Obsolete stuff.c and kdb-start.c.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 v:2:NUM_REGS:int:num_regs::::0:-1
387 # This macro gives the number of pseudo-registers that live in the
388 # register namespace but do not get fetched or stored on the target.
389 # These pseudo-registers may be aliases for other registers,
390 # combinations of other registers, or they may be computed by GDB.
391 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
392 v:2:SP_REGNUM:int:sp_regnum::::0:-1
393 v:2:FP_REGNUM:int:fp_regnum::::0:-1
394 v:2:PC_REGNUM:int:pc_regnum::::0:-1
395 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
396 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
397 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
398 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
399 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
400 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
401 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
402 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
403 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
404 # Convert from an sdb register number to an internal gdb register number.
405 # This should be defined in tm.h, if REGISTER_NAMES is not set up
406 # to map one to one onto the sdb register numbers.
407 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
408 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
409 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
410 v:2:REGISTER_SIZE:int:register_size::::0:-1
411 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
412 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
413 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
414 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
415 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
416 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
417 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
418 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
419 # MAP a GDB RAW register number onto a simulator register number. See
420 # also include/...-sim.h.
421 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
422 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
423 #
424 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
425 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
426 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
427 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
428 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
429 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
430 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
431 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
432 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
433 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
434 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
435 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
436 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
437 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
438 #
439 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
440 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
441 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
442 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
443 #
444 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
445 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
446 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
447 # This function is called when the value of a pseudo-register needs to
448 # be updated. Typically it will be defined on a per-architecture
449 # basis.
450 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
451 # This function is called when the value of a pseudo-register needs to
452 # be set or stored. Typically it will be defined on a
453 # per-architecture basis.
454 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
455 #
456 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
457 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
458 #
459 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
460 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
461 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
462 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
463 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
464 f:2:POP_FRAME:void:pop_frame:void:-:::0
465 #
466 # I wish that these would just go away....
467 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
468 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
469 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
470 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
471 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
472 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
473 #
474 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
475 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
476 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
477 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
478 #
479 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
480 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
481 #
482 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
483 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
484 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
485 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
486 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
487 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
488 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
489 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
490 #
491 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
492 #
493 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
494 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
495 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
496 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
497 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
498 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
499 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
500 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
501 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
502 #
503 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
504 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
505 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
506 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
507 v:2:PARM_BOUNDARY:int:parm_boundary
508 #
509 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
510 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
511 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
512 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
513 EOF
514 }
515
516 #
517 # The .log file
518 #
519 exec > new-gdbarch.log
520 function_list | while do_read
521 do
522 cat <<EOF
523 ${class} ${macro}(${actual})
524 ${returntype} ${function} ($formal)${attrib}
525 EOF
526 for r in ${read}
527 do
528 eval echo \"\ \ \ \ ${r}=\${${r}}\"
529 done
530 # #fallbackdefault=${fallbackdefault}
531 # #valid_p=${valid_p}
532 #EOF
533 if class_is_predicate_p && fallback_default_p
534 then
535 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
536 kill $$
537 exit 1
538 fi
539 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
540 then
541 echo "Error: postdefault is useless when invalid_p=0" 1>&2
542 kill $$
543 exit 1
544 fi
545 echo ""
546 done
547
548 exec 1>&2
549 compare_new gdbarch.log
550
551
552 copyright ()
553 {
554 cat <<EOF
555 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
556
557 /* Dynamic architecture support for GDB, the GNU debugger.
558 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
559
560 This file is part of GDB.
561
562 This program is free software; you can redistribute it and/or modify
563 it under the terms of the GNU General Public License as published by
564 the Free Software Foundation; either version 2 of the License, or
565 (at your option) any later version.
566
567 This program is distributed in the hope that it will be useful,
568 but WITHOUT ANY WARRANTY; without even the implied warranty of
569 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
570 GNU General Public License for more details.
571
572 You should have received a copy of the GNU General Public License
573 along with this program; if not, write to the Free Software
574 Foundation, Inc., 59 Temple Place - Suite 330,
575 Boston, MA 02111-1307, USA. */
576
577 /* This file was created with the aid of \`\`gdbarch.sh''.
578
579 The Bourne shell script \`\`gdbarch.sh'' creates the files
580 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
581 against the existing \`\`gdbarch.[hc]''. Any differences found
582 being reported.
583
584 If editing this file, please also run gdbarch.sh and merge any
585 changes into that script. Conversely, when making sweeping changes
586 to this file, modifying gdbarch.sh and using its output may prove
587 easier. */
588
589 EOF
590 }
591
592 #
593 # The .h file
594 #
595
596 exec > new-gdbarch.h
597 copyright
598 cat <<EOF
599 #ifndef GDBARCH_H
600 #define GDBARCH_H
601
602 struct frame_info;
603 struct value;
604
605
606 extern struct gdbarch *current_gdbarch;
607
608
609 /* If any of the following are defined, the target wasn't correctly
610 converted. */
611
612 #if GDB_MULTI_ARCH
613 #if defined (EXTRA_FRAME_INFO)
614 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
615 #endif
616 #endif
617
618 #if GDB_MULTI_ARCH
619 #if defined (FRAME_FIND_SAVED_REGS)
620 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
621 #endif
622 #endif
623 EOF
624
625 # function typedef's
626 printf "\n"
627 printf "\n"
628 printf "/* The following are pre-initialized by GDBARCH. */\n"
629 function_list | while do_read
630 do
631 if class_is_info_p
632 then
633 printf "\n"
634 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
635 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
636 printf "#if GDB_MULTI_ARCH\n"
637 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
638 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
639 printf "#endif\n"
640 printf "#endif\n"
641 fi
642 done
643
644 # function typedef's
645 printf "\n"
646 printf "\n"
647 printf "/* The following are initialized by the target dependent code. */\n"
648 function_list | while do_read
649 do
650 if [ "${comment}" ]
651 then
652 echo "${comment}" | sed \
653 -e '2 s,#,/*,' \
654 -e '3,$ s,#, ,' \
655 -e '$ s,$, */,'
656 fi
657 if class_is_multiarch_p
658 then
659 if class_is_predicate_p
660 then
661 printf "\n"
662 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
663 fi
664 else
665 if class_is_predicate_p
666 then
667 printf "\n"
668 printf "#if defined (${macro})\n"
669 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
670 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
671 printf "#if !defined (${macro}_P)\n"
672 printf "#define ${macro}_P() (1)\n"
673 printf "#endif\n"
674 printf "#endif\n"
675 printf "\n"
676 printf "/* Default predicate for non- multi-arch targets. */\n"
677 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
678 printf "#define ${macro}_P() (0)\n"
679 printf "#endif\n"
680 printf "\n"
681 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
682 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
683 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
684 printf "#endif\n"
685 fi
686 fi
687 if class_is_variable_p
688 then
689 if fallback_default_p || class_is_predicate_p
690 then
691 printf "\n"
692 printf "/* Default (value) for non- multi-arch platforms. */\n"
693 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
694 echo "#define ${macro} (${fallbackdefault})" \
695 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
696 printf "#endif\n"
697 fi
698 printf "\n"
699 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
700 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
701 printf "#if GDB_MULTI_ARCH\n"
702 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
703 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
704 printf "#endif\n"
705 printf "#endif\n"
706 fi
707 if class_is_function_p
708 then
709 if class_is_multiarch_p ; then :
710 elif fallback_default_p || class_is_predicate_p
711 then
712 printf "\n"
713 printf "/* Default (function) for non- multi-arch platforms. */\n"
714 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
715 if [ "${fallbackdefault}" = "0" ]
716 then
717 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
718 else
719 # FIXME: Should be passing current_gdbarch through!
