aedd9e541b247ff5d42cc9d185885323762b215d
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
425 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426 # Convert from an sdb register number to an internal gdb register number.
427 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
487 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
488 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
489 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
490 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
491 v:CORE_ADDR:decr_pc_after_break:::0:::0
492
493 # A function can be addressed by either it's "pointer" (possibly a
494 # descriptor address) or "entry point" (first executable instruction).
495 # The method "convert_from_func_ptr_addr" converting the former to the
496 # latter. gdbarch_deprecated_function_start_offset is being used to implement
497 # a simplified subset of that functionality - the function's address
498 # corresponds to the "function pointer" and the function's start
499 # corresponds to the "function entry point" - and hence is redundant.
500
501 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
502
503 # Return the remote protocol register number associated with this
504 # register. Normally the identity mapping.
505 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
506
507 # Fetch the target specific address used to represent a load module.
508 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
509 #
510 v:CORE_ADDR:frame_args_skip:::0:::0
511 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
512 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
513 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
514 # frame-base. Enable frame-base before frame-unwind.
515 F:int:frame_num_args:struct frame_info *frame:frame
516 #
517 M:CORE_ADDR:frame_align:CORE_ADDR address:address
518 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
519 v:int:frame_red_zone_size
520 #
521 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
522 # On some machines there are bits in addresses which are not really
523 # part of the address, but are used by the kernel, the hardware, etc.
524 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
525 # we get a "real" address such as one would find in a symbol table.
526 # This is used only for addresses of instructions, and even then I'm
527 # not sure it's used in all contexts. It exists to deal with there
528 # being a few stray bits in the PC which would mislead us, not as some
529 # sort of generic thing to handle alignment or segmentation (it's
530 # possible it should be in TARGET_READ_PC instead).
531 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
532 # It is not at all clear why gdbarch_smash_text_address is not folded into
533 # gdbarch_addr_bits_remove.
534 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
535
536 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
537 # indicates if the target needs software single step. An ISA method to
538 # implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
541 # breakpoints using the breakpoint system instead of blatting memory directly
542 # (as with rs6000).
543 #
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
545 # target can single step. If not, then implement single step using breakpoints.
546 #
547 # A return value of 1 means that the software_single_step breakpoints
548 # were inserted; 0 means they were not.
549 F:int:software_single_step:struct frame_info *frame:frame
550
551 # Return non-zero if the processor is executing a delay slot and a
552 # further single-step is needed before the instruction finishes.
553 M:int:single_step_through_delay:struct frame_info *frame:frame
554 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
555 # disassembler. Perhaps objdump can handle it?
556 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
557 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
558
559
560 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
561 # evaluates non-zero, this is the address where the debugger will place
562 # a step-resume breakpoint to get us past the dynamic linker.
563 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
564 # Some systems also have trampoline code for returning from shared libs.
565 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
566
567 # A target might have problems with watchpoints as soon as the stack
568 # frame of the current function has been destroyed. This mostly happens
569 # as the first action in a funtion's epilogue. in_function_epilogue_p()
570 # is defined to return a non-zero value if either the given addr is one
571 # instruction after the stack destroying instruction up to the trailing
572 # return instruction or if we can figure out that the stack frame has
573 # already been invalidated regardless of the value of addr. Targets
574 # which don't suffer from that problem could just let this functionality
575 # untouched.
576 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
577 # Given a vector of command-line arguments, return a newly allocated
578 # string which, when passed to the create_inferior function, will be
579 # parsed (on Unix systems, by the shell) to yield the same vector.
580 # This function should call error() if the argument vector is not
581 # representable for this target or if this target does not support
582 # command-line arguments.
583 # ARGC is the number of elements in the vector.
584 # ARGV is an array of strings, one per argument.
585 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
586 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
587 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
588 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
604 # core file into buffer READBUF with length LEN.
605 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
606
607 # If the elements of C++ vtables are in-place function descriptors rather
608 # than normal function pointers (which may point to code or a descriptor),
609 # set this to one.
610 v:int:vtable_function_descriptors:::0:0::0
611
612 # Set if the least significant bit of the delta is used instead of the least
613 # significant bit of the pfn for pointers to virtual member functions.
614 v:int:vbit_in_delta:::0:0::0
615
616 # Advance PC to next instruction in order to skip a permanent breakpoint.
617 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
618
619 # The maximum length of an instruction on this architecture.
620 V:ULONGEST:max_insn_length:::0:0
621
622 # Copy the instruction at FROM to TO, and make any adjustments
623 # necessary to single-step it at that address.
624 #
625 # REGS holds the state the thread's registers will have before
626 # executing the copied instruction; the PC in REGS will refer to FROM,
627 # not the copy at TO. The caller should update it to point at TO later.
628 #
629 # Return a pointer to data of the architecture's choice to be passed
630 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
631 # the instruction's effects have been completely simulated, with the
632 # resulting state written back to REGS.
633 #
634 # For a general explanation of displaced stepping and how GDB uses it,
635 # see the comments in infrun.c.
636 #
637 # The TO area is only guaranteed to have space for
638 # gdbarch_max_insn_length (arch) bytes, so this function must not
639 # write more bytes than that to that area.
640 #
641 # If you do not provide this function, GDB assumes that the
642 # architecture does not support displaced stepping.
643 #
644 # If your architecture doesn't need to adjust instructions before
645 # single-stepping them, consider using simple_displaced_step_copy_insn
646 # here.
647 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
648
649 # Fix up the state resulting from successfully single-stepping a
650 # displaced instruction, to give the result we would have gotten from
651 # stepping the instruction in its original location.
652 #
653 # REGS is the register state resulting from single-stepping the
654 # displaced instruction.
655 #
656 # CLOSURE is the result from the matching call to
657 # gdbarch_displaced_step_copy_insn.
658 #
659 # If you provide gdbarch_displaced_step_copy_insn.but not this
660 # function, then GDB assumes that no fixup is needed after
661 # single-stepping the instruction.
