2003-06-13 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr::0:0
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 f:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 f:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
621 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
622 #
623 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
624 #
625 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
626 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
627 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
628 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
629 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
630 # note, per UNWIND_PC's doco, that while the two have similar
631 # interfaces they have very different underlying implementations.
632 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
633 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
634 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
635 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
636 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
637 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
638 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
639 #
640 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
641 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
642 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
643 v:2:PARM_BOUNDARY:int:parm_boundary
644 #
645 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
646 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
647 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
648 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
649 # On some machines there are bits in addresses which are not really
650 # part of the address, but are used by the kernel, the hardware, etc.
651 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
652 # we get a "real" address such as one would find in a symbol table.
653 # This is used only for addresses of instructions, and even then I'm
654 # not sure it's used in all contexts. It exists to deal with there
655 # being a few stray bits in the PC which would mislead us, not as some
656 # sort of generic thing to handle alignment or segmentation (it's
657 # possible it should be in TARGET_READ_PC instead).
658 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
659 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
660 # ADDR_BITS_REMOVE.
661 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
662 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
663 # the target needs software single step. An ISA method to implement it.
664 #
665 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
666 # using the breakpoint system instead of blatting memory directly (as with rs6000).
667 #
668 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
669 # single step. If not, then implement single step using breakpoints.
670 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
671 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
672 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
673
674
675 # For SVR4 shared libraries, each call goes through a small piece of
676 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
677 # to nonzero if we are currently stopped in one of these.
678 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
679
680 # Some systems also have trampoline code for returning from shared libs.
681 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
682
683 # Sigtramp is a routine that the kernel calls (which then calls the
684 # signal handler). On most machines it is a library routine that is
685 # linked into the executable.
686 #
687 # This macro, given a program counter value and the name of the
688 # function in which that PC resides (which can be null if the name is
689 # not known), returns nonzero if the PC and name show that we are in
690 # sigtramp.
691 #
692 # On most machines just see if the name is sigtramp (and if we have
693 # no name, assume we are not in sigtramp).
694 #
695 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
696 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
697 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
698 # own local NAME lookup.
699 #
700 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
701 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
702 # does not.
703 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
704 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
705 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
706 # A target might have problems with watchpoints as soon as the stack
707 # frame of the current function has been destroyed. This mostly happens
708 # as the first action in a funtion's epilogue. in_function_epilogue_p()
709 # is defined to return a non-zero value if either the given addr is one
710 # instruction after the stack destroying instruction up to the trailing
711 # return instruction or if we can figure out that the stack frame has
712 # already been invalidated regardless of the value of addr. Targets
713 # which don't suffer from that problem could just let this functionality
714 # untouched.
715 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
716 # Given a vector of command-line arguments, return a newly allocated
717 # string which, when passed to the create_inferior function, will be
718 # parsed (on Unix systems, by the shell) to yield the same vector.
719 # This function should call error() if the argument vector is not
720 # representable for this target or if this target does not support
721 # command-line arguments.
722 # ARGC is the number of elements in the vector.
723 # ARGV is an array of strings, one per argument.
724 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
725 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
726 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
727 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
728 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
729 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
730 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
731 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
732 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
733 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
734 # Is a register in a group
735 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
736 # Fetch the pointer to the ith function argument.
737 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
738 EOF
739 }
740
741 #
742 # The .log file
743 #
744 exec > new-gdbarch.log
745 function_list | while do_read
746 do
747 cat <<EOF
748 ${class} ${macro}(${actual})
749 ${returntype} ${function} ($formal)${attrib}
750 EOF
751 for r in ${read}
752 do
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
754 done
755 if class_is_predicate_p && fallback_default_p
756 then
757 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
758 kill $$
759 exit 1
760 fi
761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
762 then
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
764 kill $$
765 exit 1
766 fi
767 if class_is_multiarch_p
768 then
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
771 then
772 echo "Error: pure multi-arch function must have a predefault" 1>&2
773 kill $$
774 exit 1
775 fi
776 fi
777 echo ""
778 done
779
780 exec 1>&2
781 compare_new gdbarch.log
782
783
784 copyright ()
785 {
786 cat <<EOF
787 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
789 /* Dynamic architecture support for GDB, the GNU debugger.
790 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
791
792 This file is part of GDB.
793
794 This program is free software; you can redistribute it and/or modify
795 it under the terms of the GNU General Public License as published by
796 the Free Software Foundation; either version 2 of the License, or
797 (at your option) any later version.
798
799 This program is distributed in the hope that it will be useful,
800 but WITHOUT ANY WARRANTY; without even the implied warranty of
801 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
802 GNU General Public License for more details.
803
804 You should have received a copy of the GNU General Public License
805 along with this program; if not, write to the Free Software
806 Foundation, Inc., 59 Temple Place - Suite 330,
807 Boston, MA 02111-1307, USA. */
808
809 /* This file was created with the aid of \`\`gdbarch.sh''.
810
811 The Bourne shell script \`\`gdbarch.sh'' creates the files
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
814 being reported.