720 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
721 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
722 fi
723 printf "#endif\n"
724 fi
725 printf "\n"
726 if [ "${formal}" = "void" ] && class_is_multiarch_p
727 then
728 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
729 elif class_is_multiarch_p
730 then
731 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
732 else
733 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
734 fi
735 if [ "${formal}" = "void" ]
736 then
737 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
738 else
739 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
740 fi
741 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
742 if class_is_multiarch_p ; then :
743 else
744 printf "#if GDB_MULTI_ARCH\n"
745 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
746 if [ "${actual}" = "" ]
747 then
748 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
749 elif [ "${actual}" = "-" ]
750 then
751 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
752 else
753 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
754 fi
755 printf "#endif\n"
756 printf "#endif\n"
757 fi
758 fi
759 done
760
761 # close it off
762 cat <<EOF
763
764 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
765
766
767 /* Mechanism for co-ordinating the selection of a specific
768 architecture.
769
770 GDB targets (*-tdep.c) can register an interest in a specific
771 architecture. Other GDB components can register a need to maintain
772 per-architecture data.
773
774 The mechanisms below ensures that there is only a loose connection
775 between the set-architecture command and the various GDB
776 components. Each component can independently register their need
777 to maintain architecture specific data with gdbarch.
778
779 Pragmatics:
780
781 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
782 didn't scale.
783
784 The more traditional mega-struct containing architecture specific
785 data for all the various GDB components was also considered. Since
786 GDB is built from a variable number of (fairly independent)
787 components it was determined that the global aproach was not
788 applicable. */
789
790
791 /* Register a new architectural family with GDB.
792
793 Register support for the specified ARCHITECTURE with GDB. When
794 gdbarch determines that the specified architecture has been
795 selected, the corresponding INIT function is called.
796
797 --
798
799 The INIT function takes two parameters: INFO which contains the
800 information available to gdbarch about the (possibly new)
801 architecture; ARCHES which is a list of the previously created
802 \`\`struct gdbarch'' for this architecture.
803
804 The INIT function parameter INFO shall, as far as possible, be
805 pre-initialized with information obtained from INFO.ABFD or
806 previously selected architecture (if similar). INIT shall ensure
807 that the INFO.BYTE_ORDER is non-zero.
808
809 The INIT function shall return any of: NULL - indicating that it
810 doesn't recognize the selected architecture; an existing \`\`struct
811 gdbarch'' from the ARCHES list - indicating that the new
812 architecture is just a synonym for an earlier architecture (see
813 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
814 - that describes the selected architecture (see gdbarch_alloc()).
815
816 The DUMP_TDEP function shall print out all target specific values.
817 Care should be taken to ensure that the function works in both the
818 multi-arch and non- multi-arch cases. */
819
820 struct gdbarch_list
821 {
822 struct gdbarch *gdbarch;
823 struct gdbarch_list *next;
824 };
825
826 struct gdbarch_info
827 {
828 /* Use default: bfd_arch_unknown (ZERO). */
829 enum bfd_architecture bfd_architecture;
830
831 /* Use default: NULL (ZERO). */
832 const struct bfd_arch_info *bfd_arch_info;
833
834 /* Use default: 0 (ZERO). */
835 int byte_order;
836
837 /* Use default: NULL (ZERO). */
838 bfd *abfd;
839
840 /* Use default: NULL (ZERO). */
841 struct gdbarch_tdep_info *tdep_info;
842 };
843
844 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
845 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
846
847 /* DEPRECATED - use gdbarch_register() */
848 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
849
850 extern void gdbarch_register (enum bfd_architecture architecture,
851 gdbarch_init_ftype *,
852 gdbarch_dump_tdep_ftype *);
853
854
855 /* Return a freshly allocated, NULL terminated, array of the valid
856 architecture names. Since architectures are registered during the
857 _initialize phase this function only returns useful information
858 once initialization has been completed. */
859
860 extern const char **gdbarch_printable_names (void);
861
862
863 /* Helper function. Search the list of ARCHES for a GDBARCH that
864 matches the information provided by INFO. */
865
866 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
867
868
869 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
870 basic initialization using values obtained from the INFO andTDEP
871 parameters. set_gdbarch_*() functions are called to complete the
872 initialization of the object. */
873
874 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
875
876
877 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
878 It is assumed that the caller freeds the \`\`struct
879 gdbarch_tdep''. */
880
881 extern void gdbarch_free (struct gdbarch *);
882
883
884 /* Helper function. Force an update of the current architecture. Used
885 by legacy targets that have added their own target specific
886 architecture manipulation commands.
887
888 The INFO parameter shall be fully initialized (\`\`memset (&INFO,
889 sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
890 is called. gdbarch_update_p() shall initialize any \`\`default''
891 fields using information obtained from the previous architecture or
892 INFO.ABFD (if specified) before calling the corresponding
893 architectures INIT function.
894
895 Returns non-zero if the update succeeds */
896
897 extern int gdbarch_update_p (struct gdbarch_info info);
898
899
900
901 /* Register per-architecture data-pointer.
