* inf-ptrace.c: Reorder functions.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 # Make certain that the script is running in an internationalized
25 # environment.
26 LANG=c ; export LANG
27 LC_ALL=c ; export LC_ALL
28
29
30 compare_new ()
31 {
32 file=$1
33 if test ! -r ${file}
34 then
35 echo "${file} missing? cp new-${file} ${file}" 1>&2
36 elif diff -u ${file} new-${file}
37 then
38 echo "${file} unchanged" 1>&2
39 else
40 echo "${file} has changed? cp new-${file} ${file}" 1>&2
41 fi
42 }
43
44
45 # Format of the input table
46 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
47
48 do_read ()
49 {
50 comment=""
51 class=""
52 while read line
53 do
54 if test "${line}" = ""
55 then
56 continue
57 elif test "${line}" = "#" -a "${comment}" = ""
58 then
59 continue
60 elif expr "${line}" : "#" > /dev/null
61 then
62 comment="${comment}
63 ${line}"
64 else
65
66 # The semantics of IFS varies between different SH's. Some
67 # treat ``::' as three fields while some treat it as just too.
68 # Work around this by eliminating ``::'' ....
69 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
70
71 OFS="${IFS}" ; IFS="[:]"
72 eval read ${read} <<EOF
73 ${line}
74 EOF
75 IFS="${OFS}"
76
77 if test -n "${garbage_at_eol}"
78 then
79 echo "Garbage at end-of-line in ${line}" 1>&2
80 kill $$
81 exit 1
82 fi
83
84 # .... and then going back through each field and strip out those
85 # that ended up with just that space character.
86 for r in ${read}
87 do
88 if eval test \"\${${r}}\" = \"\ \"
89 then
90 eval ${r}=""
91 fi
92 done
93
94 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
95 if test "x${macro}" = "x="
96 then
97 # Provide a UCASE version of function (for when there isn't MACRO)
98 macro="${FUNCTION}"
99 elif test "${macro}" = "${FUNCTION}"
100 then
101 echo "${function}: Specify = for macro field" 1>&2
102 kill $$
103 exit 1
104 fi
105
106 # Check that macro definition wasn't supplied for multi-arch
107 case "${class}" in
108 [mM] )
109 if test "${macro}" != ""
110 then
111 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
112 kill $$
113 exit 1
114 fi
115 esac
116
117 case "${class}" in
118 m ) staticdefault="${predefault}" ;;
119 M ) staticdefault="0" ;;
120 * ) test "${staticdefault}" || staticdefault=0 ;;
121 esac
122
123 case "${class}" in
124 F | V | M )
125 case "${invalid_p}" in
126 "" )
127 if test -n "${predefault}"
128 then
129 #invalid_p="gdbarch->${function} == ${predefault}"
130 predicate="gdbarch->${function} != ${predefault}"
131 elif class_is_variable_p
132 then
133 predicate="gdbarch->${function} != 0"
134 elif class_is_function_p
135 then
136 predicate="gdbarch->${function} != NULL"
137 fi
138 ;;
139 * )
140 echo "Predicate function ${function} with invalid_p." 1>&2
141 kill $$
142 exit 1
143 ;;
144 esac
145 esac
146
147 # PREDEFAULT is a valid fallback definition of MEMBER when
148 # multi-arch is not enabled. This ensures that the
149 # default value, when multi-arch is the same as the
150 # default value when not multi-arch. POSTDEFAULT is
151 # always a valid definition of MEMBER as this again
152 # ensures consistency.
153
154 if [ -n "${postdefault}" ]
155 then
156 fallbackdefault="${postdefault}"
157 elif [ -n "${predefault}" ]
158 then
159 fallbackdefault="${predefault}"
160 else
161 fallbackdefault="0"
162 fi
163
164 #NOT YET: See gdbarch.log for basic verification of
165 # database
166
167 break
168 fi
169 done
170 if [ -n "${class}" ]
171 then
172 true
173 else
174 false
175 fi
176 }
177
178
179 fallback_default_p ()
180 {
181 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
182 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
183 }
184
185 class_is_variable_p ()
186 {
187 case "${class}" in
188 *v* | *V* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_function_p ()
194 {
195 case "${class}" in
196 *f* | *F* | *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_multiarch_p ()
202 {
203 case "${class}" in
204 *m* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_predicate_p ()
210 {
211 case "${class}" in
212 *F* | *V* | *M* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217 class_is_info_p ()
218 {
219 case "${class}" in
220 *i* ) true ;;
221 * ) false ;;
222 esac
223 }
224
225
226 # dump out/verify the doco
227 for field in ${read}
228 do
229 case ${field} in
230
231 class ) : ;;
232
233 # # -> line disable
234 # f -> function
235 # hiding a function
236 # F -> function + predicate
237 # hiding a function + predicate to test function validity
238 # v -> variable
239 # hiding a variable
240 # V -> variable + predicate
241 # hiding a variable + predicate to test variables validity
242 # i -> set from info
243 # hiding something from the ``struct info'' object
244 # m -> multi-arch function
245 # hiding a multi-arch function (parameterised with the architecture)
246 # M -> multi-arch function + predicate
247 # hiding a multi-arch function + predicate to test function validity
248
249 macro ) : ;;
250
251 # The name of the legacy C macro by which this method can be
252 # accessed. If empty, no macro is defined. If "=", a macro
253 # formed from the upper-case function name is used.
254
255 returntype ) : ;;
256
257 # For functions, the return type; for variables, the data type
258
259 function ) : ;;
260
261 # For functions, the member function name; for variables, the
262 # variable name. Member function names are always prefixed with
263 # ``gdbarch_'' for name-space purity.
264
265 formal ) : ;;
266
267 # The formal argument list. It is assumed that the formal
268 # argument list includes the actual name of each list element.
269 # A function with no arguments shall have ``void'' as the
270 # formal argument list.
271
272 actual ) : ;;
273
274 # The list of actual arguments. The arguments specified shall
275 # match the FORMAL list given above. Functions with out
276 # arguments leave this blank.
277
278 staticdefault ) : ;;
279
280 # To help with the GDB startup a static gdbarch object is
281 # created. STATICDEFAULT is the value to insert into that
282 # static gdbarch object. Since this a static object only
283 # simple expressions can be used.
284
285 # If STATICDEFAULT is empty, zero is used.
286
287 predefault ) : ;;
288
289 # An initial value to assign to MEMBER of the freshly
290 # malloc()ed gdbarch object. After initialization, the
291 # freshly malloc()ed object is passed to the target
292 # architecture code for further updates.
293
294 # If PREDEFAULT is empty, zero is used.
295
296 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
297 # INVALID_P are specified, PREDEFAULT will be used as the
298 # default for the non- multi-arch target.
299
300 # A zero PREDEFAULT function will force the fallback to call
301 # internal_error().
302
303 # Variable declarations can refer to ``gdbarch'' which will
304 # contain the current architecture. Care should be taken.
305
306 postdefault ) : ;;
307
308 # A value to assign to MEMBER of the new gdbarch object should
309 # the target architecture code fail to change the PREDEFAULT
310 # value.
311
312 # If POSTDEFAULT is empty, no post update is performed.
313
314 # If both INVALID_P and POSTDEFAULT are non-empty then
315 # INVALID_P will be used to determine if MEMBER should be
316 # changed to POSTDEFAULT.