815
816 If editing this file, please also run gdbarch.sh and merge any
817 changes into that script. Conversely, when making sweeping changes
818 to this file, modifying gdbarch.sh and using its output may prove
819 easier. */
820
821 EOF
822 }
823
824 #
825 # The .h file
826 #
827
828 exec > new-gdbarch.h
829 copyright
830 cat <<EOF
831 #ifndef GDBARCH_H
832 #define GDBARCH_H
833
834 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
835 #if !GDB_MULTI_ARCH
836 /* Pull in function declarations refered to, indirectly, via macros. */
837 #include "inferior.h" /* For unsigned_address_to_pointer(). */
838 #include "symfile.h" /* For entry_point_address(). */
839 #endif
840
841 struct floatformat;
842 struct ui_file;
843 struct frame_info;
844 struct value;
845 struct objfile;
846 struct minimal_symbol;
847 struct regcache;
848 struct reggroup;
849
850 extern struct gdbarch *current_gdbarch;
851
852
853 /* If any of the following are defined, the target wasn't correctly
854 converted. */
855
856 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
857 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
858 #endif
859 EOF
860
861 # function typedef's
862 printf "\n"
863 printf "\n"
864 printf "/* The following are pre-initialized by GDBARCH. */\n"
865 function_list | while do_read
866 do
867 if class_is_info_p
868 then
869 printf "\n"
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
872 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
873 printf "#error \"Non multi-arch definition of ${macro}\"\n"
874 printf "#endif\n"
875 printf "#if !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 fi
879 done
880
881 # function typedef's
882 printf "\n"
883 printf "\n"
884 printf "/* The following are initialized by the target dependent code. */\n"
885 function_list | while do_read
886 do
887 if [ -n "${comment}" ]
888 then
889 echo "${comment}" | sed \
890 -e '2 s,#,/*,' \
891 -e '3,$ s,#, ,' \
892 -e '$ s,$, */,'
893 fi
894 if class_is_multiarch_p
895 then
896 if class_is_predicate_p
897 then
898 printf "\n"
899 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 fi
901 else
902 if class_is_predicate_p
903 then
904 printf "\n"
905 printf "#if defined (${macro})\n"
906 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
907 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
908 printf "#if !defined (${macro}_P)\n"
909 printf "#define ${macro}_P() (1)\n"
910 printf "#endif\n"
911 printf "#endif\n"
912 printf "\n"
913 printf "/* Default predicate for non- multi-arch targets. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
915 printf "#define ${macro}_P() (0)\n"
916 printf "#endif\n"
917 printf "\n"
918 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
921 printf "#endif\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
923 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
924 printf "#endif\n"
925 fi
926 fi
927 if class_is_variable_p
928 then
929 if fallback_default_p || class_is_predicate_p
930 then
931 printf "\n"
932 printf "/* Default (value) for non- multi-arch platforms. */\n"
933 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
934 echo "#define ${macro} (${fallbackdefault})" \
935 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
936 printf "#endif\n"
937 fi
938 printf "\n"
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
940 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
941 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
942 printf "#error \"Non multi-arch definition of ${macro}\"\n"
943 printf "#endif\n"
944 printf "#if !defined (${macro})\n"
945 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
946 printf "#endif\n"
947 fi
948 if class_is_function_p
949 then
950 if class_is_multiarch_p ; then :
951 elif fallback_default_p || class_is_predicate_p
952 then
953 printf "\n"
954 printf "/* Default (function) for non- multi-arch platforms. */\n"
955 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
956 if [ "x${fallbackdefault}" = "x0" ]
957 then
958 if [ "x${actual}" = "x-" ]
959 then
960 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
961 else
962 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
963 fi
964 else
965 # FIXME: Should be passing current_gdbarch through!
966 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
967 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
968 fi
969 printf "#endif\n"
970 fi
971 printf "\n"
972 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
975 elif class_is_multiarch_p
976 then
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
978 else
979 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
980 fi
981 if [ "x${formal}" = "xvoid" ]
982 then
983 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
984 else
985 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
986 fi
987 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
988 if class_is_multiarch_p ; then :
989 else
990 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
991 printf "#error \"Non multi-arch definition of ${macro}\"\n"
992 printf "#endif\n"
993 if [ "x${actual}" = "x" ]
994 then
995 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
996 elif [ "x${actual}" = "x-" ]
997 then
998 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
999 else
1000 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1001 fi
1002 printf "#if !defined (${macro})\n"
1003 if [ "x${actual}" = "x" ]
1004 then
1005 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1006 elif [ "x${actual}" = "x-" ]
1007 then
1008 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1009 else
1010 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1011 fi
1012 printf "#endif\n"
1013 fi
1014 fi
1015 done
1016
1017 # close it off
1018 cat <<EOF
1019
1020 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1021
1022
1023 /* Mechanism for co-ordinating the selection of a specific
1024 architecture.
1025
1026 GDB targets (*-tdep.c) can register an interest in a specific
1027 architecture. Other GDB components can register a need to maintain
1028 per-architecture data.
1029
1030 The mechanisms below ensures that there is only a loose connection
1031 between the set-architecture command and the various GDB
1032 components. Each component can independently register their need
1033 to maintain architecture specific data with gdbarch.
1034
1035 Pragmatics:
1036
1037 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1038 didn't scale.
1039
1040 The more traditional mega-struct containing architecture specific
1041 data for all the various GDB components was also considered. Since
1042 GDB is built from a variable number of (fairly independent)
1043 components it was determined that the global aproach was not
1044 applicable. */
1045
1046
1047 /* Register a new architectural family with GDB.
1048
1049 Register support for the specified ARCHITECTURE with GDB. When
1050 gdbarch determines that the specified architecture has been
1051 selected, the corresponding INIT function is called.
1052
1053 --
1054
1055 The INIT function takes two parameters: INFO which contains the
1056 information available to gdbarch about the (possibly new)
1057 architecture; ARCHES which is a list of the previously created
1058 \`\`struct gdbarch'' for this architecture.
1059
1060 The INFO parameter is, as far as possible, be pre-initialized with
1061 information obtained from INFO.ABFD or the previously selected
1062 architecture.
1063
1064 The ARCHES parameter is a linked list (sorted most recently used)
1065 of all the previously created architures for this architecture
1066 family. The (possibly NULL) ARCHES->gdbarch can used to access
1067 values from the previously selected architecture for this
1068 architecture family. The global \`\`current_gdbarch'' shall not be
1069 used.
1070
1071 The INIT function shall return any of: NULL - indicating that it
1072 doesn't recognize the selected architecture; an existing \`\`struct
1073 gdbarch'' from the ARCHES list - indicating that the new
1074 architecture is just a synonym for an earlier architecture (see
1075 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1076 - that describes the selected architecture (see gdbarch_alloc()).
1077
1078 The DUMP_TDEP function shall print out all target specific values.
1079 Care should be taken to ensure that the function works in both the
1080 multi-arch and non- multi-arch cases. */
1081
1082 struct gdbarch_list
1083 {
1084 struct gdbarch *gdbarch;
1085 struct gdbarch_list *next;
1086 };
1087
1088 struct gdbarch_info
1089 {
1090 /* Use default: NULL (ZERO). */
1091 const struct bfd_arch_info *bfd_arch_info;
1092
1093 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1094 int byte_order;
1095
1096 /* Use default: NULL (ZERO). */
1097 bfd *abfd;
1098
1099 /* Use default: NULL (ZERO). */
1100 struct gdbarch_tdep_info *tdep_info;
1101
1102 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1103 enum gdb_osabi osabi;
1104 };
1105
1106 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1107 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1108
1109 /* DEPRECATED - use gdbarch_register() */
1110 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1111
1112 extern void gdbarch_register (enum bfd_architecture architecture,
1113 gdbarch_init_ftype *,
1114 gdbarch_dump_tdep_ftype *);
1115
1116
1117 /* Return a freshly allocated, NULL terminated, array of the valid
1118 architecture names. Since architectures are registered during the
1119 _initialize phase this function only returns useful information
1120 once initialization has been completed. */
1121
1122 extern const char **gdbarch_printable_names (void);
1123
1124
1125 /* Helper function. Search the list of ARCHES for a GDBARCH that
1126 matches the information provided by INFO. */
1127
1128 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1129
1130
1131 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1132 basic initialization using values obtained from the INFO andTDEP
1133 parameters. set_gdbarch_*() functions are called to complete the
1134 initialization of the object. */
1135
1136 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1137
1138
1139 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1140 It is assumed that the caller freeds the \`\`struct
1141 gdbarch_tdep''. */
1142
1143 extern void gdbarch_free (struct gdbarch *);
1144
1145
1146 /* Helper function. Force an update of the current architecture.