902
903 Reserve space for a per-architecture data-pointer. An identifier
904 for the reserved data-pointer is returned. That identifer should
905 be saved in a local static variable.
906
907 The per-architecture data-pointer can be initialized in one of two
908 ways: The value can be set explicitly using a call to
909 set_gdbarch_data(); the value can be set implicitly using the value
910 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
911 called after the basic architecture vector has been created.
912
913 When a previously created architecture is re-selected, the
914 per-architecture data-pointer for that previous architecture is
915 restored. INIT() is not called.
916
917 During initialization, multiple assignments of the data-pointer are
918 allowed, non-NULL values are deleted by calling FREE(). If the
919 architecture is deleted using gdbarch_free() all non-NULL data
920 pointers are also deleted using FREE().
921
922 Multiple registrarants for any architecture are allowed (and
923 strongly encouraged). */
924
925 struct gdbarch_data;
926
927 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
928 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
929 void *pointer);
930 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
931 gdbarch_data_free_ftype *free);
932 extern void set_gdbarch_data (struct gdbarch *gdbarch,
933 struct gdbarch_data *data,
934 void *pointer);
935
936 extern void *gdbarch_data (struct gdbarch_data*);
937
938
939 /* Register per-architecture memory region.
940
941 Provide a memory-region swap mechanism. Per-architecture memory
942 region are created. These memory regions are swapped whenever the
943 architecture is changed. For a new architecture, the memory region
944 is initialized with zero (0) and the INIT function is called.
945
946 Memory regions are swapped / initialized in the order that they are
947 registered. NULL DATA and/or INIT values can be specified.
948
949 New code should use register_gdbarch_data(). */
950
951 typedef void (gdbarch_swap_ftype) (void);
952 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
953 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
954
955
956
957 /* The target-system-dependent byte order is dynamic */
958
959 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
960 is selectable at runtime. The user can use the \`\`set endian''
961 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
962 target_byte_order should be auto-detected (from the program image
963 say). */
964
965 #if GDB_MULTI_ARCH
966 /* Multi-arch GDB is always bi-endian. */
967 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
968 #endif
969
970 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
971 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
972 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
973 #ifdef TARGET_BYTE_ORDER_SELECTABLE
974 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
975 #else
976 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
977 #endif
978 #endif
979
980 extern int target_byte_order;
981 #ifdef TARGET_BYTE_ORDER_SELECTABLE
982 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
983 and expect defs.h to re-define TARGET_BYTE_ORDER. */
984 #undef TARGET_BYTE_ORDER
985 #endif
986 #ifndef TARGET_BYTE_ORDER
987 #define TARGET_BYTE_ORDER (target_byte_order + 0)
988 #endif
989
990 extern int target_byte_order_auto;
991 #ifndef TARGET_BYTE_ORDER_AUTO
992 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
993 #endif
994
995
996
997 /* The target-system-dependent BFD architecture is dynamic */
998
999 extern int target_architecture_auto;
1000 #ifndef TARGET_ARCHITECTURE_AUTO
1001 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1002 #endif
1003
1004 extern const struct bfd_arch_info *target_architecture;
1005 #ifndef TARGET_ARCHITECTURE
1006 #define TARGET_ARCHITECTURE (target_architecture + 0)
1007 #endif
1008
1009
1010 /* The target-system-dependent disassembler is semi-dynamic */
1011
1012 #include "dis-asm.h" /* Get defs for disassemble_info */
1013
1014 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1015 unsigned int len, disassemble_info *info);
1016
1017 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1018 disassemble_info *info);
1019
1020 extern void dis_asm_print_address (bfd_vma addr,
1021 disassemble_info *info);
1022
1023 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1024 extern disassemble_info tm_print_insn_info;
1025 #ifndef TARGET_PRINT_INSN
1026 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1027 #endif
1028 #ifndef TARGET_PRINT_INSN_INFO
1029 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1030 #endif
1031
1032
1033
1034 /* Explicit test for D10V architecture.
1035 USE of these macro's is *STRONGLY* discouraged. */
1036
1037 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1038
1039
1040 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1041 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1042 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1043 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1044 #else
1045 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1046 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1047 #endif
1048 #endif
1049
1050
1051 /* Set the dynamic target-system-dependent parameters (architecture,
1052 byte-order, ...) using information found in the BFD */
1053
1054 extern void set_gdbarch_from_file (bfd *);
1055
1056
1057 /* Initialize the current architecture to the "first" one we find on
1058 our list. */
1059
1060 extern void initialize_current_architecture (void);
1061
1062
1063 /* gdbarch trace variable */
1064 extern int gdbarch_debug;
1065
1066 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1067
1068 #endif
1069 EOF
1070 exec 1>&2
1071 #../move-if-change new-gdbarch.h gdbarch.h
1072 compare_new gdbarch.h
1073
1074
1075 #
1076 # C file
1077 #
1078
1079 exec > new-gdbarch.c
1080 copyright
1081 cat <<EOF
1082
1083 #include "defs.h"
1084 #include "arch-utils.h"
1085
1086 #if GDB_MULTI_ARCH
1087 #include "gdbcmd.h"
1088 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1089 #else
1090 /* Just include everything in sight so that the every old definition
1091 of macro is visible. */
1092 #include "gdb_string.h"
1093 #include <ctype.h>
1094 #include "symtab.h"
1095 #include "frame.h"
1096 #include "inferior.h"
1097 #include "breakpoint.h"
1098 #include "gdb_wait.h"
1099 #include "gdbcore.h"
1100 #include "gdbcmd.h"
1101 #include "target.h"
1102 #include "gdbthread.h"
1103 #include "annotate.h"
1104 #include "symfile.h" /* for overlay functions */
1105 #endif
1106 #include "symcat.h"
1107
1108 #include "floatformat.h"
1109
1110 #include "gdb_assert.h"
1111
1112 /* Static function declarations */
1113
1114 static void verify_gdbarch (struct gdbarch *gdbarch);
1115 static void alloc_gdbarch_data (struct gdbarch *);
1116 static void init_gdbarch_data (struct gdbarch *);
1117 static void free_gdbarch_data (struct gdbarch *);
1118 static void init_gdbarch_swap (struct gdbarch *);
1119 static void swapout_gdbarch_swap (struct gdbarch *);
1120 static void swapin_gdbarch_swap (struct gdbarch *);
1121
1122 /* Convenience macro for allocting typesafe memory. */
1123
1124 #ifndef XMALLOC
1125 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1126 #endif
1127
1128
1129 /* Non-zero if we want to trace architecture code. */
1130
1131 #ifndef GDBARCH_DEBUG
1132 #define GDBARCH_DEBUG 0
1133 #endif
1134 int gdbarch_debug = GDBARCH_DEBUG;
1135
1136 EOF
1137
1138 # gdbarch open the gdbarch object
1139 printf "\n"
1140 printf "/* Maintain the struct gdbarch object */\n"
1141 printf "\n"
1142 printf "struct gdbarch\n"
1143 printf "{\n"
1144 printf " /* basic architectural information */\n"
1145 function_list | while do_read
1146 do
1147 if class_is_info_p
1148 then
1149 printf " ${returntype} ${function};\n"
1150 fi
1151 done
1152 printf "\n"
1153 printf " /* target specific vector. */\n"
1154 printf " struct gdbarch_tdep *tdep;\n"
1155 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1156 printf "\n"
1157 printf " /* per-architecture data-pointers */\n"
1158 printf " unsigned nr_data;\n"
1159 printf " void **data;\n"
1160 printf "\n"
1161 printf " /* per-architecture swap-regions */\n"
1162 printf " struct gdbarch_swap *swap;\n"
1163 printf "\n"
1164 cat <<EOF
1165 /* Multi-arch values.