317
318 # If a non-empty POSTDEFAULT and a zero INVALID_P are
319 # specified, POSTDEFAULT will be used as the default for the
320 # non- multi-arch target (regardless of the value of
321 # PREDEFAULT).
322
323 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
324
325 # Variable declarations can refer to ``current_gdbarch'' which
326 # will contain the current architecture. Care should be
327 # taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 print ) : ;;
347
348 # An optional expression that convers MEMBER to a value
349 # suitable for formatting using %s.
350
351 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
352 # (anything else) is used.
353
354 garbage_at_eol ) : ;;
355
356 # Catches stray fields.
357
358 *)
359 echo "Bad field ${field}"
360 exit 1;;
361 esac
362 done
363
364
365 function_list ()
366 {
367 # See below (DOCO) for description of each field
368 cat <<EOF
369 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
370 #
371 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
372 #
373 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
374 # Number of bits in a char or unsigned char for the target machine.
375 # Just like CHAR_BIT in <limits.h> but describes the target machine.
376 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
377 #
378 # Number of bits in a short or unsigned short for the target machine.
379 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
380 # Number of bits in an int or unsigned int for the target machine.
381 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
382 # Number of bits in a long or unsigned long for the target machine.
383 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
384 # Number of bits in a long long or unsigned long long for the target
385 # machine.
386 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
387
388 # The ABI default bit-size and format for "float", "double", and "long
389 # double". These bit/format pairs should eventually be combined into
390 # a single object. For the moment, just initialize them as a pair.
391
392 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
394 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
396 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
398
399 # For most targets, a pointer on the target and its representation as an
400 # address in GDB have the same size and "look the same". For such a
401 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
402 # / addr_bit will be set from it.
403 #
404 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
405 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
406 #
407 # ptr_bit is the size of a pointer on the target
408 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
409 # addr_bit is the size of a target address as represented in gdb
410 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
411 # Number of bits in a BFD_VMA for the target object file format.
412 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
413 #
414 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
415 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
416 #
417 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
418 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
419 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
420 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428 #
429 v:=:int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:=:int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
440 v:=:int:sp_regnum:::-1:-1::0
441 v:=:int:pc_regnum:::-1:-1::0
442 v:=:int:ps_regnum:::-1:-1::0
443 v:=:int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f:=:const char *:register_name:int regnr:regnr
454
455 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
456 M::struct type *:register_type:int reg_nr:reg_nr
457 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
458 # register offsets computed using just REGISTER_TYPE, this can be
459 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
460 # function with predicate has a valid (callable) initial value. As a
461 # consequence, even when the predicate is false, the corresponding
462 # function works. This simplifies the migration process - old code,
463 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
464 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
465
466 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
467 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
468 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
469 # DEPRECATED_FP_REGNUM.
470 v:=:int:deprecated_fp_regnum:::-1:-1::0
471
472 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
473 # replacement for DEPRECATED_PUSH_ARGUMENTS.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
476 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 #
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503 #
504 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
506
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
510
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
514
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
516
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 # RETURN_VALUE.
521
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
527
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
535 # function call.
536
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
544 # function is used.
545
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548
549 #
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, gdb_byte *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, gdb_byte *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
569
570 # Fetch the target specific address used to represent a load module.
571 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
572 #
573 v:=:CORE_ADDR:frame_args_skip:::0:::0
574 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
575 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
576 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
577 # frame-base. Enable frame-base before frame-unwind.
578 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
579 F:=:int:frame_num_args:struct frame_info *frame:frame
580 #
581 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
582 # to frame_align and the requirement that methods such as
583 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
584 # alignment.
585 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
586 M::CORE_ADDR:frame_align:CORE_ADDR address:address
587 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
588 # stabs_argument_has_addr.
589 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
590 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
591 v:=:int:frame_red_zone_size
592 #
593 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
594 # On some machines there are bits in addresses which are not really
595 # part of the address, but are used by the kernel, the hardware, etc.
596 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
597 # we get a "real" address such as one would find in a symbol table.
598 # This is used only for addresses of instructions, and even then I'm
599 # not sure it's used in all contexts. It exists to deal with there
600 # being a few stray bits in the PC which would mislead us, not as some
601 # sort of generic thing to handle alignment or segmentation (it's
602 # possible it should be in TARGET_READ_PC instead).
603 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
604 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
605 # ADDR_BITS_REMOVE.
606 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
608 # the target needs software single step. An ISA method to implement it.
609 #
610 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
611 # using the breakpoint system instead of blatting memory directly (as with rs6000).
612 #
613 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
614 # single step. If not, then implement single step using breakpoints.
615 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
616 # Return non-zero if the processor is executing a delay slot and a
617 # further single-step is needed before the instruction finishes.
618 M::int:single_step_through_delay:struct frame_info *frame:frame
619 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
620 # disassembler. Perhaps objdump can handle it?
621 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
622 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
623
624
625 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
626 # evaluates non-zero, this is the address where the debugger will place
627 # a step-resume breakpoint to get us past the dynamic linker.
628 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
629 # Some systems also have trampoline code for returning from shared libs.
630 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
631
632 # A target might have problems with watchpoints as soon as the stack
633 # frame of the current function has been destroyed. This mostly happens
634 # as the first action in a funtion's epilogue. in_function_epilogue_p()
635 # is defined to return a non-zero value if either the given addr is one
636 # instruction after the stack destroying instruction up to the trailing
637 # return instruction or if we can figure out that the stack frame has
638 # already been invalidated regardless of the value of addr. Targets
639 # which don't suffer from that problem could just let this functionality
640 # untouched.
641 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
642 # Given a vector of command-line arguments, return a newly allocated
643 # string which, when passed to the create_inferior function, will be
644 # parsed (on Unix systems, by the shell) to yield the same vector.
645 # This function should call error() if the argument vector is not
646 # representable for this target or if this target does not support
647 # command-line arguments.
648 # ARGC is the number of elements in the vector.
649 # ARGV is an array of strings, one per argument.
650 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
651 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
652 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
653 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
654 v:=:int:cannot_step_breakpoint:::0:0::0
655 v:=:int:have_nonsteppable_watchpoint:::0:0::0
656 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
657 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
658 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
659 # Is a register in a group
660 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
661 # Fetch the pointer to the ith function argument.
662 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
663
664 # Return the appropriate register set for a core file section with
665 # name SECT_NAME and size SECT_SIZE.
666 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
667 EOF
668 }
669
670 #
671 # The .log file
672 #
673 exec > new-gdbarch.log
674 function_list | while do_read
675 do
676 cat <<EOF
677 ${class} ${returntype} ${function} ($formal)
678 EOF
679 for r in ${read}
680 do
681 eval echo \"\ \ \ \ ${r}=\${${r}}\"
682 done
683 if class_is_predicate_p && fallback_default_p
684 then
685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
686 kill $$
687 exit 1
688 fi
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
690 then
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 kill $$
693 exit 1
694 fi
695 if class_is_multiarch_p
696 then
697 if class_is_predicate_p ; then :
698 elif test "x${predefault}" = "x"
699 then
700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
701 kill $$
702 exit 1
703 fi
704 fi
705 echo ""
706 done
707
708 exec 1>&2
709 compare_new gdbarch.log
710
711
712 copyright ()
713 {
714 cat <<EOF
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
716
717 /* Dynamic architecture support for GDB, the GNU debugger.
