* x86-64-tdep.c (x86_64_push_arguments): Always set %rax to number
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr::0:0
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 f:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 f:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
634 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
635 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
636 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
637 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
638 #
639 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
640 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
641 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
642 v:2:PARM_BOUNDARY:int:parm_boundary
643 #
644 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
645 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
646 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
647 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
648 # On some machines there are bits in addresses which are not really
649 # part of the address, but are used by the kernel, the hardware, etc.
650 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
651 # we get a "real" address such as one would find in a symbol table.
652 # This is used only for addresses of instructions, and even then I'm
653 # not sure it's used in all contexts. It exists to deal with there
654 # being a few stray bits in the PC which would mislead us, not as some
655 # sort of generic thing to handle alignment or segmentation (it's
656 # possible it should be in TARGET_READ_PC instead).
657 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
658 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
659 # ADDR_BITS_REMOVE.
660 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
661 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
662 # the target needs software single step. An ISA method to implement it.
663 #
664 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
665 # using the breakpoint system instead of blatting memory directly (as with rs6000).
666 #
667 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
668 # single step. If not, then implement single step using breakpoints.
669 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
670 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
671 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
672
673
674 # For SVR4 shared libraries, each call goes through a small piece of
675 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
676 # to nonzero if we are currently stopped in one of these.
677 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
678
679 # Some systems also have trampoline code for returning from shared libs.
680 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
681
682 # Sigtramp is a routine that the kernel calls (which then calls the
683 # signal handler). On most machines it is a library routine that is
684 # linked into the executable.
685 #
686 # This macro, given a program counter value and the name of the
687 # function in which that PC resides (which can be null if the name is
688 # not known), returns nonzero if the PC and name show that we are in
689 # sigtramp.
690 #
691 # On most machines just see if the name is sigtramp (and if we have
692 # no name, assume we are not in sigtramp).
693 #
694 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
695 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
696 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
697 # own local NAME lookup.
698 #
699 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
700 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
701 # does not.
702 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
703 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
704 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
705 # A target might have problems with watchpoints as soon as the stack
706 # frame of the current function has been destroyed. This mostly happens
707 # as the first action in a funtion's epilogue. in_function_epilogue_p()
708 # is defined to return a non-zero value if either the given addr is one
709 # instruction after the stack destroying instruction up to the trailing
710 # return instruction or if we can figure out that the stack frame has
711 # already been invalidated regardless of the value of addr. Targets
712 # which don't suffer from that problem could just let this functionality
713 # untouched.
714 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
715 # Given a vector of command-line arguments, return a newly allocated
716 # string which, when passed to the create_inferior function, will be
717 # parsed (on Unix systems, by the shell) to yield the same vector.
718 # This function should call error() if the argument vector is not
719 # representable for this target or if this target does not support
720 # command-line arguments.
721 # ARGC is the number of elements in the vector.
722 # ARGV is an array of strings, one per argument.
723 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
724 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
725 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
726 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
727 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
728 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
729 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
730 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
731 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
732 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
733 # Is a register in a group
734 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
735 # Fetch the pointer to the ith function argument.
736 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
737 EOF
738 }
739
740 #
741 # The .log file
742 #
743 exec > new-gdbarch.log
744 function_list | while do_read
745 do
746 cat <<EOF
747 ${class} ${macro}(${actual})
748 ${returntype} ${function} ($formal)${attrib}
749 EOF
750 for r in ${read}
751 do
752 eval echo \"\ \ \ \ ${r}=\${${r}}\"
753 done
754 if class_is_predicate_p && fallback_default_p
755 then
756 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
757 kill $$
758 exit 1
759 fi
760 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
761 then
762 echo "Error: postdefault is useless when invalid_p=0" 1>&2
763 kill $$
764 exit 1
765 fi
766 if class_is_multiarch_p
767 then
768 if class_is_predicate_p ; then :
769 elif test "x${predefault}" = "x"
770 then
771 echo "Error: pure multi-arch function must have a predefault" 1>&2
772 kill $$
773 exit 1
774 fi
775 fi
776 echo ""
777 done
778
779 exec 1>&2
780 compare_new gdbarch.log
781
782
783 copyright ()
784 {
785 cat <<EOF
786 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
787
788 /* Dynamic architecture support for GDB, the GNU debugger.
789 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
790
791 This file is part of GDB.
792
793 This program is free software; you can redistribute it and/or modify
794 it under the terms of the GNU General Public License as published by
795 the Free Software Foundation; either version 2 of the License, or
796 (at your option) any later version.
797
798 This program is distributed in the hope that it will be useful,
799 but WITHOUT ANY WARRANTY; without even the implied warranty of
800 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
801 GNU General Public License for more details.
802
803 You should have received a copy of the GNU General Public License
804 along with this program; if not, write to the Free Software
805 Foundation, Inc., 59 Temple Place - Suite 330,
806 Boston, MA 02111-1307, USA. */
807
808 /* This file was created with the aid of \`\`gdbarch.sh''.
809
810 The Bourne shell script \`\`gdbarch.sh'' creates the files
811 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
812 against the existing \`\`gdbarch.[hc]''. Any differences found
813 being reported.
