* gas/cfi/cfi-common-6.s: Do not use |.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394
395 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
397 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
399 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
419 #
420 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
421 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
422 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
423 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 #
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 #
432 v:=:int:num_regs:::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v:=:int:num_pseudo_regs:::0:0::0
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:=:int:sp_regnum:::-1:-1::0
444 v:=:int:pc_regnum:::-1:-1::0
445 v:=:int:ps_regnum:::-1:-1::0
446 v:=:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
455 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
456 f:=:const char *:register_name:int regnr:regnr
457
458 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
459 M::struct type *:register_type:int reg_nr:reg_nr
460 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
461 # register offsets computed using just REGISTER_TYPE, this can be
462 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
463 # function with predicate has a valid (callable) initial value. As a
464 # consequence, even when the predicate is false, the corresponding
465 # function works. This simplifies the migration process - old code,
466 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
467 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
471 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # DEPRECATED_FP_REGNUM.
473 v:=:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 #
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503 #
504 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
506
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
510
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
514
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
516
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 # RETURN_VALUE.
521
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
527
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
535 # function call.
536
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
544 # function is used.
545
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548
549 #
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
569
570 # Fetch the target specific address used to represent a load module.
571 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
572 #
573 v:=:CORE_ADDR:frame_args_skip:::0:::0
574 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
575 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
576 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
577 # frame-base. Enable frame-base before frame-unwind.
578 F:=:int:frame_num_args:struct frame_info *frame:frame
579 #
580 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
581 # to frame_align and the requirement that methods such as
582 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
583 # alignment.
584 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
585 M::CORE_ADDR:frame_align:CORE_ADDR address:address
586 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
587 # stabs_argument_has_addr.
588 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
589 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590 v:=:int:frame_red_zone_size
591 #
592 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
593 # On some machines there are bits in addresses which are not really
594 # part of the address, but are used by the kernel, the hardware, etc.
595 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
596 # we get a "real" address such as one would find in a symbol table.
597 # This is used only for addresses of instructions, and even then I'm
598 # not sure it's used in all contexts. It exists to deal with there
599 # being a few stray bits in the PC which would mislead us, not as some
600 # sort of generic thing to handle alignment or segmentation (it's
601 # possible it should be in TARGET_READ_PC instead).
602 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
603 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
604 # ADDR_BITS_REMOVE.
605 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
606 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
607 # the target needs software single step. An ISA method to implement it.
608 #
609 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
610 # using the breakpoint system instead of blatting memory directly (as with rs6000).
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
613 # single step. If not, then implement single step using breakpoints.
614 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
615 # Return non-zero if the processor is executing a delay slot and a
616 # further single-step is needed before the instruction finishes.
617 M::int:single_step_through_delay:struct frame_info *frame:frame
618 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
619 # disassembler. Perhaps objdump can handle it?
620 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
621 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
622
623
624 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
625 # evaluates non-zero, this is the address where the debugger will place
626 # a step-resume breakpoint to get us past the dynamic linker.
627 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
628 # Some systems also have trampoline code for returning from shared libs.
629 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
630
631 # A target might have problems with watchpoints as soon as the stack
632 # frame of the current function has been destroyed. This mostly happens
633 # as the first action in a funtion's epilogue. in_function_epilogue_p()
634 # is defined to return a non-zero value if either the given addr is one
635 # instruction after the stack destroying instruction up to the trailing
636 # return instruction or if we can figure out that the stack frame has
637 # already been invalidated regardless of the value of addr. Targets
638 # which don't suffer from that problem could just let this functionality
639 # untouched.
640 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
641 # Given a vector of command-line arguments, return a newly allocated
642 # string which, when passed to the create_inferior function, will be
643 # parsed (on Unix systems, by the shell) to yield the same vector.
644 # This function should call error() if the argument vector is not
645 # representable for this target or if this target does not support
646 # command-line arguments.
647 # ARGC is the number of elements in the vector.
648 # ARGV is an array of strings, one per argument.
649 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
650 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
651 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
652 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
653 v:=:int:cannot_step_breakpoint:::0:0::0
654 v:=:int:have_nonsteppable_watchpoint:::0:0::0
655 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
656 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
657 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
658 # Is a register in a group
659 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
660 # Fetch the pointer to the ith function argument.
661 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
662
663 # Return the appropriate register set for a core file section with
664 # name SECT_NAME and size SECT_SIZE.
665 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
666 EOF
667 }
668
669 #
670 # The .log file
671 #
672 exec > new-gdbarch.log
673 function_list | while do_read
674 do
675 cat <<EOF
676 ${class} ${returntype} ${function} ($formal)
677 EOF
678 for r in ${read}
679 do
680 eval echo \"\ \ \ \ ${r}=\${${r}}\"
681 done
682 if class_is_predicate_p && fallback_default_p
683 then
684 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
685 kill $$
686 exit 1
687 fi
688 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
689 then
690 echo "Error: postdefault is useless when invalid_p=0" 1>&2
691 kill $$
692 exit 1
693 fi
694 if class_is_multiarch_p
695 then
696 if class_is_predicate_p ; then :
697 elif test "x${predefault}" = "x"
698 then
699 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
700 kill $$
701 exit 1
702 fi
703 fi
704 echo ""
705 done
706
707 exec 1>&2
708 compare_new gdbarch.log
709
710
711 copyright ()
712 {
713 cat <<EOF
714 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
715
716 /* Dynamic architecture support for GDB, the GNU debugger.
717
718 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
719 Free Software Foundation, Inc.
720
721 This file is part of GDB.
722
723 This program is free software; you can redistribute it and/or modify
724 it under the terms of the GNU General Public License as published by
725 the Free Software Foundation; either version 2 of the License, or
726 (at your option) any later version.
727
728 This program is distributed in the hope that it will be useful,
729 but WITHOUT ANY WARRANTY; without even the implied warranty of
730 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
731 GNU General Public License for more details.
732
733 You should have received a copy of the GNU General Public License
734 along with this program; if not, write to the Free Software
735 Foundation, Inc., 51 Franklin Street, Fifth Floor,
736 Boston, MA 02110-1301, USA. */
737
738 /* This file was created with the aid of \`\`gdbarch.sh''.
739
740 The Bourne shell script \`\`gdbarch.sh'' creates the files
741 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
742 against the existing \`\`gdbarch.[hc]''. Any differences found
743 being reported.
