bfd/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # DEPRECATED_REGISTER_SIZE can be deleted.
476 v:=:int:deprecated_register_size
477 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
479
480 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
487 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
491 #
492 v:=:int:believe_pcc_promotion:::::::
493 #
494 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
496 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
497 #
498 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
499 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
500 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
501 #
502 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
503 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
504
505 # It has been suggested that this, well actually its predecessor,
506 # should take the type/value of the function to be called and not the
507 # return type. This is left as an exercise for the reader.
508
509 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
510 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
511 # (via legacy_return_value), when a small struct is involved.
512
513 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
514
515 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
516 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
517 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
518 # RETURN_VALUE.
519
520 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
521 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
522 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
523 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
524 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
525
526 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
527 # ABI suitable for the implementation of a robust extract
528 # struct-convention return-value address method (the sparc saves the
529 # address in the callers frame). All the other cases so far examined,
530 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
531 # erreneous - the code was incorrectly assuming that the return-value
532 # address, stored in a register, was preserved across the entire
533 # function call.
534
535 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
536 # the ABIs that are still to be analyzed - perhaps this should simply
537 # be deleted. The commented out extract_returned_value_address method
538 # is provided as a starting point for the 32-bit SPARC. It, or
539 # something like it, along with changes to both infcmd.c and stack.c
540 # will be needed for that case to work. NB: It is passed the callers
541 # frame since it is only after the callee has returned that this
542 # function is used.
543
544 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
545 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
546
547 #
548 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
549 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
550 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
551 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
552 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
553 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
554 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
555
556 # A function can be addressed by either it's "pointer" (possibly a
557 # descriptor address) or "entry point" (first executable instruction).
558 # The method "convert_from_func_ptr_addr" converting the former to the
559 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
560 # a simplified subset of that functionality - the function's address
561 # corresponds to the "function pointer" and the function's start
562 # corresponds to the "function entry point" - and hence is redundant.
563
564 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
565
566 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
567
568 # Fetch the target specific address used to represent a load module.
569 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:int:frame_num_args:struct frame_info *frame:frame
577 #
578 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
579 # to frame_align and the requirement that methods such as
580 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
581 # alignment.
582 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
583 M::CORE_ADDR:frame_align:CORE_ADDR address:address
584 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
585 # stabs_argument_has_addr.
586 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
587 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
588 v:=:int:frame_red_zone_size
589 #
590 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
601 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
602 # ADDR_BITS_REMOVE.
603 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
605 # the target needs software single step. An ISA method to implement it.
606 #
607 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
608 # using the breakpoint system instead of blatting memory directly (as with rs6000).
609 #
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
611 # single step. If not, then implement single step using breakpoints.
612 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M::int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
620
621
622 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
628
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a funtion's epilogue. in_function_epilogue_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
637 # untouched.
638 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
639 # Given a vector of command-line arguments, return a newly allocated
640 # string which, when passed to the create_inferior function, will be
641 # parsed (on Unix systems, by the shell) to yield the same vector.
642 # This function should call error() if the argument vector is not
643 # representable for this target or if this target does not support
644 # command-line arguments.
645 # ARGC is the number of elements in the vector.
646 # ARGV is an array of strings, one per argument.
647 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
651 v:=:int:cannot_step_breakpoint:::0:0::0
652 v:=:int:have_nonsteppable_watchpoint:::0:0::0
653 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
654 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
656 # Is a register in a group
657 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
658 # Fetch the pointer to the ith function argument.
659 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
660
661 # Return the appropriate register set for a core file section with
662 # name SECT_NAME and size SECT_SIZE.
663 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
664 EOF
665 }
666
667 #
668 # The .log file
669 #
670 exec > new-gdbarch.log
671 function_list | while do_read
672 do
673 cat <<EOF
674 ${class} ${returntype} ${function} ($formal)
675 EOF
676 for r in ${read}
677 do
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
679 done
680 if class_is_predicate_p && fallback_default_p
681 then
682 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
683 kill $$
684 exit 1
685 fi
686 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
687 then
688 echo "Error: postdefault is useless when invalid_p=0" 1>&2
689 kill $$
690 exit 1
691 fi
692 if class_is_multiarch_p
693 then
694 if class_is_predicate_p ; then :
695 elif test "x${predefault}" = "x"
696 then
697 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
698 kill $$
699 exit 1
700 fi
701 fi
702 echo ""
703 done
704
705 exec 1>&2
706 compare_new gdbarch.log
707
708
709 copyright ()
710 {
711 cat <<EOF
712 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
713
714 /* Dynamic architecture support for GDB, the GNU debugger.