814
815 If editing this file, please also run gdbarch.sh and merge any
816 changes into that script. Conversely, when making sweeping changes
817 to this file, modifying gdbarch.sh and using its output may prove
818 easier. */
819
820 EOF
821 }
822
823 #
824 # The .h file
825 #
826
827 exec > new-gdbarch.h
828 copyright
829 cat <<EOF
830 #ifndef GDBARCH_H
831 #define GDBARCH_H
832
833 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
834 #if !GDB_MULTI_ARCH
835 /* Pull in function declarations refered to, indirectly, via macros. */
836 #include "inferior.h" /* For unsigned_address_to_pointer(). */
837 #include "symfile.h" /* For entry_point_address(). */
838 #endif
839
840 struct floatformat;
841 struct ui_file;
842 struct frame_info;
843 struct value;
844 struct objfile;
845 struct minimal_symbol;
846 struct regcache;
847 struct reggroup;
848
849 extern struct gdbarch *current_gdbarch;
850
851
852 /* If any of the following are defined, the target wasn't correctly
853 converted. */
854
855 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
856 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
857 #endif
858 EOF
859
860 # function typedef's
861 printf "\n"
862 printf "\n"
863 printf "/* The following are pre-initialized by GDBARCH. */\n"
864 function_list | while do_read
865 do
866 if class_is_info_p
867 then
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
874 printf "#if !defined (${macro})\n"
875 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
876 printf "#endif\n"
877 fi
878 done
879
880 # function typedef's
881 printf "\n"
882 printf "\n"
883 printf "/* The following are initialized by the target dependent code. */\n"
884 function_list | while do_read
885 do
886 if [ -n "${comment}" ]
887 then
888 echo "${comment}" | sed \
889 -e '2 s,#,/*,' \
890 -e '3,$ s,#, ,' \
891 -e '$ s,$, */,'
892 fi
893 if class_is_multiarch_p
894 then
895 if class_is_predicate_p
896 then
897 printf "\n"
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
899 fi
900 else
901 if class_is_predicate_p
902 then
903 printf "\n"
904 printf "#if defined (${macro})\n"
905 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
906 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
907 printf "#if !defined (${macro}_P)\n"
908 printf "#define ${macro}_P() (1)\n"
909 printf "#endif\n"
910 printf "#endif\n"
911 printf "\n"
912 printf "/* Default predicate for non- multi-arch targets. */\n"
913 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
914 printf "#define ${macro}_P() (0)\n"
915 printf "#endif\n"
916 printf "\n"
917 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
918 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
919 printf "#error \"Non multi-arch definition of ${macro}\"\n"
920 printf "#endif\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
922 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
923 printf "#endif\n"
924 fi
925 fi
926 if class_is_variable_p
927 then
928 if fallback_default_p || class_is_predicate_p
929 then
930 printf "\n"
931 printf "/* Default (value) for non- multi-arch platforms. */\n"
932 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
933 echo "#define ${macro} (${fallbackdefault})" \
934 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
935 printf "#endif\n"
936 fi
937 printf "\n"
938 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
939 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
940 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
941 printf "#error \"Non multi-arch definition of ${macro}\"\n"
942 printf "#endif\n"
943 printf "#if !defined (${macro})\n"
944 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
945 printf "#endif\n"
946 fi
947 if class_is_function_p
948 then
949 if class_is_multiarch_p ; then :
950 elif fallback_default_p || class_is_predicate_p
951 then
952 printf "\n"
953 printf "/* Default (function) for non- multi-arch platforms. */\n"
954 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
955 if [ "x${fallbackdefault}" = "x0" ]
956 then
957 if [ "x${actual}" = "x-" ]
958 then
959 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
960 else
961 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
962 fi
963 else
964 # FIXME: Should be passing current_gdbarch through!
965 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
966 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
967 fi
968 printf "#endif\n"
969 fi
970 printf "\n"
971 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
972 then
973 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
974 elif class_is_multiarch_p
975 then
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
977 else
978 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
979 fi
980 if [ "x${formal}" = "xvoid" ]
981 then
982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
983 else
984 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
985 fi
986 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
987 if class_is_multiarch_p ; then :
988 else
989 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
990 printf "#error \"Non multi-arch definition of ${macro}\"\n"
991 printf "#endif\n"
992 if [ "x${actual}" = "x" ]
993 then
994 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
995 elif [ "x${actual}" = "x-" ]
996 then
997 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
998 else
999 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1000 fi
1001 printf "#if !defined (${macro})\n"
1002 if [ "x${actual}" = "x" ]
1003 then
1004 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1005 elif [ "x${actual}" = "x-" ]
1006 then
1007 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1008 else
1009 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1010 fi
1011 printf "#endif\n"
1012 fi
1013 fi
1014 done
1015
1016 # close it off
1017 cat <<EOF
1018
1019 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1020
1021
1022 /* Mechanism for co-ordinating the selection of a specific
1023 architecture.
1024
1025 GDB targets (*-tdep.c) can register an interest in a specific
1026 architecture. Other GDB components can register a need to maintain
1027 per-architecture data.
1028
1029 The mechanisms below ensures that there is only a loose connection
1030 between the set-architecture command and the various GDB
1031 components. Each component can independently register their need
1032 to maintain architecture specific data with gdbarch.
1033
1034 Pragmatics:
1035
1036 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1037 didn't scale.
1038
1039 The more traditional mega-struct containing architecture specific
1040 data for all the various GDB components was also considered. Since
1041 GDB is built from a variable number of (fairly independent)
1042 components it was determined that the global aproach was not
1043 applicable. */
1044
1045
1046 /* Register a new architectural family with GDB.
1047
1048 Register support for the specified ARCHITECTURE with GDB. When
1049 gdbarch determines that the specified architecture has been
1050 selected, the corresponding INIT function is called.
1051
1052 --
1053
1054 The INIT function takes two parameters: INFO which contains the
1055 information available to gdbarch about the (possibly new)
1056 architecture; ARCHES which is a list of the previously created
1057 \`\`struct gdbarch'' for this architecture.
1058
1059 The INFO parameter is, as far as possible, be pre-initialized with
1060 information obtained from INFO.ABFD or the previously selected
1061 architecture.
1062
1063 The ARCHES parameter is a linked list (sorted most recently used)
1064 of all the previously created architures for this architecture
1065 family. The (possibly NULL) ARCHES->gdbarch can used to access
1066 values from the previously selected architecture for this
1067 architecture family. The global \`\`current_gdbarch'' shall not be
1068 used.
1069
1070 The INIT function shall return any of: NULL - indicating that it
1071 doesn't recognize the selected architecture; an existing \`\`struct
1072 gdbarch'' from the ARCHES list - indicating that the new
1073 architecture is just a synonym for an earlier architecture (see
1074 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1075 - that describes the selected architecture (see gdbarch_alloc()).
1076
1077 The DUMP_TDEP function shall print out all target specific values.
1078 Care should be taken to ensure that the function works in both the
1079 multi-arch and non- multi-arch cases. */
1080
1081 struct gdbarch_list
1082 {
1083 struct gdbarch *gdbarch;
1084 struct gdbarch_list *next;
1085 };
1086
1087 struct gdbarch_info
1088 {
1089 /* Use default: NULL (ZERO). */
1090 const struct bfd_arch_info *bfd_arch_info;
1091
1092 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1093 int byte_order;
1094
1095 /* Use default: NULL (ZERO). */
1096 bfd *abfd;
1097
1098 /* Use default: NULL (ZERO). */
1099 struct gdbarch_tdep_info *tdep_info;
1100
1101 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1102 enum gdb_osabi osabi;
1103 };
1104
1105 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1106 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1107
1108 /* DEPRECATED - use gdbarch_register() */
1109 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1110
1111 extern void gdbarch_register (enum bfd_architecture architecture,
1112 gdbarch_init_ftype *,
1113 gdbarch_dump_tdep_ftype *);
1114
1115
1116 /* Return a freshly allocated, NULL terminated, array of the valid
1117 architecture names. Since architectures are registered during the
1118 _initialize phase this function only returns useful information
1119 once initialization has been completed. */
1120
1121 extern const char **gdbarch_printable_names (void);
1122
1123
1124 /* Helper function. Search the list of ARCHES for a GDBARCH that
1125 matches the information provided by INFO. */
1126
1127 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1128
1129
1130 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1131 basic initialization using values obtained from the INFO andTDEP
1132 parameters. set_gdbarch_*() functions are called to complete the
1133 initialization of the object. */
1134
1135 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1136
1137
1138 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1139 It is assumed that the caller freeds the \`\`struct
1140 gdbarch_tdep''. */
1141
1142 extern void gdbarch_free (struct gdbarch *);
1143
1144
1145 /* Helper function. Force an update of the current architecture.
