2005-01-19 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 #
495 v:=:int:believe_pcc_promotion:::::::
496 #
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 #
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
504 #
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
511
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
515
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
521 # RETURN_VALUE.
522
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
536 # function call.
537
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
545 # function is used.
546
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
549
550 #
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
566
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # Return non-zero if the processor is executing a delay slot and a
615 # further single-step is needed before the instruction finishes.
616 M::int:single_step_through_delay:struct frame_info *frame:frame
617 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
618 # disassembler. Perhaps objdump can handle it?
619 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
620 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
621
622
623 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
624 # evaluates non-zero, this is the address where the debugger will place
625 # a step-resume breakpoint to get us past the dynamic linker.
626 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
627 # Some systems also have trampoline code for returning from shared libs.
628 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
629
630 # A target might have problems with watchpoints as soon as the stack
631 # frame of the current function has been destroyed. This mostly happens
632 # as the first action in a funtion's epilogue. in_function_epilogue_p()
633 # is defined to return a non-zero value if either the given addr is one
634 # instruction after the stack destroying instruction up to the trailing
635 # return instruction or if we can figure out that the stack frame has
636 # already been invalidated regardless of the value of addr. Targets
637 # which don't suffer from that problem could just let this functionality
638 # untouched.
639 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
640 # Given a vector of command-line arguments, return a newly allocated
641 # string which, when passed to the create_inferior function, will be
642 # parsed (on Unix systems, by the shell) to yield the same vector.
643 # This function should call error() if the argument vector is not
644 # representable for this target or if this target does not support
645 # command-line arguments.
646 # ARGC is the number of elements in the vector.
647 # ARGV is an array of strings, one per argument.
648 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
649 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
650 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
651 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
652 v:=:int:cannot_step_breakpoint:::0:0::0
653 v:=:int:have_nonsteppable_watchpoint:::0:0::0
654 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
655 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
656 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
657 # Is a register in a group
658 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
659 # Fetch the pointer to the ith function argument.
660 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
661
662 # Return the appropriate register set for a core file section with
663 # name SECT_NAME and size SECT_SIZE.
664 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
665 EOF
666 }
667
668 #
669 # The .log file
670 #
671 exec > new-gdbarch.log
672 function_list | while do_read
673 do
674 cat <<EOF
675 ${class} ${returntype} ${function} ($formal)
676 EOF
677 for r in ${read}
678 do
679 eval echo \"\ \ \ \ ${r}=\${${r}}\"
680 done
681 if class_is_predicate_p && fallback_default_p
682 then
683 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
684 kill $$
685 exit 1
686 fi
687 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
688 then
689 echo "Error: postdefault is useless when invalid_p=0" 1>&2
690 kill $$
691 exit 1
692 fi
693 if class_is_multiarch_p
694 then
695 if class_is_predicate_p ; then :
696 elif test "x${predefault}" = "x"
697 then
698 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
699 kill $$
700 exit 1
701 fi
702 fi
703 echo ""
704 done
705
706 exec 1>&2
707 compare_new gdbarch.log
708
709
710 copyright ()
711 {
712 cat <<EOF
713 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714
715 /* Dynamic architecture support for GDB, the GNU debugger.
716
717 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
718 Software Foundation, Inc.
719
720 This file is part of GDB.
721
722 This program is free software; you can redistribute it and/or modify
723 it under the terms of the GNU General Public License as published by
724 the Free Software Foundation; either version 2 of the License, or
725 (at your option) any later version.
726
727 This program is distributed in the hope that it will be useful,
728 but WITHOUT ANY WARRANTY; without even the implied warranty of
729 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
730 GNU General Public License for more details.
731
732 You should have received a copy of the GNU General Public License
733 along with this program; if not, write to the Free Software
734 Foundation, Inc., 59 Temple Place - Suite 330,
735 Boston, MA 02111-1307, USA. */
736
737 /* This file was created with the aid of \`\`gdbarch.sh''.
738
739 The Bourne shell script \`\`gdbarch.sh'' creates the files
740 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
741 against the existing \`\`gdbarch.[hc]''. Any differences found
742 being reported.
743
744 If editing this file, please also run gdbarch.sh and merge any
745 changes into that script. Conversely, when making sweeping changes
746 to this file, modifying gdbarch.sh and using its output may prove
747 easier. */
748
749 EOF
750 }
751
752 #
753 # The .h file
754 #
755
756 exec > new-gdbarch.h
757 copyright
758 cat <<EOF
759 #ifndef GDBARCH_H
760 #define GDBARCH_H
761
762 struct floatformat;
763 struct ui_file;
764 struct frame_info;
765 struct value;
766 struct objfile;
767 struct minimal_symbol;
768 struct regcache;
769 struct reggroup;
770 struct regset;
771 struct disassemble_info;
772 struct target_ops;
773 struct obstack;
774
775 extern struct gdbarch *current_gdbarch;
776 EOF
777
778 # function typedef's
779 printf "\n"
780 printf "\n"
781 printf "/* The following are pre-initialized by GDBARCH. */\n"
782 function_list | while do_read
783 do
784 if class_is_info_p
785 then
786 printf "\n"
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
789 if test -n "${macro}"
790 then
791 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
792 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#endif\n"
794 printf "#if !defined (${macro})\n"
795 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
796 printf "#endif\n"
797 fi
798 fi
799 done
800
801 # function typedef's
802 printf "\n"
803 printf "\n"
804 printf "/* The following are initialized by the target dependent code. */\n"
805 function_list | while do_read
806 do
807 if [ -n "${comment}" ]
808 then
809 echo "${comment}" | sed \
810 -e '2 s,#,/*,' \
811 -e '3,$ s,#, ,' \
812 -e '$ s,$, */,'
813 fi
814
815 if class_is_predicate_p
816 then
817 if test -n "${macro}"
818 then
819 printf "\n"
820 printf "#if defined (${macro})\n"
821 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
822 printf "#if !defined (${macro}_P)\n"
823 printf "#define ${macro}_P() (1)\n"
824 printf "#endif\n"
825 printf "#endif\n"
826 fi
827 printf "\n"
828 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
829 if test -n "${macro}"
830 then
831 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
832 printf "#error \"Non multi-arch definition of ${macro}\"\n"
833 printf "#endif\n"
834 printf "#if !defined (${macro}_P)\n"
835 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
836 printf "#endif\n"
837 fi
838 fi
839 if class_is_variable_p
840 then
841 printf "\n"
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
844 if test -n "${macro}"
845 then
846 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "#endif\n"
852 fi
853 fi
854 if class_is_function_p
855 then
856 printf "\n"
857 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
858 then
859 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
860 elif class_is_multiarch_p
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
863 else
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
865 fi
866 if [ "x${formal}" = "xvoid" ]
867 then
868 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
869 else
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
871 fi
872 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
873 if test -n "${macro}"
874 then
875 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 if [ "x${actual}" = "x" ]
879 then
880 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
881 elif [ "x${actual}" = "x-" ]
882 then
883 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
884 else
885 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
886 fi
887 printf "#if !defined (${macro})\n"
888 if [ "x${actual}" = "x" ]
889 then
890 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
891 elif [ "x${actual}" = "x-" ]
892 then
893 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
894 else
895 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
896 fi
897 printf "#endif\n"
898 fi
899 fi
900 done
901
902 # close it off
903 cat <<EOF
904
905 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
906
907
908 /* Mechanism for co-ordinating the selection of a specific
909 architecture.