718
719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
720 Software Foundation, Inc.
721
722 This file is part of GDB.
723
724 This program is free software; you can redistribute it and/or modify
725 it under the terms of the GNU General Public License as published by
726 the Free Software Foundation; either version 2 of the License, or
727 (at your option) any later version.
728
729 This program is distributed in the hope that it will be useful,
730 but WITHOUT ANY WARRANTY; without even the implied warranty of
731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
732 GNU General Public License for more details.
733
734 You should have received a copy of the GNU General Public License
735 along with this program; if not, write to the Free Software
736 Foundation, Inc., 59 Temple Place - Suite 330,
737 Boston, MA 02111-1307, USA. */
738
739 /* This file was created with the aid of \`\`gdbarch.sh''.
740
741 The Bourne shell script \`\`gdbarch.sh'' creates the files
742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
743 against the existing \`\`gdbarch.[hc]''. Any differences found
744 being reported.
745
746 If editing this file, please also run gdbarch.sh and merge any
747 changes into that script. Conversely, when making sweeping changes
748 to this file, modifying gdbarch.sh and using its output may prove
749 easier. */
750
751 EOF
752 }
753
754 #
755 # The .h file
756 #
757
758 exec > new-gdbarch.h
759 copyright
760 cat <<EOF
761 #ifndef GDBARCH_H
762 #define GDBARCH_H
763
764 struct floatformat;
765 struct ui_file;
766 struct frame_info;
767 struct value;
768 struct objfile;
769 struct minimal_symbol;
770 struct regcache;
771 struct reggroup;
772 struct regset;
773 struct disassemble_info;
774 struct target_ops;
775 struct obstack;
776
777 extern struct gdbarch *current_gdbarch;
778 EOF
779
780 # function typedef's
781 printf "\n"
782 printf "\n"
783 printf "/* The following are pre-initialized by GDBARCH. */\n"
784 function_list | while do_read
785 do
786 if class_is_info_p
787 then
788 printf "\n"
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
791 if test -n "${macro}"
792 then
793 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
794 printf "#error \"Non multi-arch definition of ${macro}\"\n"
795 printf "#endif\n"
796 printf "#if !defined (${macro})\n"
797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
798 printf "#endif\n"
799 fi
800 fi
801 done
802
803 # function typedef's
804 printf "\n"
805 printf "\n"
806 printf "/* The following are initialized by the target dependent code. */\n"
807 function_list | while do_read
808 do
809 if [ -n "${comment}" ]
810 then
811 echo "${comment}" | sed \
812 -e '2 s,#,/*,' \
813 -e '3,$ s,#, ,' \
814 -e '$ s,$, */,'
815 fi
816
817 if class_is_predicate_p
818 then
819 if test -n "${macro}"
820 then
821 printf "\n"
822 printf "#if defined (${macro})\n"
823 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
824 printf "#if !defined (${macro}_P)\n"
825 printf "#define ${macro}_P() (1)\n"
826 printf "#endif\n"
827 printf "#endif\n"
828 fi
829 printf "\n"
830 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
831 if test -n "${macro}"
832 then
833 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
834 printf "#error \"Non multi-arch definition of ${macro}\"\n"
835 printf "#endif\n"
836 printf "#if !defined (${macro}_P)\n"
837 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
838 printf "#endif\n"
839 fi
840 fi
841 if class_is_variable_p
842 then
843 printf "\n"
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
845 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
846 if test -n "${macro}"
847 then
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#endif\n"
851 printf "#if !defined (${macro})\n"
852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
853 printf "#endif\n"
854 fi
855 fi
856 if class_is_function_p
857 then
858 printf "\n"
859 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
860 then
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
862 elif class_is_multiarch_p
863 then
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
865 else
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
867 fi
868 if [ "x${formal}" = "xvoid" ]
869 then
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 else
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
873 fi
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
875 if test -n "${macro}"
876 then
877 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
878 printf "#error \"Non multi-arch definition of ${macro}\"\n"
879 printf "#endif\n"
880 if [ "x${actual}" = "x" ]
881 then
882 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
883 elif [ "x${actual}" = "x-" ]
884 then
885 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
886 else
887 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
888 fi
889 printf "#if !defined (${macro})\n"
890 if [ "x${actual}" = "x" ]
891 then
892 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
893 elif [ "x${actual}" = "x-" ]
894 then
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
896 else
897 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
898 fi
899 printf "#endif\n"
900 fi
901 fi
902 done
903
904 # close it off
905 cat <<EOF
906
907 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
908
909
910 /* Mechanism for co-ordinating the selection of a specific
911 architecture.
912
913 GDB targets (*-tdep.c) can register an interest in a specific
914 architecture. Other GDB components can register a need to maintain
915 per-architecture data.
916
917 The mechanisms below ensures that there is only a loose connection
918 between the set-architecture command and the various GDB
919 components. Each component can independently register their need
920 to maintain architecture specific data with gdbarch.
921
922 Pragmatics:
923
924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
925 didn't scale.
926
927 The more traditional mega-struct containing architecture specific
928 data for all the various GDB components was also considered. Since
929 GDB is built from a variable number of (fairly independent)
930 components it was determined that the global aproach was not
931 applicable. */
932
933
934 /* Register a new architectural family with GDB.
935
936 Register support for the specified ARCHITECTURE with GDB. When
937 gdbarch determines that the specified architecture has been
938 selected, the corresponding INIT function is called.
939
940 --
941
942 The INIT function takes two parameters: INFO which contains the
943 information available to gdbarch about the (possibly new)
944 architecture; ARCHES which is a list of the previously created
945 \`\`struct gdbarch'' for this architecture.
946
947 The INFO parameter is, as far as possible, be pre-initialized with
948 information obtained from INFO.ABFD or the previously selected
949 architecture.
950
951 The ARCHES parameter is a linked list (sorted most recently used)
952 of all the previously created architures for this architecture
953 family. The (possibly NULL) ARCHES->gdbarch can used to access
954 values from the previously selected architecture for this
955 architecture family. The global \`\`current_gdbarch'' shall not be
956 used.
957
958 The INIT function shall return any of: NULL - indicating that it
959 doesn't recognize the selected architecture; an existing \`\`struct
960 gdbarch'' from the ARCHES list - indicating that the new
961 architecture is just a synonym for an earlier architecture (see
962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
963 - that describes the selected architecture (see gdbarch_alloc()).
964
965 The DUMP_TDEP function shall print out all target specific values.
966 Care should be taken to ensure that the function works in both the
967 multi-arch and non- multi-arch cases. */
968
969 struct gdbarch_list
970 {
971 struct gdbarch *gdbarch;
972 struct gdbarch_list *next;
973 };
974
975 struct gdbarch_info
976 {
977 /* Use default: NULL (ZERO). */
978 const struct bfd_arch_info *bfd_arch_info;
979
980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
981 int byte_order;
982
983 /* Use default: NULL (ZERO). */
984 bfd *abfd;
985
986 /* Use default: NULL (ZERO). */
987 struct gdbarch_tdep_info *tdep_info;
988
989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
990 enum gdb_osabi osabi;
991 };
992
993 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
994 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
995
996 /* DEPRECATED - use gdbarch_register() */
997 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
998
999 extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1002
1003
1004 /* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1008
1009 extern const char **gdbarch_printable_names (void);
1010
1011
1012 /* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1014
1015 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1016
1017
1018 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1019 basic initialization using values obtained from the INFO andTDEP
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1022
1023 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1024
1025
1026 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1028 gdbarch_tdep''. */
1029
1030 extern void gdbarch_free (struct gdbarch *);
1031
1032
1033 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1035 is also freed. */
1036
1037 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1040
1041
1042 /* Helper function. Force an update of the current architecture.