662 #
663 # For a general explanation of displaced stepping and how GDB uses it,
664 # see the comments in infrun.c.
665 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
666
667 # Free a closure returned by gdbarch_displaced_step_copy_insn.
668 #
669 # If you provide gdbarch_displaced_step_copy_insn, you must provide
670 # this function as well.
671 #
672 # If your architecture uses closures that don't need to be freed, then
673 # you can use simple_displaced_step_free_closure here.
674 #
675 # For a general explanation of displaced stepping and how GDB uses it,
676 # see the comments in infrun.c.
677 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
678
679 # Return the address of an appropriate place to put displaced
680 # instructions while we step over them. There need only be one such
681 # place, since we're only stepping one thread over a breakpoint at a
682 # time.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
687
688 # Refresh overlay mapped state for section OSECT.
689 F:void:overlay_update:struct obj_section *osect:osect
690
691 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
692
693 # Handle special encoding of static variables in stabs debug info.
694 F:char *:static_transform_name:char *name:name
695 # Set if the address in N_SO or N_FUN stabs may be zero.
696 v:int:sofun_address_maybe_missing:::0:0::0
697
698 # Signal translation: translate inferior's signal (host's) number into
699 # GDB's representation.
700 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
701 # Signal translation: translate GDB's signal number into inferior's host
702 # signal number.
703 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
704
705 # Record architecture-specific information from the symbol table.
706 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
707 EOF
708 }
709
710 #
711 # The .log file
712 #
713 exec > new-gdbarch.log
714 function_list | while do_read
715 do
716 cat <<EOF
717 ${class} ${returntype} ${function} ($formal)
718 EOF
719 for r in ${read}
720 do
721 eval echo \"\ \ \ \ ${r}=\${${r}}\"
722 done
723 if class_is_predicate_p && fallback_default_p
724 then
725 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
726 kill $$
727 exit 1
728 fi
729 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
730 then
731 echo "Error: postdefault is useless when invalid_p=0" 1>&2
732 kill $$
733 exit 1
734 fi
735 if class_is_multiarch_p
736 then
737 if class_is_predicate_p ; then :
738 elif test "x${predefault}" = "x"
739 then
740 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
741 kill $$
742 exit 1
743 fi
744 fi
745 echo ""
746 done
747
748 exec 1>&2
749 compare_new gdbarch.log
750
751
752 copyright ()
753 {
754 cat <<EOF
755 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
756
757 /* Dynamic architecture support for GDB, the GNU debugger.
758
759 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
760 Free Software Foundation, Inc.
761
762 This file is part of GDB.
763
764 This program is free software; you can redistribute it and/or modify
765 it under the terms of the GNU General Public License as published by
766 the Free Software Foundation; either version 3 of the License, or
767 (at your option) any later version.
768
769 This program is distributed in the hope that it will be useful,
770 but WITHOUT ANY WARRANTY; without even the implied warranty of
771 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
772 GNU General Public License for more details.
773
774 You should have received a copy of the GNU General Public License
775 along with this program. If not, see <http://www.gnu.org/licenses/>. */
776
777 /* This file was created with the aid of \`\`gdbarch.sh''.
778
779 The Bourne shell script \`\`gdbarch.sh'' creates the files
780 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
781 against the existing \`\`gdbarch.[hc]''. Any differences found
782 being reported.
783
784 If editing this file, please also run gdbarch.sh and merge any
785 changes into that script. Conversely, when making sweeping changes
786 to this file, modifying gdbarch.sh and using its output may prove
787 easier. */
788
789 EOF
790 }
791
792 #
793 # The .h file
794 #
795
796 exec > new-gdbarch.h
797 copyright
798 cat <<EOF
799 #ifndef GDBARCH_H
800 #define GDBARCH_H
801
802 struct floatformat;
803 struct ui_file;
804 struct frame_info;
805 struct value;
806 struct objfile;
807 struct obj_section;
808 struct minimal_symbol;
809 struct regcache;
810 struct reggroup;
811 struct regset;
812 struct disassemble_info;
813 struct target_ops;
814 struct obstack;
815 struct bp_target_info;
816 struct target_desc;
817 struct displaced_step_closure;
818
819 extern struct gdbarch *current_gdbarch;
820 EOF
821
822 # function typedef's
823 printf "\n"
824 printf "\n"
825 printf "/* The following are pre-initialized by GDBARCH. */\n"
826 function_list | while do_read
827 do
828 if class_is_info_p
829 then
830 printf "\n"
831 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
832 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
833 fi
834 done
835
836 # function typedef's
837 printf "\n"
838 printf "\n"
839 printf "/* The following are initialized by the target dependent code. */\n"
840 function_list | while do_read
841 do
842 if [ -n "${comment}" ]
843 then
844 echo "${comment}" | sed \
845 -e '2 s,#,/*,' \
846 -e '3,$ s,#, ,' \
847 -e '$ s,$, */,'
848 fi
849
850 if class_is_predicate_p
851 then
852 printf "\n"
853 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
854 fi
855 if class_is_variable_p
856 then
857 printf "\n"
858 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
859 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
860 fi
861 if class_is_function_p
862 then
863 printf "\n"
864 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
865 then
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
867 elif class_is_multiarch_p
868 then
869 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
870 else
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
872 fi
873 if [ "x${formal}" = "xvoid" ]
874 then
875 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
876 else
877 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
878 fi
879 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
880 fi
881 done
882
883 # close it off
884 cat <<EOF
885
886 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
887
888
889 /* Mechanism for co-ordinating the selection of a specific
890 architecture.
891
892 GDB targets (*-tdep.c) can register an interest in a specific
893 architecture. Other GDB components can register a need to maintain
894 per-architecture data.
895
896 The mechanisms below ensures that there is only a loose connection
897 between the set-architecture command and the various GDB
898 components. Each component can independently register their need
899 to maintain architecture specific data with gdbarch.