744
745 If editing this file, please also run gdbarch.sh and merge any
746 changes into that script. Conversely, when making sweeping changes
747 to this file, modifying gdbarch.sh and using its output may prove
748 easier. */
749
750 EOF
751 }
752
753 #
754 # The .h file
755 #
756
757 exec > new-gdbarch.h
758 copyright
759 cat <<EOF
760 #ifndef GDBARCH_H
761 #define GDBARCH_H
762
763 struct floatformat;
764 struct ui_file;
765 struct frame_info;
766 struct value;
767 struct objfile;
768 struct minimal_symbol;
769 struct regcache;
770 struct reggroup;
771 struct regset;
772 struct disassemble_info;
773 struct target_ops;
774 struct obstack;
775 struct bp_target_info;
776 struct target_desc;
777
778 extern struct gdbarch *current_gdbarch;
779 EOF
780
781 # function typedef's
782 printf "\n"
783 printf "\n"
784 printf "/* The following are pre-initialized by GDBARCH. */\n"
785 function_list | while do_read
786 do
787 if class_is_info_p
788 then
789 printf "\n"
790 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
791 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
792 if test -n "${macro}"
793 then
794 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
795 printf "#error \"Non multi-arch definition of ${macro}\"\n"
796 printf "#endif\n"
797 printf "#if !defined (${macro})\n"
798 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
799 printf "#endif\n"
800 fi
801 fi
802 done
803
804 # function typedef's
805 printf "\n"
806 printf "\n"
807 printf "/* The following are initialized by the target dependent code. */\n"
808 function_list | while do_read
809 do
810 if [ -n "${comment}" ]
811 then
812 echo "${comment}" | sed \
813 -e '2 s,#,/*,' \
814 -e '3,$ s,#, ,' \
815 -e '$ s,$, */,'
816 fi
817
818 if class_is_predicate_p
819 then
820 if test -n "${macro}"
821 then
822 printf "\n"
823 printf "#if defined (${macro})\n"
824 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
825 printf "#if !defined (${macro}_P)\n"
826 printf "#define ${macro}_P() (1)\n"
827 printf "#endif\n"
828 printf "#endif\n"
829 fi
830 printf "\n"
831 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
832 if test -n "${macro}"
833 then
834 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
835 printf "#error \"Non multi-arch definition of ${macro}\"\n"
836 printf "#endif\n"
837 printf "#if !defined (${macro}_P)\n"
838 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
839 printf "#endif\n"
840 fi
841 fi
842 if class_is_variable_p
843 then
844 printf "\n"
845 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
846 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
847 if test -n "${macro}"
848 then
849 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if !defined (${macro})\n"
853 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
854 printf "#endif\n"
855 fi
856 fi
857 if class_is_function_p
858 then
859 printf "\n"
860 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
863 elif class_is_multiarch_p
864 then
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
866 else
867 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
868 fi
869 if [ "x${formal}" = "xvoid" ]
870 then
871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
872 else
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
874 fi
875 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
876 if test -n "${macro}"
877 then
878 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
879 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 printf "#endif\n"
881 if [ "x${actual}" = "x" ]
882 then
883 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
884 elif [ "x${actual}" = "x-" ]
885 then
886 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
887 else
888 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
889 fi
890 printf "#if !defined (${macro})\n"
891 if [ "x${actual}" = "x" ]
892 then
893 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
894 elif [ "x${actual}" = "x-" ]
895 then
896 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
897 else
898 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
899 fi
900 printf "#endif\n"
901 fi
902 fi
903 done
904
905 # close it off
906 cat <<EOF
907
908 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
909
910
911 /* Mechanism for co-ordinating the selection of a specific
912 architecture.
913
914 GDB targets (*-tdep.c) can register an interest in a specific
915 architecture. Other GDB components can register a need to maintain
916 per-architecture data.
917
918 The mechanisms below ensures that there is only a loose connection
919 between the set-architecture command and the various GDB
920 components. Each component can independently register their need
921 to maintain architecture specific data with gdbarch.
922
923 Pragmatics:
924
925 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
926 didn't scale.
927
928 The more traditional mega-struct containing architecture specific
929 data for all the various GDB components was also considered. Since
930 GDB is built from a variable number of (fairly independent)
931 components it was determined that the global aproach was not
932 applicable. */
933
934
935 /* Register a new architectural family with GDB.
936
937 Register support for the specified ARCHITECTURE with GDB. When
938 gdbarch determines that the specified architecture has been
939 selected, the corresponding INIT function is called.
940
941 --
942
943 The INIT function takes two parameters: INFO which contains the
944 information available to gdbarch about the (possibly new)
945 architecture; ARCHES which is a list of the previously created
946 \`\`struct gdbarch'' for this architecture.
947
948 The INFO parameter is, as far as possible, be pre-initialized with
949 information obtained from INFO.ABFD or the global defaults.
950
951 The ARCHES parameter is a linked list (sorted most recently used)
952 of all the previously created architures for this architecture
953 family. The (possibly NULL) ARCHES->gdbarch can used to access
954 values from the previously selected architecture for this
955 architecture family. The global \`\`current_gdbarch'' shall not be
956 used.
957
958 The INIT function shall return any of: NULL - indicating that it
959 doesn't recognize the selected architecture; an existing \`\`struct
960 gdbarch'' from the ARCHES list - indicating that the new
961 architecture is just a synonym for an earlier architecture (see
962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
963 - that describes the selected architecture (see gdbarch_alloc()).