1043
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
1048
1049 Returns non-zero if the update succeeds */
1050
1051 extern int gdbarch_update_p (struct gdbarch_info info);
1052
1053
1054 /* Helper function. Find an architecture matching info.
1055
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1058
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1061
1062 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1063
1064
1065 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1066
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1072
1073 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
1085
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
1088 restored. INIT() is not re-called.
1089
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1092
1093 struct gdbarch_data;
1094
1095 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1101 void *pointer);
1102
1103 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1104
1105
1106
1107 /* Register per-architecture memory region.
1108
1109 Provide a memory-region swap mechanism. Per-architecture memory
1110 region are created. These memory regions are swapped whenever the
1111 architecture is changed. For a new architecture, the memory region
1112 is initialized with zero (0) and the INIT function is called.
1113
1114 Memory regions are swapped / initialized in the order that they are
1115 registered. NULL DATA and/or INIT values can be specified.
1116
1117 New code should use gdbarch_data_register_*(). */
1118
1119 typedef void (gdbarch_swap_ftype) (void);
1120 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1121 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1122
1123
1124
1125 /* Set the dynamic target-system-dependent parameters (architecture,
1126 byte-order, ...) using information found in the BFD */
1127
1128 extern void set_gdbarch_from_file (bfd *);
1129
1130
1131 /* Initialize the current architecture to the "first" one we find on
1132 our list. */
1133
1134 extern void initialize_current_architecture (void);
1135
1136 /* gdbarch trace variable */
1137 extern int gdbarch_debug;
1138
1139 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1140
1141 #endif
1142 EOF
1143 exec 1>&2
1144 #../move-if-change new-gdbarch.h gdbarch.h
1145 compare_new gdbarch.h
1146
1147
1148 #
1149 # C file
1150 #
1151
1152 exec > new-gdbarch.c
1153 copyright
1154 cat <<EOF
1155
1156 #include "defs.h"
1157 #include "arch-utils.h"
1158
1159 #include "gdbcmd.h"
1160 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1161 #include "symcat.h"
1162
1163 #include "floatformat.h"
1164
1165 #include "gdb_assert.h"
1166 #include "gdb_string.h"
1167 #include "gdb-events.h"
1168 #include "reggroups.h"
1169 #include "osabi.h"
1170 #include "gdb_obstack.h"
1171
1172 /* Static function declarations */
1173
1174 static void alloc_gdbarch_data (struct gdbarch *);
1175
1176 /* Non-zero if we want to trace architecture code. */
1177
1178 #ifndef GDBARCH_DEBUG
1179 #define GDBARCH_DEBUG 0
1180 #endif
1181 int gdbarch_debug = GDBARCH_DEBUG;
1182 static void
1183 show_gdbarch_debug (struct ui_file *file, int from_tty,
1184 struct cmd_list_element *c, const char *value)
1185 {
1186 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1187 }
1188
1189 static const char *
1190 pformat (const struct floatformat *format)
1191 {
1192 if (format == NULL)
1193 return "(null)";
1194 else
1195 return format->name;
1196 }
1197
1198 EOF
1199
1200 # gdbarch open the gdbarch object
1201 printf "\n"
1202 printf "/* Maintain the struct gdbarch object */\n"
1203 printf "\n"
1204 printf "struct gdbarch\n"
1205 printf "{\n"
1206 printf " /* Has this architecture been fully initialized? */\n"
1207 printf " int initialized_p;\n"
1208 printf "\n"
1209 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1210 printf " struct obstack *obstack;\n"
1211 printf "\n"
1212 printf " /* basic architectural information */\n"
1213 function_list | while do_read
1214 do
1215 if class_is_info_p
1216 then
1217 printf " ${returntype} ${function};\n"
1218 fi
1219 done
1220 printf "\n"
1221 printf " /* target specific vector. */\n"
1222 printf " struct gdbarch_tdep *tdep;\n"
1223 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1224 printf "\n"
1225 printf " /* per-architecture data-pointers */\n"
1226 printf " unsigned nr_data;\n"
1227 printf " void **data;\n"
1228 printf "\n"
1229 printf " /* per-architecture swap-regions */\n"
1230 printf " struct gdbarch_swap *swap;\n"
1231 printf "\n"
1232 cat <<EOF
1233 /* Multi-arch values.
1234
1235 When extending this structure you must:
1236
1237 Add the field below.
1238
1239 Declare set/get functions and define the corresponding
1240 macro in gdbarch.h.
1241
1242 gdbarch_alloc(): If zero/NULL is not a suitable default,
1243 initialize the new field.
1244
1245 verify_gdbarch(): Confirm that the target updated the field
1246 correctly.
1247
1248 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1249 field is dumped out
1250
1251 \`\`startup_gdbarch()'': Append an initial value to the static
1252 variable (base values on the host's c-type system).
1253
1254 get_gdbarch(): Implement the set/get functions (probably using
1255 the macro's as shortcuts).