900
901 Pragmatics:
902
903 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
904 didn't scale.
905
906 The more traditional mega-struct containing architecture specific
907 data for all the various GDB components was also considered. Since
908 GDB is built from a variable number of (fairly independent)
909 components it was determined that the global aproach was not
910 applicable. */
911
912
913 /* Register a new architectural family with GDB.
914
915 Register support for the specified ARCHITECTURE with GDB. When
916 gdbarch determines that the specified architecture has been
917 selected, the corresponding INIT function is called.
918
919 --
920
921 The INIT function takes two parameters: INFO which contains the
922 information available to gdbarch about the (possibly new)
923 architecture; ARCHES which is a list of the previously created
924 \`\`struct gdbarch'' for this architecture.
925
926 The INFO parameter is, as far as possible, be pre-initialized with
927 information obtained from INFO.ABFD or the global defaults.
928
929 The ARCHES parameter is a linked list (sorted most recently used)
930 of all the previously created architures for this architecture
931 family. The (possibly NULL) ARCHES->gdbarch can used to access
932 values from the previously selected architecture for this
933 architecture family. The global \`\`current_gdbarch'' shall not be
934 used.
935
936 The INIT function shall return any of: NULL - indicating that it
937 doesn't recognize the selected architecture; an existing \`\`struct
938 gdbarch'' from the ARCHES list - indicating that the new
939 architecture is just a synonym for an earlier architecture (see
940 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
941 - that describes the selected architecture (see gdbarch_alloc()).
942
943 The DUMP_TDEP function shall print out all target specific values.
944 Care should be taken to ensure that the function works in both the
945 multi-arch and non- multi-arch cases. */
946
947 struct gdbarch_list
948 {
949 struct gdbarch *gdbarch;
950 struct gdbarch_list *next;
951 };
952
953 struct gdbarch_info
954 {
955 /* Use default: NULL (ZERO). */
956 const struct bfd_arch_info *bfd_arch_info;
957
958 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
959 int byte_order;
960
961 /* Use default: NULL (ZERO). */
962 bfd *abfd;
963
964 /* Use default: NULL (ZERO). */
965 struct gdbarch_tdep_info *tdep_info;
966
967 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
968 enum gdb_osabi osabi;
969
970 /* Use default: NULL (ZERO). */
971 const struct target_desc *target_desc;
972 };
973
974 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
975 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
976
977 /* DEPRECATED - use gdbarch_register() */
978 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
979
980 extern void gdbarch_register (enum bfd_architecture architecture,
981 gdbarch_init_ftype *,
982 gdbarch_dump_tdep_ftype *);
983
984
985 /* Return a freshly allocated, NULL terminated, array of the valid
986 architecture names. Since architectures are registered during the
987 _initialize phase this function only returns useful information
988 once initialization has been completed. */
989
990 extern const char **gdbarch_printable_names (void);
991
992
993 /* Helper function. Search the list of ARCHES for a GDBARCH that
994 matches the information provided by INFO. */
995
996 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
997
998
999 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1000 basic initialization using values obtained from the INFO and TDEP
1001 parameters. set_gdbarch_*() functions are called to complete the
1002 initialization of the object. */
1003
1004 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1005
1006
1007 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1008 It is assumed that the caller freeds the \`\`struct
1009 gdbarch_tdep''. */
1010
1011 extern void gdbarch_free (struct gdbarch *);
1012
1013
1014 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1015 obstack. The memory is freed when the corresponding architecture
1016 is also freed. */
1017
1018 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1019 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1020 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1021
1022
1023 /* Helper function. Force an update of the current architecture.
1024
1025 The actual architecture selected is determined by INFO, \`\`(gdb) set
1026 architecture'' et.al., the existing architecture and BFD's default
1027 architecture. INFO should be initialized to zero and then selected
1028 fields should be updated.
1029
1030 Returns non-zero if the update succeeds */
1031
1032 extern int gdbarch_update_p (struct gdbarch_info info);
1033
1034
1035 /* Helper function. Find an architecture matching info.
1036
1037 INFO should be initialized using gdbarch_info_init, relevant fields
1038 set, and then finished using gdbarch_info_fill.
1039
1040 Returns the corresponding architecture, or NULL if no matching
1041 architecture was found. "current_gdbarch" is not updated. */
1042
1043 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1044
1045
1046 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1047
1048 FIXME: kettenis/20031124: Of the functions that follow, only
1049 gdbarch_from_bfd is supposed to survive. The others will
1050 dissappear since in the future GDB will (hopefully) be truly
1051 multi-arch. However, for now we're still stuck with the concept of
1052 a single active architecture. */
1053
1054 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1055
1056
1057 /* Register per-architecture data-pointer.
1058
1059 Reserve space for a per-architecture data-pointer. An identifier
1060 for the reserved data-pointer is returned. That identifer should
1061 be saved in a local static variable.
1062
1063 Memory for the per-architecture data shall be allocated using
1064 gdbarch_obstack_zalloc. That memory will be deleted when the
1065 corresponding architecture object is deleted.
1066
1067 When a previously created architecture is re-selected, the
1068 per-architecture data-pointer for that previous architecture is
1069 restored. INIT() is not re-called.