715
716 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
717 Software Foundation, Inc.
718
719 This file is part of GDB.
720
721 This program is free software; you can redistribute it and/or modify
722 it under the terms of the GNU General Public License as published by
723 the Free Software Foundation; either version 2 of the License, or
724 (at your option) any later version.
725
726 This program is distributed in the hope that it will be useful,
727 but WITHOUT ANY WARRANTY; without even the implied warranty of
728 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
729 GNU General Public License for more details.
730
731 You should have received a copy of the GNU General Public License
732 along with this program; if not, write to the Free Software
733 Foundation, Inc., 51 Franklin Street, Fifth Floor,
734 Boston, MA 02110-1301, USA. */
735
736 /* This file was created with the aid of \`\`gdbarch.sh''.
737
738 The Bourne shell script \`\`gdbarch.sh'' creates the files
739 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
740 against the existing \`\`gdbarch.[hc]''. Any differences found
741 being reported.
742
743 If editing this file, please also run gdbarch.sh and merge any
744 changes into that script. Conversely, when making sweeping changes
745 to this file, modifying gdbarch.sh and using its output may prove
746 easier. */
747
748 EOF
749 }
750
751 #
752 # The .h file
753 #
754
755 exec > new-gdbarch.h
756 copyright
757 cat <<EOF
758 #ifndef GDBARCH_H
759 #define GDBARCH_H
760
761 struct floatformat;
762 struct ui_file;
763 struct frame_info;
764 struct value;
765 struct objfile;
766 struct minimal_symbol;
767 struct regcache;
768 struct reggroup;
769 struct regset;
770 struct disassemble_info;
771 struct target_ops;
772 struct obstack;
773 struct bp_target_info;
774
775 extern struct gdbarch *current_gdbarch;
776 EOF
777
778 # function typedef's
779 printf "\n"
780 printf "\n"
781 printf "/* The following are pre-initialized by GDBARCH. */\n"
782 function_list | while do_read
783 do
784 if class_is_info_p
785 then
786 printf "\n"
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
789 if test -n "${macro}"
790 then
791 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
792 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#endif\n"
794 printf "#if !defined (${macro})\n"
795 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
796 printf "#endif\n"
797 fi
798 fi
799 done
800
801 # function typedef's
802 printf "\n"
803 printf "\n"
804 printf "/* The following are initialized by the target dependent code. */\n"
805 function_list | while do_read
806 do
807 if [ -n "${comment}" ]
808 then
809 echo "${comment}" | sed \
810 -e '2 s,#,/*,' \
811 -e '3,$ s,#, ,' \
812 -e '$ s,$, */,'
813 fi
814
815 if class_is_predicate_p
816 then
817 if test -n "${macro}"
818 then
819 printf "\n"
820 printf "#if defined (${macro})\n"
821 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
822 printf "#if !defined (${macro}_P)\n"
823 printf "#define ${macro}_P() (1)\n"
824 printf "#endif\n"
825 printf "#endif\n"
826 fi
827 printf "\n"
828 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
829 if test -n "${macro}"
830 then
831 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
832 printf "#error \"Non multi-arch definition of ${macro}\"\n"
833 printf "#endif\n"
834 printf "#if !defined (${macro}_P)\n"
835 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
836 printf "#endif\n"
837 fi
838 fi
839 if class_is_variable_p
840 then
841 printf "\n"
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
844 if test -n "${macro}"
845 then
846 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "#endif\n"
852 fi
853 fi
854 if class_is_function_p
855 then
856 printf "\n"
857 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
858 then
859 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
860 elif class_is_multiarch_p
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
863 else
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
865 fi
866 if [ "x${formal}" = "xvoid" ]
867 then
868 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
869 else
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
871 fi
872 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
873 if test -n "${macro}"
874 then
875 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 if [ "x${actual}" = "x" ]
879 then
880 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
881 elif [ "x${actual}" = "x-" ]
882 then
883 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
884 else
885 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
886 fi
887 printf "#if !defined (${macro})\n"
888 if [ "x${actual}" = "x" ]
889 then
890 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
891 elif [ "x${actual}" = "x-" ]
892 then
893 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
894 else
895 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
896 fi
897 printf "#endif\n"
898 fi
899 fi
900 done
901
902 # close it off
903 cat <<EOF
904
905 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
906
907
908 /* Mechanism for co-ordinating the selection of a specific
909 architecture.