1146
1147 The actual architecture selected is determined by INFO, \`\`(gdb) set
1148 architecture'' et.al., the existing architecture and BFD's default
1149 architecture. INFO should be initialized to zero and then selected
1150 fields should be updated.
1151
1152 Returns non-zero if the update succeeds */
1153
1154 extern int gdbarch_update_p (struct gdbarch_info info);
1155
1156
1157
1158 /* Register per-architecture data-pointer.
1159
1160 Reserve space for a per-architecture data-pointer. An identifier
1161 for the reserved data-pointer is returned. That identifer should
1162 be saved in a local static variable.
1163
1164 The per-architecture data-pointer is either initialized explicitly
1165 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1166 gdbarch_data()). FREE() is called to delete either an existing
1167 data-pointer overridden by set_gdbarch_data() or when the
1168 architecture object is being deleted.
1169
1170 When a previously created architecture is re-selected, the
1171 per-architecture data-pointer for that previous architecture is
1172 restored. INIT() is not re-called.
1173
1174 Multiple registrarants for any architecture are allowed (and
1175 strongly encouraged). */
1176
1177 struct gdbarch_data;
1178
1179 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1180 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1181 void *pointer);
1182 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1183 gdbarch_data_free_ftype *free);
1184 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1185 struct gdbarch_data *data,
1186 void *pointer);
1187
1188 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1189
1190
1191 /* Register per-architecture memory region.
1192
1193 Provide a memory-region swap mechanism. Per-architecture memory
1194 region are created. These memory regions are swapped whenever the
1195 architecture is changed. For a new architecture, the memory region
1196 is initialized with zero (0) and the INIT function is called.
1197
1198 Memory regions are swapped / initialized in the order that they are
1199 registered. NULL DATA and/or INIT values can be specified.
1200
1201 New code should use register_gdbarch_data(). */
1202
1203 typedef void (gdbarch_swap_ftype) (void);
1204 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1205 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1206
1207
1208
1209 /* The target-system-dependent byte order is dynamic */
1210
1211 extern int target_byte_order;
1212 #ifndef TARGET_BYTE_ORDER
1213 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1214 #endif
1215
1216 extern int target_byte_order_auto;
1217 #ifndef TARGET_BYTE_ORDER_AUTO
1218 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1219 #endif
1220
1221
1222
1223 /* The target-system-dependent BFD architecture is dynamic */
1224
1225 extern int target_architecture_auto;
1226 #ifndef TARGET_ARCHITECTURE_AUTO
1227 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1228 #endif
1229
1230 extern const struct bfd_arch_info *target_architecture;
1231 #ifndef TARGET_ARCHITECTURE
1232 #define TARGET_ARCHITECTURE (target_architecture + 0)
1233 #endif
1234
1235
1236 /* The target-system-dependent disassembler is semi-dynamic */
1237
1238 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1239 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1240
1241 /* Use set_gdbarch_print_insn instead. */
1242 extern disassemble_info deprecated_tm_print_insn_info;
1243
1244 /* Set the dynamic target-system-dependent parameters (architecture,
1245 byte-order, ...) using information found in the BFD */
1246
1247 extern void set_gdbarch_from_file (bfd *);
1248
1249
1250 /* Initialize the current architecture to the "first" one we find on
1251 our list. */
1252
1253 extern void initialize_current_architecture (void);
1254
1255 /* For non-multiarched targets, do any initialization of the default
1256 gdbarch object necessary after the _initialize_MODULE functions
1257 have run. */
1258 extern void initialize_non_multiarch (void);
1259
1260 /* gdbarch trace variable */
1261 extern int gdbarch_debug;
1262
1263 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1264
1265 #endif
1266 EOF
1267 exec 1>&2
1268 #../move-if-change new-gdbarch.h gdbarch.h
1269 compare_new gdbarch.h
1270
1271
1272 #
1273 # C file
1274 #
1275
1276 exec > new-gdbarch.c
1277 copyright
1278 cat <<EOF
1279
1280 #include "defs.h"
1281 #include "arch-utils.h"
1282
1283 #if GDB_MULTI_ARCH
1284 #include "gdbcmd.h"
1285 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1286 #else
1287 /* Just include everything in sight so that the every old definition
1288 of macro is visible. */
1289 #include "gdb_string.h"
1290 #include <ctype.h>
1291 #include "symtab.h"
1292 #include "frame.h"
1293 #include "inferior.h"
1294 #include "breakpoint.h"
1295 #include "gdb_wait.h"
1296 #include "gdbcore.h"
1297 #include "gdbcmd.h"
1298 #include "target.h"
1299 #include "gdbthread.h"
1300 #include "annotate.h"
1301 #include "symfile.h" /* for overlay functions */
1302 #include "value.h" /* For old tm.h/nm.h macros. */
1303 #endif
1304 #include "symcat.h"
1305
1306 #include "floatformat.h"
1307
1308 #include "gdb_assert.h"
1309 #include "gdb_string.h"
1310 #include "gdb-events.h"
1311 #include "reggroups.h"
1312 #include "osabi.h"
1313 #include "symfile.h" /* For entry_point_address. */
1314
1315 /* Static function declarations */
1316
1317 static void verify_gdbarch (struct gdbarch *gdbarch);
1318 static void alloc_gdbarch_data (struct gdbarch *);
1319 static void free_gdbarch_data (struct gdbarch *);
1320 static void init_gdbarch_swap (struct gdbarch *);
1321 static void clear_gdbarch_swap (struct gdbarch *);
1322 static void swapout_gdbarch_swap (struct gdbarch *);
1323 static void swapin_gdbarch_swap (struct gdbarch *);
1324
1325 /* Non-zero if we want to trace architecture code. */
1326
1327 #ifndef GDBARCH_DEBUG
1328 #define GDBARCH_DEBUG 0
1329 #endif
1330 int gdbarch_debug = GDBARCH_DEBUG;
1331
1332 EOF
1333
1334 # gdbarch open the gdbarch object
1335 printf "\n"
1336 printf "/* Maintain the struct gdbarch object */\n"
1337 printf "\n"
1338 printf "struct gdbarch\n"
1339 printf "{\n"
1340 printf " /* Has this architecture been fully initialized? */\n"
1341 printf " int initialized_p;\n"
1342 printf " /* basic architectural information */\n"
1343 function_list | while do_read
1344 do
1345 if class_is_info_p
1346 then
1347 printf " ${returntype} ${function};\n"
1348 fi
1349 done
1350 printf "\n"
1351 printf " /* target specific vector. */\n"
1352 printf " struct gdbarch_tdep *tdep;\n"
1353 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1354 printf "\n"
1355 printf " /* per-architecture data-pointers */\n"
1356 printf " unsigned nr_data;\n"
1357 printf " void **data;\n"
1358 printf "\n"
1359 printf " /* per-architecture swap-regions */\n"
1360 printf " struct gdbarch_swap *swap;\n"
1361 printf "\n"
1362 cat <<EOF
1363 /* Multi-arch values.