1070
1071 Multiple registrarants for any architecture are allowed (and
1072 strongly encouraged). */
1073
1074 struct gdbarch_data;
1075
1076 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1077 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1078 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1079 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1080 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1081 struct gdbarch_data *data,
1082 void *pointer);
1083
1084 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1085
1086
1087 /* Set the dynamic target-system-dependent parameters (architecture,
1088 byte-order, ...) using information found in the BFD */
1089
1090 extern void set_gdbarch_from_file (bfd *);
1091
1092
1093 /* Initialize the current architecture to the "first" one we find on
1094 our list. */
1095
1096 extern void initialize_current_architecture (void);
1097
1098 /* gdbarch trace variable */
1099 extern int gdbarch_debug;
1100
1101 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1102
1103 #endif
1104 EOF
1105 exec 1>&2
1106 #../move-if-change new-gdbarch.h gdbarch.h
1107 compare_new gdbarch.h
1108
1109
1110 #
1111 # C file
1112 #
1113
1114 exec > new-gdbarch.c
1115 copyright
1116 cat <<EOF
1117
1118 #include "defs.h"
1119 #include "arch-utils.h"
1120
1121 #include "gdbcmd.h"
1122 #include "inferior.h"
1123 #include "symcat.h"
1124
1125 #include "floatformat.h"
1126
1127 #include "gdb_assert.h"
1128 #include "gdb_string.h"
1129 #include "gdb-events.h"
1130 #include "reggroups.h"
1131 #include "osabi.h"
1132 #include "gdb_obstack.h"
1133
1134 /* Static function declarations */
1135
1136 static void alloc_gdbarch_data (struct gdbarch *);
1137
1138 /* Non-zero if we want to trace architecture code. */
1139
1140 #ifndef GDBARCH_DEBUG
1141 #define GDBARCH_DEBUG 0
1142 #endif
1143 int gdbarch_debug = GDBARCH_DEBUG;
1144 static void
1145 show_gdbarch_debug (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
1147 {
1148 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1149 }
1150
1151 static const char *
1152 pformat (const struct floatformat **format)
1153 {
1154 if (format == NULL)
1155 return "(null)";
1156 else
1157 /* Just print out one of them - this is only for diagnostics. */
1158 return format[0]->name;
1159 }
1160
1161 EOF
1162
1163 # gdbarch open the gdbarch object
1164 printf "\n"
1165 printf "/* Maintain the struct gdbarch object */\n"
1166 printf "\n"
1167 printf "struct gdbarch\n"
1168 printf "{\n"
1169 printf " /* Has this architecture been fully initialized? */\n"
1170 printf " int initialized_p;\n"
1171 printf "\n"
1172 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1173 printf " struct obstack *obstack;\n"
1174 printf "\n"
1175 printf " /* basic architectural information */\n"
1176 function_list | while do_read
1177 do
1178 if class_is_info_p
1179 then
1180 printf " ${returntype} ${function};\n"
1181 fi
1182 done
1183 printf "\n"
1184 printf " /* target specific vector. */\n"
1185 printf " struct gdbarch_tdep *tdep;\n"
1186 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1187 printf "\n"
1188 printf " /* per-architecture data-pointers */\n"
1189 printf " unsigned nr_data;\n"
1190 printf " void **data;\n"
1191 printf "\n"
1192 printf " /* per-architecture swap-regions */\n"
1193 printf " struct gdbarch_swap *swap;\n"
1194 printf "\n"
1195 cat <<EOF
1196 /* Multi-arch values.
1197
1198 When extending this structure you must:
1199
1200 Add the field below.
1201
1202 Declare set/get functions and define the corresponding
1203 macro in gdbarch.h.
1204
1205 gdbarch_alloc(): If zero/NULL is not a suitable default,
1206 initialize the new field.
1207
1208 verify_gdbarch(): Confirm that the target updated the field
1209 correctly.
1210
1211 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1212 field is dumped out
1213
1214 \`\`startup_gdbarch()'': Append an initial value to the static
1215 variable (base values on the host's c-type system).
1216
1217 get_gdbarch(): Implement the set/get functions (probably using
1218 the macro's as shortcuts).
1219
1220 */
1221
1222 EOF
1223 function_list | while do_read
1224 do
1225 if class_is_variable_p
1226 then
1227 printf " ${returntype} ${function};\n"
1228 elif class_is_function_p
1229 then
1230 printf " gdbarch_${function}_ftype *${function};\n"
1231 fi
1232 done
1233 printf "};\n"
1234
1235 # A pre-initialized vector
1236 printf "\n"
1237 printf "\n"
1238 cat <<EOF
1239 /* The default architecture uses host values (for want of a better
1240 choice). */
1241 EOF
1242 printf "\n"
1243 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1244 printf "\n"
1245 printf "struct gdbarch startup_gdbarch =\n"
1246 printf "{\n"
1247 printf " 1, /* Always initialized. */\n"
1248 printf " NULL, /* The obstack. */\n"
1249 printf " /* basic architecture information */\n"
1250 function_list | while do_read
1251 do
1252 if class_is_info_p
1253 then
1254 printf " ${staticdefault}, /* ${function} */\n"
1255 fi
1256 done
1257 cat <<EOF
1258 /* target specific vector and its dump routine */
1259 NULL, NULL,
1260 /*per-architecture data-pointers and swap regions */
1261 0, NULL, NULL,
1262 /* Multi-arch values */
1263 EOF
1264 function_list | while do_read
1265 do
1266 if class_is_function_p || class_is_variable_p
1267 then
1268 printf " ${staticdefault}, /* ${function} */\n"
1269 fi
1270 done
1271 cat <<EOF
1272 /* startup_gdbarch() */
1273 };
1274
1275 struct gdbarch *current_gdbarch = &startup_gdbarch;
1276 EOF
1277
1278 # Create a new gdbarch struct
1279 cat <<EOF
1280
1281 /* Create a new \`\`struct gdbarch'' based on information provided by
1282 \`\`struct gdbarch_info''. */
1283 EOF
1284 printf "\n"
1285 cat <<EOF
1286 struct gdbarch *
1287 gdbarch_alloc (const struct gdbarch_info *info,
1288 struct gdbarch_tdep *tdep)
1289 {
1290 struct gdbarch *gdbarch;
1291
1292 /* Create an obstack for allocating all the per-architecture memory,
1293 then use that to allocate the architecture vector. */
1294 struct obstack *obstack = XMALLOC (struct obstack);
1295 obstack_init (obstack);
1296 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1297 memset (gdbarch, 0, sizeof (*gdbarch));
1298 gdbarch->obstack = obstack;
1299
1300 alloc_gdbarch_data (gdbarch);
1301
1302 gdbarch->tdep = tdep;
1303 EOF
1304 printf "\n"
1305 function_list | while do_read
1306 do
1307 if class_is_info_p
1308 then
1309 printf " gdbarch->${function} = info->${function};\n"
1310 fi
1311 done
1312 printf "\n"
1313 printf " /* Force the explicit initialization of these. */\n"
1314 function_list | while do_read
1315 do
1316 if class_is_function_p || class_is_variable_p
1317 then
1318 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1319 then
1320 printf " gdbarch->${function} = ${predefault};\n"
1321 fi
1322 fi
1323 done
1324 cat <<EOF
1325 /* gdbarch_alloc() */
1326
1327 return gdbarch;
1328 }
1329 EOF
1330
1331 # Free a gdbarch struct.