1166
1167 When extending this structure you must:
1168
1169 Add the field below.
1170
1171 Declare set/get functions and define the corresponding
1172 macro in gdbarch.h.
1173
1174 gdbarch_alloc(): If zero/NULL is not a suitable default,
1175 initialize the new field.
1176
1177 verify_gdbarch(): Confirm that the target updated the field
1178 correctly.
1179
1180 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1181 field is dumped out
1182
1183 \`\`startup_gdbarch()'': Append an initial value to the static
1184 variable (base values on the host's c-type system).
1185
1186 get_gdbarch(): Implement the set/get functions (probably using
1187 the macro's as shortcuts).
1188
1189 */
1190
1191 EOF
1192 function_list | while do_read
1193 do
1194 if class_is_variable_p
1195 then
1196 printf " ${returntype} ${function};\n"
1197 elif class_is_function_p
1198 then
1199 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1200 fi
1201 done
1202 printf "};\n"
1203
1204 # A pre-initialized vector
1205 printf "\n"
1206 printf "\n"
1207 cat <<EOF
1208 /* The default architecture uses host values (for want of a better
1209 choice). */
1210 EOF
1211 printf "\n"
1212 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1213 printf "\n"
1214 printf "struct gdbarch startup_gdbarch =\n"
1215 printf "{\n"
1216 printf " /* basic architecture information */\n"
1217 function_list | while do_read
1218 do
1219 if class_is_info_p
1220 then
1221 printf " ${staticdefault},\n"
1222 fi
1223 done
1224 cat <<EOF
1225 /* target specific vector and its dump routine */
1226 NULL, NULL,
1227 /*per-architecture data-pointers and swap regions */
1228 0, NULL, NULL,
1229 /* Multi-arch values */
1230 EOF
1231 function_list | while do_read
1232 do
1233 if class_is_function_p || class_is_variable_p
1234 then
1235 printf " ${staticdefault},\n"
1236 fi
1237 done
1238 cat <<EOF
1239 /* startup_gdbarch() */
1240 };
1241
1242 struct gdbarch *current_gdbarch = &startup_gdbarch;
1243 EOF
1244
1245 # Create a new gdbarch struct
1246 printf "\n"
1247 printf "\n"
1248 cat <<EOF
1249 /* Create a new \`\`struct gdbarch'' based on information provided by
1250 \`\`struct gdbarch_info''. */
1251 EOF
1252 printf "\n"
1253 cat <<EOF
1254 struct gdbarch *
1255 gdbarch_alloc (const struct gdbarch_info *info,
1256 struct gdbarch_tdep *tdep)
1257 {
1258 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1259 memset (gdbarch, 0, sizeof (*gdbarch));
1260
1261 alloc_gdbarch_data (gdbarch);
1262
1263 gdbarch->tdep = tdep;
1264 EOF
1265 printf "\n"
1266 function_list | while do_read
1267 do
1268 if class_is_info_p
1269 then
1270 printf " gdbarch->${function} = info->${function};\n"
1271 fi
1272 done
1273 printf "\n"
1274 printf " /* Force the explicit initialization of these. */\n"
1275 function_list | while do_read
1276 do
1277 if class_is_function_p || class_is_variable_p
1278 then
1279 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1280 then
1281 printf " gdbarch->${function} = ${predefault};\n"
1282 fi
1283 fi
1284 done
1285 cat <<EOF
1286 /* gdbarch_alloc() */
1287
1288 return gdbarch;
1289 }
1290 EOF
1291
1292 # Free a gdbarch struct.
1293 printf "\n"
1294 printf "\n"
1295 cat <<EOF
1296 /* Free a gdbarch struct. This should never happen in normal
1297 operation --- once you've created a gdbarch, you keep it around.