1364
1365 When extending this structure you must:
1366
1367 Add the field below.
1368
1369 Declare set/get functions and define the corresponding
1370 macro in gdbarch.h.
1371
1372 gdbarch_alloc(): If zero/NULL is not a suitable default,
1373 initialize the new field.
1374
1375 verify_gdbarch(): Confirm that the target updated the field
1376 correctly.
1377
1378 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1379 field is dumped out
1380
1381 \`\`startup_gdbarch()'': Append an initial value to the static
1382 variable (base values on the host's c-type system).
1383
1384 get_gdbarch(): Implement the set/get functions (probably using
1385 the macro's as shortcuts).
1386
1387 */
1388
1389 EOF
1390 function_list | while do_read
1391 do
1392 if class_is_variable_p
1393 then
1394 printf " ${returntype} ${function};\n"
1395 elif class_is_function_p
1396 then
1397 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1398 fi
1399 done
1400 printf "};\n"
1401
1402 # A pre-initialized vector
1403 printf "\n"
1404 printf "\n"
1405 cat <<EOF
1406 /* The default architecture uses host values (for want of a better
1407 choice). */
1408 EOF
1409 printf "\n"
1410 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1411 printf "\n"
1412 printf "struct gdbarch startup_gdbarch =\n"
1413 printf "{\n"
1414 printf " 1, /* Always initialized. */\n"
1415 printf " /* basic architecture information */\n"
1416 function_list | while do_read
1417 do
1418 if class_is_info_p
1419 then
1420 printf " ${staticdefault}, /* ${function} */\n"
1421 fi
1422 done
1423 cat <<EOF
1424 /* target specific vector and its dump routine */
1425 NULL, NULL,
1426 /*per-architecture data-pointers and swap regions */
1427 0, NULL, NULL,
1428 /* Multi-arch values */
1429 EOF
1430 function_list | while do_read
1431 do
1432 if class_is_function_p || class_is_variable_p
1433 then
1434 printf " ${staticdefault}, /* ${function} */\n"
1435 fi
1436 done
1437 cat <<EOF
1438 /* startup_gdbarch() */
1439 };
1440
1441 struct gdbarch *current_gdbarch = &startup_gdbarch;
1442
1443 /* Do any initialization needed for a non-multiarch configuration
1444 after the _initialize_MODULE functions have been run. */
1445 void
1446 initialize_non_multiarch (void)
1447 {
1448 alloc_gdbarch_data (&startup_gdbarch);
1449 /* Ensure that all swap areas are zeroed so that they again think
1450 they are starting from scratch. */
1451 clear_gdbarch_swap (&startup_gdbarch);
1452 init_gdbarch_swap (&startup_gdbarch);
1453 }
1454 EOF
1455
1456 # Create a new gdbarch struct
1457 printf "\n"
1458 printf "\n"
1459 cat <<EOF
1460 /* Create a new \`\`struct gdbarch'' based on information provided by
1461 \`\`struct gdbarch_info''. */
1462 EOF
1463 printf "\n"
1464 cat <<EOF
1465 struct gdbarch *
1466 gdbarch_alloc (const struct gdbarch_info *info,
1467 struct gdbarch_tdep *tdep)
1468 {
1469 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1470 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1471 the current local architecture and not the previous global
1472 architecture. This ensures that the new architectures initial
1473 values are not influenced by the previous architecture. Once
1474 everything is parameterised with gdbarch, this will go away. */
1475 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1476 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1477
1478 alloc_gdbarch_data (current_gdbarch);
1479
1480 current_gdbarch->tdep = tdep;
1481 EOF
1482 printf "\n"
1483 function_list | while do_read
1484 do
1485 if class_is_info_p
1486 then
1487 printf " current_gdbarch->${function} = info->${function};\n"
1488 fi
1489 done
1490 printf "\n"
1491 printf " /* Force the explicit initialization of these. */\n"
1492 function_list | while do_read
1493 do
1494 if class_is_function_p || class_is_variable_p
1495 then
1496 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1497 then
1498 printf " current_gdbarch->${function} = ${predefault};\n"
1499 fi
1500 fi
1501 done
1502 cat <<EOF
1503 /* gdbarch_alloc() */
1504
1505 return current_gdbarch;
1506 }
1507 EOF
1508
1509 # Free a gdbarch struct.
1510 printf "\n"
1511 printf "\n"
1512 cat <<EOF
1513 /* Free a gdbarch struct. This should never happen in normal
1514 operation --- once you've created a gdbarch, you keep it around.
1515 However, if an architecture's init function encounters an error
1516 building the structure, it may need to clean up a partially
1517 constructed gdbarch. */
1518
1519 void
1520 gdbarch_free (struct gdbarch *arch)
1521 {
1522 gdb_assert (arch != NULL);
1523 free_gdbarch_data (arch);
1524 xfree (arch);
1525 }
1526 EOF
1527
1528 # verify a new architecture
1529 printf "\n"
1530 printf "\n"
1531 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1532 printf "\n"
1533 cat <<EOF
1534 static void
1535 verify_gdbarch (struct gdbarch *gdbarch)
1536 {
1537 struct ui_file *log;
1538 struct cleanup *cleanups;
1539 long dummy;
1540 char *buf;
1541 /* Only perform sanity checks on a multi-arch target. */
1542 if (!GDB_MULTI_ARCH)
1543 return;
1544 log = mem_fileopen ();
1545 cleanups = make_cleanup_ui_file_delete (log);
1546 /* fundamental */
1547 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1548 fprintf_unfiltered (log, "\n\tbyte-order");
1549 if (gdbarch->bfd_arch_info == NULL)
1550 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1551 /* Check those that need to be defined for the given multi-arch level. */
1552 EOF
1553 function_list | while do_read
1554 do
1555 if class_is_function_p || class_is_variable_p
1556 then
1557 if [ "x${invalid_p}" = "x0" ]
1558 then
1559 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1560 elif class_is_predicate_p
1561 then
1562 printf " /* Skip verify of ${function}, has predicate */\n"
1563 # FIXME: See do_read for potential simplification
1564 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1565 then
1566 printf " if (${invalid_p})\n"
1567 printf " gdbarch->${function} = ${postdefault};\n"
1568 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1569 then
1570 printf " if (gdbarch->${function} == ${predefault})\n"
1571 printf " gdbarch->${function} = ${postdefault};\n"
1572 elif [ -n "${postdefault}" ]
1573 then
1574 printf " if (gdbarch->${function} == 0)\n"
1575 printf " gdbarch->${function} = ${postdefault};\n"
1576 elif [ -n "${invalid_p}" ]
1577 then
1578 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1579 printf " && (${invalid_p}))\n"
1580 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1581 elif [ -n "${predefault}" ]
1582 then
1583 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1584 printf " && (gdbarch->${function} == ${predefault}))\n"
1585 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1586 fi
1587 fi
1588 done
1589 cat <<EOF
1590 buf = ui_file_xstrdup (log, &dummy);
1591 make_cleanup (xfree, buf);
1592 if (strlen (buf) > 0)
1593 internal_error (__FILE__, __LINE__,
1594 "verify_gdbarch: the following are invalid ...%s",
1595 buf);
1596 do_cleanups (cleanups);
1597 }
1598 EOF
1599
1600 # dump the structure
1601 printf "\n"
1602 printf "\n"
1603 cat <<EOF
1604 /* Print out the details of the current architecture. */
1605
1606 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1607 just happens to match the global variable \`\`current_gdbarch''. That
1608 way macros refering to that variable get the local and not the global
1609 version - ulgh. Once everything is parameterised with gdbarch, this
1610 will go away. */
1611
1612 void
1613 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1614 {
1615 fprintf_unfiltered (file,
1616 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1617 GDB_MULTI_ARCH);
1618 EOF
1619 function_list | sort -t: -k 3 | while do_read
1620 do
1621 # First the predicate
1622 if class_is_predicate_p
1623 then
1624 if class_is_multiarch_p
1625 then
1626 printf " if (GDB_MULTI_ARCH)\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1629 printf " gdbarch_${function}_p (current_gdbarch));\n"
1630 else
1631 printf "#ifdef ${macro}_P\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1634 printf " \"${macro}_P()\",\n"
1635 printf " XSTRING (${macro}_P ()));\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1638 printf " ${macro}_P ());\n"
1639 printf "#endif\n"
1640 fi
1641 fi
1642 # multiarch functions don't have macros.