910
911 GDB targets (*-tdep.c) can register an interest in a specific
912 architecture. Other GDB components can register a need to maintain
913 per-architecture data.
914
915 The mechanisms below ensures that there is only a loose connection
916 between the set-architecture command and the various GDB
917 components. Each component can independently register their need
918 to maintain architecture specific data with gdbarch.
919
920 Pragmatics:
921
922 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
923 didn't scale.
924
925 The more traditional mega-struct containing architecture specific
926 data for all the various GDB components was also considered. Since
927 GDB is built from a variable number of (fairly independent)
928 components it was determined that the global aproach was not
929 applicable. */
930
931
932 /* Register a new architectural family with GDB.
933
934 Register support for the specified ARCHITECTURE with GDB. When
935 gdbarch determines that the specified architecture has been
936 selected, the corresponding INIT function is called.
937
938 --
939
940 The INIT function takes two parameters: INFO which contains the
941 information available to gdbarch about the (possibly new)
942 architecture; ARCHES which is a list of the previously created
943 \`\`struct gdbarch'' for this architecture.
944
945 The INFO parameter is, as far as possible, be pre-initialized with
946 information obtained from INFO.ABFD or the previously selected
947 architecture.
948
949 The ARCHES parameter is a linked list (sorted most recently used)
950 of all the previously created architures for this architecture
951 family. The (possibly NULL) ARCHES->gdbarch can used to access
952 values from the previously selected architecture for this
953 architecture family. The global \`\`current_gdbarch'' shall not be
954 used.
955
956 The INIT function shall return any of: NULL - indicating that it
957 doesn't recognize the selected architecture; an existing \`\`struct
958 gdbarch'' from the ARCHES list - indicating that the new
959 architecture is just a synonym for an earlier architecture (see
960 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
961 - that describes the selected architecture (see gdbarch_alloc()).
962
963 The DUMP_TDEP function shall print out all target specific values.
964 Care should be taken to ensure that the function works in both the
965 multi-arch and non- multi-arch cases. */
966
967 struct gdbarch_list
968 {
969 struct gdbarch *gdbarch;
970 struct gdbarch_list *next;
971 };
972
973 struct gdbarch_info
974 {
975 /* Use default: NULL (ZERO). */
976 const struct bfd_arch_info *bfd_arch_info;
977
978 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
979 int byte_order;
980
981 /* Use default: NULL (ZERO). */
982 bfd *abfd;
983
984 /* Use default: NULL (ZERO). */
985 struct gdbarch_tdep_info *tdep_info;
986
987 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
988 enum gdb_osabi osabi;
989 };
990
991 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
992 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
993
994 /* DEPRECATED - use gdbarch_register() */
995 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
996
997 extern void gdbarch_register (enum bfd_architecture architecture,
998 gdbarch_init_ftype *,
999 gdbarch_dump_tdep_ftype *);
1000
1001
1002 /* Return a freshly allocated, NULL terminated, array of the valid
1003 architecture names. Since architectures are registered during the
1004 _initialize phase this function only returns useful information
1005 once initialization has been completed. */
1006
1007 extern const char **gdbarch_printable_names (void);
1008
1009
1010 /* Helper function. Search the list of ARCHES for a GDBARCH that
1011 matches the information provided by INFO. */
1012
1013 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1014
1015
1016 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1017 basic initialization using values obtained from the INFO andTDEP
1018 parameters. set_gdbarch_*() functions are called to complete the
1019 initialization of the object. */
1020
1021 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1022
1023
1024 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1025 It is assumed that the caller freeds the \`\`struct
1026 gdbarch_tdep''. */
1027
1028 extern void gdbarch_free (struct gdbarch *);
1029
1030
1031 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1032 obstack. The memory is freed when the corresponding architecture
1033 is also freed. */
1034
1035 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1036 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1037 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1038
1039
1040 /* Helper function. Force an update of the current architecture.
1041
1042 The actual architecture selected is determined by INFO, \`\`(gdb) set
1043 architecture'' et.al., the existing architecture and BFD's default
1044 architecture. INFO should be initialized to zero and then selected
1045 fields should be updated.
1046
1047 Returns non-zero if the update succeeds */
1048
1049 extern int gdbarch_update_p (struct gdbarch_info info);
1050
1051
1052 /* Helper function. Find an architecture matching info.
1053
1054 INFO should be initialized using gdbarch_info_init, relevant fields
1055 set, and then finished using gdbarch_info_fill.