1256
1257 */
1258
1259 EOF
1260 function_list | while do_read
1261 do
1262 if class_is_variable_p
1263 then
1264 printf " ${returntype} ${function};\n"
1265 elif class_is_function_p
1266 then
1267 printf " gdbarch_${function}_ftype *${function};\n"
1268 fi
1269 done
1270 printf "};\n"
1271
1272 # A pre-initialized vector
1273 printf "\n"
1274 printf "\n"
1275 cat <<EOF
1276 /* The default architecture uses host values (for want of a better
1277 choice). */
1278 EOF
1279 printf "\n"
1280 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1281 printf "\n"
1282 printf "struct gdbarch startup_gdbarch =\n"
1283 printf "{\n"
1284 printf " 1, /* Always initialized. */\n"
1285 printf " NULL, /* The obstack. */\n"
1286 printf " /* basic architecture information */\n"
1287 function_list | while do_read
1288 do
1289 if class_is_info_p
1290 then
1291 printf " ${staticdefault}, /* ${function} */\n"
1292 fi
1293 done
1294 cat <<EOF
1295 /* target specific vector and its dump routine */
1296 NULL, NULL,
1297 /*per-architecture data-pointers and swap regions */
1298 0, NULL, NULL,
1299 /* Multi-arch values */
1300 EOF
1301 function_list | while do_read
1302 do
1303 if class_is_function_p || class_is_variable_p
1304 then
1305 printf " ${staticdefault}, /* ${function} */\n"
1306 fi
1307 done
1308 cat <<EOF
1309 /* startup_gdbarch() */
1310 };
1311
1312 struct gdbarch *current_gdbarch = &startup_gdbarch;
1313 EOF
1314
1315 # Create a new gdbarch struct
1316 cat <<EOF
1317
1318 /* Create a new \`\`struct gdbarch'' based on information provided by
1319 \`\`struct gdbarch_info''. */
1320 EOF
1321 printf "\n"
1322 cat <<EOF
1323 struct gdbarch *
1324 gdbarch_alloc (const struct gdbarch_info *info,
1325 struct gdbarch_tdep *tdep)
1326 {
1327 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1328 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1329 the current local architecture and not the previous global
1330 architecture. This ensures that the new architectures initial
1331 values are not influenced by the previous architecture. Once
1332 everything is parameterised with gdbarch, this will go away. */
1333 struct gdbarch *current_gdbarch;
1334
1335 /* Create an obstack for allocating all the per-architecture memory,
1336 then use that to allocate the architecture vector. */
1337 struct obstack *obstack = XMALLOC (struct obstack);
1338 obstack_init (obstack);
1339 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1340 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1341 current_gdbarch->obstack = obstack;
1342
1343 alloc_gdbarch_data (current_gdbarch);
1344
1345 current_gdbarch->tdep = tdep;
1346 EOF
1347 printf "\n"
1348 function_list | while do_read
1349 do
1350 if class_is_info_p
1351 then
1352 printf " current_gdbarch->${function} = info->${function};\n"
1353 fi
1354 done
1355 printf "\n"
1356 printf " /* Force the explicit initialization of these. */\n"
1357 function_list | while do_read
1358 do
1359 if class_is_function_p || class_is_variable_p
1360 then
1361 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1362 then
1363 printf " current_gdbarch->${function} = ${predefault};\n"
1364 fi
1365 fi
1366 done
1367 cat <<EOF
1368 /* gdbarch_alloc() */
1369
1370 return current_gdbarch;
1371 }
1372 EOF
1373
1374 # Free a gdbarch struct.
1375 printf "\n"
1376 printf "\n"
1377 cat <<EOF
1378 /* Allocate extra space using the per-architecture obstack. */
1379
1380 void *
1381 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1382 {
1383 void *data = obstack_alloc (arch->obstack, size);
1384 memset (data, 0, size);
1385 return data;
1386 }
1387
1388
1389 /* Free a gdbarch struct. This should never happen in normal
1390 operation --- once you've created a gdbarch, you keep it around.
1391 However, if an architecture's init function encounters an error
1392 building the structure, it may need to clean up a partially
1393 constructed gdbarch. */
1394
1395 void
1396 gdbarch_free (struct gdbarch *arch)
1397 {
1398 struct obstack *obstack;
1399 gdb_assert (arch != NULL);
1400 gdb_assert (!arch->initialized_p);
1401 obstack = arch->obstack;
1402 obstack_free (obstack, 0); /* Includes the ARCH. */
1403 xfree (obstack);
1404 }
1405 EOF
1406
1407 # verify a new architecture
1408 cat <<EOF
1409
1410
1411 /* Ensure that all values in a GDBARCH are reasonable. */
1412
1413 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1414 just happens to match the global variable \`\`current_gdbarch''. That
1415 way macros refering to that variable get the local and not the global
1416 version - ulgh. Once everything is parameterised with gdbarch, this
1417 will go away. */
1418
1419 static void
1420 verify_gdbarch (struct gdbarch *current_gdbarch)
1421 {
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1424 long dummy;
1425 char *buf;
1426 log = mem_fileopen ();
1427 cleanups = make_cleanup_ui_file_delete (log);
1428 /* fundamental */
1429 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1430 fprintf_unfiltered (log, "\n\tbyte-order");
1431 if (current_gdbarch->bfd_arch_info == NULL)
1432 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1433 /* Check those that need to be defined for the given multi-arch level. */
1434 EOF
1435 function_list | while do_read
1436 do
1437 if class_is_function_p || class_is_variable_p
1438 then
1439 if [ "x${invalid_p}" = "x0" ]
1440 then
1441 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1442 elif class_is_predicate_p
1443 then
1444 printf " /* Skip verify of ${function}, has predicate */\n"
1445 # FIXME: See do_read for potential simplification
1446 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1447 then
1448 printf " if (${invalid_p})\n"
1449 printf " current_gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1451 then
1452 printf " if (current_gdbarch->${function} == ${predefault})\n"
1453 printf " current_gdbarch->${function} = ${postdefault};\n"
1454 elif [ -n "${postdefault}" ]
1455 then
1456 printf " if (current_gdbarch->${function} == 0)\n"
1457 printf " current_gdbarch->${function} = ${postdefault};\n"
1458 elif [ -n "${invalid_p}" ]
1459 then
1460 printf " if (${invalid_p})\n"
1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462 elif [ -n "${predefault}" ]
1463 then
1464 printf " if (current_gdbarch->${function} == ${predefault})\n"
1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1466 fi
1467 fi
1468 done
1469 cat <<EOF
1470 buf = ui_file_xstrdup (log, &dummy);
1471 make_cleanup (xfree, buf);
1472 if (strlen (buf) > 0)
1473 internal_error (__FILE__, __LINE__,
1474 _("verify_gdbarch: the following are invalid ...%s"),
1475 buf);
1476 do_cleanups (cleanups);
1477 }
1478 EOF
1479
1480 # dump the structure
1481 printf "\n"
1482 printf "\n"
1483 cat <<EOF
1484 /* Print out the details of the current architecture. */
1485
1486 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1487 just happens to match the global variable \`\`current_gdbarch''. That
1488 way macros refering to that variable get the local and not the global
1489 version - ulgh. Once everything is parameterised with gdbarch, this
1490 will go away. */
1491
1492 void
1493 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1494 {
1495 const char *gdb_xm_file = "<not-defined>";
1496 const char *gdb_nm_file = "<not-defined>";
1497 const char *gdb_tm_file = "<not-defined>";
1498 #if defined (GDB_XM_FILE)
1499 gdb_xm_file = GDB_XM_FILE;
1500 #endif
1501 fprintf_unfiltered (file,
1502 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1503 gdb_xm_file);
1504 #if defined (GDB_NM_FILE)
1505 gdb_nm_file = GDB_NM_FILE;
1506 #endif
1507 fprintf_unfiltered (file,
1508 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1509 gdb_nm_file);
1510 #if defined (GDB_TM_FILE)
1511 gdb_tm_file = GDB_TM_FILE;
1512 #endif
1513 fprintf_unfiltered (file,
1514 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1515 gdb_tm_file);
1516 EOF
1517 function_list | sort -t: -k 4 | while do_read
1518 do
1519 # First the predicate
1520 if class_is_predicate_p
1521 then
1522 if test -n "${macro}"
1523 then
1524 printf "#ifdef ${macro}_P\n"
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1527 printf " \"${macro}_P()\",\n"
1528 printf " XSTRING (${macro}_P ()));\n"
1529 printf "#endif\n"
1530 fi
1531 printf " fprintf_unfiltered (file,\n"
1532 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1533 printf " gdbarch_${function}_p (current_gdbarch));\n"
1534 fi
1535 # Print the macro definition.
1536 if test -n "${macro}"
1537 then
1538 printf "#ifdef ${macro}\n"
1539 if class_is_function_p
1540 then
1541 printf " fprintf_unfiltered (file,\n"
1542 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1543 printf " \"${macro}(${actual})\",\n"
1544 printf " XSTRING (${macro} (${actual})));\n"
1545 else
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1548 printf " XSTRING (${macro}));\n"
1549 fi
1550 printf "#endif\n"
1551 fi
1552 # Print the corresponding value.