1147
1148 The actual architecture selected is determined by INFO, \`\`(gdb) set
1149 architecture'' et.al., the existing architecture and BFD's default
1150 architecture. INFO should be initialized to zero and then selected
1151 fields should be updated.
1152
1153 Returns non-zero if the update succeeds */
1154
1155 extern int gdbarch_update_p (struct gdbarch_info info);
1156
1157
1158
1159 /* Register per-architecture data-pointer.
1160
1161 Reserve space for a per-architecture data-pointer. An identifier
1162 for the reserved data-pointer is returned. That identifer should
1163 be saved in a local static variable.
1164
1165 The per-architecture data-pointer is either initialized explicitly
1166 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1167 gdbarch_data()). FREE() is called to delete either an existing
1168 data-pointer overridden by set_gdbarch_data() or when the
1169 architecture object is being deleted.
1170
1171 When a previously created architecture is re-selected, the
1172 per-architecture data-pointer for that previous architecture is
1173 restored. INIT() is not re-called.
1174
1175 Multiple registrarants for any architecture are allowed (and
1176 strongly encouraged). */
1177
1178 struct gdbarch_data;
1179
1180 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1181 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1182 void *pointer);
1183 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1184 gdbarch_data_free_ftype *free);
1185 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1186 struct gdbarch_data *data,
1187 void *pointer);
1188
1189 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1190
1191
1192 /* Register per-architecture memory region.
1193
1194 Provide a memory-region swap mechanism. Per-architecture memory
1195 region are created. These memory regions are swapped whenever the
1196 architecture is changed. For a new architecture, the memory region
1197 is initialized with zero (0) and the INIT function is called.
1198
1199 Memory regions are swapped / initialized in the order that they are
1200 registered. NULL DATA and/or INIT values can be specified.
1201
1202 New code should use register_gdbarch_data(). */
1203
1204 typedef void (gdbarch_swap_ftype) (void);
1205 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1206 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1207
1208
1209
1210 /* The target-system-dependent byte order is dynamic */
1211
1212 extern int target_byte_order;
1213 #ifndef TARGET_BYTE_ORDER
1214 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1215 #endif
1216
1217 extern int target_byte_order_auto;
1218 #ifndef TARGET_BYTE_ORDER_AUTO
1219 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1220 #endif
1221
1222
1223
1224 /* The target-system-dependent BFD architecture is dynamic */
1225
1226 extern int target_architecture_auto;
1227 #ifndef TARGET_ARCHITECTURE_AUTO
1228 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1229 #endif
1230
1231 extern const struct bfd_arch_info *target_architecture;
1232 #ifndef TARGET_ARCHITECTURE
1233 #define TARGET_ARCHITECTURE (target_architecture + 0)
1234 #endif
1235
1236
1237 /* The target-system-dependent disassembler is semi-dynamic */
1238
1239 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1240 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1241
1242 /* Use set_gdbarch_print_insn instead. */
1243 extern disassemble_info deprecated_tm_print_insn_info;
1244
1245 /* Set the dynamic target-system-dependent parameters (architecture,
1246 byte-order, ...) using information found in the BFD */
1247
1248 extern void set_gdbarch_from_file (bfd *);
1249
1250
1251 /* Initialize the current architecture to the "first" one we find on
1252 our list. */
1253
1254 extern void initialize_current_architecture (void);
1255
1256 /* For non-multiarched targets, do any initialization of the default
1257 gdbarch object necessary after the _initialize_MODULE functions
1258 have run. */
1259 extern void initialize_non_multiarch (void);
1260
1261 /* gdbarch trace variable */
1262 extern int gdbarch_debug;
1263
1264 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1265
1266 #endif
1267 EOF
1268 exec 1>&2
1269 #../move-if-change new-gdbarch.h gdbarch.h
1270 compare_new gdbarch.h
1271
1272
1273 #
1274 # C file
1275 #
1276
1277 exec > new-gdbarch.c
1278 copyright
1279 cat <<EOF
1280
1281 #include "defs.h"
1282 #include "arch-utils.h"
1283
1284 #if GDB_MULTI_ARCH
1285 #include "gdbcmd.h"
1286 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1287 #else
1288 /* Just include everything in sight so that the every old definition
1289 of macro is visible. */
1290 #include "gdb_string.h"
1291 #include <ctype.h>
1292 #include "symtab.h"
1293 #include "frame.h"
1294 #include "inferior.h"
1295 #include "breakpoint.h"
1296 #include "gdb_wait.h"
1297 #include "gdbcore.h"
1298 #include "gdbcmd.h"
1299 #include "target.h"
1300 #include "gdbthread.h"
1301 #include "annotate.h"
1302 #include "symfile.h" /* for overlay functions */
1303 #include "value.h" /* For old tm.h/nm.h macros. */
1304 #endif
1305 #include "symcat.h"
1306
1307 #include "floatformat.h"
1308
1309 #include "gdb_assert.h"
1310 #include "gdb_string.h"
1311 #include "gdb-events.h"
1312 #include "reggroups.h"
1313 #include "osabi.h"
1314 #include "symfile.h" /* For entry_point_address. */
1315
1316 /* Static function declarations */
1317
1318 static void verify_gdbarch (struct gdbarch *gdbarch);
1319 static void alloc_gdbarch_data (struct gdbarch *);
1320 static void free_gdbarch_data (struct gdbarch *);
1321 static void init_gdbarch_swap (struct gdbarch *);
1322 static void clear_gdbarch_swap (struct gdbarch *);
1323 static void swapout_gdbarch_swap (struct gdbarch *);
1324 static void swapin_gdbarch_swap (struct gdbarch *);
1325
1326 /* Non-zero if we want to trace architecture code. */
1327
1328 #ifndef GDBARCH_DEBUG
1329 #define GDBARCH_DEBUG 0
1330 #endif
1331 int gdbarch_debug = GDBARCH_DEBUG;
1332
1333 EOF
1334
1335 # gdbarch open the gdbarch object
1336 printf "\n"
1337 printf "/* Maintain the struct gdbarch object */\n"
1338 printf "\n"
1339 printf "struct gdbarch\n"
1340 printf "{\n"
1341 printf " /* Has this architecture been fully initialized? */\n"
1342 printf " int initialized_p;\n"
1343 printf " /* basic architectural information */\n"
1344 function_list | while do_read
1345 do
1346 if class_is_info_p
1347 then
1348 printf " ${returntype} ${function};\n"
1349 fi
1350 done
1351 printf "\n"
1352 printf " /* target specific vector. */\n"
1353 printf " struct gdbarch_tdep *tdep;\n"
1354 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1355 printf "\n"
1356 printf " /* per-architecture data-pointers */\n"
1357 printf " unsigned nr_data;\n"
1358 printf " void **data;\n"
1359 printf "\n"
1360 printf " /* per-architecture swap-regions */\n"
1361 printf " struct gdbarch_swap *swap;\n"
1362 printf "\n"
1363 cat <<EOF
1364 /* Multi-arch values.