964
965 The DUMP_TDEP function shall print out all target specific values.
966 Care should be taken to ensure that the function works in both the
967 multi-arch and non- multi-arch cases. */
968
969 struct gdbarch_list
970 {
971 struct gdbarch *gdbarch;
972 struct gdbarch_list *next;
973 };
974
975 struct gdbarch_info
976 {
977 /* Use default: NULL (ZERO). */
978 const struct bfd_arch_info *bfd_arch_info;
979
980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
981 int byte_order;
982
983 /* Use default: NULL (ZERO). */
984 bfd *abfd;
985
986 /* Use default: NULL (ZERO). */
987 struct gdbarch_tdep_info *tdep_info;
988
989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
990 enum gdb_osabi osabi;
991
992 /* Use default: NULL (ZERO). */
993 const struct target_desc *target_desc;
994 };
995
996 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
997 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
998
999 /* DEPRECATED - use gdbarch_register() */
1000 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1001
1002 extern void gdbarch_register (enum bfd_architecture architecture,
1003 gdbarch_init_ftype *,
1004 gdbarch_dump_tdep_ftype *);
1005
1006
1007 /* Return a freshly allocated, NULL terminated, array of the valid
1008 architecture names. Since architectures are registered during the
1009 _initialize phase this function only returns useful information
1010 once initialization has been completed. */
1011
1012 extern const char **gdbarch_printable_names (void);
1013
1014
1015 /* Helper function. Search the list of ARCHES for a GDBARCH that
1016 matches the information provided by INFO. */
1017
1018 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1019
1020
1021 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1022 basic initialization using values obtained from the INFO and TDEP
1023 parameters. set_gdbarch_*() functions are called to complete the
1024 initialization of the object. */
1025
1026 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1027
1028
1029 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1030 It is assumed that the caller freeds the \`\`struct
1031 gdbarch_tdep''. */
1032
1033 extern void gdbarch_free (struct gdbarch *);
1034
1035
1036 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1037 obstack. The memory is freed when the corresponding architecture
1038 is also freed. */
1039
1040 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1041 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1042 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1043
1044
1045 /* Helper function. Force an update of the current architecture.
1046
1047 The actual architecture selected is determined by INFO, \`\`(gdb) set
1048 architecture'' et.al., the existing architecture and BFD's default
1049 architecture. INFO should be initialized to zero and then selected
1050 fields should be updated.
1051
1052 Returns non-zero if the update succeeds */
1053
1054 extern int gdbarch_update_p (struct gdbarch_info info);
1055
1056
1057 /* Helper function. Find an architecture matching info.
1058
1059 INFO should be initialized using gdbarch_info_init, relevant fields
1060 set, and then finished using gdbarch_info_fill.
1061
1062 Returns the corresponding architecture, or NULL if no matching
1063 architecture was found. "current_gdbarch" is not updated. */
1064
1065 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1066
1067
1068 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1069
1070 FIXME: kettenis/20031124: Of the functions that follow, only
1071 gdbarch_from_bfd is supposed to survive. The others will
1072 dissappear since in the future GDB will (hopefully) be truly
1073 multi-arch. However, for now we're still stuck with the concept of
1074 a single active architecture. */
1075
1076 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1077
1078
1079 /* Register per-architecture data-pointer.
1080
1081 Reserve space for a per-architecture data-pointer. An identifier
1082 for the reserved data-pointer is returned. That identifer should
1083 be saved in a local static variable.
1084
1085 Memory for the per-architecture data shall be allocated using
1086 gdbarch_obstack_zalloc. That memory will be deleted when the
1087 corresponding architecture object is deleted.
1088
1089 When a previously created architecture is re-selected, the
1090 per-architecture data-pointer for that previous architecture is
1091 restored. INIT() is not re-called.
1092
1093 Multiple registrarants for any architecture are allowed (and
1094 strongly encouraged). */
1095
1096 struct gdbarch_data;
1097
1098 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1099 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1100 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1101 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1102 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1103 struct gdbarch_data *data,
1104 void *pointer);
1105
1106 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1107
1108
1109
1110 /* Register per-architecture memory region.
1111
1112 Provide a memory-region swap mechanism. Per-architecture memory
1113 region are created. These memory regions are swapped whenever the
1114 architecture is changed. For a new architecture, the memory region
1115 is initialized with zero (0) and the INIT function is called.
1116
1117 Memory regions are swapped / initialized in the order that they are
1118 registered. NULL DATA and/or INIT values can be specified.
1119
1120 New code should use gdbarch_data_register_*(). */
1121
1122 typedef void (gdbarch_swap_ftype) (void);
1123 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1124 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1125
1126
1127
1128 /* Set the dynamic target-system-dependent parameters (architecture,
1129 byte-order, ...) using information found in the BFD */
1130
1131 extern void set_gdbarch_from_file (bfd *);
1132
1133
1134 /* Initialize the current architecture to the "first" one we find on
1135 our list. */
1136
1137 extern void initialize_current_architecture (void);
1138
1139 /* gdbarch trace variable */
1140 extern int gdbarch_debug;
1141
1142 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1143
1144 #endif
1145 EOF
1146 exec 1>&2
1147 #../move-if-change new-gdbarch.h gdbarch.h
1148 compare_new gdbarch.h
1149
1150
1151 #
1152 # C file
1153 #
1154
1155 exec > new-gdbarch.c
1156 copyright
1157 cat <<EOF
1158
1159 #include "defs.h"
1160 #include "arch-utils.h"
1161
1162 #include "gdbcmd.h"
1163 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1164 #include "symcat.h"
1165
1166 #include "floatformat.h"
1167
1168 #include "gdb_assert.h"
1169 #include "gdb_string.h"
1170 #include "gdb-events.h"
1171 #include "reggroups.h"
1172 #include "osabi.h"
1173 #include "gdb_obstack.h"
1174
1175 /* Static function declarations */
1176
1177 static void alloc_gdbarch_data (struct gdbarch *);
1178
1179 /* Non-zero if we want to trace architecture code. */
1180
1181 #ifndef GDBARCH_DEBUG
1182 #define GDBARCH_DEBUG 0
1183 #endif
1184 int gdbarch_debug = GDBARCH_DEBUG;
1185 static void
1186 show_gdbarch_debug (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1190 }
1191
1192 static const char *
1193 pformat (const struct floatformat *format)
1194 {
1195 if (format == NULL)
1196 return "(null)";
1197 else
1198 return format->name;
1199 }
1200
1201 EOF
1202
1203 # gdbarch open the gdbarch object
1204 printf "\n"
1205 printf "/* Maintain the struct gdbarch object */\n"
1206 printf "\n"
1207 printf "struct gdbarch\n"
1208 printf "{\n"
1209 printf " /* Has this architecture been fully initialized? */\n"
1210 printf " int initialized_p;\n"
1211 printf "\n"
1212 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1213 printf " struct obstack *obstack;\n"
1214 printf "\n"
1215 printf " /* basic architectural information */\n"
1216 function_list | while do_read
1217 do
1218 if class_is_info_p
1219 then
1220 printf " ${returntype} ${function};\n"
1221 fi
1222 done
1223 printf "\n"
1224 printf " /* target specific vector. */\n"
1225 printf " struct gdbarch_tdep *tdep;\n"
1226 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1227 printf "\n"
1228 printf " /* per-architecture data-pointers */\n"
1229 printf " unsigned nr_data;\n"
1230 printf " void **data;\n"
1231 printf "\n"
1232 printf " /* per-architecture swap-regions */\n"
1233 printf " struct gdbarch_swap *swap;\n"
1234 printf "\n"
1235 cat <<EOF
1236 /* Multi-arch values.