1553 if class_is_function_p
1554 then
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1557 printf " (long) current_gdbarch->${function});\n"
1558 else
1559 # It is a variable
1560 case "${print}:${returntype}" in
1561 :CORE_ADDR )
1562 fmt="0x%s"
1563 print="paddr_nz (current_gdbarch->${function})"
1564 ;;
1565 :* )
1566 fmt="%s"
1567 print="paddr_d (current_gdbarch->${function})"
1568 ;;
1569 * )
1570 fmt="%s"
1571 ;;
1572 esac
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1575 printf " ${print});\n"
1576 fi
1577 done
1578 cat <<EOF
1579 if (current_gdbarch->dump_tdep != NULL)
1580 current_gdbarch->dump_tdep (current_gdbarch, file);
1581 }
1582 EOF
1583
1584
1585 # GET/SET
1586 printf "\n"
1587 cat <<EOF
1588 struct gdbarch_tdep *
1589 gdbarch_tdep (struct gdbarch *gdbarch)
1590 {
1591 if (gdbarch_debug >= 2)
1592 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1593 return gdbarch->tdep;
1594 }
1595 EOF
1596 printf "\n"
1597 function_list | while do_read
1598 do
1599 if class_is_predicate_p
1600 then
1601 printf "\n"
1602 printf "int\n"
1603 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1604 printf "{\n"
1605 printf " gdb_assert (gdbarch != NULL);\n"
1606 printf " return ${predicate};\n"
1607 printf "}\n"
1608 fi
1609 if class_is_function_p
1610 then
1611 printf "\n"
1612 printf "${returntype}\n"
1613 if [ "x${formal}" = "xvoid" ]
1614 then
1615 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1616 else
1617 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1618 fi
1619 printf "{\n"
1620 printf " gdb_assert (gdbarch != NULL);\n"
1621 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1622 if class_is_predicate_p && test -n "${predefault}"
1623 then
1624 # Allow a call to a function with a predicate.
1625 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1626 fi
1627 printf " if (gdbarch_debug >= 2)\n"
1628 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1629 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1630 then
1631 if class_is_multiarch_p
1632 then
1633 params="gdbarch"
1634 else
1635 params=""
1636 fi
1637 else
1638 if class_is_multiarch_p
1639 then
1640 params="gdbarch, ${actual}"
1641 else
1642 params="${actual}"
1643 fi
1644 fi
1645 if [ "x${returntype}" = "xvoid" ]
1646 then
1647 printf " gdbarch->${function} (${params});\n"
1648 else
1649 printf " return gdbarch->${function} (${params});\n"
1650 fi
1651 printf "}\n"
1652 printf "\n"
1653 printf "void\n"
1654 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1655 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1656 printf "{\n"
1657 printf " gdbarch->${function} = ${function};\n"
1658 printf "}\n"
1659 elif class_is_variable_p
1660 then
1661 printf "\n"
1662 printf "${returntype}\n"
1663 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1664 printf "{\n"
1665 printf " gdb_assert (gdbarch != NULL);\n"
1666 if [ "x${invalid_p}" = "x0" ]
1667 then
1668 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1669 elif [ -n "${invalid_p}" ]
1670 then
1671 printf " /* Check variable is valid. */\n"
1672 printf " gdb_assert (!(${invalid_p}));\n"
1673 elif [ -n "${predefault}" ]
1674 then
1675 printf " /* Check variable changed from pre-default. */\n"
1676 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1677 fi
1678 printf " if (gdbarch_debug >= 2)\n"
1679 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1680 printf " return gdbarch->${function};\n"
1681 printf "}\n"
1682 printf "\n"
1683 printf "void\n"
1684 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1685 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1686 printf "{\n"
1687 printf " gdbarch->${function} = ${function};\n"
1688 printf "}\n"
1689 elif class_is_info_p
1690 then
1691 printf "\n"
1692 printf "${returntype}\n"
1693 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1694 printf "{\n"
1695 printf " gdb_assert (gdbarch != NULL);\n"
1696 printf " if (gdbarch_debug >= 2)\n"
1697 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1698 printf " return gdbarch->${function};\n"
1699 printf "}\n"
1700 fi
1701 done
1702
1703 # All the trailing guff
1704 cat <<EOF
1705
1706
1707 /* Keep a registry of per-architecture data-pointers required by GDB
1708 modules. */
1709
1710 struct gdbarch_data
1711 {
1712 unsigned index;
1713 int init_p;
1714 gdbarch_data_pre_init_ftype *pre_init;
1715 gdbarch_data_post_init_ftype *post_init;
1716 };
1717
1718 struct gdbarch_data_registration
1719 {
1720 struct gdbarch_data *data;
1721 struct gdbarch_data_registration *next;
1722 };
1723
1724 struct gdbarch_data_registry
1725 {
1726 unsigned nr;
1727 struct gdbarch_data_registration *registrations;
1728 };
1729
1730 struct gdbarch_data_registry gdbarch_data_registry =
1731 {
1732 0, NULL,
1733 };
1734
1735 static struct gdbarch_data *
1736 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1737 gdbarch_data_post_init_ftype *post_init)
1738 {
1739 struct gdbarch_data_registration **curr;
1740 /* Append the new registraration. */
1741 for (curr = &gdbarch_data_registry.registrations;
1742 (*curr) != NULL;
1743 curr = &(*curr)->next);
1744 (*curr) = XMALLOC (struct gdbarch_data_registration);
1745 (*curr)->next = NULL;
1746 (*curr)->data = XMALLOC (struct gdbarch_data);
1747 (*curr)->data->index = gdbarch_data_registry.nr++;
1748 (*curr)->data->pre_init = pre_init;
1749 (*curr)->data->post_init = post_init;
1750 (*curr)->data->init_p = 1;
1751 return (*curr)->data;
1752 }
1753
1754 struct gdbarch_data *
1755 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1756 {
1757 return gdbarch_data_register (pre_init, NULL);
1758 }
1759
1760 struct gdbarch_data *
1761 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1762 {
1763 return gdbarch_data_register (NULL, post_init);
1764 }
1765
1766 /* Create/delete the gdbarch data vector. */
1767
1768 static void
1769 alloc_gdbarch_data (struct gdbarch *gdbarch)
1770 {
1771 gdb_assert (gdbarch->data == NULL);
1772 gdbarch->nr_data = gdbarch_data_registry.nr;
1773 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1774 }
1775
1776 /* Initialize the current value of the specified per-architecture
1777 data-pointer. */
1778
1779 void
1780 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1781 struct gdbarch_data *data,
1782 void *pointer)
1783 {
1784 gdb_assert (data->index < gdbarch->nr_data);
1785 gdb_assert (gdbarch->data[data->index] == NULL);
1786 gdb_assert (data->pre_init == NULL);
1787 gdbarch->data[data->index] = pointer;
1788 }
1789
1790 /* Return the current value of the specified per-architecture
1791 data-pointer. */
1792
1793 void *
1794 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1795 {
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 if (gdbarch->data[data->index] == NULL)
1798 {
1799 /* The data-pointer isn't initialized, call init() to get a