1298 However, if an architecture's init function encounters an error
1299 building the structure, it may need to clean up a partially
1300 constructed gdbarch. */
1301
1302 void
1303 gdbarch_free (struct gdbarch *arch)
1304 {
1305 gdb_assert (arch != NULL);
1306 free_gdbarch_data (arch);
1307 xfree (arch);
1308 }
1309 EOF
1310
1311 # verify a new architecture
1312 printf "\n"
1313 printf "\n"
1314 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1315 printf "\n"
1316 cat <<EOF
1317 static void
1318 verify_gdbarch (struct gdbarch *gdbarch)
1319 {
1320 /* Only perform sanity checks on a multi-arch target. */
1321 if (!GDB_MULTI_ARCH)
1322 return;
1323 /* fundamental */
1324 if (gdbarch->byte_order == 0)
1325 internal_error (__FILE__, __LINE__,
1326 "verify_gdbarch: byte-order unset");
1327 if (gdbarch->bfd_arch_info == NULL)
1328 internal_error (__FILE__, __LINE__,
1329 "verify_gdbarch: bfd_arch_info unset");
1330 /* Check those that need to be defined for the given multi-arch level. */
1331 EOF
1332 function_list | while do_read
1333 do
1334 if class_is_function_p || class_is_variable_p
1335 then
1336 if [ "${invalid_p}" = "0" ]
1337 then
1338 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1339 elif class_is_predicate_p
1340 then
1341 printf " /* Skip verify of ${function}, has predicate */\n"
1342 # FIXME: See do_read for potential simplification
1343 elif [ "${invalid_p}" -a "${postdefault}" ]
1344 then
1345 printf " if (${invalid_p})\n"
1346 printf " gdbarch->${function} = ${postdefault};\n"
1347 elif [ "${predefault}" -a "${postdefault}" ]
1348 then
1349 printf " if (gdbarch->${function} == ${predefault})\n"
1350 printf " gdbarch->${function} = ${postdefault};\n"
1351 elif [ "${postdefault}" ]
1352 then
1353 printf " if (gdbarch->${function} == 0)\n"
1354 printf " gdbarch->${function} = ${postdefault};\n"
1355 elif [ "${invalid_p}" ]
1356 then
1357 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1358 printf " && (${invalid_p}))\n"
1359 printf " internal_error (__FILE__, __LINE__,\n"
1360 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1361 elif [ "${predefault}" ]
1362 then
1363 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1364 printf " && (gdbarch->${function} == ${predefault}))\n"
1365 printf " internal_error (__FILE__, __LINE__,\n"
1366 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1367 fi
1368 fi
1369 done
1370 cat <<EOF
1371 }
1372 EOF
1373
1374 # dump the structure
1375 printf "\n"
1376 printf "\n"
1377 cat <<EOF
1378 /* Print out the details of the current architecture. */
1379
1380 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1381 just happens to match the global variable \`\`current_gdbarch''. That
1382 way macros refering to that variable get the local and not the global
1383 version - ulgh. Once everything is parameterised with gdbarch, this
1384 will go away. */
1385
1386 void
1387 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1388 {
1389 fprintf_unfiltered (file,
1390 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1391 GDB_MULTI_ARCH);
1392 EOF
1393 function_list | while do_read
1394 do
1395 # multiarch functions don't have macros.
1396 class_is_multiarch_p && continue
1397 if [ "${returntype}" = "void" ]
1398 then
1399 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1400 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1401 else
1402 printf "#ifdef ${macro}\n"
1403 fi
1404 if class_is_function_p
1405 then
1406 printf " fprintf_unfiltered (file,\n"
1407 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1408 printf " \"${macro}(${actual})\",\n"
1409 printf " XSTRING (${macro} (${actual})));\n"
1410 else
1411 printf " fprintf_unfiltered (file,\n"
1412 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1413 printf " XSTRING (${macro}));\n"
1414 fi
1415 printf "#endif\n"
1416 done
1417 function_list | while do_read
1418 do
1419 if class_is_multiarch_p
1420 then
1421 printf " if (GDB_MULTI_ARCH)\n"
1422 printf " fprintf_unfiltered (file,\n"
1423 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1424 printf " (long) current_gdbarch->${function});\n"
1425 continue
1426 fi
1427 printf "#ifdef ${macro}\n"
1428 if [ "${print_p}" = "()" ]
1429 then
1430 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1431 elif [ "${print_p}" = "0" ]
1432 then
1433 printf " /* skip print of ${macro}, print_p == 0. */\n"
1434 elif [ "${print_p}" ]
1435 then
1436 printf " if (${print_p})\n"
1437 printf " fprintf_unfiltered (file,\n"
1438 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1439 printf " ${print});\n"
1440 elif class_is_function_p
1441 then
1442 printf " if (GDB_MULTI_ARCH)\n"
1443 printf " fprintf_unfiltered (file,\n"
1444 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1445 printf " (long) current_gdbarch->${function}\n"
1446 printf " /*${macro} ()*/);\n"
1447 else
1448 printf " fprintf_unfiltered (file,\n"
1449 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1450 printf " ${print});\n"
1451 fi
1452 printf "#endif\n"
1453 done
1454 cat <<EOF
1455 if (current_gdbarch->dump_tdep != NULL)
1456 current_gdbarch->dump_tdep (current_gdbarch, file);
1457 }
1458 EOF
1459
1460
1461 # GET/SET
1462 printf "\n"
1463 cat <<EOF
1464 struct gdbarch_tdep *
1465 gdbarch_tdep (struct gdbarch *gdbarch)
1466 {
1467 if (gdbarch_debug >= 2)
1468 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1469 return gdbarch->tdep;
1470 }
1471 EOF
1472 printf "\n"
1473 function_list | while do_read
1474 do
1475 if class_is_predicate_p
1476 then
1477 printf "\n"
1478 printf "int\n"
1479 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1480 printf "{\n"
1481 if [ "${valid_p}" ]
1482 then
1483 printf " return ${valid_p};\n"
1484 else
1485 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1486 fi
1487 printf "}\n"
1488 fi
1489 if class_is_function_p
1490 then
1491 printf "\n"
1492 printf "${returntype}\n"
1493 if [ "${formal}" = "void" ]
1494 then
1495 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1496 else
1497 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1498 fi
1499 printf "{\n"