1365
1366 When extending this structure you must:
1367
1368 Add the field below.
1369
1370 Declare set/get functions and define the corresponding
1371 macro in gdbarch.h.
1372
1373 gdbarch_alloc(): If zero/NULL is not a suitable default,
1374 initialize the new field.
1375
1376 verify_gdbarch(): Confirm that the target updated the field
1377 correctly.
1378
1379 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1380 field is dumped out
1381
1382 \`\`startup_gdbarch()'': Append an initial value to the static
1383 variable (base values on the host's c-type system).
1384
1385 get_gdbarch(): Implement the set/get functions (probably using
1386 the macro's as shortcuts).
1387
1388 */
1389
1390 EOF
1391 function_list | while do_read
1392 do
1393 if class_is_variable_p
1394 then
1395 printf " ${returntype} ${function};\n"
1396 elif class_is_function_p
1397 then
1398 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1399 fi
1400 done
1401 printf "};\n"
1402
1403 # A pre-initialized vector
1404 printf "\n"
1405 printf "\n"
1406 cat <<EOF
1407 /* The default architecture uses host values (for want of a better
1408 choice). */
1409 EOF
1410 printf "\n"
1411 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1412 printf "\n"
1413 printf "struct gdbarch startup_gdbarch =\n"
1414 printf "{\n"
1415 printf " 1, /* Always initialized. */\n"
1416 printf " /* basic architecture information */\n"
1417 function_list | while do_read
1418 do
1419 if class_is_info_p
1420 then
1421 printf " ${staticdefault}, /* ${function} */\n"
1422 fi
1423 done
1424 cat <<EOF
1425 /* target specific vector and its dump routine */
1426 NULL, NULL,
1427 /*per-architecture data-pointers and swap regions */
1428 0, NULL, NULL,
1429 /* Multi-arch values */
1430 EOF
1431 function_list | while do_read
1432 do
1433 if class_is_function_p || class_is_variable_p
1434 then
1435 printf " ${staticdefault}, /* ${function} */\n"
1436 fi
1437 done
1438 cat <<EOF
1439 /* startup_gdbarch() */
1440 };
1441
1442 struct gdbarch *current_gdbarch = &startup_gdbarch;
1443
1444 /* Do any initialization needed for a non-multiarch configuration
1445 after the _initialize_MODULE functions have been run. */
1446 void
1447 initialize_non_multiarch (void)
1448 {
1449 alloc_gdbarch_data (&startup_gdbarch);
1450 /* Ensure that all swap areas are zeroed so that they again think
1451 they are starting from scratch. */
1452 clear_gdbarch_swap (&startup_gdbarch);
1453 init_gdbarch_swap (&startup_gdbarch);
1454 }
1455 EOF
1456
1457 # Create a new gdbarch struct
1458 printf "\n"
1459 printf "\n"
1460 cat <<EOF
1461 /* Create a new \`\`struct gdbarch'' based on information provided by
1462 \`\`struct gdbarch_info''. */
1463 EOF
1464 printf "\n"
1465 cat <<EOF
1466 struct gdbarch *
1467 gdbarch_alloc (const struct gdbarch_info *info,
1468 struct gdbarch_tdep *tdep)
1469 {
1470 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1471 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1472 the current local architecture and not the previous global
1473 architecture. This ensures that the new architectures initial
1474 values are not influenced by the previous architecture. Once
1475 everything is parameterised with gdbarch, this will go away. */
1476 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1477 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1478
1479 alloc_gdbarch_data (current_gdbarch);
1480
1481 current_gdbarch->tdep = tdep;
1482 EOF
1483 printf "\n"
1484 function_list | while do_read
1485 do
1486 if class_is_info_p
1487 then
1488 printf " current_gdbarch->${function} = info->${function};\n"
1489 fi
1490 done
1491 printf "\n"
1492 printf " /* Force the explicit initialization of these. */\n"
1493 function_list | while do_read
1494 do
1495 if class_is_function_p || class_is_variable_p
1496 then
1497 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1498 then
1499 printf " current_gdbarch->${function} = ${predefault};\n"
1500 fi
1501 fi
1502 done
1503 cat <<EOF
1504 /* gdbarch_alloc() */
1505
1506 return current_gdbarch;
1507 }
1508 EOF
1509
1510 # Free a gdbarch struct.
1511 printf "\n"
1512 printf "\n"
1513 cat <<EOF
1514 /* Free a gdbarch struct. This should never happen in normal
1515 operation --- once you've created a gdbarch, you keep it around.
1516 However, if an architecture's init function encounters an error
1517 building the structure, it may need to clean up a partially
1518 constructed gdbarch. */
1519
1520 void
1521 gdbarch_free (struct gdbarch *arch)
1522 {
1523 gdb_assert (arch != NULL);
1524 free_gdbarch_data (arch);
1525 xfree (arch);
1526 }
1527 EOF
1528
1529 # verify a new architecture
1530 printf "\n"
1531 printf "\n"
1532 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1533 printf "\n"
1534 cat <<EOF
1535 static void
1536 verify_gdbarch (struct gdbarch *gdbarch)
1537 {
1538 struct ui_file *log;
1539 struct cleanup *cleanups;
1540 long dummy;
1541 char *buf;
1542 /* Only perform sanity checks on a multi-arch target. */
1543 if (!GDB_MULTI_ARCH)
1544 return;
1545 log = mem_fileopen ();
1546 cleanups = make_cleanup_ui_file_delete (log);
1547 /* fundamental */
1548 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1549 fprintf_unfiltered (log, "\n\tbyte-order");
1550 if (gdbarch->bfd_arch_info == NULL)
1551 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1552 /* Check those that need to be defined for the given multi-arch level. */
1553 EOF
1554 function_list | while do_read
1555 do
1556 if class_is_function_p || class_is_variable_p
1557 then
1558 if [ "x${invalid_p}" = "x0" ]
1559 then
1560 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1561 elif class_is_predicate_p
1562 then
1563 printf " /* Skip verify of ${function}, has predicate */\n"
1564 # FIXME: See do_read for potential simplification
1565 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1566 then
1567 printf " if (${invalid_p})\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
1569 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1570 then
1571 printf " if (gdbarch->${function} == ${predefault})\n"
1572 printf " gdbarch->${function} = ${postdefault};\n"
1573 elif [ -n "${postdefault}" ]
1574 then
1575 printf " if (gdbarch->${function} == 0)\n"
1576 printf " gdbarch->${function} = ${postdefault};\n"
1577 elif [ -n "${invalid_p}" ]
1578 then
1579 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1580 printf " && (${invalid_p}))\n"
1581 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1582 elif [ -n "${predefault}" ]
1583 then
1584 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1585 printf " && (gdbarch->${function} == ${predefault}))\n"
1586 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1587 fi
1588 fi
1589 done
1590 cat <<EOF
1591 buf = ui_file_xstrdup (log, &dummy);
1592 make_cleanup (xfree, buf);
1593 if (strlen (buf) > 0)
1594 internal_error (__FILE__, __LINE__,
1595 "verify_gdbarch: the following are invalid ...%s",
1596 buf);
1597 do_cleanups (cleanups);
1598 }
1599 EOF
1600
1601 # dump the structure
1602 printf "\n"
1603 printf "\n"
1604 cat <<EOF
1605 /* Print out the details of the current architecture. */
1606
1607 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1608 just happens to match the global variable \`\`current_gdbarch''. That
1609 way macros refering to that variable get the local and not the global
1610 version - ulgh. Once everything is parameterised with gdbarch, this
1611 will go away. */
1612
1613 void
1614 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1615 {
1616 fprintf_unfiltered (file,
1617 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1618 GDB_MULTI_ARCH);
1619 EOF
1620 function_list | sort -t: -k 3 | while do_read
1621 do
1622 # First the predicate
1623 if class_is_predicate_p
1624 then
1625 if class_is_multiarch_p
1626 then
1627 printf " if (GDB_MULTI_ARCH)\n"
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1630 printf " gdbarch_${function}_p (current_gdbarch));\n"
1631 else
1632 printf "#ifdef ${macro}_P\n"
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1635 printf " \"${macro}_P()\",\n"
1636 printf " XSTRING (${macro}_P ()));\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1639 printf " ${macro}_P ());\n"
1640 printf "#endif\n"
1641 fi
1642 fi
1643 # multiarch functions don't have macros.