910
911 GDB targets (*-tdep.c) can register an interest in a specific
912 architecture. Other GDB components can register a need to maintain
913 per-architecture data.
914
915 The mechanisms below ensures that there is only a loose connection
916 between the set-architecture command and the various GDB
917 components. Each component can independently register their need
918 to maintain architecture specific data with gdbarch.
919
920 Pragmatics:
921
922 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
923 didn't scale.
924
925 The more traditional mega-struct containing architecture specific
926 data for all the various GDB components was also considered. Since
927 GDB is built from a variable number of (fairly independent)
928 components it was determined that the global aproach was not
929 applicable. */
930
931
932 /* Register a new architectural family with GDB.
933
934 Register support for the specified ARCHITECTURE with GDB. When
935 gdbarch determines that the specified architecture has been
936 selected, the corresponding INIT function is called.
937
938 --
939
940 The INIT function takes two parameters: INFO which contains the
941 information available to gdbarch about the (possibly new)
942 architecture; ARCHES which is a list of the previously created
943 \`\`struct gdbarch'' for this architecture.
944
945 The INFO parameter is, as far as possible, be pre-initialized with
946 information obtained from INFO.ABFD or the previously selected
947 architecture.
948
949 The ARCHES parameter is a linked list (sorted most recently used)
950 of all the previously created architures for this architecture
951 family. The (possibly NULL) ARCHES->gdbarch can used to access
952 values from the previously selected architecture for this
953 architecture family. The global \`\`current_gdbarch'' shall not be
954 used.
955
956 The INIT function shall return any of: NULL - indicating that it
957 doesn't recognize the selected architecture; an existing \`\`struct
958 gdbarch'' from the ARCHES list - indicating that the new
959 architecture is just a synonym for an earlier architecture (see
960 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
961 - that describes the selected architecture (see gdbarch_alloc()).
962
963 The DUMP_TDEP function shall print out all target specific values.
964 Care should be taken to ensure that the function works in both the
965 multi-arch and non- multi-arch cases. */
966
967 struct gdbarch_list
968 {
969 struct gdbarch *gdbarch;
970 struct gdbarch_list *next;
971 };
972
973 struct gdbarch_info
974 {
975 /* Use default: NULL (ZERO). */
976 const struct bfd_arch_info *bfd_arch_info;
977
978 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
979 int byte_order;
980
981 /* Use default: NULL (ZERO). */
982 bfd *abfd;
983
984 /* Use default: NULL (ZERO). */
985 struct gdbarch_tdep_info *tdep_info;
986
987 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
988 enum gdb_osabi osabi;
989 };
990
991 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
992 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
993
994 /* DEPRECATED - use gdbarch_register() */
995 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
996
997 extern void gdbarch_register (enum bfd_architecture architecture,
998 gdbarch_init_ftype *,
999 gdbarch_dump_tdep_ftype *);
1000
1001
1002 /* Return a freshly allocated, NULL terminated, array of the valid
1003 architecture names. Since architectures are registered during the
1004 _initialize phase this function only returns useful information
1005 once initialization has been completed. */
1006
1007 extern const char **gdbarch_printable_names (void);
1008
1009
1010 /* Helper function. Search the list of ARCHES for a GDBARCH that
1011 matches the information provided by INFO. */
1012
1013 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1014
1015
1016 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1017 basic initialization using values obtained from the INFO andTDEP
1018 parameters. set_gdbarch_*() functions are called to complete the
1019 initialization of the object. */
1020
1021 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1022
1023
1024 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1025 It is assumed that the caller freeds the \`\`struct
1026 gdbarch_tdep''. */
1027
1028 extern void gdbarch_free (struct gdbarch *);
1029
1030
1031 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1032 obstack. The memory is freed when the corresponding architecture
1033 is also freed. */
1034
1035 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1036 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1037 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1038
1039
1040 /* Helper function. Force an update of the current architecture.
1041
1042 The actual architecture selected is determined by INFO, \`\`(gdb) set
1043 architecture'' et.al., the existing architecture and BFD's default
1044 architecture. INFO should be initialized to zero and then selected
1045 fields should be updated.
1046
1047 Returns non-zero if the update succeeds */
1048
1049 extern int gdbarch_update_p (struct gdbarch_info info);
1050
1051
1052 /* Helper function. Find an architecture matching info.
1053
1054 INFO should be initialized using gdbarch_info_init, relevant fields
1055 set, and then finished using gdbarch_info_fill.