1500 printf " if (gdbarch->${function} == 0)\n"
1501 printf " internal_error (__FILE__, __LINE__,\n"
1502 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1503 printf " if (gdbarch_debug >= 2)\n"
1504 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1505 if [ "${actual}" = "-" -o "${actual}" = "" ]
1506 then
1507 if class_is_multiarch_p
1508 then
1509 params="gdbarch"
1510 else
1511 params=""
1512 fi
1513 else
1514 if class_is_multiarch_p
1515 then
1516 params="gdbarch, ${actual}"
1517 else
1518 params="${actual}"
1519 fi
1520 fi
1521 if [ "${returntype}" = "void" ]
1522 then
1523 printf " gdbarch->${function} (${params});\n"
1524 else
1525 printf " return gdbarch->${function} (${params});\n"
1526 fi
1527 printf "}\n"
1528 printf "\n"
1529 printf "void\n"
1530 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1531 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1532 printf "{\n"
1533 printf " gdbarch->${function} = ${function};\n"
1534 printf "}\n"
1535 elif class_is_variable_p
1536 then
1537 printf "\n"
1538 printf "${returntype}\n"
1539 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1540 printf "{\n"
1541 if [ "${invalid_p}" = "0" ]
1542 then
1543 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1544 elif [ "${invalid_p}" ]
1545 then
1546 printf " if (${invalid_p})\n"
1547 printf " internal_error (__FILE__, __LINE__,\n"
1548 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1549 elif [ "${predefault}" ]
1550 then
1551 printf " if (gdbarch->${function} == ${predefault})\n"
1552 printf " internal_error (__FILE__, __LINE__,\n"
1553 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1554 fi
1555 printf " if (gdbarch_debug >= 2)\n"
1556 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1557 printf " return gdbarch->${function};\n"
1558 printf "}\n"
1559 printf "\n"
1560 printf "void\n"
1561 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1562 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1563 printf "{\n"
1564 printf " gdbarch->${function} = ${function};\n"
1565 printf "}\n"
1566 elif class_is_info_p
1567 then
1568 printf "\n"
1569 printf "${returntype}\n"
1570 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1571 printf "{\n"
1572 printf " if (gdbarch_debug >= 2)\n"
1573 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1574 printf " return gdbarch->${function};\n"
1575 printf "}\n"
1576 fi
1577 done
1578
1579 # All the trailing guff
1580 cat <<EOF
1581
1582
1583 /* Keep a registry of per-architecture data-pointers required by GDB
1584 modules. */
1585
1586 struct gdbarch_data
1587 {
1588 unsigned index;
1589 gdbarch_data_init_ftype *init;
1590 gdbarch_data_free_ftype *free;
1591 };
1592
1593 struct gdbarch_data_registration
1594 {
1595 struct gdbarch_data *data;
1596 struct gdbarch_data_registration *next;
1597 };
1598
1599 struct gdbarch_data_registry
1600 {
1601 unsigned nr;
1602 struct gdbarch_data_registration *registrations;
1603 };
1604
1605 struct gdbarch_data_registry gdbarch_data_registry =
1606 {
1607 0, NULL,
1608 };
1609
1610 struct gdbarch_data *
1611 register_gdbarch_data (gdbarch_data_init_ftype *init,
1612 gdbarch_data_free_ftype *free)
1613 {
1614 struct gdbarch_data_registration **curr;
1615 for (curr = &gdbarch_data_registry.registrations;
1616 (*curr) != NULL;
1617 curr = &(*curr)->next);
1618 (*curr) = XMALLOC (struct gdbarch_data_registration);
1619 (*curr)->next = NULL;
1620 (*curr)->data = XMALLOC (struct gdbarch_data);
1621 (*curr)->data->index = gdbarch_data_registry.nr++;
1622 (*curr)->data->init = init;
1623 (*curr)->data->free = free;
1624 return (*curr)->data;
1625 }
1626
1627
1628 /* Walk through all the registered users initializing each in turn. */
1629
1630 static void
1631 init_gdbarch_data (struct gdbarch *gdbarch)
1632 {
1633 struct gdbarch_data_registration *rego;
1634 for (rego = gdbarch_data_registry.registrations;
1635 rego != NULL;
1636 rego = rego->next)
1637 {
1638 struct gdbarch_data *data = rego->data;
1639 gdb_assert (data->index < gdbarch->nr_data);
1640 if (data->init != NULL)
1641 {
1642 void *pointer = data->init (gdbarch);
1643 set_gdbarch_data (gdbarch, data, pointer);
1644 }
1645 }
1646 }
1647
1648 /* Create/delete the gdbarch data vector. */
1649
1650 static void
1651 alloc_gdbarch_data (struct gdbarch *gdbarch)
1652 {
1653 gdb_assert (gdbarch->data == NULL);
1654 gdbarch->nr_data = gdbarch_data_registry.nr;
1655 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1656 }
1657
1658 static void
1659 free_gdbarch_data (struct gdbarch *gdbarch)
1660 {
1661 struct gdbarch_data_registration *rego;
1662 gdb_assert (gdbarch->data != NULL);
1663 for (rego = gdbarch_data_registry.registrations;
1664 rego != NULL;
1665 rego = rego->next)
1666 {
1667 struct gdbarch_data *data = rego->data;
1668 gdb_assert (data->index < gdbarch->nr_data);
1669 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1670 {
1671 data->free (gdbarch, gdbarch->data[data->index]);
1672 gdbarch->data[data->index] = NULL;
1673 }
1674 }
1675 xfree (gdbarch->data);
1676 gdbarch->data = NULL;
1677 }
1678
1679
1680 /* Initialize the current value of thee specified per-architecture
1681 data-pointer. */
1682
1683 void
1684 set_gdbarch_data (struct gdbarch *gdbarch,
1685 struct gdbarch_data *data,
1686 void *pointer)
1687 {
1688 gdb_assert (data->index < gdbarch->nr_data);
1689 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1690 data->free (gdbarch, gdbarch->data[data->index]);
1691 gdbarch->data[data->index] = pointer;
1692 }
1693
1694 /* Return the current value of the specified per-architecture
1695 data-pointer. */
1696
1697 void *
1698 gdbarch_data (struct gdbarch_data *data)
1699 {
1700 gdb_assert (data->index < current_gdbarch->nr_data);
1701 return current_gdbarch->data[data->index];
1702 }
1703
1704
1705
1706 /* Keep a registry of swapped data required by GDB modules. */
1707
1708 struct gdbarch_swap
1709 {
1710 void *swap;
1711 struct gdbarch_swap_registration *source;
1712 struct gdbarch_swap *next;
1713 };
1714
1715 struct gdbarch_swap_registration
1716 {
1717 void *data;
1718 unsigned long sizeof_data;
1719 gdbarch_swap_ftype *init;