1237
1238 When extending this structure you must:
1239
1240 Add the field below.
1241
1242 Declare set/get functions and define the corresponding
1243 macro in gdbarch.h.
1244
1245 gdbarch_alloc(): If zero/NULL is not a suitable default,
1246 initialize the new field.
1247
1248 verify_gdbarch(): Confirm that the target updated the field
1249 correctly.
1250
1251 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1252 field is dumped out
1253
1254 \`\`startup_gdbarch()'': Append an initial value to the static
1255 variable (base values on the host's c-type system).
1256
1257 get_gdbarch(): Implement the set/get functions (probably using
1258 the macro's as shortcuts).
1259
1260 */
1261
1262 EOF
1263 function_list | while do_read
1264 do
1265 if class_is_variable_p
1266 then
1267 printf " ${returntype} ${function};\n"
1268 elif class_is_function_p
1269 then
1270 printf " gdbarch_${function}_ftype *${function};\n"
1271 fi
1272 done
1273 printf "};\n"
1274
1275 # A pre-initialized vector
1276 printf "\n"
1277 printf "\n"
1278 cat <<EOF
1279 /* The default architecture uses host values (for want of a better
1280 choice). */
1281 EOF
1282 printf "\n"
1283 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1284 printf "\n"
1285 printf "struct gdbarch startup_gdbarch =\n"
1286 printf "{\n"
1287 printf " 1, /* Always initialized. */\n"
1288 printf " NULL, /* The obstack. */\n"
1289 printf " /* basic architecture information */\n"
1290 function_list | while do_read
1291 do
1292 if class_is_info_p
1293 then
1294 printf " ${staticdefault}, /* ${function} */\n"
1295 fi
1296 done
1297 cat <<EOF
1298 /* target specific vector and its dump routine */
1299 NULL, NULL,
1300 /*per-architecture data-pointers and swap regions */
1301 0, NULL, NULL,
1302 /* Multi-arch values */
1303 EOF
1304 function_list | while do_read
1305 do
1306 if class_is_function_p || class_is_variable_p
1307 then
1308 printf " ${staticdefault}, /* ${function} */\n"
1309 fi
1310 done
1311 cat <<EOF
1312 /* startup_gdbarch() */
1313 };
1314
1315 struct gdbarch *current_gdbarch = &startup_gdbarch;
1316 EOF
1317
1318 # Create a new gdbarch struct
1319 cat <<EOF
1320
1321 /* Create a new \`\`struct gdbarch'' based on information provided by
1322 \`\`struct gdbarch_info''. */
1323 EOF
1324 printf "\n"
1325 cat <<EOF
1326 struct gdbarch *
1327 gdbarch_alloc (const struct gdbarch_info *info,
1328 struct gdbarch_tdep *tdep)
1329 {
1330 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1331 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1332 the current local architecture and not the previous global
1333 architecture. This ensures that the new architectures initial
1334 values are not influenced by the previous architecture. Once
1335 everything is parameterised with gdbarch, this will go away. */
1336 struct gdbarch *current_gdbarch;
1337
1338 /* Create an obstack for allocating all the per-architecture memory,
1339 then use that to allocate the architecture vector. */
1340 struct obstack *obstack = XMALLOC (struct obstack);
1341 obstack_init (obstack);
1342 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1343 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1344 current_gdbarch->obstack = obstack;
1345
1346 alloc_gdbarch_data (current_gdbarch);
1347
1348 current_gdbarch->tdep = tdep;
1349 EOF
1350 printf "\n"
1351 function_list | while do_read
1352 do
1353 if class_is_info_p
1354 then
1355 printf " current_gdbarch->${function} = info->${function};\n"
1356 fi
1357 done
1358 printf "\n"
1359 printf " /* Force the explicit initialization of these. */\n"
1360 function_list | while do_read
1361 do
1362 if class_is_function_p || class_is_variable_p
1363 then
1364 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1365 then
1366 printf " current_gdbarch->${function} = ${predefault};\n"
1367 fi
1368 fi
1369 done
1370 cat <<EOF
1371 /* gdbarch_alloc() */
1372
1373 return current_gdbarch;
1374 }
1375 EOF
1376
1377 # Free a gdbarch struct.
1378 printf "\n"
1379 printf "\n"
1380 cat <<EOF
1381 /* Allocate extra space using the per-architecture obstack. */
1382
1383 void *
1384 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1385 {
1386 void *data = obstack_alloc (arch->obstack, size);
1387 memset (data, 0, size);
1388 return data;
1389 }
1390
1391
1392 /* Free a gdbarch struct. This should never happen in normal
1393 operation --- once you've created a gdbarch, you keep it around.