1056
1057 Returns the corresponding architecture, or NULL if no matching
1058 architecture was found. "current_gdbarch" is not updated. */
1059
1060 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1061
1062
1063 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1064
1065 FIXME: kettenis/20031124: Of the functions that follow, only
1066 gdbarch_from_bfd is supposed to survive. The others will
1067 dissappear since in the future GDB will (hopefully) be truly
1068 multi-arch. However, for now we're still stuck with the concept of
1069 a single active architecture. */
1070
1071 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1072
1073
1074 /* Register per-architecture data-pointer.
1075
1076 Reserve space for a per-architecture data-pointer. An identifier
1077 for the reserved data-pointer is returned. That identifer should
1078 be saved in a local static variable.
1079
1080 Memory for the per-architecture data shall be allocated using
1081 gdbarch_obstack_zalloc. That memory will be deleted when the
1082 corresponding architecture object is deleted.
1083
1084 When a previously created architecture is re-selected, the
1085 per-architecture data-pointer for that previous architecture is
1086 restored. INIT() is not re-called.
1087
1088 Multiple registrarants for any architecture are allowed (and
1089 strongly encouraged). */
1090
1091 struct gdbarch_data;
1092
1093 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1094 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1095 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1096 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1097 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1098 struct gdbarch_data *data,
1099 void *pointer);
1100
1101 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1102
1103
1104
1105 /* Register per-architecture memory region.
1106
1107 Provide a memory-region swap mechanism. Per-architecture memory
1108 region are created. These memory regions are swapped whenever the
1109 architecture is changed. For a new architecture, the memory region
1110 is initialized with zero (0) and the INIT function is called.
1111
1112 Memory regions are swapped / initialized in the order that they are
1113 registered. NULL DATA and/or INIT values can be specified.
1114
1115 New code should use gdbarch_data_register_*(). */
1116
1117 typedef void (gdbarch_swap_ftype) (void);
1118 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1119 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1120
1121
1122
1123 /* Set the dynamic target-system-dependent parameters (architecture,
1124 byte-order, ...) using information found in the BFD */
1125
1126 extern void set_gdbarch_from_file (bfd *);
1127
1128
1129 /* Initialize the current architecture to the "first" one we find on
1130 our list. */
1131
1132 extern void initialize_current_architecture (void);
1133
1134 /* gdbarch trace variable */
1135 extern int gdbarch_debug;
1136
1137 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1138
1139 #endif
1140 EOF
1141 exec 1>&2
1142 #../move-if-change new-gdbarch.h gdbarch.h
1143 compare_new gdbarch.h
1144
1145
1146 #
1147 # C file
1148 #
1149
1150 exec > new-gdbarch.c
1151 copyright
1152 cat <<EOF
1153
1154 #include "defs.h"
1155 #include "arch-utils.h"
1156
1157 #include "gdbcmd.h"
1158 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1159 #include "symcat.h"
1160
1161 #include "floatformat.h"
1162
1163 #include "gdb_assert.h"
1164 #include "gdb_string.h"
1165 #include "gdb-events.h"
1166 #include "reggroups.h"
1167 #include "osabi.h"
1168 #include "gdb_obstack.h"
1169
1170 /* Static function declarations */
1171
1172 static void alloc_gdbarch_data (struct gdbarch *);
1173
1174 /* Non-zero if we want to trace architecture code. */
1175
1176 #ifndef GDBARCH_DEBUG
1177 #define GDBARCH_DEBUG 0
1178 #endif
1179 int gdbarch_debug = GDBARCH_DEBUG;
1180
1181 static const char *
1182 pformat (const struct floatformat *format)
1183 {
1184 if (format == NULL)
1185 return "(null)";
1186 else
1187 return format->name;
1188 }
1189
1190 EOF
1191
1192 # gdbarch open the gdbarch object
1193 printf "\n"
1194 printf "/* Maintain the struct gdbarch object */\n"
1195 printf "\n"
1196 printf "struct gdbarch\n"
1197 printf "{\n"
1198 printf " /* Has this architecture been fully initialized? */\n"
1199 printf " int initialized_p;\n"
1200 printf "\n"
1201 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1202 printf " struct obstack *obstack;\n"
1203 printf "\n"
1204 printf " /* basic architectural information */\n"
1205 function_list | while do_read
1206 do
1207 if class_is_info_p
1208 then
1209 printf " ${returntype} ${function};\n"
1210 fi
1211 done
1212 printf "\n"
1213 printf " /* target specific vector. */\n"
1214 printf " struct gdbarch_tdep *tdep;\n"
1215 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1216 printf "\n"
1217 printf " /* per-architecture data-pointers */\n"
1218 printf " unsigned nr_data;\n"
1219 printf " void **data;\n"
1220 printf "\n"
1221 printf " /* per-architecture swap-regions */\n"
1222 printf " struct gdbarch_swap *swap;\n"
1223 printf "\n"
1224 cat <<EOF
1225 /* Multi-arch values.
1226
1227 When extending this structure you must:
1228
1229 Add the field below.
1230
1231 Declare set/get functions and define the corresponding
1232 macro in gdbarch.h.
1233
1234 gdbarch_alloc(): If zero/NULL is not a suitable default,
1235 initialize the new field.
1236
1237 verify_gdbarch(): Confirm that the target updated the field
1238 correctly.
1239
1240 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1241 field is dumped out
1242
1243 \`\`startup_gdbarch()'': Append an initial value to the static
1244 variable (base values on the host's c-type system).
1245
1246 get_gdbarch(): Implement the set/get functions (probably using
1247 the macro's as shortcuts).