1800 value. */
1801 if (data->pre_init != NULL)
1802 /* Mid architecture creation: pass just the obstack, and not
1803 the entire architecture, as that way it isn't possible for
1804 pre-init code to refer to undefined architecture
1805 fields. */
1806 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1807 else if (gdbarch->initialized_p
1808 && data->post_init != NULL)
1809 /* Post architecture creation: pass the entire architecture
1810 (as all fields are valid), but be careful to also detect
1811 recursive references. */
1812 {
1813 gdb_assert (data->init_p);
1814 data->init_p = 0;
1815 gdbarch->data[data->index] = data->post_init (gdbarch);
1816 data->init_p = 1;
1817 }
1818 else
1819 /* The architecture initialization hasn't completed - punt -
1820 hope that the caller knows what they are doing. Once
1821 deprecated_set_gdbarch_data has been initialized, this can be
1822 changed to an internal error. */
1823 return NULL;
1824 gdb_assert (gdbarch->data[data->index] != NULL);
1825 }
1826 return gdbarch->data[data->index];
1827 }
1828
1829
1830
1831 /* Keep a registry of swapped data required by GDB modules. */
1832
1833 struct gdbarch_swap
1834 {
1835 void *swap;
1836 struct gdbarch_swap_registration *source;
1837 struct gdbarch_swap *next;
1838 };
1839
1840 struct gdbarch_swap_registration
1841 {
1842 void *data;
1843 unsigned long sizeof_data;
1844 gdbarch_swap_ftype *init;
1845 struct gdbarch_swap_registration *next;
1846 };
1847
1848 struct gdbarch_swap_registry
1849 {
1850 int nr;
1851 struct gdbarch_swap_registration *registrations;
1852 };
1853
1854 struct gdbarch_swap_registry gdbarch_swap_registry =
1855 {
1856 0, NULL,
1857 };
1858
1859 void
1860 deprecated_register_gdbarch_swap (void *data,
1861 unsigned long sizeof_data,
1862 gdbarch_swap_ftype *init)
1863 {
1864 struct gdbarch_swap_registration **rego;
1865 for (rego = &gdbarch_swap_registry.registrations;
1866 (*rego) != NULL;
1867 rego = &(*rego)->next);
1868 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1869 (*rego)->next = NULL;
1870 (*rego)->init = init;
1871 (*rego)->data = data;
1872 (*rego)->sizeof_data = sizeof_data;
1873 }
1874
1875 static void
1876 current_gdbarch_swap_init_hack (void)
1877 {
1878 struct gdbarch_swap_registration *rego;
1879 struct gdbarch_swap **curr = &current_gdbarch->swap;
1880 for (rego = gdbarch_swap_registry.registrations;
1881 rego != NULL;
1882 rego = rego->next)
1883 {
1884 if (rego->data != NULL)
1885 {
1886 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1887 struct gdbarch_swap);
1888 (*curr)->source = rego;
1889 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1890 rego->sizeof_data);
1891 (*curr)->next = NULL;
1892 curr = &(*curr)->next;
1893 }
1894 if (rego->init != NULL)
1895 rego->init ();
1896 }
1897 }
1898
1899 static struct gdbarch *
1900 current_gdbarch_swap_out_hack (void)
1901 {
1902 struct gdbarch *old_gdbarch = current_gdbarch;
1903 struct gdbarch_swap *curr;
1904
1905 gdb_assert (old_gdbarch != NULL);
1906 for (curr = old_gdbarch->swap;
1907 curr != NULL;
1908 curr = curr->next)
1909 {
1910 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1911 memset (curr->source->data, 0, curr->source->sizeof_data);
1912 }
1913 current_gdbarch = NULL;
1914 return old_gdbarch;
1915 }
1916
1917 static void
1918 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1919 {
1920 struct gdbarch_swap *curr;
1921
1922 gdb_assert (current_gdbarch == NULL);
1923 for (curr = new_gdbarch->swap;
1924 curr != NULL;
1925 curr = curr->next)
1926 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1927 current_gdbarch = new_gdbarch;
1928 }
1929
1930
1931 /* Keep a registry of the architectures known by GDB. */
1932
1933 struct gdbarch_registration
1934 {
1935 enum bfd_architecture bfd_architecture;
1936 gdbarch_init_ftype *init;
1937 gdbarch_dump_tdep_ftype *dump_tdep;
1938 struct gdbarch_list *arches;
1939 struct gdbarch_registration *next;
1940 };
1941
1942 static struct gdbarch_registration *gdbarch_registry = NULL;
1943
1944 static void
1945 append_name (const char ***buf, int *nr, const char *name)
1946 {
1947 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1948 (*buf)[*nr] = name;
1949 *nr += 1;
1950 }
1951
1952 const char **
1953 gdbarch_printable_names (void)
1954 {
1955 /* Accumulate a list of names based on the registed list of
1956 architectures. */
1957 enum bfd_architecture a;
1958 int nr_arches = 0;
1959 const char **arches = NULL;
1960 struct gdbarch_registration *rego;
1961 for (rego = gdbarch_registry;
1962 rego != NULL;
1963 rego = rego->next)
1964 {
1965 const struct bfd_arch_info *ap;
1966 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1967 if (ap == NULL)
1968 internal_error (__FILE__, __LINE__,
1969 _("gdbarch_architecture_names: multi-arch unknown"));
1970 do
1971 {
1972 append_name (&arches, &nr_arches, ap->printable_name);
1973 ap = ap->next;
1974 }
1975 while (ap != NULL);
1976 }
1977 append_name (&arches, &nr_arches, NULL);
1978 return arches;
1979 }
1980
1981
1982 void
1983 gdbarch_register (enum bfd_architecture bfd_architecture,
1984 gdbarch_init_ftype *init,
1985 gdbarch_dump_tdep_ftype *dump_tdep)
1986 {
1987 struct gdbarch_registration **curr;
1988 const struct bfd_arch_info *bfd_arch_info;
1989 /* Check that BFD recognizes this architecture */
1990 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1991 if (bfd_arch_info == NULL)
1992 {
1993 internal_error (__FILE__, __LINE__,
1994 _("gdbarch: Attempt to register unknown architecture (%d)"),
1995 bfd_architecture);
1996 }
1997 /* Check that we haven't seen this architecture before */
1998 for (curr = &gdbarch_registry;
1999 (*curr) != NULL;
2000 curr = &(*curr)->next)
2001 {
2002 if (bfd_architecture == (*curr)->bfd_architecture)
2003 internal_error (__FILE__, __LINE__,
2004 _("gdbarch: Duplicate registraration of architecture (%s)"),
2005 bfd_arch_info->printable_name);
2006 }
2007 /* log it */
2008 if (gdbarch_debug)
2009 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2010 bfd_arch_info->printable_name,
2011 (long) init);
2012 /* Append it */
2013 (*curr) = XMALLOC (struct gdbarch_registration);
2014 (*curr)->bfd_architecture = bfd_architecture;
2015 (*curr)->init = init;
2016 (*curr)->dump_tdep = dump_tdep;
2017 (*curr)->arches = NULL;
2018 (*curr)->next = NULL;
2019 }
2020
2021 void
2022 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2023 gdbarch_init_ftype *init)
2024 {
2025 gdbarch_register (bfd_architecture, init, NULL);
2026 }
2027
2028
2029 /* Look for an architecture using gdbarch_info. Base search on only
2030 BFD_ARCH_INFO and BYTE_ORDER. */
2031
2032 struct gdbarch_list *
2033 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2034 const struct gdbarch_info *info)
2035 {
2036 for (; arches != NULL; arches = arches->next)
