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2023 gdbarch_init_ftype *init)
2025 gdbarch_register (bfd_architecture, init, NULL);
2029 /* Look for an architecture using gdbarch_info. Base search on only
2030 BFD_ARCH_INFO and BYTE_ORDER. */
2032 struct gdbarch_list *
2033 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2034 const struct gdbarch_info *info)
2036 for (; arches != NULL; arches = arches->next)
2038 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2040 if (info->byte_order != arches->gdbarch->byte_order)
2042 if (info->osabi != arches->gdbarch->osabi)
2050 /* Find an architecture that matches the specified INFO. Create a new
2051 architecture if needed. Return that new architecture. Assumes
2052 that there is no current architecture. */
2054 static struct gdbarch *
2055 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2057 struct gdbarch *new_gdbarch;
2058 struct gdbarch_registration *rego;
2060 /* The existing architecture has been swapped out - all this code
2061 works from a clean slate. */
2062 gdb_assert (current_gdbarch == NULL);
2064 /* Fill in missing parts of the INFO struct using a number of
2065 sources: "set ..."; INFOabfd supplied; and the existing
2067 gdbarch_info_fill (old_gdbarch, &info);
2069 /* Must have found some sort of architecture. */
2070 gdb_assert (info.bfd_arch_info != NULL);
2074 fprintf_unfiltered (gdb_stdlog,
2075 "find_arch_by_info: info.bfd_arch_info %s\n",
2076 (info.bfd_arch_info != NULL
2077 ? info.bfd_arch_info->printable_name
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.byte_order %d (%s)\n",
2082 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2083 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.osabi %d (%s)\n",
2087 info.osabi, gdbarch_osabi_name (info.osabi));
2088 fprintf_unfiltered (gdb_stdlog,
2089 "find_arch_by_info: info.abfd 0x%lx\n",
2091 fprintf_unfiltered (gdb_stdlog,
2092 "find_arch_by_info: info.tdep_info 0x%lx\n",
2093 (long) info.tdep_info);
2096 /* Find the tdep code that knows about this architecture. */
2097 for (rego = gdbarch_registry;
2100 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2105 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2106 "No matching architecture\n");
2110 /* Ask the tdep code for an architecture that matches "info". */
2111 new_gdbarch = rego->init (info, rego->arches);
2113 /* Did the tdep code like it? No. Reject the change and revert to
2114 the old architecture. */
2115 if (new_gdbarch == NULL)
2118 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2119 "Target rejected architecture\n");
2123 /* Is this a pre-existing architecture (as determined by already
2124 being initialized)? Move it to the front of the architecture
2125 list (keeping the list sorted Most Recently Used). */
2126 if (new_gdbarch->initialized_p)
2128 struct gdbarch_list **list;
2129 struct gdbarch_list *this;
2131 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2132 "Previous architecture 0x%08lx (%s) selected\n",
2134 new_gdbarch->bfd_arch_info->printable_name);
2135 /* Find the existing arch in the list. */
2136 for (list = ®o->arches;
2137 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2138 list = &(*list)->next);
2139 /* It had better be in the list of architectures. */
2140 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2143 (*list) = this->next;
2144 /* Insert THIS at the front. */
2145 this->next = rego->arches;
2146 rego->arches = this;
2151 /* It's a new architecture. */
2153 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2154 "New architecture 0x%08lx (%s) selected\n",
2156 new_gdbarch->bfd_arch_info->printable_name);
2158 /* Insert the new architecture into the front of the architecture
2159 list (keep the list sorted Most Recently Used). */
2161 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2162 this->next = rego->arches;
2163 this->gdbarch = new_gdbarch;
2164 rego->arches = this;
2167 /* Check that the newly installed architecture is valid. Plug in
2168 any post init values. */
2169 new_gdbarch->dump_tdep = rego->dump_tdep;
2170 verify_gdbarch (new_gdbarch);
2171 new_gdbarch->initialized_p = 1;
2173 /* Initialize any per-architecture swap areas. This phase requires
2174 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2175 swap the entire architecture out. */
2176 current_gdbarch = new_gdbarch;
2177 current_gdbarch_swap_init_hack ();
2178 current_gdbarch_swap_out_hack ();
2181 gdbarch_dump (new_gdbarch, gdb_stdlog);
2187 gdbarch_find_by_info (struct gdbarch_info info)
2189 /* Save the previously selected architecture, setting the global to
2190 NULL. This stops things like gdbarch->init() trying to use the
2191 previous architecture's configuration. The previous architecture
2192 may not even be of the same architecture family. The most recent
2193 architecture of the same family is found at the head of the
2194 rego->arches list. */
2195 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2197 /* Find the specified architecture. */
2198 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2200 /* Restore the existing architecture. */
2201 gdb_assert (current_gdbarch == NULL);
2202 current_gdbarch_swap_in_hack (old_gdbarch);
2207 /* Make the specified architecture current, swapping the existing one
2211 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2213 gdb_assert (new_gdbarch != NULL);
2214 gdb_assert (current_gdbarch != NULL);
2215 gdb_assert (new_gdbarch->initialized_p);
2216 current_gdbarch_swap_out_hack ();
2217 current_gdbarch_swap_in_hack (new_gdbarch);
2218 architecture_changed_event ();
2219 flush_cached_frames ();
2222 extern void _initialize_gdbarch (void);
2225 _initialize_gdbarch (void)
2227 struct cmd_list_element *c;
2229 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2230 Set architecture debugging."), _("\\
2231 Show architecture debugging."), _("\\
2232 When non-zero, architecture debugging is enabled."),
2235 &setdebuglist, &showdebuglist);
2241 #../move-if-change new-gdbarch.c gdbarch.c
2242 compare_new gdbarch.c