1643 if class_is_multiarch_p
1644 then
1645 printf " if (GDB_MULTI_ARCH)\n"
1646 printf " fprintf_unfiltered (file,\n"
1647 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1648 printf " (long) current_gdbarch->${function});\n"
1649 continue
1650 fi
1651 # Print the macro definition.
1652 printf "#ifdef ${macro}\n"
1653 if [ "x${returntype}" = "xvoid" ]
1654 then
1655 printf "#if GDB_MULTI_ARCH\n"
1656 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1657 fi
1658 if class_is_function_p
1659 then
1660 printf " fprintf_unfiltered (file,\n"
1661 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1662 printf " \"${macro}(${actual})\",\n"
1663 printf " XSTRING (${macro} (${actual})));\n"
1664 else
1665 printf " fprintf_unfiltered (file,\n"
1666 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1667 printf " XSTRING (${macro}));\n"
1668 fi
1669 # Print the architecture vector value
1670 if [ "x${returntype}" = "xvoid" ]
1671 then
1672 printf "#endif\n"
1673 fi
1674 if [ "x${print_p}" = "x()" ]
1675 then
1676 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1677 elif [ "x${print_p}" = "x0" ]
1678 then
1679 printf " /* skip print of ${macro}, print_p == 0. */\n"
1680 elif [ -n "${print_p}" ]
1681 then
1682 printf " if (${print_p})\n"
1683 printf " fprintf_unfiltered (file,\n"
1684 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1685 printf " ${print});\n"
1686 elif class_is_function_p
1687 then
1688 printf " if (GDB_MULTI_ARCH)\n"
1689 printf " fprintf_unfiltered (file,\n"
1690 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1691 printf " (long) current_gdbarch->${function}\n"
1692 printf " /*${macro} ()*/);\n"
1693 else
1694 printf " fprintf_unfiltered (file,\n"
1695 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1696 printf " ${print});\n"
1697 fi
1698 printf "#endif\n"
1699 done
1700 cat <<EOF
1701 if (current_gdbarch->dump_tdep != NULL)
1702 current_gdbarch->dump_tdep (current_gdbarch, file);
1703 }
1704 EOF
1705
1706
1707 # GET/SET
1708 printf "\n"
1709 cat <<EOF
1710 struct gdbarch_tdep *
1711 gdbarch_tdep (struct gdbarch *gdbarch)
1712 {
1713 if (gdbarch_debug >= 2)
1714 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1715 return gdbarch->tdep;
1716 }
1717 EOF
1718 printf "\n"
1719 function_list | while do_read
1720 do
1721 if class_is_predicate_p
1722 then
1723 printf "\n"
1724 printf "int\n"
1725 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1726 printf "{\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 if [ -n "${predicate}" ]
1729 then
1730 printf " return ${predicate};\n"
1731 else
1732 printf " return gdbarch->${function} != 0;\n"
1733 fi
1734 printf "}\n"
1735 fi
1736 if class_is_function_p
1737 then
1738 printf "\n"
1739 printf "${returntype}\n"
1740 if [ "x${formal}" = "xvoid" ]
1741 then
1742 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1743 else
1744 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1745 fi
1746 printf "{\n"
1747 printf " gdb_assert (gdbarch != NULL);\n"
1748 printf " if (gdbarch->${function} == 0)\n"
1749 printf " internal_error (__FILE__, __LINE__,\n"
1750 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1751 if class_is_predicate_p && test -n "${predicate}"
1752 then
1753 # Allow a call to a function with a predicate.