1720 struct gdbarch_swap_registration *next;
1721 };
1722
1723 struct gdbarch_swap_registry
1724 {
1725 int nr;
1726 struct gdbarch_swap_registration *registrations;
1727 };
1728
1729 struct gdbarch_swap_registry gdbarch_swap_registry =
1730 {
1731 0, NULL,
1732 };
1733
1734 void
1735 register_gdbarch_swap (void *data,
1736 unsigned long sizeof_data,
1737 gdbarch_swap_ftype *init)
1738 {
1739 struct gdbarch_swap_registration **rego;
1740 for (rego = &gdbarch_swap_registry.registrations;
1741 (*rego) != NULL;
1742 rego = &(*rego)->next);
1743 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1744 (*rego)->next = NULL;
1745 (*rego)->init = init;
1746 (*rego)->data = data;
1747 (*rego)->sizeof_data = sizeof_data;
1748 }
1749
1750
1751 static void
1752 init_gdbarch_swap (struct gdbarch *gdbarch)
1753 {
1754 struct gdbarch_swap_registration *rego;
1755 struct gdbarch_swap **curr = &gdbarch->swap;
1756 for (rego = gdbarch_swap_registry.registrations;
1757 rego != NULL;
1758 rego = rego->next)
1759 {
1760 if (rego->data != NULL)
1761 {
1762 (*curr) = XMALLOC (struct gdbarch_swap);
1763 (*curr)->source = rego;
1764 (*curr)->swap = xmalloc (rego->sizeof_data);
1765 (*curr)->next = NULL;
1766 memset (rego->data, 0, rego->sizeof_data);
1767 curr = &(*curr)->next;
1768 }
1769 if (rego->init != NULL)
1770 rego->init ();
1771 }
1772 }
1773
1774 static void
1775 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1776 {
1777 struct gdbarch_swap *curr;
1778 for (curr = gdbarch->swap;
1779 curr != NULL;
1780 curr = curr->next)
1781 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1782 }
1783
1784 static void
1785 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1786 {
1787 struct gdbarch_swap *curr;
1788 for (curr = gdbarch->swap;
1789 curr != NULL;
1790 curr = curr->next)
1791 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1792 }
1793
1794
1795 /* Keep a registry of the architectures known by GDB. */
1796
1797 struct gdbarch_registration
1798 {
1799 enum bfd_architecture bfd_architecture;
1800 gdbarch_init_ftype *init;
1801 gdbarch_dump_tdep_ftype *dump_tdep;
1802 struct gdbarch_list *arches;
1803 struct gdbarch_registration *next;
1804 };
1805
1806 static struct gdbarch_registration *gdbarch_registry = NULL;
1807
1808 static void
1809 append_name (const char ***buf, int *nr, const char *name)
1810 {
1811 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1812 (*buf)[*nr] = name;
1813 *nr += 1;
1814 }
1815
1816 const char **
1817 gdbarch_printable_names (void)
1818 {
1819 if (GDB_MULTI_ARCH)
1820 {
1821 /* Accumulate a list of names based on the registed list of
1822 architectures. */
1823 enum bfd_architecture a;
1824 int nr_arches = 0;
1825 const char **arches = NULL;
1826 struct gdbarch_registration *rego;
1827 for (rego = gdbarch_registry;
1828 rego != NULL;
1829 rego = rego->next)
1830 {
1831 const struct bfd_arch_info *ap;
1832 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1833 if (ap == NULL)
1834 internal_error (__FILE__, __LINE__,
1835 "gdbarch_architecture_names: multi-arch unknown");
1836 do
1837 {
1838 append_name (&arches, &nr_arches, ap->printable_name);
1839 ap = ap->next;
1840 }
1841 while (ap != NULL);
1842 }
1843 append_name (&arches, &nr_arches, NULL);
1844 return arches;
1845 }
1846 else
1847 /* Just return all the architectures that BFD knows. Assume that
1848 the legacy architecture framework supports them. */
1849 return bfd_arch_list ();
1850 }
1851
1852
1853 void
1854 gdbarch_register (enum bfd_architecture bfd_architecture,
1855 gdbarch_init_ftype *init,
1856 gdbarch_dump_tdep_ftype *dump_tdep)
1857 {
1858 struct gdbarch_registration **curr;
1859 const struct bfd_arch_info *bfd_arch_info;
1860 /* Check that BFD recognizes this architecture */
1861 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1862 if (bfd_arch_info == NULL)
1863 {
1864 internal_error (__FILE__, __LINE__,
1865 "gdbarch: Attempt to register unknown architecture (%d)",
1866 bfd_architecture);
1867 }
1868 /* Check that we haven't seen this architecture before */
1869 for (curr = &gdbarch_registry;
1870 (*curr) != NULL;
1871 curr = &(*curr)->next)
1872 {
1873 if (bfd_architecture == (*curr)->bfd_architecture)
1874 internal_error (__FILE__, __LINE__,
1875 "gdbarch: Duplicate registraration of architecture (%s)",
1876 bfd_arch_info->printable_name);
1877 }
1878 /* log it */
1879 if (gdbarch_debug)
1880 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1881 bfd_arch_info->printable_name,
1882 (long) init);
1883 /* Append it */
1884 (*curr) = XMALLOC (struct gdbarch_registration);
1885 (*curr)->bfd_architecture = bfd_architecture;
1886 (*curr)->init = init;
1887 (*curr)->dump_tdep = dump_tdep;
1888 (*curr)->arches = NULL;
1889 (*curr)->next = NULL;
1890 /* When non- multi-arch, install whatever target dump routine we've
1891 been provided - hopefully that routine has been written correctly
1892 and works regardless of multi-arch. */
1893 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1894 && startup_gdbarch.dump_tdep == NULL)
1895 startup_gdbarch.dump_tdep = dump_tdep;
1896 }
1897
1898 void
1899 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1900 gdbarch_init_ftype *init)
1901 {
1902 gdbarch_register (bfd_architecture, init, NULL);
1903 }
1904
1905
1906 /* Look for an architecture using gdbarch_info. Base search on only
1907 BFD_ARCH_INFO and BYTE_ORDER. */
1908
1909 struct gdbarch_list *
1910 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1911 const struct gdbarch_info *info)
1912 {
1913 for (; arches != NULL; arches = arches->next)
1914 {
1915 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1916 continue;
1917 if (info->byte_order != arches->gdbarch->byte_order)
1918 continue;
1919 return arches;
1920 }
1921 return NULL;
1922 }
1923
1924
1925 /* Update the current architecture. Return ZERO if the update request
1926 failed. */
1927
1928 int
1929 gdbarch_update_p (struct gdbarch_info info)
1930 {
1931 struct gdbarch *new_gdbarch;
1932 struct gdbarch_list **list;
1933 struct gdbarch_registration *rego;
1934