1394 However, if an architecture's init function encounters an error
1395 building the structure, it may need to clean up a partially
1396 constructed gdbarch. */
1397
1398 void
1399 gdbarch_free (struct gdbarch *arch)
1400 {
1401 struct obstack *obstack;
1402 gdb_assert (arch != NULL);
1403 gdb_assert (!arch->initialized_p);
1404 obstack = arch->obstack;
1405 obstack_free (obstack, 0); /* Includes the ARCH. */
1406 xfree (obstack);
1407 }
1408 EOF
1409
1410 # verify a new architecture
1411 cat <<EOF
1412
1413
1414 /* Ensure that all values in a GDBARCH are reasonable. */
1415
1416 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1417 just happens to match the global variable \`\`current_gdbarch''. That
1418 way macros refering to that variable get the local and not the global
1419 version - ulgh. Once everything is parameterised with gdbarch, this
1420 will go away. */
1421
1422 static void
1423 verify_gdbarch (struct gdbarch *current_gdbarch)
1424 {
1425 struct ui_file *log;
1426 struct cleanup *cleanups;
1427 long dummy;
1428 char *buf;
1429 log = mem_fileopen ();
1430 cleanups = make_cleanup_ui_file_delete (log);
1431 /* fundamental */
1432 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1433 fprintf_unfiltered (log, "\n\tbyte-order");
1434 if (current_gdbarch->bfd_arch_info == NULL)
1435 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1436 /* Check those that need to be defined for the given multi-arch level. */
1437 EOF
1438 function_list | while do_read
1439 do
1440 if class_is_function_p || class_is_variable_p
1441 then
1442 if [ "x${invalid_p}" = "x0" ]
1443 then
1444 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1445 elif class_is_predicate_p
1446 then
1447 printf " /* Skip verify of ${function}, has predicate */\n"
1448 # FIXME: See do_read for potential simplification
1449 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1450 then
1451 printf " if (${invalid_p})\n"
1452 printf " current_gdbarch->${function} = ${postdefault};\n"
1453 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1454 then
1455 printf " if (current_gdbarch->${function} == ${predefault})\n"
1456 printf " current_gdbarch->${function} = ${postdefault};\n"
1457 elif [ -n "${postdefault}" ]
1458 then
1459 printf " if (current_gdbarch->${function} == 0)\n"
1460 printf " current_gdbarch->${function} = ${postdefault};\n"
1461 elif [ -n "${invalid_p}" ]
1462 then
1463 printf " if (${invalid_p})\n"
1464 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1465 elif [ -n "${predefault}" ]
1466 then
1467 printf " if (current_gdbarch->${function} == ${predefault})\n"
1468 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1469 fi
1470 fi
1471 done
1472 cat <<EOF
1473 buf = ui_file_xstrdup (log, &dummy);
1474 make_cleanup (xfree, buf);
1475 if (strlen (buf) > 0)
1476 internal_error (__FILE__, __LINE__,
1477 _("verify_gdbarch: the following are invalid ...%s"),
1478 buf);
1479 do_cleanups (cleanups);
1480 }
1481 EOF
1482
1483 # dump the structure
1484 printf "\n"
1485 printf "\n"
1486 cat <<EOF
1487 /* Print out the details of the current architecture. */
1488
1489 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1490 just happens to match the global variable \`\`current_gdbarch''. That
1491 way macros refering to that variable get the local and not the global
1492 version - ulgh. Once everything is parameterised with gdbarch, this
1493 will go away. */
1494
1495 void
1496 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1497 {
1498 const char *gdb_xm_file = "<not-defined>";
1499 const char *gdb_nm_file = "<not-defined>";
1500 const char *gdb_tm_file = "<not-defined>";
1501 #if defined (GDB_XM_FILE)
1502 gdb_xm_file = GDB_XM_FILE;
1503 #endif
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1506 gdb_xm_file);
1507 #if defined (GDB_NM_FILE)
1508 gdb_nm_file = GDB_NM_FILE;
1509 #endif
1510 fprintf_unfiltered (file,
1511 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1512 gdb_nm_file);
1513 #if defined (GDB_TM_FILE)
1514 gdb_tm_file = GDB_TM_FILE;
1515 #endif
1516 fprintf_unfiltered (file,
1517 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1518 gdb_tm_file);
1519 EOF
1520 function_list | sort -t: -k 4 | while do_read
1521 do
1522 # First the predicate
1523 if class_is_predicate_p
1524 then
1525 if test -n "${macro}"
1526 then
1527 printf "#ifdef ${macro}_P\n"
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1530 printf " \"${macro}_P()\",\n"
1531 printf " XSTRING (${macro}_P ()));\n"
1532 printf "#endif\n"
1533 fi
1534 printf " fprintf_unfiltered (file,\n"
1535 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1536 printf " gdbarch_${function}_p (current_gdbarch));\n"
1537 fi
1538 # Print the macro definition.
1539 if test -n "${macro}"
1540 then
1541 printf "#ifdef ${macro}\n"
1542 if class_is_function_p
1543 then
1544 printf " fprintf_unfiltered (file,\n"
1545 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1546 printf " \"${macro}(${actual})\",\n"
1547 printf " XSTRING (${macro} (${actual})));\n"
1548 else
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1551 printf " XSTRING (${macro}));\n"
1552 fi
1553 printf "#endif\n"
1554 fi
1555 # Print the corresponding value.
1556 if class_is_function_p
1557 then
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1560 printf " (long) current_gdbarch->${function});\n"
1561 else
1562 # It is a variable
1563 case "${print}:${returntype}" in
1564 :CORE_ADDR )
1565 fmt="0x%s"
1566 print="paddr_nz (current_gdbarch->${function})"
1567 ;;
1568 :* )
1569 fmt="%s"
1570 print="paddr_d (current_gdbarch->${function})"
1571 ;;
1572 * )
1573 fmt="%s"
1574 ;;
1575 esac
1576 printf " fprintf_unfiltered (file,\n"
1577 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1578 printf " ${print});\n"
1579 fi
1580 done
1581 cat <<EOF
1582 if (current_gdbarch->dump_tdep != NULL)
1583 current_gdbarch->dump_tdep (current_gdbarch, file);
1584 }
1585 EOF
1586
1587
1588 # GET/SET
1589 printf "\n"
1590 cat <<EOF
1591 struct gdbarch_tdep *
1592 gdbarch_tdep (struct gdbarch *gdbarch)
1593 {
1594 if (gdbarch_debug >= 2)
1595 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1596 return gdbarch->tdep;
1597 }
1598 EOF
1599 printf "\n"
1600 function_list | while do_read
1601 do
1602 if class_is_predicate_p
1603 then
1604 printf "\n"
1605 printf "int\n"
1606 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1607 printf "{\n"
1608 printf " gdb_assert (gdbarch != NULL);\n"
1609 printf " return ${predicate};\n"
1610 printf "}\n"
1611 fi
1612 if class_is_function_p
1613 then
1614 printf "\n"
1615 printf "${returntype}\n"
1616 if [ "x${formal}" = "xvoid" ]
1617 then
1618 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1619 else
1620 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1621 fi
1622 printf "{\n"
1623 printf " gdb_assert (gdbarch != NULL);\n"
1624 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1625 if class_is_predicate_p && test -n "${predefault}"
1626 then
1627 # Allow a call to a function with a predicate.