1056
1057 Returns the corresponding architecture, or NULL if no matching
1058 architecture was found. "current_gdbarch" is not updated. */
1059
1060 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1061
1062
1063 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1064
1065 FIXME: kettenis/20031124: Of the functions that follow, only
1066 gdbarch_from_bfd is supposed to survive. The others will
1067 dissappear since in the future GDB will (hopefully) be truly
1068 multi-arch. However, for now we're still stuck with the concept of
1069 a single active architecture. */
1070
1071 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1072
1073
1074 /* Register per-architecture data-pointer.
1075
1076 Reserve space for a per-architecture data-pointer. An identifier
1077 for the reserved data-pointer is returned. That identifer should
1078 be saved in a local static variable.
1079
1080 Memory for the per-architecture data shall be allocated using
1081 gdbarch_obstack_zalloc. That memory will be deleted when the
1082 corresponding architecture object is deleted.
1083
1084 When a previously created architecture is re-selected, the
1085 per-architecture data-pointer for that previous architecture is
1086 restored. INIT() is not re-called.
1087
1088 Multiple registrarants for any architecture are allowed (and
1089 strongly encouraged). */
1090
1091 struct gdbarch_data;
1092
1093 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1094 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1095 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1096 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1097 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1098 struct gdbarch_data *data,
1099 void *pointer);
1100
1101 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1102
1103
1104
1105 /* Register per-architecture memory region.
1106
1107 Provide a memory-region swap mechanism. Per-architecture memory
1108 region are created. These memory regions are swapped whenever the
1109 architecture is changed. For a new architecture, the memory region
1110 is initialized with zero (0) and the INIT function is called.
1111
1112 Memory regions are swapped / initialized in the order that they are
1113 registered. NULL DATA and/or INIT values can be specified.
1114
1115 New code should use gdbarch_data_register_*(). */
1116
1117 typedef void (gdbarch_swap_ftype) (void);
1118 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1119 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1120
1121
1122
1123 /* Set the dynamic target-system-dependent parameters (architecture,
1124 byte-order, ...) using information found in the BFD */
1125
1126 extern void set_gdbarch_from_file (bfd *);
1127
1128
1129 /* Initialize the current architecture to the "first" one we find on
1130 our list. */
1131
1132 extern void initialize_current_architecture (void);
1133
1134 /* gdbarch trace variable */
1135 extern int gdbarch_debug;
1136
1137 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1138
1139 #endif
1140 EOF
1141 exec 1>&2
1142 #../move-if-change new-gdbarch.h gdbarch.h
1143 compare_new gdbarch.h
1144
1145
1146 #
1147 # C file
1148 #
1149
1150 exec > new-gdbarch.c
1151 copyright
1152 cat <<EOF
1153
1154 #include "defs.h"
1155 #include "arch-utils.h"
1156
1157 #include "gdbcmd.h"
1158 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1159 #include "symcat.h"
1160
1161 #include "floatformat.h"
1162
1163 #include "gdb_assert.h"
1164 #include "gdb_string.h"
1165 #include "gdb-events.h"
1166 #include "reggroups.h"
1167 #include "osabi.h"
1168 #include "gdb_obstack.h"
1169
1170 /* Static function declarations */
1171
1172 static void alloc_gdbarch_data (struct gdbarch *);
1173
1174 /* Non-zero if we want to trace architecture code. */
1175
1176 #ifndef GDBARCH_DEBUG
1177 #define GDBARCH_DEBUG 0
1178 #endif
1179 int gdbarch_debug = GDBARCH_DEBUG;
1180 static void
1181 show_gdbarch_debug (struct ui_file *file, int from_tty,
1182 struct cmd_list_element *c, const char *value)
1183 {
1184 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1185 }
1186
1187 static const char *
1188 pformat (const struct floatformat *format)
1189 {
1190 if (format == NULL)
1191 return "(null)";
1192 else
1193 return format->name;
1194 }
1195
1196 EOF
1197
1198 # gdbarch open the gdbarch object
1199 printf "\n"
1200 printf "/* Maintain the struct gdbarch object */\n"
1201 printf "\n"
1202 printf "struct gdbarch\n"
1203 printf "{\n"
1204 printf " /* Has this architecture been fully initialized? */\n"
1205 printf " int initialized_p;\n"
1206 printf "\n"
1207 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1208 printf " struct obstack *obstack;\n"
1209 printf "\n"
1210 printf " /* basic architectural information */\n"
1211 function_list | while do_read
1212 do
1213 if class_is_info_p
1214 then
1215 printf " ${returntype} ${function};\n"
1216 fi
1217 done
1218 printf "\n"
1219 printf " /* target specific vector. */\n"
1220 printf " struct gdbarch_tdep *tdep;\n"
1221 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1222 printf "\n"
1223 printf " /* per-architecture data-pointers */\n"
1224 printf " unsigned nr_data;\n"
1225 printf " void **data;\n"
1226 printf "\n"
1227 printf " /* per-architecture swap-regions */\n"
1228 printf " struct gdbarch_swap *swap;\n"
1229 printf "\n"
1230 cat <<EOF
1231 /* Multi-arch values.