1644 if class_is_multiarch_p
1645 then
1646 printf " if (GDB_MULTI_ARCH)\n"
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1649 printf " (long) current_gdbarch->${function});\n"
1650 continue
1651 fi
1652 # Print the macro definition.
1653 printf "#ifdef ${macro}\n"
1654 if [ "x${returntype}" = "xvoid" ]
1655 then
1656 printf "#if GDB_MULTI_ARCH\n"
1657 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1658 fi
1659 if class_is_function_p
1660 then
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1663 printf " \"${macro}(${actual})\",\n"
1664 printf " XSTRING (${macro} (${actual})));\n"
1665 else
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1668 printf " XSTRING (${macro}));\n"
1669 fi
1670 # Print the architecture vector value
1671 if [ "x${returntype}" = "xvoid" ]
1672 then
1673 printf "#endif\n"
1674 fi
1675 if [ "x${print_p}" = "x()" ]
1676 then
1677 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1678 elif [ "x${print_p}" = "x0" ]
1679 then
1680 printf " /* skip print of ${macro}, print_p == 0. */\n"
1681 elif [ -n "${print_p}" ]
1682 then
1683 printf " if (${print_p})\n"
1684 printf " fprintf_unfiltered (file,\n"
1685 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1686 printf " ${print});\n"
1687 elif class_is_function_p
1688 then
1689 printf " if (GDB_MULTI_ARCH)\n"
1690 printf " fprintf_unfiltered (file,\n"
1691 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1692 printf " (long) current_gdbarch->${function}\n"
1693 printf " /*${macro} ()*/);\n"
1694 else
1695 printf " fprintf_unfiltered (file,\n"
1696 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1697 printf " ${print});\n"
1698 fi
1699 printf "#endif\n"
1700 done
1701 cat <<EOF
1702 if (current_gdbarch->dump_tdep != NULL)
1703 current_gdbarch->dump_tdep (current_gdbarch, file);
1704 }
1705 EOF
1706
1707
1708 # GET/SET
1709 printf "\n"
1710 cat <<EOF
1711 struct gdbarch_tdep *
1712 gdbarch_tdep (struct gdbarch *gdbarch)
1713 {
1714 if (gdbarch_debug >= 2)
1715 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1716 return gdbarch->tdep;
1717 }
1718 EOF
1719 printf "\n"
1720 function_list | while do_read
1721 do
1722 if class_is_predicate_p
1723 then
1724 printf "\n"
1725 printf "int\n"
1726 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1727 printf "{\n"
1728 printf " gdb_assert (gdbarch != NULL);\n"
1729 if [ -n "${predicate}" ]
1730 then
1731 printf " return ${predicate};\n"
1732 else
1733 printf " return gdbarch->${function} != 0;\n"
1734 fi
1735 printf "}\n"
1736 fi
1737 if class_is_function_p
1738 then
1739 printf "\n"
1740 printf "${returntype}\n"
1741 if [ "x${formal}" = "xvoid" ]
1742 then
1743 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1744 else
1745 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1746 fi
1747 printf "{\n"
1748 printf " gdb_assert (gdbarch != NULL);\n"
1749 printf " if (gdbarch->${function} == 0)\n"
1750 printf " internal_error (__FILE__, __LINE__,\n"
1751 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1752 if class_is_predicate_p && test -n "${predicate}"
1753 then
1754 # Allow a call to a function with a predicate.