1332 printf "\n"
1333 printf "\n"
1334 cat <<EOF
1335 /* Allocate extra space using the per-architecture obstack. */
1336
1337 void *
1338 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1339 {
1340 void *data = obstack_alloc (arch->obstack, size);
1341 memset (data, 0, size);
1342 return data;
1343 }
1344
1345
1346 /* Free a gdbarch struct. This should never happen in normal
1347 operation --- once you've created a gdbarch, you keep it around.
1348 However, if an architecture's init function encounters an error
1349 building the structure, it may need to clean up a partially
1350 constructed gdbarch. */
1351
1352 void
1353 gdbarch_free (struct gdbarch *arch)
1354 {
1355 struct obstack *obstack;
1356 gdb_assert (arch != NULL);
1357 gdb_assert (!arch->initialized_p);
1358 obstack = arch->obstack;
1359 obstack_free (obstack, 0); /* Includes the ARCH. */
1360 xfree (obstack);
1361 }
1362 EOF
1363
1364 # verify a new architecture
1365 cat <<EOF
1366
1367
1368 /* Ensure that all values in a GDBARCH are reasonable. */
1369
1370 static void
1371 verify_gdbarch (struct gdbarch *gdbarch)
1372 {
1373 struct ui_file *log;
1374 struct cleanup *cleanups;
1375 long dummy;
1376 char *buf;
1377 log = mem_fileopen ();
1378 cleanups = make_cleanup_ui_file_delete (log);
1379 /* fundamental */
1380 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1381 fprintf_unfiltered (log, "\n\tbyte-order");
1382 if (gdbarch->bfd_arch_info == NULL)
1383 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1384 /* Check those that need to be defined for the given multi-arch level. */
1385 EOF
1386 function_list | while do_read
1387 do
1388 if class_is_function_p || class_is_variable_p
1389 then
1390 if [ "x${invalid_p}" = "x0" ]
1391 then
1392 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1393 elif class_is_predicate_p
1394 then
1395 printf " /* Skip verify of ${function}, has predicate */\n"
1396 # FIXME: See do_read for potential simplification
1397 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1398 then
1399 printf " if (${invalid_p})\n"
1400 printf " gdbarch->${function} = ${postdefault};\n"
1401 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1402 then
1403 printf " if (gdbarch->${function} == ${predefault})\n"
1404 printf " gdbarch->${function} = ${postdefault};\n"
1405 elif [ -n "${postdefault}" ]
1406 then
1407 printf " if (gdbarch->${function} == 0)\n"
1408 printf " gdbarch->${function} = ${postdefault};\n"
1409 elif [ -n "${invalid_p}" ]
1410 then
1411 printf " if (${invalid_p})\n"
1412 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1413 elif [ -n "${predefault}" ]
1414 then
1415 printf " if (gdbarch->${function} == ${predefault})\n"
1416 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1417 fi
1418 fi
1419 done
1420 cat <<EOF
1421 buf = ui_file_xstrdup (log, &dummy);
1422 make_cleanup (xfree, buf);
1423 if (strlen (buf) > 0)
1424 internal_error (__FILE__, __LINE__,
1425 _("verify_gdbarch: the following are invalid ...%s"),
1426 buf);
1427 do_cleanups (cleanups);
1428 }
1429 EOF
1430
1431 # dump the structure
1432 printf "\n"
1433 printf "\n"
1434 cat <<EOF
1435 /* Print out the details of the current architecture. */
1436
1437 void
1438 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1439 {
1440 const char *gdb_nm_file = "<not-defined>";
1441 #if defined (GDB_NM_FILE)
1442 gdb_nm_file = GDB_NM_FILE;
1443 #endif
1444 fprintf_unfiltered (file,
1445 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1446 gdb_nm_file);
1447 EOF
1448 function_list | sort -t: -k 3 | while do_read
1449 do
1450 # First the predicate
1451 if class_is_predicate_p
1452 then
1453 printf " fprintf_unfiltered (file,\n"
1454 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1455 printf " gdbarch_${function}_p (gdbarch));\n"
1456 fi
1457 # Print the corresponding value.
1458 if class_is_function_p
1459 then
1460 printf " fprintf_unfiltered (file,\n"
1461 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1462 printf " (long) gdbarch->${function});\n"
1463 else
1464 # It is a variable
1465 case "${print}:${returntype}" in
1466 :CORE_ADDR )
1467 fmt="0x%s"
1468 print="paddr_nz (gdbarch->${function})"
1469 ;;
1470 :* )
1471 fmt="%s"
1472 print="paddr_d (gdbarch->${function})"
1473 ;;
1474 * )
1475 fmt="%s"
1476 ;;
1477 esac
1478 printf " fprintf_unfiltered (file,\n"
1479 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1480 printf " ${print});\n"
1481 fi
1482 done
1483 cat <<EOF
1484 if (gdbarch->dump_tdep != NULL)
1485 gdbarch->dump_tdep (gdbarch, file);
1486 }
1487 EOF
1488
1489
1490 # GET/SET
1491 printf "\n"
1492 cat <<EOF
1493 struct gdbarch_tdep *
1494 gdbarch_tdep (struct gdbarch *gdbarch)
1495 {
1496 if (gdbarch_debug >= 2)
1497 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1498 return gdbarch->tdep;
1499 }
1500 EOF
1501 printf "\n"
1502 function_list | while do_read
1503 do
1504 if class_is_predicate_p
1505 then
1506 printf "\n"
1507 printf "int\n"
1508 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1509 printf "{\n"
1510 printf " gdb_assert (gdbarch != NULL);\n"
1511 printf " return ${predicate};\n"
1512 printf "}\n"
1513 fi
1514 if class_is_function_p
1515 then
1516 printf "\n"
1517 printf "${returntype}\n"
1518 if [ "x${formal}" = "xvoid" ]
1519 then
1520 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1521 else
1522 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1523 fi
1524 printf "{\n"
1525 printf " gdb_assert (gdbarch != NULL);\n"
1526 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1527 if class_is_predicate_p && test -n "${predefault}"
1528 then
1529 # Allow a call to a function with a predicate.