1248
1249 */
1250
1251 EOF
1252 function_list | while do_read
1253 do
1254 if class_is_variable_p
1255 then
1256 printf " ${returntype} ${function};\n"
1257 elif class_is_function_p
1258 then
1259 printf " gdbarch_${function}_ftype *${function};\n"
1260 fi
1261 done
1262 printf "};\n"
1263
1264 # A pre-initialized vector
1265 printf "\n"
1266 printf "\n"
1267 cat <<EOF
1268 /* The default architecture uses host values (for want of a better
1269 choice). */
1270 EOF
1271 printf "\n"
1272 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1273 printf "\n"
1274 printf "struct gdbarch startup_gdbarch =\n"
1275 printf "{\n"
1276 printf " 1, /* Always initialized. */\n"
1277 printf " NULL, /* The obstack. */\n"
1278 printf " /* basic architecture information */\n"
1279 function_list | while do_read
1280 do
1281 if class_is_info_p
1282 then
1283 printf " ${staticdefault}, /* ${function} */\n"
1284 fi
1285 done
1286 cat <<EOF
1287 /* target specific vector and its dump routine */
1288 NULL, NULL,
1289 /*per-architecture data-pointers and swap regions */
1290 0, NULL, NULL,
1291 /* Multi-arch values */
1292 EOF
1293 function_list | while do_read
1294 do
1295 if class_is_function_p || class_is_variable_p
1296 then
1297 printf " ${staticdefault}, /* ${function} */\n"
1298 fi
1299 done
1300 cat <<EOF
1301 /* startup_gdbarch() */
1302 };
1303
1304 struct gdbarch *current_gdbarch = &startup_gdbarch;
1305 EOF
1306
1307 # Create a new gdbarch struct
1308 cat <<EOF
1309
1310 /* Create a new \`\`struct gdbarch'' based on information provided by
1311 \`\`struct gdbarch_info''. */
1312 EOF
1313 printf "\n"
1314 cat <<EOF
1315 struct gdbarch *
1316 gdbarch_alloc (const struct gdbarch_info *info,
1317 struct gdbarch_tdep *tdep)
1318 {
1319 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1320 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1321 the current local architecture and not the previous global
1322 architecture. This ensures that the new architectures initial
1323 values are not influenced by the previous architecture. Once
1324 everything is parameterised with gdbarch, this will go away. */
1325 struct gdbarch *current_gdbarch;
1326
1327 /* Create an obstack for allocating all the per-architecture memory,
1328 then use that to allocate the architecture vector. */
1329 struct obstack *obstack = XMALLOC (struct obstack);
1330 obstack_init (obstack);
1331 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1332 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1333 current_gdbarch->obstack = obstack;
1334
1335 alloc_gdbarch_data (current_gdbarch);
1336
1337 current_gdbarch->tdep = tdep;
1338 EOF
1339 printf "\n"
1340 function_list | while do_read
1341 do
1342 if class_is_info_p
1343 then
1344 printf " current_gdbarch->${function} = info->${function};\n"
1345 fi
1346 done
1347 printf "\n"
1348 printf " /* Force the explicit initialization of these. */\n"
1349 function_list | while do_read
1350 do
1351 if class_is_function_p || class_is_variable_p
1352 then
1353 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1354 then
1355 printf " current_gdbarch->${function} = ${predefault};\n"
1356 fi
1357 fi
1358 done
1359 cat <<EOF
1360 /* gdbarch_alloc() */
1361
1362 return current_gdbarch;
1363 }
1364 EOF
1365
1366 # Free a gdbarch struct.
1367 printf "\n"
1368 printf "\n"
1369 cat <<EOF
1370 /* Allocate extra space using the per-architecture obstack. */
1371
1372 void *
1373 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1374 {
1375 void *data = obstack_alloc (arch->obstack, size);
1376 memset (data, 0, size);
1377 return data;
1378 }
1379
1380
1381 /* Free a gdbarch struct. This should never happen in normal
1382 operation --- once you've created a gdbarch, you keep it around.
1383 However, if an architecture's init function encounters an error
1384 building the structure, it may need to clean up a partially
1385 constructed gdbarch. */
1386
1387 void
1388 gdbarch_free (struct gdbarch *arch)
1389 {
1390 struct obstack *obstack;
1391 gdb_assert (arch != NULL);
1392 gdb_assert (!arch->initialized_p);
1393 obstack = arch->obstack;
1394 obstack_free (obstack, 0); /* Includes the ARCH. */
1395 xfree (obstack);
1396 }
1397 EOF
1398
1399 # verify a new architecture
1400 cat <<EOF
1401
1402
1403 /* Ensure that all values in a GDBARCH are reasonable. */
1404
1405 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1406 just happens to match the global variable \`\`current_gdbarch''. That
1407 way macros refering to that variable get the local and not the global
1408 version - ulgh. Once everything is parameterised with gdbarch, this
1409 will go away. */
1410
1411 static void
1412 verify_gdbarch (struct gdbarch *current_gdbarch)
1413 {
1414 struct ui_file *log;
1415 struct cleanup *cleanups;
1416 long dummy;
1417 char *buf;
1418 log = mem_fileopen ();
1419 cleanups = make_cleanup_ui_file_delete (log);
1420 /* fundamental */
1421 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1422 fprintf_unfiltered (log, "\n\tbyte-order");
1423 if (current_gdbarch->bfd_arch_info == NULL)
1424 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1425 /* Check those that need to be defined for the given multi-arch level. */
1426 EOF
1427 function_list | while do_read
1428 do
1429 if class_is_function_p || class_is_variable_p
1430 then
1431 if [ "x${invalid_p}" = "x0" ]