1755 printf " /* Ignore predicate (${predicate}). */\n"
1756 fi
1757 printf " if (gdbarch_debug >= 2)\n"
1758 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1759 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1760 then
1761 if class_is_multiarch_p
1762 then
1763 params="gdbarch"
1764 else
1765 params=""
1766 fi
1767 else
1768 if class_is_multiarch_p
1769 then
1770 params="gdbarch, ${actual}"
1771 else
1772 params="${actual}"
1773 fi
1774 fi
1775 if [ "x${returntype}" = "xvoid" ]
1776 then
1777 printf " gdbarch->${function} (${params});\n"
1778 else
1779 printf " return gdbarch->${function} (${params});\n"
1780 fi
1781 printf "}\n"
1782 printf "\n"
1783 printf "void\n"
1784 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1785 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1786 printf "{\n"
1787 printf " gdbarch->${function} = ${function};\n"
1788 printf "}\n"
1789 elif class_is_variable_p
1790 then
1791 printf "\n"
1792 printf "${returntype}\n"
1793 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1794 printf "{\n"
1795 printf " gdb_assert (gdbarch != NULL);\n"
1796 if [ "x${invalid_p}" = "x0" ]
1797 then
1798 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1799 elif [ -n "${invalid_p}" ]
1800 then
1801 printf " if (${invalid_p})\n"
1802 printf " internal_error (__FILE__, __LINE__,\n"
1803 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1804 elif [ -n "${predefault}" ]
1805 then
1806 printf " if (gdbarch->${function} == ${predefault})\n"
1807 printf " internal_error (__FILE__, __LINE__,\n"
1808 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1809 fi
1810 printf " if (gdbarch_debug >= 2)\n"
1811 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1812 printf " return gdbarch->${function};\n"
1813 printf "}\n"
1814 printf "\n"
1815 printf "void\n"
1816 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1817 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1818 printf "{\n"
1819 printf " gdbarch->${function} = ${function};\n"
1820 printf "}\n"
1821 elif class_is_info_p
1822 then
1823 printf "\n"
1824 printf "${returntype}\n"
1825 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1826 printf "{\n"
1827 printf " gdb_assert (gdbarch != NULL);\n"
1828 printf " if (gdbarch_debug >= 2)\n"
1829 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1830 printf " return gdbarch->${function};\n"
1831 printf "}\n"
1832 fi
1833 done
1834
1835 # All the trailing guff
1836 cat <<EOF
1837
1838
1839 /* Keep a registry of per-architecture data-pointers required by GDB
1840 modules. */
1841
1842 struct gdbarch_data
1843 {
1844 unsigned index;
1845 int init_p;
1846 gdbarch_data_init_ftype *init;
1847 gdbarch_data_free_ftype *free;
1848 };
1849
1850 struct gdbarch_data_registration
1851 {
1852 struct gdbarch_data *data;
1853 struct gdbarch_data_registration *next;
1854 };
1855
1856 struct gdbarch_data_registry
1857 {
1858 unsigned nr;
1859 struct gdbarch_data_registration *registrations;
1860 };
1861
1862 struct gdbarch_data_registry gdbarch_data_registry =
1863 {
1864 0, NULL,
1865 };
1866
1867 struct gdbarch_data *
1868 register_gdbarch_data (gdbarch_data_init_ftype *init,
1869 gdbarch_data_free_ftype *free)
1870 {
1871 struct gdbarch_data_registration **curr;
1872 /* Append the new registraration. */
1873 for (curr = &gdbarch_data_registry.registrations;
1874 (*curr) != NULL;
1875 curr = &(*curr)->next);
1876 (*curr) = XMALLOC (struct gdbarch_data_registration);
1877 (*curr)->next = NULL;
1878 (*curr)->data = XMALLOC (struct gdbarch_data);
1879 (*curr)->data->index = gdbarch_data_registry.nr++;
1880 (*curr)->data->init = init;
1881 (*curr)->data->init_p = 1;
1882 (*curr)->data->free = free;
1883 return (*curr)->data;
1884 }
1885
1886
1887 /* Create/delete the gdbarch data vector. */
1888
1889 static void
1890 alloc_gdbarch_data (struct gdbarch *gdbarch)
1891 {
1892 gdb_assert (gdbarch->data == NULL);
1893 gdbarch->nr_data = gdbarch_data_registry.nr;
1894 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1895 }
1896
1897 static void
1898 free_gdbarch_data (struct gdbarch *gdbarch)
1899 {
1900 struct gdbarch_data_registration *rego;
1901 gdb_assert (gdbarch->data != NULL);
1902 for (rego = gdbarch_data_registry.registrations;
1903 rego != NULL;
1904 rego = rego->next)
1905 {
1906 struct gdbarch_data *data = rego->data;
1907 gdb_assert (data->index < gdbarch->nr_data);
1908 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1909 {
1910 data->free (gdbarch, gdbarch->data[data->index]);
1911 gdbarch->data[data->index] = NULL;
1912 }
1913 }
1914 xfree (gdbarch->data);
1915 gdbarch->data = NULL;
1916 }
1917
1918
1919 /* Initialize the current value of the specified per-architecture
1920 data-pointer. */
1921
1922 void
1923 set_gdbarch_data (struct gdbarch *gdbarch,
1924 struct gdbarch_data *data,
1925 void *pointer)
1926 {
1927 gdb_assert (data->index < gdbarch->nr_data);
1928 if (gdbarch->data[data->index] != NULL)
1929 {
1930 gdb_assert (data->free != NULL);
1931 data->free (gdbarch, gdbarch->data[data->index]);
1932 }
1933 gdbarch->data[data->index] = pointer;
1934 }
1935
1936 /* Return the current value of the specified per-architecture
1937 data-pointer. */
1938
1939 void *
1940 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1941 {
1942 gdb_assert (data->index < gdbarch->nr_data);
1943 /* The data-pointer isn't initialized, call init() to get a value but
1944 only if the architecture initializaiton has completed. Otherwise
1945 punt - hope that the caller knows what they are doing. */
1946 if (gdbarch->data[data->index] == NULL
1947 && gdbarch->initialized_p)
1948 {
1949 /* Be careful to detect an initialization cycle. */
1950 gdb_assert (data->init_p);
1951 data->init_p = 0;
1952 gdb_assert (data->init != NULL);
1953 gdbarch->data[data->index] = data->init (gdbarch);
1954 data->init_p = 1;
1955 gdb_assert (gdbarch->data[data->index] != NULL);
1956 }
1957 return gdbarch->data[data->index];
1958 }
1959
1960
1961
1962 /* Keep a registry of swapped data required by GDB modules. */
1963
1964 struct gdbarch_swap
1965 {
1966 void *swap;
1967 struct gdbarch_swap_registration *source;
1968 struct gdbarch_swap *next;
1969 };
1970
1971 struct gdbarch_swap_registration
1972 {
1973 void *data;
1974 unsigned long sizeof_data;
1975 gdbarch_swap_ftype *init;
1976 struct gdbarch_swap_registration *next;
1977 };
1978
1979 struct gdbarch_swap_registry
1980 {
1981 int nr;
1982 struct gdbarch_swap_registration *registrations;
1983 };
1984
1985 struct gdbarch_swap_registry gdbarch_swap_registry =
1986 {
1987 0, NULL,
1988 };
1989
1990 void
1991 register_gdbarch_swap (void *data,
1992 unsigned long sizeof_data,
1993 gdbarch_swap_ftype *init)
1994 {