1530 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1531 fi
1532 printf " if (gdbarch_debug >= 2)\n"
1533 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1534 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1535 then
1536 if class_is_multiarch_p
1537 then
1538 params="gdbarch"
1539 else
1540 params=""
1541 fi
1542 else
1543 if class_is_multiarch_p
1544 then
1545 params="gdbarch, ${actual}"
1546 else
1547 params="${actual}"
1548 fi
1549 fi
1550 if [ "x${returntype}" = "xvoid" ]
1551 then
1552 printf " gdbarch->${function} (${params});\n"
1553 else
1554 printf " return gdbarch->${function} (${params});\n"
1555 fi
1556 printf "}\n"
1557 printf "\n"
1558 printf "void\n"
1559 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1560 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1561 printf "{\n"
1562 printf " gdbarch->${function} = ${function};\n"
1563 printf "}\n"
1564 elif class_is_variable_p
1565 then
1566 printf "\n"
1567 printf "${returntype}\n"
1568 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1569 printf "{\n"
1570 printf " gdb_assert (gdbarch != NULL);\n"
1571 if [ "x${invalid_p}" = "x0" ]
1572 then
1573 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1574 elif [ -n "${invalid_p}" ]
1575 then
1576 printf " /* Check variable is valid. */\n"
1577 printf " gdb_assert (!(${invalid_p}));\n"
1578 elif [ -n "${predefault}" ]
1579 then
1580 printf " /* Check variable changed from pre-default. */\n"
1581 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1582 fi
1583 printf " if (gdbarch_debug >= 2)\n"
1584 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1585 printf " return gdbarch->${function};\n"
1586 printf "}\n"
1587 printf "\n"
1588 printf "void\n"
1589 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1590 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1591 printf "{\n"
1592 printf " gdbarch->${function} = ${function};\n"
1593 printf "}\n"
1594 elif class_is_info_p
1595 then
1596 printf "\n"
1597 printf "${returntype}\n"
1598 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1599 printf "{\n"
1600 printf " gdb_assert (gdbarch != NULL);\n"
1601 printf " if (gdbarch_debug >= 2)\n"
1602 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1603 printf " return gdbarch->${function};\n"
1604 printf "}\n"
1605 fi
1606 done
1607
1608 # All the trailing guff
1609 cat <<EOF
1610
1611
1612 /* Keep a registry of per-architecture data-pointers required by GDB
1613 modules. */
1614
1615 struct gdbarch_data
1616 {
1617 unsigned index;
1618 int init_p;
1619 gdbarch_data_pre_init_ftype *pre_init;
1620 gdbarch_data_post_init_ftype *post_init;
1621 };
1622
1623 struct gdbarch_data_registration
1624 {
1625 struct gdbarch_data *data;
1626 struct gdbarch_data_registration *next;
1627 };
1628
1629 struct gdbarch_data_registry
1630 {
1631 unsigned nr;
1632 struct gdbarch_data_registration *registrations;
1633 };
1634
1635 struct gdbarch_data_registry gdbarch_data_registry =
1636 {
1637 0, NULL,
1638 };
1639
1640 static struct gdbarch_data *
1641 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1642 gdbarch_data_post_init_ftype *post_init)
1643 {
1644 struct gdbarch_data_registration **curr;
1645 /* Append the new registraration. */
1646 for (curr = &gdbarch_data_registry.registrations;
1647 (*curr) != NULL;
1648 curr = &(*curr)->next);
1649 (*curr) = XMALLOC (struct gdbarch_data_registration);
1650 (*curr)->next = NULL;
1651 (*curr)->data = XMALLOC (struct gdbarch_data);
1652 (*curr)->data->index = gdbarch_data_registry.nr++;
1653 (*curr)->data->pre_init = pre_init;
1654 (*curr)->data->post_init = post_init;
1655 (*curr)->data->init_p = 1;
1656 return (*curr)->data;
1657 }
1658
1659 struct gdbarch_data *
1660 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1661 {
1662 return gdbarch_data_register (pre_init, NULL);
1663 }
1664
1665 struct gdbarch_data *
1666 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1667 {
1668 return gdbarch_data_register (NULL, post_init);
1669 }
1670
1671 /* Create/delete the gdbarch data vector. */
1672
1673 static void
1674 alloc_gdbarch_data (struct gdbarch *gdbarch)
1675 {
1676 gdb_assert (gdbarch->data == NULL);
1677 gdbarch->nr_data = gdbarch_data_registry.nr;
1678 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1679 }
1680
1681 /* Initialize the current value of the specified per-architecture
1682 data-pointer. */
1683
1684 void
1685 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1686 struct gdbarch_data *data,
1687 void *pointer)
1688 {
1689 gdb_assert (data->index < gdbarch->nr_data);
1690 gdb_assert (gdbarch->data[data->index] == NULL);
1691 gdb_assert (data->pre_init == NULL);
1692 gdbarch->data[data->index] = pointer;
1693 }
1694
1695 /* Return the current value of the specified per-architecture
1696 data-pointer. */
1697
1698 void *
1699 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1700 {
1701 gdb_assert (data->index < gdbarch->nr_data);
1702 if (gdbarch->data[data->index] == NULL)
1703 {
1704 /* The data-pointer isn't initialized, call init() to get a
1705 value. */
1706 if (data->pre_init != NULL)
1707 /* Mid architecture creation: pass just the obstack, and not
1708 the entire architecture, as that way it isn't possible for