1432 then
1433 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1434 elif class_is_predicate_p
1435 then
1436 printf " /* Skip verify of ${function}, has predicate */\n"
1437 # FIXME: See do_read for potential simplification
1438 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1439 then
1440 printf " if (${invalid_p})\n"
1441 printf " current_gdbarch->${function} = ${postdefault};\n"
1442 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1443 then
1444 printf " if (current_gdbarch->${function} == ${predefault})\n"
1445 printf " current_gdbarch->${function} = ${postdefault};\n"
1446 elif [ -n "${postdefault}" ]
1447 then
1448 printf " if (current_gdbarch->${function} == 0)\n"
1449 printf " current_gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${invalid_p}" ]
1451 then
1452 printf " if (${invalid_p})\n"
1453 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1454 elif [ -n "${predefault}" ]
1455 then
1456 printf " if (current_gdbarch->${function} == ${predefault})\n"
1457 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1458 fi
1459 fi
1460 done
1461 cat <<EOF
1462 buf = ui_file_xstrdup (log, &dummy);
1463 make_cleanup (xfree, buf);
1464 if (strlen (buf) > 0)
1465 internal_error (__FILE__, __LINE__,
1466 "verify_gdbarch: the following are invalid ...%s",
1467 buf);
1468 do_cleanups (cleanups);
1469 }
1470 EOF
1471
1472 # dump the structure
1473 printf "\n"
1474 printf "\n"
1475 cat <<EOF
1476 /* Print out the details of the current architecture. */
1477
1478 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1479 just happens to match the global variable \`\`current_gdbarch''. That
1480 way macros refering to that variable get the local and not the global
1481 version - ulgh. Once everything is parameterised with gdbarch, this
1482 will go away. */
1483
1484 void
1485 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1486 {
1487 const char *gdb_xm_file = "<not-defined>";
1488 const char *gdb_nm_file = "<not-defined>";
1489 const char *gdb_tm_file = "<not-defined>";
1490 #if defined (GDB_XM_FILE)
1491 gdb_xm_file = GDB_XM_FILE;
1492 #endif
1493 fprintf_unfiltered (file,
1494 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1495 gdb_xm_file);
1496 #if defined (GDB_NM_FILE)
1497 gdb_nm_file = GDB_NM_FILE;
1498 #endif
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1501 gdb_nm_file);
1502 #if defined (GDB_TM_FILE)
1503 gdb_tm_file = GDB_TM_FILE;
1504 #endif
1505 fprintf_unfiltered (file,
1506 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1507 gdb_tm_file);
1508 EOF
1509 function_list | sort -t: -k 4 | while do_read
1510 do
1511 # First the predicate
1512 if class_is_predicate_p
1513 then
1514 if test -n "${macro}"
1515 then
1516 printf "#ifdef ${macro}_P\n"
1517 printf " fprintf_unfiltered (file,\n"
1518 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1519 printf " \"${macro}_P()\",\n"
1520 printf " XSTRING (${macro}_P ()));\n"
1521 printf "#endif\n"
1522 fi
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1525 printf " gdbarch_${function}_p (current_gdbarch));\n"
1526 fi
1527 # Print the macro definition.
1528 if test -n "${macro}"
1529 then
1530 printf "#ifdef ${macro}\n"
1531 if class_is_function_p
1532 then
1533 printf " fprintf_unfiltered (file,\n"
1534 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1535 printf " \"${macro}(${actual})\",\n"
1536 printf " XSTRING (${macro} (${actual})));\n"
1537 else
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1540 printf " XSTRING (${macro}));\n"
1541 fi
1542 printf "#endif\n"
1543 fi
1544 # Print the corresponding value.
1545 if class_is_function_p
1546 then
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1549 printf " (long) current_gdbarch->${function});\n"
1550 else
1551 # It is a variable
1552 case "${print}:${returntype}" in
1553 :CORE_ADDR )
1554 fmt="0x%s"
1555 print="paddr_nz (current_gdbarch->${function})"
1556 ;;
1557 :* )
1558 fmt="%s"
1559 print="paddr_d (current_gdbarch->${function})"
1560 ;;
1561 * )
1562 fmt="%s"
1563 ;;
1564 esac
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1567 printf " ${print});\n"
1568 fi
1569 done
1570 cat <<EOF
1571 if (current_gdbarch->dump_tdep != NULL)
1572 current_gdbarch->dump_tdep (current_gdbarch, file);
1573 }
1574 EOF
1575
1576
1577 # GET/SET
1578 printf "\n"
1579 cat <<EOF
1580 struct gdbarch_tdep *
1581 gdbarch_tdep (struct gdbarch *gdbarch)
1582 {
1583 if (gdbarch_debug >= 2)
1584 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1585 return gdbarch->tdep;
1586 }
1587 EOF
1588 printf "\n"
1589 function_list | while do_read
1590 do
1591 if class_is_predicate_p
1592 then
1593 printf "\n"
1594 printf "int\n"
1595 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1596 printf "{\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " return ${predicate};\n"
1599 printf "}\n"
1600 fi
1601 if class_is_function_p
1602 then
1603 printf "\n"
1604 printf "${returntype}\n"
1605 if [ "x${formal}" = "xvoid" ]
1606 then
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1608 else
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1610 fi
1611 printf "{\n"
1612 printf " gdb_assert (gdbarch != NULL);\n"
1613 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1614 if class_is_predicate_p && test -n "${predefault}"
1615 then
1616 # Allow a call to a function with a predicate.