1232
1233 When extending this structure you must:
1234
1235 Add the field below.
1236
1237 Declare set/get functions and define the corresponding
1238 macro in gdbarch.h.
1239
1240 gdbarch_alloc(): If zero/NULL is not a suitable default,
1241 initialize the new field.
1242
1243 verify_gdbarch(): Confirm that the target updated the field
1244 correctly.
1245
1246 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1247 field is dumped out
1248
1249 \`\`startup_gdbarch()'': Append an initial value to the static
1250 variable (base values on the host's c-type system).
1251
1252 get_gdbarch(): Implement the set/get functions (probably using
1253 the macro's as shortcuts).
1254
1255 */
1256
1257 EOF
1258 function_list | while do_read
1259 do
1260 if class_is_variable_p
1261 then
1262 printf " ${returntype} ${function};\n"
1263 elif class_is_function_p
1264 then
1265 printf " gdbarch_${function}_ftype *${function};\n"
1266 fi
1267 done
1268 printf "};\n"
1269
1270 # A pre-initialized vector
1271 printf "\n"
1272 printf "\n"
1273 cat <<EOF
1274 /* The default architecture uses host values (for want of a better
1275 choice). */
1276 EOF
1277 printf "\n"
1278 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1279 printf "\n"
1280 printf "struct gdbarch startup_gdbarch =\n"
1281 printf "{\n"
1282 printf " 1, /* Always initialized. */\n"
1283 printf " NULL, /* The obstack. */\n"
1284 printf " /* basic architecture information */\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf " ${staticdefault}, /* ${function} */\n"
1290 fi
1291 done
1292 cat <<EOF
1293 /* target specific vector and its dump routine */
1294 NULL, NULL,
1295 /*per-architecture data-pointers and swap regions */
1296 0, NULL, NULL,
1297 /* Multi-arch values */
1298 EOF
1299 function_list | while do_read
1300 do
1301 if class_is_function_p || class_is_variable_p
1302 then
1303 printf " ${staticdefault}, /* ${function} */\n"
1304 fi
1305 done
1306 cat <<EOF
1307 /* startup_gdbarch() */
1308 };
1309
1310 struct gdbarch *current_gdbarch = &startup_gdbarch;
1311 EOF
1312
1313 # Create a new gdbarch struct
1314 cat <<EOF
1315
1316 /* Create a new \`\`struct gdbarch'' based on information provided by
1317 \`\`struct gdbarch_info''. */
1318 EOF
1319 printf "\n"
1320 cat <<EOF
1321 struct gdbarch *
1322 gdbarch_alloc (const struct gdbarch_info *info,
1323 struct gdbarch_tdep *tdep)
1324 {
1325 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1326 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1327 the current local architecture and not the previous global
1328 architecture. This ensures that the new architectures initial
1329 values are not influenced by the previous architecture. Once
1330 everything is parameterised with gdbarch, this will go away. */
1331 struct gdbarch *current_gdbarch;
1332
1333 /* Create an obstack for allocating all the per-architecture memory,
1334 then use that to allocate the architecture vector. */
1335 struct obstack *obstack = XMALLOC (struct obstack);
1336 obstack_init (obstack);
1337 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1338 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1339 current_gdbarch->obstack = obstack;
1340
1341 alloc_gdbarch_data (current_gdbarch);
1342
1343 current_gdbarch->tdep = tdep;
1344 EOF
1345 printf "\n"
1346 function_list | while do_read
1347 do
1348 if class_is_info_p
1349 then
1350 printf " current_gdbarch->${function} = info->${function};\n"
1351 fi
1352 done
1353 printf "\n"
1354 printf " /* Force the explicit initialization of these. */\n"
1355 function_list | while do_read
1356 do
1357 if class_is_function_p || class_is_variable_p
1358 then
1359 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1360 then
1361 printf " current_gdbarch->${function} = ${predefault};\n"
1362 fi
1363 fi
1364 done
1365 cat <<EOF
1366 /* gdbarch_alloc() */
1367
1368 return current_gdbarch;
1369 }
1370 EOF
1371
1372 # Free a gdbarch struct.