1709 pre-init code to refer to undefined architecture
1710 fields. */
1711 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1712 else if (gdbarch->initialized_p
1713 && data->post_init != NULL)
1714 /* Post architecture creation: pass the entire architecture
1715 (as all fields are valid), but be careful to also detect
1716 recursive references. */
1717 {
1718 gdb_assert (data->init_p);
1719 data->init_p = 0;
1720 gdbarch->data[data->index] = data->post_init (gdbarch);
1721 data->init_p = 1;
1722 }
1723 else
1724 /* The architecture initialization hasn't completed - punt -
1725 hope that the caller knows what they are doing. Once
1726 deprecated_set_gdbarch_data has been initialized, this can be
1727 changed to an internal error. */
1728 return NULL;
1729 gdb_assert (gdbarch->data[data->index] != NULL);
1730 }
1731 return gdbarch->data[data->index];
1732 }
1733
1734
1735 /* Keep a registry of the architectures known by GDB. */
1736
1737 struct gdbarch_registration
1738 {
1739 enum bfd_architecture bfd_architecture;
1740 gdbarch_init_ftype *init;
1741 gdbarch_dump_tdep_ftype *dump_tdep;
1742 struct gdbarch_list *arches;
1743 struct gdbarch_registration *next;
1744 };
1745
1746 static struct gdbarch_registration *gdbarch_registry = NULL;
1747
1748 static void
1749 append_name (const char ***buf, int *nr, const char *name)
1750 {
1751 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1752 (*buf)[*nr] = name;
1753 *nr += 1;
1754 }
1755
1756 const char **
1757 gdbarch_printable_names (void)
1758 {
1759 /* Accumulate a list of names based on the registed list of
1760 architectures. */
1761 enum bfd_architecture a;
1762 int nr_arches = 0;
1763 const char **arches = NULL;
1764 struct gdbarch_registration *rego;
1765 for (rego = gdbarch_registry;
1766 rego != NULL;
1767 rego = rego->next)
1768 {
1769 const struct bfd_arch_info *ap;
1770 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1771 if (ap == NULL)
1772 internal_error (__FILE__, __LINE__,
1773 _("gdbarch_architecture_names: multi-arch unknown"));
1774 do
1775 {
1776 append_name (&arches, &nr_arches, ap->printable_name);
1777 ap = ap->next;
1778 }
1779 while (ap != NULL);
1780 }
1781 append_name (&arches, &nr_arches, NULL);
1782 return arches;
1783 }
1784
1785
1786 void
1787 gdbarch_register (enum bfd_architecture bfd_architecture,
1788 gdbarch_init_ftype *init,
1789 gdbarch_dump_tdep_ftype *dump_tdep)
1790 {
1791 struct gdbarch_registration **curr;
1792 const struct bfd_arch_info *bfd_arch_info;
1793 /* Check that BFD recognizes this architecture */
1794 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1795 if (bfd_arch_info == NULL)
1796 {
1797 internal_error (__FILE__, __LINE__,
1798 _("gdbarch: Attempt to register unknown architecture (%d)"),
1799 bfd_architecture);
1800 }
1801 /* Check that we haven't seen this architecture before */
1802 for (curr = &gdbarch_registry;
1803 (*curr) != NULL;
1804 curr = &(*curr)->next)
1805 {
1806 if (bfd_architecture == (*curr)->bfd_architecture)
1807 internal_error (__FILE__, __LINE__,
1808 _("gdbarch: Duplicate registraration of architecture (%s)"),
1809 bfd_arch_info->printable_name);
1810 }
1811 /* log it */
1812 if (gdbarch_debug)
1813 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1814 bfd_arch_info->printable_name,
1815 (long) init);
1816 /* Append it */
1817 (*curr) = XMALLOC (struct gdbarch_registration);
1818 (*curr)->bfd_architecture = bfd_architecture;
1819 (*curr)->init = init;
1820 (*curr)->dump_tdep = dump_tdep;
1821 (*curr)->arches = NULL;
1822 (*curr)->next = NULL;
1823 }
1824
1825 void
1826 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1827 gdbarch_init_ftype *init)
1828 {
1829 gdbarch_register (bfd_architecture, init, NULL);
1830 }
1831
1832
1833 /* Look for an architecture using gdbarch_info. */
1834
1835 struct gdbarch_list *
1836 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1837 const struct gdbarch_info *info)
1838 {
1839 for (; arches != NULL; arches = arches->next)
1840 {
1841 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1842 continue;
1843 if (info->byte_order != arches->gdbarch->byte_order)
1844 continue;
1845 if (info->osabi != arches->gdbarch->osabi)
1846 continue;
1847 if (info->target_desc != arches->gdbarch->target_desc)
1848 continue;
1849 return arches;
1850 }
1851 return NULL;
1852 }
1853
1854
1855 /* Find an architecture that matches the specified INFO. Create a new
1856 architecture if needed. Return that new architecture. Assumes
1857 that there is no current architecture. */
1858
1859 static struct gdbarch *
1860 find_arch_by_info (struct gdbarch_info info)
1861 {
1862 struct gdbarch *new_gdbarch;
1863 struct gdbarch_registration *rego;
1864
1865 /* The existing architecture has been swapped out - all this code
1866 works from a clean slate. */
1867 gdb_assert (current_gdbarch == NULL);
1868
1869 /* Fill in missing parts of the INFO struct using a number of
1870 sources: "set ..."; INFOabfd supplied; and the global
1871 defaults. */
1872 gdbarch_info_fill (&info);
1873
1874 /* Must have found some sort of architecture. */
1875 gdb_assert (info.bfd_arch_info != NULL);
1876
1877 if (gdbarch_debug)
1878 {
1879 fprintf_unfiltered (gdb_stdlog,
1880 "find_arch_by_info: info.bfd_arch_info %s\n",