1754 printf " /* Ignore predicate (${predicate}). */\n"
1755 fi
1756 printf " if (gdbarch_debug >= 2)\n"
1757 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1758 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1759 then
1760 if class_is_multiarch_p
1761 then
1762 params="gdbarch"
1763 else
1764 params=""
1765 fi
1766 else
1767 if class_is_multiarch_p
1768 then
1769 params="gdbarch, ${actual}"
1770 else
1771 params="${actual}"
1772 fi
1773 fi
1774 if [ "x${returntype}" = "xvoid" ]
1775 then
1776 printf " gdbarch->${function} (${params});\n"
1777 else
1778 printf " return gdbarch->${function} (${params});\n"
1779 fi
1780 printf "}\n"
1781 printf "\n"
1782 printf "void\n"
1783 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1784 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1785 printf "{\n"
1786 printf " gdbarch->${function} = ${function};\n"
1787 printf "}\n"
1788 elif class_is_variable_p
1789 then
1790 printf "\n"
1791 printf "${returntype}\n"
1792 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1793 printf "{\n"
1794 printf " gdb_assert (gdbarch != NULL);\n"
1795 if [ "x${invalid_p}" = "x0" ]
1796 then
1797 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1798 elif [ -n "${invalid_p}" ]
1799 then
1800 printf " if (${invalid_p})\n"
1801 printf " internal_error (__FILE__, __LINE__,\n"
1802 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1803 elif [ -n "${predefault}" ]
1804 then
1805 printf " if (gdbarch->${function} == ${predefault})\n"
1806 printf " internal_error (__FILE__, __LINE__,\n"
1807 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1808 fi
1809 printf " if (gdbarch_debug >= 2)\n"
1810 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1811 printf " return gdbarch->${function};\n"
1812 printf "}\n"
1813 printf "\n"
1814 printf "void\n"
1815 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1816 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1817 printf "{\n"
1818 printf " gdbarch->${function} = ${function};\n"
1819 printf "}\n"
1820 elif class_is_info_p
1821 then
1822 printf "\n"
1823 printf "${returntype}\n"
1824 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1825 printf "{\n"
1826 printf " gdb_assert (gdbarch != NULL);\n"
1827 printf " if (gdbarch_debug >= 2)\n"
1828 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1829 printf " return gdbarch->${function};\n"
1830 printf "}\n"
1831 fi
1832 done
1833
1834 # All the trailing guff
1835 cat <<EOF
1836
1837
1838 /* Keep a registry of per-architecture data-pointers required by GDB
1839 modules. */
1840
1841 struct gdbarch_data
1842 {
1843 unsigned index;
1844 int init_p;
1845 gdbarch_data_init_ftype *init;
1846 gdbarch_data_free_ftype *free;
1847 };
1848
1849 struct gdbarch_data_registration
1850 {
1851 struct gdbarch_data *data;
1852 struct gdbarch_data_registration *next;
1853 };
1854
1855 struct gdbarch_data_registry
1856 {
1857 unsigned nr;
1858 struct gdbarch_data_registration *registrations;
1859 };
1860
1861 struct gdbarch_data_registry gdbarch_data_registry =
1862 {
1863 0, NULL,
1864 };
1865
1866 struct gdbarch_data *
1867 register_gdbarch_data (gdbarch_data_init_ftype *init,
1868 gdbarch_data_free_ftype *free)
1869 {
1870 struct gdbarch_data_registration **curr;
1871 /* Append the new registraration. */
1872 for (curr = &gdbarch_data_registry.registrations;
1873 (*curr) != NULL;
1874 curr = &(*curr)->next);
1875 (*curr) = XMALLOC (struct gdbarch_data_registration);
1876 (*curr)->next = NULL;
1877 (*curr)->data = XMALLOC (struct gdbarch_data);
1878 (*curr)->data->index = gdbarch_data_registry.nr++;
1879 (*curr)->data->init = init;
1880 (*curr)->data->init_p = 1;
1881 (*curr)->data->free = free;
1882 return (*curr)->data;
1883 }
1884
1885
1886 /* Create/delete the gdbarch data vector. */
1887
1888 static void
1889 alloc_gdbarch_data (struct gdbarch *gdbarch)
1890 {
1891 gdb_assert (gdbarch->data == NULL);
1892 gdbarch->nr_data = gdbarch_data_registry.nr;
1893 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1894 }
1895
1896 static void
1897 free_gdbarch_data (struct gdbarch *gdbarch)
1898 {
1899 struct gdbarch_data_registration *rego;
1900 gdb_assert (gdbarch->data != NULL);
1901 for (rego = gdbarch_data_registry.registrations;
1902 rego != NULL;
1903 rego = rego->next)
1904 {
1905 struct gdbarch_data *data = rego->data;
1906 gdb_assert (data->index < gdbarch->nr_data);
1907 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1908 {
1909 data->free (gdbarch, gdbarch->data[data->index]);
1910 gdbarch->data[data->index] = NULL;
1911 }
1912 }
1913 xfree (gdbarch->data);
1914 gdbarch->data = NULL;
1915 }
1916
1917
1918 /* Initialize the current value of the specified per-architecture
1919 data-pointer. */
1920
1921 void
1922 set_gdbarch_data (struct gdbarch *gdbarch,
1923 struct gdbarch_data *data,
1924 void *pointer)
1925 {
1926 gdb_assert (data->index < gdbarch->nr_data);
1927 if (gdbarch->data[data->index] != NULL)
1928 {
1929 gdb_assert (data->free != NULL);
1930 data->free (gdbarch, gdbarch->data[data->index]);
1931 }
1932 gdbarch->data[data->index] = pointer;
1933 }
1934
1935 /* Return the current value of the specified per-architecture
1936 data-pointer. */
1937
1938 void *
1939 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1940 {
1941 gdb_assert (data->index < gdbarch->nr_data);
1942 /* The data-pointer isn't initialized, call init() to get a value but
1943 only if the architecture initializaiton has completed. Otherwise
1944 punt - hope that the caller knows what they are doing. */
1945 if (gdbarch->data[data->index] == NULL
1946 && gdbarch->initialized_p)
1947 {
1948 /* Be careful to detect an initialization cycle. */
1949 gdb_assert (data->init_p);
1950 data->init_p = 0;
1951 gdb_assert (data->init != NULL);
1952 gdbarch->data[data->index] = data->init (gdbarch);
1953 data->init_p = 1;
1954 gdb_assert (gdbarch->data[data->index] != NULL);
1955 }
1956 return gdbarch->data[data->index];
1957 }
1958
1959
1960
1961 /* Keep a registry of swapped data required by GDB modules. */
1962
1963 struct gdbarch_swap
1964 {
1965 void *swap;
1966 struct gdbarch_swap_registration *source;
1967 struct gdbarch_swap *next;
1968 };
1969
1970 struct gdbarch_swap_registration
1971 {
1972 void *data;
1973 unsigned long sizeof_data;
1974 gdbarch_swap_ftype *init;
1975 struct gdbarch_swap_registration *next;
1976 };
1977
1978 struct gdbarch_swap_registry
1979 {
1980 int nr;
1981 struct gdbarch_swap_registration *registrations;
1982 };
1983
1984 struct gdbarch_swap_registry gdbarch_swap_registry =
1985 {
1986 0, NULL,
1987 };
1988
1989 void
1990 register_gdbarch_swap (void *data,
1991 unsigned long sizeof_data,
1992 gdbarch_swap_ftype *init)
1993 {