1617 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1618 fi
1619 printf " if (gdbarch_debug >= 2)\n"
1620 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1621 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1622 then
1623 if class_is_multiarch_p
1624 then
1625 params="gdbarch"
1626 else
1627 params=""
1628 fi
1629 else
1630 if class_is_multiarch_p
1631 then
1632 params="gdbarch, ${actual}"
1633 else
1634 params="${actual}"
1635 fi
1636 fi
1637 if [ "x${returntype}" = "xvoid" ]
1638 then
1639 printf " gdbarch->${function} (${params});\n"
1640 else
1641 printf " return gdbarch->${function} (${params});\n"
1642 fi
1643 printf "}\n"
1644 printf "\n"
1645 printf "void\n"
1646 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1647 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1648 printf "{\n"
1649 printf " gdbarch->${function} = ${function};\n"
1650 printf "}\n"
1651 elif class_is_variable_p
1652 then
1653 printf "\n"
1654 printf "${returntype}\n"
1655 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1656 printf "{\n"
1657 printf " gdb_assert (gdbarch != NULL);\n"
1658 if [ "x${invalid_p}" = "x0" ]
1659 then
1660 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1661 elif [ -n "${invalid_p}" ]
1662 then
1663 printf " /* Check variable is valid. */\n"
1664 printf " gdb_assert (!(${invalid_p}));\n"
1665 elif [ -n "${predefault}" ]
1666 then
1667 printf " /* Check variable changed from pre-default. */\n"
1668 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1669 fi
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 printf " return gdbarch->${function};\n"
1673 printf "}\n"
1674 printf "\n"
1675 printf "void\n"
1676 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1677 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1678 printf "{\n"
1679 printf " gdbarch->${function} = ${function};\n"
1680 printf "}\n"
1681 elif class_is_info_p
1682 then
1683 printf "\n"
1684 printf "${returntype}\n"
1685 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1686 printf "{\n"
1687 printf " gdb_assert (gdbarch != NULL);\n"
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1691 printf "}\n"
1692 fi
1693 done
1694
1695 # All the trailing guff
1696 cat <<EOF
1697
1698
1699 /* Keep a registry of per-architecture data-pointers required by GDB
1700 modules. */
1701
1702 struct gdbarch_data
1703 {
1704 unsigned index;
1705 int init_p;
1706 gdbarch_data_pre_init_ftype *pre_init;
1707 gdbarch_data_post_init_ftype *post_init;
1708 };
1709
1710 struct gdbarch_data_registration
1711 {
1712 struct gdbarch_data *data;
1713 struct gdbarch_data_registration *next;
1714 };
1715
1716 struct gdbarch_data_registry
1717 {
1718 unsigned nr;
1719 struct gdbarch_data_registration *registrations;
1720 };
1721
1722 struct gdbarch_data_registry gdbarch_data_registry =
1723 {
1724 0, NULL,
1725 };
1726
1727 static struct gdbarch_data *
1728 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1729 gdbarch_data_post_init_ftype *post_init)
1730 {
1731 struct gdbarch_data_registration **curr;
1732 /* Append the new registraration. */
1733 for (curr = &gdbarch_data_registry.registrations;
1734 (*curr) != NULL;
1735 curr = &(*curr)->next);
1736 (*curr) = XMALLOC (struct gdbarch_data_registration);
1737 (*curr)->next = NULL;
1738 (*curr)->data = XMALLOC (struct gdbarch_data);
1739 (*curr)->data->index = gdbarch_data_registry.nr++;
1740 (*curr)->data->pre_init = pre_init;
1741 (*curr)->data->post_init = post_init;
1742 (*curr)->data->init_p = 1;
1743 return (*curr)->data;
1744 }
1745
1746 struct gdbarch_data *
1747 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1748 {
1749 return gdbarch_data_register (pre_init, NULL);
1750 }
1751
1752 struct gdbarch_data *
1753 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1754 {
1755 return gdbarch_data_register (NULL, post_init);
1756 }
1757
1758 /* Create/delete the gdbarch data vector. */
1759
1760 static void
1761 alloc_gdbarch_data (struct gdbarch *gdbarch)
1762 {
1763 gdb_assert (gdbarch->data == NULL);
1764 gdbarch->nr_data = gdbarch_data_registry.nr;
1765 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1766 }
1767
1768 /* Initialize the current value of the specified per-architecture
1769 data-pointer. */
1770
1771 void
1772 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1773 struct gdbarch_data *data,
1774 void *pointer)
1775 {
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 gdb_assert (gdbarch->data[data->index] == NULL);
1778 gdb_assert (data->pre_init == NULL);
1779 gdbarch->data[data->index] = pointer;
1780 }
1781
1782 /* Return the current value of the specified per-architecture
1783 data-pointer. */
1784
1785 void *
1786 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1787 {
1788 gdb_assert (data->index < gdbarch->nr_data);
1789 if (gdbarch->data[data->index] == NULL)
1790 {
1791 /* The data-pointer isn't initialized, call init() to get a
1792 value. */
1793 if (data->pre_init != NULL)
1794 /* Mid architecture creation: pass just the obstack, and not
1795 the entire architecture, as that way it isn't possible for
1796 pre-init code to refer to undefined architecture
1797 fields. */
1798 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1799 else if (gdbarch->initialized_p
1800 && data->post_init != NULL)
1801 /* Post architecture creation: pass the entire architecture
1802 (as all fields are valid), but be careful to also detect
1803 recursive references. */
1804 {
1805 gdb_assert (data->init_p);
1806 data->init_p = 0;
1807 gdbarch->data[data->index] = data->post_init (gdbarch);
1808 data->init_p = 1;
1809 }
1810 else
1811 /* The architecture initialization hasn't completed - punt -
1812 hope that the caller knows what they are doing. Once
1813 deprecated_set_gdbarch_data has been initialized, this can be
1814 changed to an internal error. */
1815 return NULL;
1816 gdb_assert (gdbarch->data[data->index] != NULL);
1817 }
1818 return gdbarch->data[data->index];
1819 }
1820
1821
1822
1823 /* Keep a registry of swapped data required by GDB modules. */
1824
1825 struct gdbarch_swap
1826 {
1827 void *swap;
1828 struct gdbarch_swap_registration *source;
1829 struct gdbarch_swap *next;
1830 };
1831
1832 struct gdbarch_swap_registration
1833 {
1834 void *data;