1881 (info.bfd_arch_info != NULL
1882 ? info.bfd_arch_info->printable_name
1883 : "(null)"));
1884 fprintf_unfiltered (gdb_stdlog,
1885 "find_arch_by_info: info.byte_order %d (%s)\n",
1886 info.byte_order,
1887 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1888 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1889 : "default"));
1890 fprintf_unfiltered (gdb_stdlog,
1891 "find_arch_by_info: info.osabi %d (%s)\n",
1892 info.osabi, gdbarch_osabi_name (info.osabi));
1893 fprintf_unfiltered (gdb_stdlog,
1894 "find_arch_by_info: info.abfd 0x%lx\n",
1895 (long) info.abfd);
1896 fprintf_unfiltered (gdb_stdlog,
1897 "find_arch_by_info: info.tdep_info 0x%lx\n",
1898 (long) info.tdep_info);
1899 }
1900
1901 /* Find the tdep code that knows about this architecture. */
1902 for (rego = gdbarch_registry;
1903 rego != NULL;
1904 rego = rego->next)
1905 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1906 break;
1907 if (rego == NULL)
1908 {
1909 if (gdbarch_debug)
1910 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1911 "No matching architecture\n");
1912 return 0;
1913 }
1914
1915 /* Ask the tdep code for an architecture that matches "info". */
1916 new_gdbarch = rego->init (info, rego->arches);
1917
1918 /* Did the tdep code like it? No. Reject the change and revert to
1919 the old architecture. */
1920 if (new_gdbarch == NULL)
1921 {
1922 if (gdbarch_debug)
1923 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1924 "Target rejected architecture\n");
1925 return NULL;
1926 }
1927
1928 /* Is this a pre-existing architecture (as determined by already
1929 being initialized)? Move it to the front of the architecture
1930 list (keeping the list sorted Most Recently Used). */
1931 if (new_gdbarch->initialized_p)
1932 {
1933 struct gdbarch_list **list;
1934 struct gdbarch_list *this;
1935 if (gdbarch_debug)
1936 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1937 "Previous architecture 0x%08lx (%s) selected\n",
1938 (long) new_gdbarch,
1939 new_gdbarch->bfd_arch_info->printable_name);
1940 /* Find the existing arch in the list. */
1941 for (list = &rego->arches;
1942 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1943 list = &(*list)->next);
1944 /* It had better be in the list of architectures. */
1945 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1946 /* Unlink THIS. */
1947 this = (*list);
1948 (*list) = this->next;
1949 /* Insert THIS at the front. */
1950 this->next = rego->arches;
1951 rego->arches = this;
1952 /* Return it. */
1953 return new_gdbarch;
1954 }
1955
1956 /* It's a new architecture. */
1957 if (gdbarch_debug)
1958 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1959 "New architecture 0x%08lx (%s) selected\n",
1960 (long) new_gdbarch,
1961 new_gdbarch->bfd_arch_info->printable_name);
1962
1963 /* Insert the new architecture into the front of the architecture
1964 list (keep the list sorted Most Recently Used). */
1965 {
1966 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1967 this->next = rego->arches;
1968 this->gdbarch = new_gdbarch;
1969 rego->arches = this;
1970 }
1971
1972 /* Check that the newly installed architecture is valid. Plug in
1973 any post init values. */
1974 new_gdbarch->dump_tdep = rego->dump_tdep;
1975 verify_gdbarch (new_gdbarch);
1976 new_gdbarch->initialized_p = 1;
1977
1978 if (gdbarch_debug)
1979 gdbarch_dump (new_gdbarch, gdb_stdlog);
1980
1981 return new_gdbarch;
1982 }
1983
1984 struct gdbarch *
1985 gdbarch_find_by_info (struct gdbarch_info info)
1986 {
1987 struct gdbarch *new_gdbarch;
1988
1989 /* Save the previously selected architecture, setting the global to
1990 NULL. This stops things like gdbarch->init() trying to use the
1991 previous architecture's configuration. The previous architecture
1992 may not even be of the same architecture family. The most recent
1993 architecture of the same family is found at the head of the
1994 rego->arches list. */
1995 struct gdbarch *old_gdbarch = current_gdbarch;
1996 current_gdbarch = NULL;
1997
1998 /* Find the specified architecture. */
1999 new_gdbarch = find_arch_by_info (info);
2000
2001 /* Restore the existing architecture. */
2002 gdb_assert (current_gdbarch == NULL);
2003 current_gdbarch = old_gdbarch;
2004
2005 return new_gdbarch;
2006 }
2007
2008 /* Make the specified architecture current. */
2009
2010 void
2011 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2012 {
2013 gdb_assert (new_gdbarch != NULL);
2014 gdb_assert (current_gdbarch != NULL);
2015 gdb_assert (new_gdbarch->initialized_p);
2016 current_gdbarch = new_gdbarch;
2017 architecture_changed_event ();
2018 reinit_frame_cache ();
2019 }
2020
2021 extern void _initialize_gdbarch (void);
2022
2023 void
2024 _initialize_gdbarch (void)
2025 {
2026 struct cmd_list_element *c;
2027
2028 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2029 Set architecture debugging."), _("\\
2030 Show architecture debugging."), _("\\
2031 When non-zero, architecture debugging is enabled."),
2032 NULL,
2033 show_gdbarch_debug,
2034 &setdebuglist, &showdebuglist);
2035 }
2036 EOF
2037
2038 # close things off
2039 exec 1>&2
2040 #../move-if-change new-gdbarch.c gdbarch.c
2041 compare_new gdbarch.c
This page took 0.086978 seconds and 3 git commands to generate.