1628 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1629 fi
1630 printf " if (gdbarch_debug >= 2)\n"
1631 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1632 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1633 then
1634 if class_is_multiarch_p
1635 then
1636 params="gdbarch"
1637 else
1638 params=""
1639 fi
1640 else
1641 if class_is_multiarch_p
1642 then
1643 params="gdbarch, ${actual}"
1644 else
1645 params="${actual}"
1646 fi
1647 fi
1648 if [ "x${returntype}" = "xvoid" ]
1649 then
1650 printf " gdbarch->${function} (${params});\n"
1651 else
1652 printf " return gdbarch->${function} (${params});\n"
1653 fi
1654 printf "}\n"
1655 printf "\n"
1656 printf "void\n"
1657 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1658 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1659 printf "{\n"
1660 printf " gdbarch->${function} = ${function};\n"
1661 printf "}\n"
1662 elif class_is_variable_p
1663 then
1664 printf "\n"
1665 printf "${returntype}\n"
1666 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1667 printf "{\n"
1668 printf " gdb_assert (gdbarch != NULL);\n"
1669 if [ "x${invalid_p}" = "x0" ]
1670 then
1671 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1672 elif [ -n "${invalid_p}" ]
1673 then
1674 printf " /* Check variable is valid. */\n"
1675 printf " gdb_assert (!(${invalid_p}));\n"
1676 elif [ -n "${predefault}" ]
1677 then
1678 printf " /* Check variable changed from pre-default. */\n"
1679 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1680 fi
1681 printf " if (gdbarch_debug >= 2)\n"
1682 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1683 printf " return gdbarch->${function};\n"
1684 printf "}\n"
1685 printf "\n"
1686 printf "void\n"
1687 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1688 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1689 printf "{\n"
1690 printf " gdbarch->${function} = ${function};\n"
1691 printf "}\n"
1692 elif class_is_info_p
1693 then
1694 printf "\n"
1695 printf "${returntype}\n"
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1697 printf "{\n"
1698 printf " gdb_assert (gdbarch != NULL);\n"
1699 printf " if (gdbarch_debug >= 2)\n"
1700 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1701 printf " return gdbarch->${function};\n"
1702 printf "}\n"
1703 fi
1704 done
1705
1706 # All the trailing guff
1707 cat <<EOF
1708
1709
1710 /* Keep a registry of per-architecture data-pointers required by GDB
1711 modules. */
1712
1713 struct gdbarch_data
1714 {
1715 unsigned index;
1716 int init_p;
1717 gdbarch_data_pre_init_ftype *pre_init;
1718 gdbarch_data_post_init_ftype *post_init;
1719 };
1720
1721 struct gdbarch_data_registration
1722 {
1723 struct gdbarch_data *data;
1724 struct gdbarch_data_registration *next;
1725 };
1726
1727 struct gdbarch_data_registry
1728 {
1729 unsigned nr;
1730 struct gdbarch_data_registration *registrations;
1731 };
1732
1733 struct gdbarch_data_registry gdbarch_data_registry =
1734 {
1735 0, NULL,
1736 };
1737
1738 static struct gdbarch_data *
1739 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1740 gdbarch_data_post_init_ftype *post_init)
1741 {
1742 struct gdbarch_data_registration **curr;
1743 /* Append the new registraration. */
1744 for (curr = &gdbarch_data_registry.registrations;
1745 (*curr) != NULL;
1746 curr = &(*curr)->next);
1747 (*curr) = XMALLOC (struct gdbarch_data_registration);
1748 (*curr)->next = NULL;
1749 (*curr)->data = XMALLOC (struct gdbarch_data);
1750 (*curr)->data->index = gdbarch_data_registry.nr++;
1751 (*curr)->data->pre_init = pre_init;
1752 (*curr)->data->post_init = post_init;
1753 (*curr)->data->init_p = 1;
1754 return (*curr)->data;
1755 }
1756
1757 struct gdbarch_data *
1758 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1759 {
1760 return gdbarch_data_register (pre_init, NULL);
1761 }
1762
1763 struct gdbarch_data *
1764 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1765 {
1766 return gdbarch_data_register (NULL, post_init);
1767 }
1768
1769 /* Create/delete the gdbarch data vector. */
1770
1771 static void
1772 alloc_gdbarch_data (struct gdbarch *gdbarch)
1773 {
1774 gdb_assert (gdbarch->data == NULL);
1775 gdbarch->nr_data = gdbarch_data_registry.nr;
1776 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1777 }
1778
1779 /* Initialize the current value of the specified per-architecture
1780 data-pointer. */
1781
1782 void
1783 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1784 struct gdbarch_data *data,
1785 void *pointer)
1786 {
1787 gdb_assert (data->index < gdbarch->nr_data);
1788 gdb_assert (gdbarch->data[data->index] == NULL);
1789 gdb_assert (data->pre_init == NULL);
1790 gdbarch->data[data->index] = pointer;
1791 }
1792
1793 /* Return the current value of the specified per-architecture
1794 data-pointer. */
1795
1796 void *
1797 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1798 {
1799 gdb_assert (data->index < gdbarch->nr_data);
1800 if (gdbarch->data[data->index] == NULL)
1801 {
1802 /* The data-pointer isn't initialized, call init() to get a
1803 value. */
1804 if (data->pre_init != NULL)
1805 /* Mid architecture creation: pass just the obstack, and not
1806 the entire architecture, as that way it isn't possible for
1807 pre-init code to refer to undefined architecture
1808 fields. */
1809 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1810 else if (gdbarch->initialized_p
1811 && data->post_init != NULL)
1812 /* Post architecture creation: pass the entire architecture
1813 (as all fields are valid), but be careful to also detect
1814 recursive references. */
1815 {
1816 gdb_assert (data->init_p);
1817 data->init_p = 0;
1818 gdbarch->data[data->index] = data->post_init (gdbarch);
1819 data->init_p = 1;
1820 }
1821 else
1822 /* The architecture initialization hasn't completed - punt -
1823 hope that the caller knows what they are doing. Once
1824 deprecated_set_gdbarch_data has been initialized, this can be
1825 changed to an internal error. */
1826 return NULL;
1827 gdb_assert (gdbarch->data[data->index] != NULL);
1828 }
1829 return gdbarch->data[data->index];
1830 }
1831
1832
1833
1834 /* Keep a registry of swapped data required by GDB modules. */
1835