1994 struct gdbarch_swap_registration **rego;
1995 for (rego = &gdbarch_swap_registry.registrations;
1996 (*rego) != NULL;
1997 rego = &(*rego)->next);
1998 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1999 (*rego)->next = NULL;
2000 (*rego)->init = init;
2001 (*rego)->data = data;
2002 (*rego)->sizeof_data = sizeof_data;
2003 }
2004
2005 static void
2006 clear_gdbarch_swap (struct gdbarch *gdbarch)
2007 {
2008 struct gdbarch_swap *curr;
2009 for (curr = gdbarch->swap;
2010 curr != NULL;
2011 curr = curr->next)
2012 {
2013 memset (curr->source->data, 0, curr->source->sizeof_data);
2014 }
2015 }
2016
2017 static void
2018 init_gdbarch_swap (struct gdbarch *gdbarch)
2019 {
2020 struct gdbarch_swap_registration *rego;
2021 struct gdbarch_swap **curr = &gdbarch->swap;
2022 for (rego = gdbarch_swap_registry.registrations;
2023 rego != NULL;
2024 rego = rego->next)
2025 {
2026 if (rego->data != NULL)
2027 {
2028 (*curr) = XMALLOC (struct gdbarch_swap);
2029 (*curr)->source = rego;
2030 (*curr)->swap = xmalloc (rego->sizeof_data);
2031 (*curr)->next = NULL;
2032 curr = &(*curr)->next;
2033 }
2034 if (rego->init != NULL)
2035 rego->init ();
2036 }
2037 }
2038
2039 static void
2040 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2041 {
2042 struct gdbarch_swap *curr;
2043 for (curr = gdbarch->swap;
2044 curr != NULL;
2045 curr = curr->next)
2046 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2047 }
2048
2049 static void
2050 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2051 {
2052 struct gdbarch_swap *curr;
2053 for (curr = gdbarch->swap;
2054 curr != NULL;
2055 curr = curr->next)
2056 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2057 }
2058
2059
2060 /* Keep a registry of the architectures known by GDB. */
2061
2062 struct gdbarch_registration
2063 {
2064 enum bfd_architecture bfd_architecture;
2065 gdbarch_init_ftype *init;
2066 gdbarch_dump_tdep_ftype *dump_tdep;
2067 struct gdbarch_list *arches;
2068 struct gdbarch_registration *next;
2069 };
2070
2071 static struct gdbarch_registration *gdbarch_registry = NULL;
2072
2073 static void
2074 append_name (const char ***buf, int *nr, const char *name)
2075 {
2076 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2077 (*buf)[*nr] = name;
2078 *nr += 1;
2079 }
2080
2081 const char **
2082 gdbarch_printable_names (void)
2083 {
2084 if (GDB_MULTI_ARCH)
2085 {
2086 /* Accumulate a list of names based on the registed list of
2087 architectures. */
2088 enum bfd_architecture a;
2089 int nr_arches = 0;
2090 const char **arches = NULL;
2091 struct gdbarch_registration *rego;
2092 for (rego = gdbarch_registry;
2093 rego != NULL;
2094 rego = rego->next)
2095 {
2096 const struct bfd_arch_info *ap;
2097 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2098 if (ap == NULL)
2099 internal_error (__FILE__, __LINE__,
2100 "gdbarch_architecture_names: multi-arch unknown");
2101 do
2102 {
2103 append_name (&arches, &nr_arches, ap->printable_name);
2104 ap = ap->next;
2105 }
2106 while (ap != NULL);
2107 }
2108 append_name (&arches, &nr_arches, NULL);
2109 return arches;
2110 }
2111 else
2112 /* Just return all the architectures that BFD knows. Assume that
2113 the legacy architecture framework supports them. */
2114 return bfd_arch_list ();
2115 }
2116
2117
2118 void
2119 gdbarch_register (enum bfd_architecture bfd_architecture,
2120 gdbarch_init_ftype *init,
2121 gdbarch_dump_tdep_ftype *dump_tdep)
2122 {
2123 struct gdbarch_registration **curr;
2124 const struct bfd_arch_info *bfd_arch_info;
2125 /* Check that BFD recognizes this architecture */
2126 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2127 if (bfd_arch_info == NULL)
2128 {
2129 internal_error (__FILE__, __LINE__,
2130 "gdbarch: Attempt to register unknown architecture (%d)",
2131 bfd_architecture);
2132 }
2133 /* Check that we haven't seen this architecture before */
2134 for (curr = &gdbarch_registry;
2135 (*curr) != NULL;
2136 curr = &(*curr)->next)
2137 {
2138 if (bfd_architecture == (*curr)->bfd_architecture)
2139 internal_error (__FILE__, __LINE__,
2140 "gdbarch: Duplicate registraration of architecture (%s)",
2141 bfd_arch_info->printable_name);
2142 }
2143 /* log it */
2144 if (gdbarch_debug)
2145 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2146 bfd_arch_info->printable_name,
2147 (long) init);
2148 /* Append it */
2149 (*curr) = XMALLOC (struct gdbarch_registration);
2150 (*curr)->bfd_architecture = bfd_architecture;
2151 (*curr)->init = init;
2152 (*curr)->dump_tdep = dump_tdep;
2153 (*curr)->arches = NULL;
2154 (*curr)->next = NULL;
2155 /* When non- multi-arch, install whatever target dump routine we've
2156 been provided - hopefully that routine has been written correctly
2157 and works regardless of multi-arch. */
2158 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2159 && startup_gdbarch.dump_tdep == NULL)
2160 startup_gdbarch.dump_tdep = dump_tdep;
2161 }
2162
2163 void
2164 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2165 gdbarch_init_ftype *init)
2166 {
2167 gdbarch_register (bfd_architecture, init, NULL);
2168 }
2169
2170
2171 /* Look for an architecture using gdbarch_info. Base search on only
2172 BFD_ARCH_INFO and BYTE_ORDER. */
2173
2174 struct gdbarch_list *
2175 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2176 const struct gdbarch_info *info)
2177 {
2178 for (; arches != NULL; arches = arches->next)
2179 {
2180 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2181 continue;
2182 if (info->byte_order != arches->gdbarch->byte_order)
2183 continue;
2184 if (info->osabi != arches->gdbarch->osabi)
2185 continue;
2186 return arches;
2187 }
2188 return NULL;
2189 }
2190
2191
2192 /* Update the current architecture. Return ZERO if the update request
2193 failed. */
2194
2195 int
2196 gdbarch_update_p (struct gdbarch_info info)
2197 {
2198 struct gdbarch *new_gdbarch;
2199 struct gdbarch *old_gdbarch;
2200 struct gdbarch_registration *rego;
2201
2202 /* Fill in missing parts of the INFO struct using a number of
2203 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2204
2205 /* \`\`(gdb) set architecture ...'' */
2206 if (info.bfd_arch_info == NULL
2207 && !TARGET_ARCHITECTURE_AUTO)
2208 info.bfd_arch_info = TARGET_ARCHITECTURE;
2209 if (info.bfd_arch_info == NULL
2210 && info.abfd != NULL
2211 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2212 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2213 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2214 if (info.bfd_arch_info == NULL)
2215 info.bfd_arch_info = TARGET_ARCHITECTURE;
2216
2217 /* \`\`(gdb) set byte-order ...'' */
2218 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2219 && !TARGET_BYTE_ORDER_AUTO)
2220 info.byte_order = TARGET_BYTE_ORDER;