1835 unsigned long sizeof_data;
1836 gdbarch_swap_ftype *init;
1837 struct gdbarch_swap_registration *next;
1838 };
1839
1840 struct gdbarch_swap_registry
1841 {
1842 int nr;
1843 struct gdbarch_swap_registration *registrations;
1844 };
1845
1846 struct gdbarch_swap_registry gdbarch_swap_registry =
1847 {
1848 0, NULL,
1849 };
1850
1851 void
1852 deprecated_register_gdbarch_swap (void *data,
1853 unsigned long sizeof_data,
1854 gdbarch_swap_ftype *init)
1855 {
1856 struct gdbarch_swap_registration **rego;
1857 for (rego = &gdbarch_swap_registry.registrations;
1858 (*rego) != NULL;
1859 rego = &(*rego)->next);
1860 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1861 (*rego)->next = NULL;
1862 (*rego)->init = init;
1863 (*rego)->data = data;
1864 (*rego)->sizeof_data = sizeof_data;
1865 }
1866
1867 static void
1868 current_gdbarch_swap_init_hack (void)
1869 {
1870 struct gdbarch_swap_registration *rego;
1871 struct gdbarch_swap **curr = &current_gdbarch->swap;
1872 for (rego = gdbarch_swap_registry.registrations;
1873 rego != NULL;
1874 rego = rego->next)
1875 {
1876 if (rego->data != NULL)
1877 {
1878 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1879 struct gdbarch_swap);
1880 (*curr)->source = rego;
1881 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1882 rego->sizeof_data);
1883 (*curr)->next = NULL;
1884 curr = &(*curr)->next;
1885 }
1886 if (rego->init != NULL)
1887 rego->init ();
1888 }
1889 }
1890
1891 static struct gdbarch *
1892 current_gdbarch_swap_out_hack (void)
1893 {
1894 struct gdbarch *old_gdbarch = current_gdbarch;
1895 struct gdbarch_swap *curr;
1896
1897 gdb_assert (old_gdbarch != NULL);
1898 for (curr = old_gdbarch->swap;
1899 curr != NULL;
1900 curr = curr->next)
1901 {
1902 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1903 memset (curr->source->data, 0, curr->source->sizeof_data);
1904 }
1905 current_gdbarch = NULL;
1906 return old_gdbarch;
1907 }
1908
1909 static void
1910 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1911 {
1912 struct gdbarch_swap *curr;
1913
1914 gdb_assert (current_gdbarch == NULL);
1915 for (curr = new_gdbarch->swap;
1916 curr != NULL;
1917 curr = curr->next)
1918 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1919 current_gdbarch = new_gdbarch;
1920 }
1921
1922
1923 /* Keep a registry of the architectures known by GDB. */
1924
1925 struct gdbarch_registration
1926 {
1927 enum bfd_architecture bfd_architecture;
1928 gdbarch_init_ftype *init;
1929 gdbarch_dump_tdep_ftype *dump_tdep;
1930 struct gdbarch_list *arches;
1931 struct gdbarch_registration *next;
1932 };
1933
1934 static struct gdbarch_registration *gdbarch_registry = NULL;
1935
1936 static void
1937 append_name (const char ***buf, int *nr, const char *name)
1938 {
1939 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1940 (*buf)[*nr] = name;
1941 *nr += 1;
1942 }
1943
1944 const char **
1945 gdbarch_printable_names (void)
1946 {
1947 /* Accumulate a list of names based on the registed list of
1948 architectures. */
1949 enum bfd_architecture a;
1950 int nr_arches = 0;
1951 const char **arches = NULL;
1952 struct gdbarch_registration *rego;
1953 for (rego = gdbarch_registry;
1954 rego != NULL;
1955 rego = rego->next)
1956 {
1957 const struct bfd_arch_info *ap;
1958 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1959 if (ap == NULL)
1960 internal_error (__FILE__, __LINE__,
1961 "gdbarch_architecture_names: multi-arch unknown");
1962 do
1963 {
1964 append_name (&arches, &nr_arches, ap->printable_name);
1965 ap = ap->next;
1966 }
1967 while (ap != NULL);
1968 }
1969 append_name (&arches, &nr_arches, NULL);
1970 return arches;
1971 }
1972
1973
1974 void
1975 gdbarch_register (enum bfd_architecture bfd_architecture,
1976 gdbarch_init_ftype *init,
1977 gdbarch_dump_tdep_ftype *dump_tdep)
1978 {
1979 struct gdbarch_registration **curr;
1980 const struct bfd_arch_info *bfd_arch_info;
1981 /* Check that BFD recognizes this architecture */
1982 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1983 if (bfd_arch_info == NULL)
1984 {
1985 internal_error (__FILE__, __LINE__,
1986 "gdbarch: Attempt to register unknown architecture (%d)",
1987 bfd_architecture);
1988 }
1989 /* Check that we haven't seen this architecture before */
1990 for (curr = &gdbarch_registry;
1991 (*curr) != NULL;
1992 curr = &(*curr)->next)
1993 {
1994 if (bfd_architecture == (*curr)->bfd_architecture)
1995 internal_error (__FILE__, __LINE__,
1996 "gdbarch: Duplicate registraration of architecture (%s)",
1997 bfd_arch_info->printable_name);
1998 }
1999 /* log it */
2000 if (gdbarch_debug)
2001 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2002 bfd_arch_info->printable_name,
2003 (long) init);
2004 /* Append it */
2005 (*curr) = XMALLOC (struct gdbarch_registration);
2006 (*curr)->bfd_architecture = bfd_architecture;
2007 (*curr)->init = init;
2008 (*curr)->dump_tdep = dump_tdep;
2009 (*curr)->arches = NULL;
2010 (*curr)->next = NULL;
2011 }
2012
2013 void
2014 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2015 gdbarch_init_ftype *init)
2016 {
2017 gdbarch_register (bfd_architecture, init, NULL);
2018 }
2019
2020
2021 /* Look for an architecture using gdbarch_info. Base search on only
2022 BFD_ARCH_INFO and BYTE_ORDER. */
2023
2024 struct gdbarch_list *
2025 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2026 const struct gdbarch_info *info)
2027 {
2028 for (; arches != NULL; arches = arches->next)
2029 {
2030 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2031 continue;
2032 if (info->byte_order != arches->gdbarch->byte_order)
2033 continue;
2034 if (info->osabi != arches->gdbarch->osabi)
2035 continue;
2036 return arches;
2037 }
2038 return NULL;
2039 }
2040
2041
2042 /* Find an architecture that matches the specified INFO. Create a new
2043 architecture if needed. Return that new architecture. Assumes
2044 that there is no current architecture. */
2045
2046 static struct gdbarch *
2047 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2048 {
2049 struct gdbarch *new_gdbarch;
2050 struct gdbarch_registration *rego;
2051
2052 /* The existing architecture has been swapped out - all this code
2053 works from a clean slate. */
2054 gdb_assert (current_gdbarch == NULL);
2055