1836 struct gdbarch_swap
1837 {
1838 void *swap;
1839 struct gdbarch_swap_registration *source;
1840 struct gdbarch_swap *next;
1841 };
1842
1843 struct gdbarch_swap_registration
1844 {
1845 void *data;
1846 unsigned long sizeof_data;
1847 gdbarch_swap_ftype *init;
1848 struct gdbarch_swap_registration *next;
1849 };
1850
1851 struct gdbarch_swap_registry
1852 {
1853 int nr;
1854 struct gdbarch_swap_registration *registrations;
1855 };
1856
1857 struct gdbarch_swap_registry gdbarch_swap_registry =
1858 {
1859 0, NULL,
1860 };
1861
1862 void
1863 deprecated_register_gdbarch_swap (void *data,
1864 unsigned long sizeof_data,
1865 gdbarch_swap_ftype *init)
1866 {
1867 struct gdbarch_swap_registration **rego;
1868 for (rego = &gdbarch_swap_registry.registrations;
1869 (*rego) != NULL;
1870 rego = &(*rego)->next);
1871 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1872 (*rego)->next = NULL;
1873 (*rego)->init = init;
1874 (*rego)->data = data;
1875 (*rego)->sizeof_data = sizeof_data;
1876 }
1877
1878 static void
1879 current_gdbarch_swap_init_hack (void)
1880 {
1881 struct gdbarch_swap_registration *rego;
1882 struct gdbarch_swap **curr = &current_gdbarch->swap;
1883 for (rego = gdbarch_swap_registry.registrations;
1884 rego != NULL;
1885 rego = rego->next)
1886 {
1887 if (rego->data != NULL)
1888 {
1889 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1890 struct gdbarch_swap);
1891 (*curr)->source = rego;
1892 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1893 rego->sizeof_data);
1894 (*curr)->next = NULL;
1895 curr = &(*curr)->next;
1896 }
1897 if (rego->init != NULL)
1898 rego->init ();
1899 }
1900 }
1901
1902 static struct gdbarch *
1903 current_gdbarch_swap_out_hack (void)
1904 {
1905 struct gdbarch *old_gdbarch = current_gdbarch;
1906 struct gdbarch_swap *curr;
1907
1908 gdb_assert (old_gdbarch != NULL);
1909 for (curr = old_gdbarch->swap;
1910 curr != NULL;
1911 curr = curr->next)
1912 {
1913 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1914 memset (curr->source->data, 0, curr->source->sizeof_data);
1915 }
1916 current_gdbarch = NULL;
1917 return old_gdbarch;
1918 }
1919
1920 static void
1921 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1922 {
1923 struct gdbarch_swap *curr;
1924
1925 gdb_assert (current_gdbarch == NULL);
1926 for (curr = new_gdbarch->swap;
1927 curr != NULL;
1928 curr = curr->next)
1929 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1930 current_gdbarch = new_gdbarch;
1931 }
1932
1933
1934 /* Keep a registry of the architectures known by GDB. */
1935
1936 struct gdbarch_registration
1937 {
1938 enum bfd_architecture bfd_architecture;
1939 gdbarch_init_ftype *init;
1940 gdbarch_dump_tdep_ftype *dump_tdep;
1941 struct gdbarch_list *arches;
1942 struct gdbarch_registration *next;
1943 };
1944
1945 static struct gdbarch_registration *gdbarch_registry = NULL;
1946
1947 static void
1948 append_name (const char ***buf, int *nr, const char *name)
1949 {
1950 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1951 (*buf)[*nr] = name;
1952 *nr += 1;
1953 }
1954
1955 const char **
1956 gdbarch_printable_names (void)
1957 {
1958 /* Accumulate a list of names based on the registed list of
1959 architectures. */
1960 enum bfd_architecture a;
1961 int nr_arches = 0;
1962 const char **arches = NULL;
1963 struct gdbarch_registration *rego;
1964 for (rego = gdbarch_registry;
1965 rego != NULL;
1966 rego = rego->next)
1967 {
1968 const struct bfd_arch_info *ap;
1969 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1970 if (ap == NULL)
1971 internal_error (__FILE__, __LINE__,
1972 _("gdbarch_architecture_names: multi-arch unknown"));
1973 do
1974 {
1975 append_name (&arches, &nr_arches, ap->printable_name);
1976 ap = ap->next;
1977 }
1978 while (ap != NULL);
1979 }
1980 append_name (&arches, &nr_arches, NULL);
1981 return arches;
1982 }
1983
1984
1985 void
1986 gdbarch_register (enum bfd_architecture bfd_architecture,
1987 gdbarch_init_ftype *init,
1988 gdbarch_dump_tdep_ftype *dump_tdep)
1989 {
1990 struct gdbarch_registration **curr;
1991 const struct bfd_arch_info *bfd_arch_info;
1992 /* Check that BFD recognizes this architecture */
1993 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1994 if (bfd_arch_info == NULL)
1995 {
1996 internal_error (__FILE__, __LINE__,
1997 _("gdbarch: Attempt to register unknown architecture (%d)"),
1998 bfd_architecture);
1999 }
2000 /* Check that we haven't seen this architecture before */
2001 for (curr = &gdbarch_registry;
2002 (*curr) != NULL;
2003 curr = &(*curr)->next)
2004 {
2005 if (bfd_architecture == (*curr)->bfd_architecture)
2006 internal_error (__FILE__, __LINE__,
2007 _("gdbarch: Duplicate registraration of architecture (%s)"),
2008 bfd_arch_info->printable_name);
2009 }
2010 /* log it */
2011 if (gdbarch_debug)
2012 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2013 bfd_arch_info->printable_name,
2014 (long) init);
2015 /* Append it */
2016 (*curr) = XMALLOC (struct gdbarch_registration);
2017 (*curr)->bfd_architecture = bfd_architecture;
2018 (*curr)->init = init;
2019 (*curr)->dump_tdep = dump_tdep;
2020 (*curr)->arches = NULL;
2021 (*curr)->next = NULL;
2022 }
2023
2024 void
2025 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2026 gdbarch_init_ftype *init)
2027 {
2028 gdbarch_register (bfd_architecture, init, NULL);
2029 }
2030
2031
2032 /* Look for an architecture using gdbarch_info. */
2033
2034 struct gdbarch_list *
2035 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2036 const struct gdbarch_info *info)
2037 {
2038 for (; arches != NULL; arches = arches->next)
2039 {
2040 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2041 continue;
2042 if (info->byte_order != arches->gdbarch->byte_order)
2043 continue;
2044 if (info->osabi != arches->gdbarch->osabi)
2045 continue;
2046 if (info->target_desc != arches->gdbarch->target_desc)
2047 continue;
2048 return arches;
2049 }
2050 return NULL;
2051 }
2052
2053
2054 /* Find an architecture that matches the specified INFO. Create a new
2055 architecture if needed. Return that new architecture. Assumes
2056 that there is no current architecture. */
2057
2058 static struct gdbarch *
2059 find_arch_by_info (struct gdbarch_info info)