1935 /* Fill in any missing bits. Most important is the bfd_architecture
1936 which is used to select the target architecture. */
1937 if (info.bfd_architecture == bfd_arch_unknown)
1938 {
1939 if (info.bfd_arch_info != NULL)
1940 info.bfd_architecture = info.bfd_arch_info->arch;
1941 else if (info.abfd != NULL)
1942 info.bfd_architecture = bfd_get_arch (info.abfd);
1943 /* FIXME - should query BFD for its default architecture. */
1944 else
1945 info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
1946 }
1947 if (info.bfd_arch_info == NULL)
1948 {
1949 if (target_architecture_auto && info.abfd != NULL)
1950 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1951 else
1952 info.bfd_arch_info = current_gdbarch->bfd_arch_info;
1953 }
1954 if (info.byte_order == 0)
1955 {
1956 if (target_byte_order_auto && info.abfd != NULL)
1957 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1958 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1959 : 0);
1960 else
1961 info.byte_order = current_gdbarch->byte_order;
1962 /* FIXME - should query BFD for its default byte-order. */
1963 }
1964 /* A default for abfd? */
1965
1966 /* Find the target that knows about this architecture. */
1967 for (rego = gdbarch_registry;
1968 rego != NULL;
1969 rego = rego->next)
1970 if (rego->bfd_architecture == info.bfd_architecture)
1971 break;
1972 if (rego == NULL)
1973 {
1974 if (gdbarch_debug)
1975 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1976 return 0;
1977 }
1978
1979 if (gdbarch_debug)
1980 {
1981 fprintf_unfiltered (gdb_stdlog,
1982 "gdbarch_update: info.bfd_architecture %d (%s)\\n",
1983 info.bfd_architecture,
1984 bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
1985 fprintf_unfiltered (gdb_stdlog,
1986 "gdbarch_update: info.bfd_arch_info %s\\n",
1987 (info.bfd_arch_info != NULL
1988 ? info.bfd_arch_info->printable_name
1989 : "(null)"));
1990 fprintf_unfiltered (gdb_stdlog,
1991 "gdbarch_update: info.byte_order %d (%s)\\n",
1992 info.byte_order,
1993 (info.byte_order == BIG_ENDIAN ? "big"
1994 : info.byte_order == LITTLE_ENDIAN ? "little"
1995 : "default"));
1996 fprintf_unfiltered (gdb_stdlog,
1997 "gdbarch_update: info.abfd 0x%lx\\n",
1998 (long) info.abfd);
1999 fprintf_unfiltered (gdb_stdlog,
2000 "gdbarch_update: info.tdep_info 0x%lx\\n",
2001 (long) info.tdep_info);
2002 }
2003
2004 /* Ask the target for a replacement architecture. */
2005 new_gdbarch = rego->init (info, rego->arches);
2006
2007 /* Did the target like it? No. Reject the change. */
2008 if (new_gdbarch == NULL)
2009 {
2010 if (gdbarch_debug)
2011 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2012 return 0;
2013 }
2014
2015 /* Did the architecture change? No. Do nothing. */
2016 if (current_gdbarch == new_gdbarch)
2017 {
2018 if (gdbarch_debug)
2019 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2020 (long) new_gdbarch,
2021 new_gdbarch->bfd_arch_info->printable_name);
2022 return 1;
2023 }
2024
2025 /* Swap all data belonging to the old target out */
2026 swapout_gdbarch_swap (current_gdbarch);
2027
2028 /* Is this a pre-existing architecture? Yes. Swap it in. */
2029 for (list = &rego->arches;
2030 (*list) != NULL;
2031 list = &(*list)->next)
2032 {
2033 if ((*list)->gdbarch == new_gdbarch)
2034 {
2035 if (gdbarch_debug)
2036 fprintf_unfiltered (gdb_stdlog,
2037 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2038 (long) new_gdbarch,
2039 new_gdbarch->bfd_arch_info->printable_name);
2040 current_gdbarch = new_gdbarch;
2041 swapin_gdbarch_swap (new_gdbarch);
2042 return 1;
2043 }
2044 }
2045
2046 /* Append this new architecture to this targets list. */
2047 (*list) = XMALLOC (struct gdbarch_list);
2048 (*list)->next = NULL;
2049 (*list)->gdbarch = new_gdbarch;
2050
2051 /* Switch to this new architecture. Dump it out. */
2052 current_gdbarch = new_gdbarch;
2053 if (gdbarch_debug)
2054 {
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2057 (long) new_gdbarch,
2058 new_gdbarch->bfd_arch_info->printable_name);
2059 }
2060
2061 /* Check that the newly installed architecture is valid. Plug in
2062 any post init values. */
2063 new_gdbarch->dump_tdep = rego->dump_tdep;
2064 verify_gdbarch (new_gdbarch);
2065
2066 /* Initialize the per-architecture memory (swap) areas.
2067 CURRENT_GDBARCH must be update before these modules are
2068 called. */
2069 init_gdbarch_swap (new_gdbarch);
2070
2071 /* Initialize the per-architecture data-pointer of all parties that
2072 registered an interest in this architecture. CURRENT_GDBARCH
2073 must be updated before these modules are called. */
2074 init_gdbarch_data (new_gdbarch);
2075
2076 if (gdbarch_debug)
2077 gdbarch_dump (current_gdbarch, gdb_stdlog);
2078
2079 return 1;
2080 }
2081
2082
2083 /* Disassembler */
2084
2085 /* Pointer to the target-dependent disassembly function. */
2086 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2087 disassemble_info tm_print_insn_info;
2088
2089
2090 extern void _initialize_gdbarch (void);
2091
2092 void
2093 _initialize_gdbarch (void)
2094 {
2095 struct cmd_list_element *c;
2096
2097 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2098 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2099 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2100 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2101 tm_print_insn_info.print_address_func = dis_asm_print_address;
2102
2103 add_show_from_set (add_set_cmd ("arch",
2104 class_maintenance,
2105 var_zinteger,
2106 (char *)&gdbarch_debug,
2107 "Set architecture debugging.\\n\\
2108 When non-zero, architecture debugging is enabled.", &setdebuglist),
2109 &showdebuglist);
2110 c = add_set_cmd ("archdebug",
2111 class_maintenance,
2112 var_zinteger,
2113 (char *)&gdbarch_debug,
2114 "Set architecture debugging.\\n\\
2115 When non-zero, architecture debugging is enabled.", &setlist);
2116
2117 deprecate_cmd (c, "set debug arch");
2118 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2119 }
2120 EOF
2121
2122 # close things off
2123 exec 1>&2
2124 #../move-if-change new-gdbarch.c gdbarch.c
2125 compare_new gdbarch.c
This page took 0.077364 seconds and 4 git commands to generate.