2056 /* Fill in missing parts of the INFO struct using a number of
2057 sources: "set ..."; INFOabfd supplied; and the existing
2058 architecture. */
2059 gdbarch_info_fill (old_gdbarch, &info);
2060
2061 /* Must have found some sort of architecture. */
2062 gdb_assert (info.bfd_arch_info != NULL);
2063
2064 if (gdbarch_debug)
2065 {
2066 fprintf_unfiltered (gdb_stdlog,
2067 "find_arch_by_info: info.bfd_arch_info %s\n",
2068 (info.bfd_arch_info != NULL
2069 ? info.bfd_arch_info->printable_name
2070 : "(null)"));
2071 fprintf_unfiltered (gdb_stdlog,
2072 "find_arch_by_info: info.byte_order %d (%s)\n",
2073 info.byte_order,
2074 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2075 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2076 : "default"));
2077 fprintf_unfiltered (gdb_stdlog,
2078 "find_arch_by_info: info.osabi %d (%s)\n",
2079 info.osabi, gdbarch_osabi_name (info.osabi));
2080 fprintf_unfiltered (gdb_stdlog,
2081 "find_arch_by_info: info.abfd 0x%lx\n",
2082 (long) info.abfd);
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.tdep_info 0x%lx\n",
2085 (long) info.tdep_info);
2086 }
2087
2088 /* Find the tdep code that knows about this architecture. */
2089 for (rego = gdbarch_registry;
2090 rego != NULL;
2091 rego = rego->next)
2092 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2093 break;
2094 if (rego == NULL)
2095 {
2096 if (gdbarch_debug)
2097 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2098 "No matching architecture\n");
2099 return 0;
2100 }
2101
2102 /* Ask the tdep code for an architecture that matches "info". */
2103 new_gdbarch = rego->init (info, rego->arches);
2104
2105 /* Did the tdep code like it? No. Reject the change and revert to
2106 the old architecture. */
2107 if (new_gdbarch == NULL)
2108 {
2109 if (gdbarch_debug)
2110 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2111 "Target rejected architecture\n");
2112 return NULL;
2113 }
2114
2115 /* Is this a pre-existing architecture (as determined by already
2116 being initialized)? Move it to the front of the architecture
2117 list (keeping the list sorted Most Recently Used). */
2118 if (new_gdbarch->initialized_p)
2119 {
2120 struct gdbarch_list **list;
2121 struct gdbarch_list *this;
2122 if (gdbarch_debug)
2123 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2124 "Previous architecture 0x%08lx (%s) selected\n",
2125 (long) new_gdbarch,
2126 new_gdbarch->bfd_arch_info->printable_name);
2127 /* Find the existing arch in the list. */
2128 for (list = &rego->arches;
2129 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2130 list = &(*list)->next);
2131 /* It had better be in the list of architectures. */
2132 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2133 /* Unlink THIS. */
2134 this = (*list);
2135 (*list) = this->next;
2136 /* Insert THIS at the front. */
2137 this->next = rego->arches;
2138 rego->arches = this;
2139 /* Return it. */
2140 return new_gdbarch;
2141 }
2142
2143 /* It's a new architecture. */
2144 if (gdbarch_debug)
2145 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2146 "New architecture 0x%08lx (%s) selected\n",
2147 (long) new_gdbarch,
2148 new_gdbarch->bfd_arch_info->printable_name);
2149
2150 /* Insert the new architecture into the front of the architecture
2151 list (keep the list sorted Most Recently Used). */
2152 {
2153 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2154 this->next = rego->arches;
2155 this->gdbarch = new_gdbarch;
2156 rego->arches = this;
2157 }
2158
2159 /* Check that the newly installed architecture is valid. Plug in
2160 any post init values. */
2161 new_gdbarch->dump_tdep = rego->dump_tdep;
2162 verify_gdbarch (new_gdbarch);
2163 new_gdbarch->initialized_p = 1;
2164
2165 /* Initialize any per-architecture swap areas. This phase requires
2166 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2167 swap the entire architecture out. */
2168 current_gdbarch = new_gdbarch;
2169 current_gdbarch_swap_init_hack ();
2170 current_gdbarch_swap_out_hack ();
2171
2172 if (gdbarch_debug)
2173 gdbarch_dump (new_gdbarch, gdb_stdlog);
2174
2175 return new_gdbarch;
2176 }
2177
2178 struct gdbarch *
2179 gdbarch_find_by_info (struct gdbarch_info info)
2180 {
2181 /* Save the previously selected architecture, setting the global to
2182 NULL. This stops things like gdbarch->init() trying to use the
2183 previous architecture's configuration. The previous architecture
2184 may not even be of the same architecture family. The most recent
2185 architecture of the same family is found at the head of the
2186 rego->arches list. */
2187 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2188
2189 /* Find the specified architecture. */
2190 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2191
2192 /* Restore the existing architecture. */
2193 gdb_assert (current_gdbarch == NULL);
2194 current_gdbarch_swap_in_hack (old_gdbarch);
2195
2196 return new_gdbarch;
2197 }
2198
2199 /* Make the specified architecture current, swapping the existing one
2200 out. */
2201
2202 void
2203 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2204 {
2205 gdb_assert (new_gdbarch != NULL);
2206 gdb_assert (current_gdbarch != NULL);
2207 gdb_assert (new_gdbarch->initialized_p);
2208 current_gdbarch_swap_out_hack ();
2209 current_gdbarch_swap_in_hack (new_gdbarch);
2210 architecture_changed_event ();
2211 }
2212
2213 extern void _initialize_gdbarch (void);
2214
2215 void
2216 _initialize_gdbarch (void)
2217 {
2218 struct cmd_list_element *c;
2219
2220 deprecated_add_show_from_set
2221 (add_set_cmd ("arch",
2222 class_maintenance,
2223 var_zinteger,
2224 (char *)&gdbarch_debug,
2225 "Set architecture debugging.\\n\\
2226 When non-zero, architecture debugging is enabled.", &setdebuglist),
2227 &showdebuglist);
2228 c = add_set_cmd ("archdebug",
2229 class_maintenance,
2230 var_zinteger,
2231 (char *)&gdbarch_debug,
2232 "Set architecture debugging.\\n\\
2233 When non-zero, architecture debugging is enabled.", &setlist);
2234
2235 deprecate_cmd (c, "set debug arch");
2236 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2237 }
2238 EOF
2239
2240 # close things off
2241 exec 1>&2
2242 #../move-if-change new-gdbarch.c gdbarch.c
2243 compare_new gdbarch.c
This page took 0.119278 seconds and 4 git commands to generate.