1995 struct gdbarch_swap_registration **rego;
1996 for (rego = &gdbarch_swap_registry.registrations;
1997 (*rego) != NULL;
1998 rego = &(*rego)->next);
1999 (*rego) = XMALLOC (struct gdbarch_swap_registration);
2000 (*rego)->next = NULL;
2001 (*rego)->init = init;
2002 (*rego)->data = data;
2003 (*rego)->sizeof_data = sizeof_data;
2004 }
2005
2006 static void
2007 clear_gdbarch_swap (struct gdbarch *gdbarch)
2008 {
2009 struct gdbarch_swap *curr;
2010 for (curr = gdbarch->swap;
2011 curr != NULL;
2012 curr = curr->next)
2013 {
2014 memset (curr->source->data, 0, curr->source->sizeof_data);
2015 }
2016 }
2017
2018 static void
2019 init_gdbarch_swap (struct gdbarch *gdbarch)
2020 {
2021 struct gdbarch_swap_registration *rego;
2022 struct gdbarch_swap **curr = &gdbarch->swap;
2023 for (rego = gdbarch_swap_registry.registrations;
2024 rego != NULL;
2025 rego = rego->next)
2026 {
2027 if (rego->data != NULL)
2028 {
2029 (*curr) = XMALLOC (struct gdbarch_swap);
2030 (*curr)->source = rego;
2031 (*curr)->swap = xmalloc (rego->sizeof_data);
2032 (*curr)->next = NULL;
2033 curr = &(*curr)->next;
2034 }
2035 if (rego->init != NULL)
2036 rego->init ();
2037 }
2038 }
2039
2040 static void
2041 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2042 {
2043 struct gdbarch_swap *curr;
2044 for (curr = gdbarch->swap;
2045 curr != NULL;
2046 curr = curr->next)
2047 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2048 }
2049
2050 static void
2051 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2052 {
2053 struct gdbarch_swap *curr;
2054 for (curr = gdbarch->swap;
2055 curr != NULL;
2056 curr = curr->next)
2057 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2058 }
2059
2060
2061 /* Keep a registry of the architectures known by GDB. */
2062
2063 struct gdbarch_registration
2064 {
2065 enum bfd_architecture bfd_architecture;
2066 gdbarch_init_ftype *init;
2067 gdbarch_dump_tdep_ftype *dump_tdep;
2068 struct gdbarch_list *arches;
2069 struct gdbarch_registration *next;
2070 };
2071
2072 static struct gdbarch_registration *gdbarch_registry = NULL;
2073
2074 static void
2075 append_name (const char ***buf, int *nr, const char *name)
2076 {
2077 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2078 (*buf)[*nr] = name;
2079 *nr += 1;
2080 }
2081
2082 const char **
2083 gdbarch_printable_names (void)
2084 {
2085 if (GDB_MULTI_ARCH)
2086 {
2087 /* Accumulate a list of names based on the registed list of
2088 architectures. */
2089 enum bfd_architecture a;
2090 int nr_arches = 0;
2091 const char **arches = NULL;
2092 struct gdbarch_registration *rego;
2093 for (rego = gdbarch_registry;
2094 rego != NULL;
2095 rego = rego->next)
2096 {
2097 const struct bfd_arch_info *ap;
2098 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2099 if (ap == NULL)
2100 internal_error (__FILE__, __LINE__,
2101 "gdbarch_architecture_names: multi-arch unknown");
2102 do
2103 {
2104 append_name (&arches, &nr_arches, ap->printable_name);
2105 ap = ap->next;
2106 }
2107 while (ap != NULL);
2108 }
2109 append_name (&arches, &nr_arches, NULL);
2110 return arches;
2111 }
2112 else
2113 /* Just return all the architectures that BFD knows. Assume that
2114 the legacy architecture framework supports them. */
2115 return bfd_arch_list ();
2116 }
2117
2118
2119 void
2120 gdbarch_register (enum bfd_architecture bfd_architecture,
2121 gdbarch_init_ftype *init,
2122 gdbarch_dump_tdep_ftype *dump_tdep)
2123 {
2124 struct gdbarch_registration **curr;
2125 const struct bfd_arch_info *bfd_arch_info;
2126 /* Check that BFD recognizes this architecture */
2127 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2128 if (bfd_arch_info == NULL)
2129 {
2130 internal_error (__FILE__, __LINE__,
2131 "gdbarch: Attempt to register unknown architecture (%d)",
2132 bfd_architecture);
2133 }
2134 /* Check that we haven't seen this architecture before */
2135 for (curr = &gdbarch_registry;
2136 (*curr) != NULL;
2137 curr = &(*curr)->next)
2138 {
2139 if (bfd_architecture == (*curr)->bfd_architecture)
2140 internal_error (__FILE__, __LINE__,
2141 "gdbarch: Duplicate registraration of architecture (%s)",
2142 bfd_arch_info->printable_name);
2143 }
2144 /* log it */
2145 if (gdbarch_debug)
2146 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2147 bfd_arch_info->printable_name,
2148 (long) init);
2149 /* Append it */
2150 (*curr) = XMALLOC (struct gdbarch_registration);
2151 (*curr)->bfd_architecture = bfd_architecture;
2152 (*curr)->init = init;
2153 (*curr)->dump_tdep = dump_tdep;
2154 (*curr)->arches = NULL;
2155 (*curr)->next = NULL;
2156 /* When non- multi-arch, install whatever target dump routine we've
2157 been provided - hopefully that routine has been written correctly
2158 and works regardless of multi-arch. */
2159 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2160 && startup_gdbarch.dump_tdep == NULL)
2161 startup_gdbarch.dump_tdep = dump_tdep;
2162 }
2163
2164 void
2165 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2166 gdbarch_init_ftype *init)
2167 {
2168 gdbarch_register (bfd_architecture, init, NULL);
2169 }
2170
2171
2172 /* Look for an architecture using gdbarch_info. Base search on only
2173 BFD_ARCH_INFO and BYTE_ORDER. */
2174
2175 struct gdbarch_list *
2176 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2177 const struct gdbarch_info *info)
2178 {
2179 for (; arches != NULL; arches = arches->next)
2180 {
2181 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2182 continue;
2183 if (info->byte_order != arches->gdbarch->byte_order)
2184 continue;
2185 if (info->osabi != arches->gdbarch->osabi)
2186 continue;
2187 return arches;
2188 }
2189 return NULL;
2190 }
2191
2192
2193 /* Update the current architecture. Return ZERO if the update request
2194 failed. */
2195
2196 int
2197 gdbarch_update_p (struct gdbarch_info info)
2198 {
2199 struct gdbarch *new_gdbarch;
2200 struct gdbarch *old_gdbarch;
2201 struct gdbarch_registration *rego;
2202
2203 /* Fill in missing parts of the INFO struct using a number of
2204 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2205
2206 /* \`\`(gdb) set architecture ...'' */
2207 if (info.bfd_arch_info == NULL
2208 && !TARGET_ARCHITECTURE_AUTO)
2209 info.bfd_arch_info = TARGET_ARCHITECTURE;
2210 if (info.bfd_arch_info == NULL
2211 && info.abfd != NULL
2212 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2213 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2214 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2215 if (info.bfd_arch_info == NULL)
2216 info.bfd_arch_info = TARGET_ARCHITECTURE;
2217
2218 /* \`\`(gdb) set byte-order ...'' */
2219 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2220 && !TARGET_BYTE_ORDER_AUTO)
2221 info.byte_order = TARGET_BYTE_ORDER;