2060 {
2061 struct gdbarch *new_gdbarch;
2062 struct gdbarch_registration *rego;
2063
2064 /* The existing architecture has been swapped out - all this code
2065 works from a clean slate. */
2066 gdb_assert (current_gdbarch == NULL);
2067
2068 /* Fill in missing parts of the INFO struct using a number of
2069 sources: "set ..."; INFOabfd supplied; and the global
2070 defaults. */
2071 gdbarch_info_fill (&info);
2072
2073 /* Must have found some sort of architecture. */
2074 gdb_assert (info.bfd_arch_info != NULL);
2075
2076 if (gdbarch_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "find_arch_by_info: info.bfd_arch_info %s\n",
2080 (info.bfd_arch_info != NULL
2081 ? info.bfd_arch_info->printable_name
2082 : "(null)"));
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.byte_order %d (%s)\n",
2085 info.byte_order,
2086 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2087 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2088 : "default"));
2089 fprintf_unfiltered (gdb_stdlog,
2090 "find_arch_by_info: info.osabi %d (%s)\n",
2091 info.osabi, gdbarch_osabi_name (info.osabi));
2092 fprintf_unfiltered (gdb_stdlog,
2093 "find_arch_by_info: info.abfd 0x%lx\n",
2094 (long) info.abfd);
2095 fprintf_unfiltered (gdb_stdlog,
2096 "find_arch_by_info: info.tdep_info 0x%lx\n",
2097 (long) info.tdep_info);
2098 }
2099
2100 /* Find the tdep code that knows about this architecture. */
2101 for (rego = gdbarch_registry;
2102 rego != NULL;
2103 rego = rego->next)
2104 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2105 break;
2106 if (rego == NULL)
2107 {
2108 if (gdbarch_debug)
2109 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2110 "No matching architecture\n");
2111 return 0;
2112 }
2113
2114 /* Ask the tdep code for an architecture that matches "info". */
2115 new_gdbarch = rego->init (info, rego->arches);
2116
2117 /* Did the tdep code like it? No. Reject the change and revert to
2118 the old architecture. */
2119 if (new_gdbarch == NULL)
2120 {
2121 if (gdbarch_debug)
2122 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2123 "Target rejected architecture\n");
2124 return NULL;
2125 }
2126
2127 /* Is this a pre-existing architecture (as determined by already
2128 being initialized)? Move it to the front of the architecture
2129 list (keeping the list sorted Most Recently Used). */
2130 if (new_gdbarch->initialized_p)
2131 {
2132 struct gdbarch_list **list;
2133 struct gdbarch_list *this;
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2136 "Previous architecture 0x%08lx (%s) selected\n",
2137 (long) new_gdbarch,
2138 new_gdbarch->bfd_arch_info->printable_name);
2139 /* Find the existing arch in the list. */
2140 for (list = &rego->arches;
2141 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2142 list = &(*list)->next);
2143 /* It had better be in the list of architectures. */
2144 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2145 /* Unlink THIS. */
2146 this = (*list);
2147 (*list) = this->next;
2148 /* Insert THIS at the front. */
2149 this->next = rego->arches;
2150 rego->arches = this;
2151 /* Return it. */
2152 return new_gdbarch;
2153 }
2154
2155 /* It's a new architecture. */
2156 if (gdbarch_debug)
2157 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2158 "New architecture 0x%08lx (%s) selected\n",
2159 (long) new_gdbarch,
2160 new_gdbarch->bfd_arch_info->printable_name);
2161
2162 /* Insert the new architecture into the front of the architecture
2163 list (keep the list sorted Most Recently Used). */
2164 {
2165 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2166 this->next = rego->arches;
2167 this->gdbarch = new_gdbarch;
2168 rego->arches = this;
2169 }
2170
2171 /* Check that the newly installed architecture is valid. Plug in
2172 any post init values. */
2173 new_gdbarch->dump_tdep = rego->dump_tdep;
2174 verify_gdbarch (new_gdbarch);
2175 new_gdbarch->initialized_p = 1;
2176
2177 /* Initialize any per-architecture swap areas. This phase requires
2178 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2179 swap the entire architecture out. */
2180 current_gdbarch = new_gdbarch;
2181 current_gdbarch_swap_init_hack ();
2182 current_gdbarch_swap_out_hack ();
2183
2184 if (gdbarch_debug)
2185 gdbarch_dump (new_gdbarch, gdb_stdlog);
2186
2187 return new_gdbarch;
2188 }
2189
2190 struct gdbarch *
2191 gdbarch_find_by_info (struct gdbarch_info info)
2192 {
2193 /* Save the previously selected architecture, setting the global to
2194 NULL. This stops things like gdbarch->init() trying to use the
2195 previous architecture's configuration. The previous architecture
2196 may not even be of the same architecture family. The most recent
2197 architecture of the same family is found at the head of the
2198 rego->arches list. */
2199 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2200
2201 /* Find the specified architecture. */
2202 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2203
2204 /* Restore the existing architecture. */
2205 gdb_assert (current_gdbarch == NULL);
2206 current_gdbarch_swap_in_hack (old_gdbarch);
2207
2208 return new_gdbarch;
2209 }
2210
2211 /* Make the specified architecture current, swapping the existing one
2212 out. */
2213
2214 void
2215 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2216 {
2217 gdb_assert (new_gdbarch != NULL);
2218 gdb_assert (current_gdbarch != NULL);
2219 gdb_assert (new_gdbarch->initialized_p);
2220 current_gdbarch_swap_out_hack ();
2221 current_gdbarch_swap_in_hack (new_gdbarch);
2222 architecture_changed_event ();
2223 flush_cached_frames ();
2224 }
2225
2226 extern void _initialize_gdbarch (void);
2227
2228 void
2229 _initialize_gdbarch (void)
2230 {
2231 struct cmd_list_element *c;
2232
2233 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2234 Set architecture debugging."), _("\\
2235 Show architecture debugging."), _("\\
2236 When non-zero, architecture debugging is enabled."),
2237 NULL,
2238 show_gdbarch_debug,
2239 &setdebuglist, &showdebuglist);
2240 }
2241 EOF
2242
2243 # close things off
2244 exec 1>&2
2245 #../move-if-change new-gdbarch.c gdbarch.c
2246 compare_new gdbarch.c
This page took 0.081524 seconds and 4 git commands to generate.