2221 /* From the INFO struct. */
2222 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2223 && info.abfd != NULL)
2224 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2225 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2226 : BFD_ENDIAN_UNKNOWN);
2227 /* From the current target. */
2228 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2229 info.byte_order = TARGET_BYTE_ORDER;
2230
2231 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2232 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2233 info.osabi = gdbarch_lookup_osabi (info.abfd);
2234 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2235 info.osabi = current_gdbarch->osabi;
2236
2237 /* Must have found some sort of architecture. */
2238 gdb_assert (info.bfd_arch_info != NULL);
2239
2240 if (gdbarch_debug)
2241 {
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_update: info.bfd_arch_info %s\n",
2244 (info.bfd_arch_info != NULL
2245 ? info.bfd_arch_info->printable_name
2246 : "(null)"));
2247 fprintf_unfiltered (gdb_stdlog,
2248 "gdbarch_update: info.byte_order %d (%s)\n",
2249 info.byte_order,
2250 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2251 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2252 : "default"));
2253 fprintf_unfiltered (gdb_stdlog,
2254 "gdbarch_update: info.osabi %d (%s)\n",
2255 info.osabi, gdbarch_osabi_name (info.osabi));
2256 fprintf_unfiltered (gdb_stdlog,
2257 "gdbarch_update: info.abfd 0x%lx\n",
2258 (long) info.abfd);
2259 fprintf_unfiltered (gdb_stdlog,
2260 "gdbarch_update: info.tdep_info 0x%lx\n",
2261 (long) info.tdep_info);
2262 }
2263
2264 /* Find the target that knows about this architecture. */
2265 for (rego = gdbarch_registry;
2266 rego != NULL;
2267 rego = rego->next)
2268 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2269 break;
2270 if (rego == NULL)
2271 {
2272 if (gdbarch_debug)
2273 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2274 return 0;
2275 }
2276
2277 /* Swap the data belonging to the old target out setting the
2278 installed data to zero. This stops the ->init() function trying
2279 to refer to the previous architecture's global data structures. */
2280 swapout_gdbarch_swap (current_gdbarch);
2281 clear_gdbarch_swap (current_gdbarch);
2282
2283 /* Save the previously selected architecture, setting the global to
2284 NULL. This stops ->init() trying to use the previous
2285 architecture's configuration. The previous architecture may not
2286 even be of the same architecture family. The most recent
2287 architecture of the same family is found at the head of the
2288 rego->arches list. */
2289 old_gdbarch = current_gdbarch;
2290 current_gdbarch = NULL;
2291
2292 /* Ask the target for a replacement architecture. */
2293 new_gdbarch = rego->init (info, rego->arches);
2294
2295 /* Did the target like it? No. Reject the change and revert to the
2296 old architecture. */
2297 if (new_gdbarch == NULL)
2298 {
2299 if (gdbarch_debug)
2300 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2301 swapin_gdbarch_swap (old_gdbarch);
2302 current_gdbarch = old_gdbarch;
2303 return 0;
2304 }
2305
2306 /* Did the architecture change? No. Oops, put the old architecture
2307 back. */
2308 if (old_gdbarch == new_gdbarch)
2309 {
2310 if (gdbarch_debug)
2311 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2312 (long) new_gdbarch,
2313 new_gdbarch->bfd_arch_info->printable_name);
2314 swapin_gdbarch_swap (old_gdbarch);
2315 current_gdbarch = old_gdbarch;
2316 return 1;
2317 }
2318
2319 /* Is this a pre-existing architecture? Yes. Move it to the front
2320 of the list of architectures (keeping the list sorted Most
2321 Recently Used) and then copy it in. */
2322 {
2323 struct gdbarch_list **list;
2324 for (list = &rego->arches;
2325 (*list) != NULL;
2326 list = &(*list)->next)
2327 {
2328 if ((*list)->gdbarch == new_gdbarch)
2329 {
2330 struct gdbarch_list *this;
2331 if (gdbarch_debug)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2334 (long) new_gdbarch,
2335 new_gdbarch->bfd_arch_info->printable_name);
2336 /* Unlink this. */
2337 this = (*list);
2338 (*list) = this->next;
2339 /* Insert in the front. */
2340 this->next = rego->arches;
2341 rego->arches = this;
2342 /* Copy the new architecture in. */
2343 current_gdbarch = new_gdbarch;
2344 swapin_gdbarch_swap (new_gdbarch);
2345 architecture_changed_event ();
2346 return 1;
2347 }
2348 }
2349 }
2350
2351 /* Prepend this new architecture to the architecture list (keep the
2352 list sorted Most Recently Used). */
2353 {
2354 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2355 this->next = rego->arches;
2356 this->gdbarch = new_gdbarch;
2357 rego->arches = this;
2358 }
2359
2360 /* Switch to this new architecture marking it initialized. */
2361 current_gdbarch = new_gdbarch;
2362 current_gdbarch->initialized_p = 1;
2363 if (gdbarch_debug)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2367 (long) new_gdbarch,
2368 new_gdbarch->bfd_arch_info->printable_name);
2369 }
2370
2371 /* Check that the newly installed architecture is valid. Plug in
2372 any post init values. */
2373 new_gdbarch->dump_tdep = rego->dump_tdep;
2374 verify_gdbarch (new_gdbarch);
2375
2376 /* Initialize the per-architecture memory (swap) areas.
2377 CURRENT_GDBARCH must be update before these modules are
2378 called. */
2379 init_gdbarch_swap (new_gdbarch);
2380
2381 /* Initialize the per-architecture data. CURRENT_GDBARCH
2382 must be updated before these modules are called. */
2383 architecture_changed_event ();
2384
2385 if (gdbarch_debug)
2386 gdbarch_dump (current_gdbarch, gdb_stdlog);
2387
2388 return 1;
2389 }
2390
2391
2392 /* Disassembler */
2393
2394 /* Pointer to the target-dependent disassembly function. */
2395 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2396
2397 extern void _initialize_gdbarch (void);
2398
2399 void
2400 _initialize_gdbarch (void)
2401 {
2402 struct cmd_list_element *c;
2403
2404 add_show_from_set (add_set_cmd ("arch",
2405 class_maintenance,
2406 var_zinteger,
2407 (char *)&gdbarch_debug,
2408 "Set architecture debugging.\\n\\
2409 When non-zero, architecture debugging is enabled.", &setdebuglist),
2410 &showdebuglist);
2411 c = add_set_cmd ("archdebug",
2412 class_maintenance,
2413 var_zinteger,
2414 (char *)&gdbarch_debug,
2415 "Set architecture debugging.\\n\\
2416 When non-zero, architecture debugging is enabled.", &setlist);
2417
2418 deprecate_cmd (c, "set debug arch");
2419 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2420 }
2421 EOF
2422
2423 # close things off
2424 exec 1>&2
2425 #../move-if-change new-gdbarch.c gdbarch.c
2426 compare_new gdbarch.c
This page took 0.143013 seconds and 4 git commands to generate.