2222 /* From the INFO struct. */
2223 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2224 && info.abfd != NULL)
2225 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2226 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2227 : BFD_ENDIAN_UNKNOWN);
2228 /* From the current target. */
2229 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2230 info.byte_order = TARGET_BYTE_ORDER;
2231
2232 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2233 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2234 info.osabi = gdbarch_lookup_osabi (info.abfd);
2235 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2236 info.osabi = current_gdbarch->osabi;
2237
2238 /* Must have found some sort of architecture. */
2239 gdb_assert (info.bfd_arch_info != NULL);
2240
2241 if (gdbarch_debug)
2242 {
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_update: info.bfd_arch_info %s\n",
2245 (info.bfd_arch_info != NULL
2246 ? info.bfd_arch_info->printable_name
2247 : "(null)"));
2248 fprintf_unfiltered (gdb_stdlog,
2249 "gdbarch_update: info.byte_order %d (%s)\n",
2250 info.byte_order,
2251 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2252 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2253 : "default"));
2254 fprintf_unfiltered (gdb_stdlog,
2255 "gdbarch_update: info.osabi %d (%s)\n",
2256 info.osabi, gdbarch_osabi_name (info.osabi));
2257 fprintf_unfiltered (gdb_stdlog,
2258 "gdbarch_update: info.abfd 0x%lx\n",
2259 (long) info.abfd);
2260 fprintf_unfiltered (gdb_stdlog,
2261 "gdbarch_update: info.tdep_info 0x%lx\n",
2262 (long) info.tdep_info);
2263 }
2264
2265 /* Find the target that knows about this architecture. */
2266 for (rego = gdbarch_registry;
2267 rego != NULL;
2268 rego = rego->next)
2269 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2270 break;
2271 if (rego == NULL)
2272 {
2273 if (gdbarch_debug)
2274 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2275 return 0;
2276 }
2277
2278 /* Swap the data belonging to the old target out setting the
2279 installed data to zero. This stops the ->init() function trying
2280 to refer to the previous architecture's global data structures. */
2281 swapout_gdbarch_swap (current_gdbarch);
2282 clear_gdbarch_swap (current_gdbarch);
2283
2284 /* Save the previously selected architecture, setting the global to
2285 NULL. This stops ->init() trying to use the previous
2286 architecture's configuration. The previous architecture may not
2287 even be of the same architecture family. The most recent
2288 architecture of the same family is found at the head of the
2289 rego->arches list. */
2290 old_gdbarch = current_gdbarch;
2291 current_gdbarch = NULL;
2292
2293 /* Ask the target for a replacement architecture. */
2294 new_gdbarch = rego->init (info, rego->arches);
2295
2296 /* Did the target like it? No. Reject the change and revert to the
2297 old architecture. */
2298 if (new_gdbarch == NULL)
2299 {
2300 if (gdbarch_debug)
2301 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2302 swapin_gdbarch_swap (old_gdbarch);
2303 current_gdbarch = old_gdbarch;
2304 return 0;
2305 }
2306
2307 /* Did the architecture change? No. Oops, put the old architecture
2308 back. */
2309 if (old_gdbarch == new_gdbarch)
2310 {
2311 if (gdbarch_debug)
2312 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2313 (long) new_gdbarch,
2314 new_gdbarch->bfd_arch_info->printable_name);
2315 swapin_gdbarch_swap (old_gdbarch);
2316 current_gdbarch = old_gdbarch;
2317 return 1;
2318 }
2319
2320 /* Is this a pre-existing architecture? Yes. Move it to the front
2321 of the list of architectures (keeping the list sorted Most
2322 Recently Used) and then copy it in. */
2323 {
2324 struct gdbarch_list **list;
2325 for (list = &rego->arches;
2326 (*list) != NULL;
2327 list = &(*list)->next)
2328 {
2329 if ((*list)->gdbarch == new_gdbarch)
2330 {
2331 struct gdbarch_list *this;
2332 if (gdbarch_debug)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2335 (long) new_gdbarch,
2336 new_gdbarch->bfd_arch_info->printable_name);
2337 /* Unlink this. */
2338 this = (*list);
2339 (*list) = this->next;
2340 /* Insert in the front. */
2341 this->next = rego->arches;
2342 rego->arches = this;
2343 /* Copy the new architecture in. */
2344 current_gdbarch = new_gdbarch;
2345 swapin_gdbarch_swap (new_gdbarch);
2346 architecture_changed_event ();
2347 return 1;
2348 }
2349 }
2350 }
2351
2352 /* Prepend this new architecture to the architecture list (keep the
2353 list sorted Most Recently Used). */
2354 {
2355 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2356 this->next = rego->arches;
2357 this->gdbarch = new_gdbarch;
2358 rego->arches = this;
2359 }
2360
2361 /* Switch to this new architecture marking it initialized. */
2362 current_gdbarch = new_gdbarch;
2363 current_gdbarch->initialized_p = 1;
2364 if (gdbarch_debug)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2368 (long) new_gdbarch,
2369 new_gdbarch->bfd_arch_info->printable_name);
2370 }
2371
2372 /* Check that the newly installed architecture is valid. Plug in
2373 any post init values. */
2374 new_gdbarch->dump_tdep = rego->dump_tdep;
2375 verify_gdbarch (new_gdbarch);
2376
2377 /* Initialize the per-architecture memory (swap) areas.
2378 CURRENT_GDBARCH must be update before these modules are
2379 called. */
2380 init_gdbarch_swap (new_gdbarch);
2381
2382 /* Initialize the per-architecture data. CURRENT_GDBARCH
2383 must be updated before these modules are called. */
2384 architecture_changed_event ();
2385
2386 if (gdbarch_debug)
2387 gdbarch_dump (current_gdbarch, gdb_stdlog);
2388
2389 return 1;
2390 }
2391
2392
2393 /* Disassembler */
2394
2395 /* Pointer to the target-dependent disassembly function. */
2396 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2397
2398 extern void _initialize_gdbarch (void);
2399
2400 void
2401 _initialize_gdbarch (void)
2402 {
2403 struct cmd_list_element *c;
2404
2405 add_show_from_set (add_set_cmd ("arch",
2406 class_maintenance,
2407 var_zinteger,
2408 (char *)&gdbarch_debug,
2409 "Set architecture debugging.\\n\\
2410 When non-zero, architecture debugging is enabled.", &setdebuglist),
2411 &showdebuglist);
2412 c = add_set_cmd ("archdebug",
2413 class_maintenance,
2414 var_zinteger,
2415 (char *)&gdbarch_debug,
2416 "Set architecture debugging.\\n\\
2417 When non-zero, architecture debugging is enabled.", &setlist);
2418
2419 deprecate_cmd (c, "set debug arch");
2420 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2421 }
2422 EOF
2423
2424 # close things off
2425 exec 1>&2
2426 #../move-if-change new-gdbarch.c gdbarch.c
2427 compare_new gdbarch.c
This page took 0.085627 seconds and 4 git commands to generate.