2037 {
2038 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2039 continue;
2040 if (info->byte_order != arches->gdbarch->byte_order)
2041 continue;
2042 if (info->osabi != arches->gdbarch->osabi)
2043 continue;
2044 return arches;
2045 }
2046 return NULL;
2047 }
2048
2049
2050 /* Find an architecture that matches the specified INFO. Create a new
2051 architecture if needed. Return that new architecture. Assumes
2052 that there is no current architecture. */
2053
2054 static struct gdbarch *
2055 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2056 {
2057 struct gdbarch *new_gdbarch;
2058 struct gdbarch_registration *rego;
2059
2060 /* The existing architecture has been swapped out - all this code
2061 works from a clean slate. */
2062 gdb_assert (current_gdbarch == NULL);
2063
2064 /* Fill in missing parts of the INFO struct using a number of
2065 sources: "set ..."; INFOabfd supplied; and the existing
2066 architecture. */
2067 gdbarch_info_fill (old_gdbarch, &info);
2068
2069 /* Must have found some sort of architecture. */
2070 gdb_assert (info.bfd_arch_info != NULL);
2071
2072 if (gdbarch_debug)
2073 {
2074 fprintf_unfiltered (gdb_stdlog,
2075 "find_arch_by_info: info.bfd_arch_info %s\n",
2076 (info.bfd_arch_info != NULL
2077 ? info.bfd_arch_info->printable_name
2078 : "(null)"));
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.byte_order %d (%s)\n",
2081 info.byte_order,
2082 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2083 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2084 : "default"));
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.osabi %d (%s)\n",
2087 info.osabi, gdbarch_osabi_name (info.osabi));
2088 fprintf_unfiltered (gdb_stdlog,
2089 "find_arch_by_info: info.abfd 0x%lx\n",
2090 (long) info.abfd);
2091 fprintf_unfiltered (gdb_stdlog,
2092 "find_arch_by_info: info.tdep_info 0x%lx\n",
2093 (long) info.tdep_info);
2094 }
2095
2096 /* Find the tdep code that knows about this architecture. */
2097 for (rego = gdbarch_registry;
2098 rego != NULL;
2099 rego = rego->next)
2100 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2101 break;
2102 if (rego == NULL)
2103 {
2104 if (gdbarch_debug)
2105 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2106 "No matching architecture\n");
2107 return 0;
2108 }
2109
2110 /* Ask the tdep code for an architecture that matches "info". */
2111 new_gdbarch = rego->init (info, rego->arches);
2112
2113 /* Did the tdep code like it? No. Reject the change and revert to
2114 the old architecture. */
2115 if (new_gdbarch == NULL)
2116 {
2117 if (gdbarch_debug)
2118 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2119 "Target rejected architecture\n");
2120 return NULL;
2121 }
2122
2123 /* Is this a pre-existing architecture (as determined by already
2124 being initialized)? Move it to the front of the architecture
2125 list (keeping the list sorted Most Recently Used). */
2126 if (new_gdbarch->initialized_p)
2127 {
2128 struct gdbarch_list **list;
2129 struct gdbarch_list *this;
2130 if (gdbarch_debug)
2131 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2132 "Previous architecture 0x%08lx (%s) selected\n",
2133 (long) new_gdbarch,
2134 new_gdbarch->bfd_arch_info->printable_name);
2135 /* Find the existing arch in the list. */
2136 for (list = &rego->arches;
2137 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2138 list = &(*list)->next);
2139 /* It had better be in the list of architectures. */
2140 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2141 /* Unlink THIS. */
2142 this = (*list);
2143 (*list) = this->next;
2144 /* Insert THIS at the front. */
2145 this->next = rego->arches;
2146 rego->arches = this;
2147 /* Return it. */
2148 return new_gdbarch;
2149 }
2150
2151 /* It's a new architecture. */
2152 if (gdbarch_debug)
2153 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2154 "New architecture 0x%08lx (%s) selected\n",
2155 (long) new_gdbarch,
2156 new_gdbarch->bfd_arch_info->printable_name);
2157
2158 /* Insert the new architecture into the front of the architecture
2159 list (keep the list sorted Most Recently Used). */
2160 {
2161 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2162 this->next = rego->arches;
2163 this->gdbarch = new_gdbarch;
2164 rego->arches = this;
2165 }
2166
2167 /* Check that the newly installed architecture is valid. Plug in
2168 any post init values. */
2169 new_gdbarch->dump_tdep = rego->dump_tdep;
2170 verify_gdbarch (new_gdbarch);
2171 new_gdbarch->initialized_p = 1;
2172
2173 /* Initialize any per-architecture swap areas. This phase requires
2174 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2175 swap the entire architecture out. */
2176 current_gdbarch = new_gdbarch;
2177 current_gdbarch_swap_init_hack ();
2178 current_gdbarch_swap_out_hack ();
2179
2180 if (gdbarch_debug)
2181 gdbarch_dump (new_gdbarch, gdb_stdlog);
2182
2183 return new_gdbarch;
2184 }
2185
2186 struct gdbarch *
2187 gdbarch_find_by_info (struct gdbarch_info info)
2188 {
2189 /* Save the previously selected architecture, setting the global to
2190 NULL. This stops things like gdbarch->init() trying to use the
2191 previous architecture's configuration. The previous architecture
2192 may not even be of the same architecture family. The most recent
2193 architecture of the same family is found at the head of the
2194 rego->arches list. */
2195 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2196
2197 /* Find the specified architecture. */
2198 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2199
2200 /* Restore the existing architecture. */
2201 gdb_assert (current_gdbarch == NULL);
2202 current_gdbarch_swap_in_hack (old_gdbarch);
2203
2204 return new_gdbarch;
2205 }
2206
2207 /* Make the specified architecture current, swapping the existing one
2208 out. */
2209
2210 void
2211 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2212 {
2213 gdb_assert (new_gdbarch != NULL);
2214 gdb_assert (current_gdbarch != NULL);
2215 gdb_assert (new_gdbarch->initialized_p);
2216 current_gdbarch_swap_out_hack ();
2217 current_gdbarch_swap_in_hack (new_gdbarch);
2218 architecture_changed_event ();
2219 flush_cached_frames ();
2220 }
2221
2222 extern void _initialize_gdbarch (void);
2223
2224 void
2225 _initialize_gdbarch (void)
2226 {
2227 struct cmd_list_element *c;
2228
2229 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2230 Set architecture debugging."), _("\\
2231 Show architecture debugging."), _("\\
2232 When non-zero, architecture debugging is enabled."),
2233 NULL,
2234 show_gdbarch_debug,
2235 &setdebuglist, &showdebuglist);
2236 }
2237 EOF
2238
2239 # close things off
2240 exec 1>&2
2241 #../move-if-change new-gdbarch.c gdbarch.c
2242 compare_new gdbarch.c
This page took 0.077801 seconds and 4 git commands to generate.