1373 printf "\n"
1374 printf "\n"
1375 cat <<EOF
1376 /* Allocate extra space using the per-architecture obstack. */
1377
1378 void *
1379 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1380 {
1381 void *data = obstack_alloc (arch->obstack, size);
1382 memset (data, 0, size);
1383 return data;
1384 }
1385
1386
1387 /* Free a gdbarch struct. This should never happen in normal
1388 operation --- once you've created a gdbarch, you keep it around.
1389 However, if an architecture's init function encounters an error
1390 building the structure, it may need to clean up a partially
1391 constructed gdbarch. */
1392
1393 void
1394 gdbarch_free (struct gdbarch *arch)
1395 {
1396 struct obstack *obstack;
1397 gdb_assert (arch != NULL);
1398 gdb_assert (!arch->initialized_p);
1399 obstack = arch->obstack;
1400 obstack_free (obstack, 0); /* Includes the ARCH. */
1401 xfree (obstack);
1402 }
1403 EOF
1404
1405 # verify a new architecture
1406 cat <<EOF
1407
1408
1409 /* Ensure that all values in a GDBARCH are reasonable. */
1410
1411 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1412 just happens to match the global variable \`\`current_gdbarch''. That
1413 way macros refering to that variable get the local and not the global
1414 version - ulgh. Once everything is parameterised with gdbarch, this
1415 will go away. */
1416
1417 static void
1418 verify_gdbarch (struct gdbarch *current_gdbarch)
1419 {
1420 struct ui_file *log;
1421 struct cleanup *cleanups;
1422 long dummy;
1423 char *buf;
1424 log = mem_fileopen ();
1425 cleanups = make_cleanup_ui_file_delete (log);
1426 /* fundamental */
1427 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1428 fprintf_unfiltered (log, "\n\tbyte-order");
1429 if (current_gdbarch->bfd_arch_info == NULL)
1430 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1431 /* Check those that need to be defined for the given multi-arch level. */
1432 EOF
1433 function_list | while do_read
1434 do
1435 if class_is_function_p || class_is_variable_p
1436 then
1437 if [ "x${invalid_p}" = "x0" ]
1438 then
1439 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1440 elif class_is_predicate_p
1441 then
1442 printf " /* Skip verify of ${function}, has predicate */\n"
1443 # FIXME: See do_read for potential simplification
1444 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1445 then
1446 printf " if (${invalid_p})\n"
1447 printf " current_gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1449 then
1450 printf " if (current_gdbarch->${function} == ${predefault})\n"
1451 printf " current_gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${postdefault}" ]
1453 then
1454 printf " if (current_gdbarch->${function} == 0)\n"
1455 printf " current_gdbarch->${function} = ${postdefault};\n"
1456 elif [ -n "${invalid_p}" ]
1457 then
1458 printf " if (${invalid_p})\n"
1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1460 elif [ -n "${predefault}" ]
1461 then
1462 printf " if (current_gdbarch->${function} == ${predefault})\n"
1463 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 fi
1465 fi
1466 done
1467 cat <<EOF
1468 buf = ui_file_xstrdup (log, &dummy);
1469 make_cleanup (xfree, buf);
1470 if (strlen (buf) > 0)
1471 internal_error (__FILE__, __LINE__,
1472 _("verify_gdbarch: the following are invalid ...%s"),
1473 buf);
1474 do_cleanups (cleanups);
1475 }
1476 EOF
1477
1478 # dump the structure
1479 printf "\n"
1480 printf "\n"
1481 cat <<EOF
1482 /* Print out the details of the current architecture. */
1483
1484 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1485 just happens to match the global variable \`\`current_gdbarch''. That
1486 way macros refering to that variable get the local and not the global
1487 version - ulgh. Once everything is parameterised with gdbarch, this
1488 will go away. */
1489
1490 void
1491 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1492 {
1493 const char *gdb_xm_file = "<not-defined>";
1494 const char *gdb_nm_file = "<not-defined>";
1495 const char *gdb_tm_file = "<not-defined>";
1496 #if defined (GDB_XM_FILE)
1497 gdb_xm_file = GDB_XM_FILE;
1498 #endif
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1501 gdb_xm_file);
1502 #if defined (GDB_NM_FILE)
1503 gdb_nm_file = GDB_NM_FILE;
1504 #endif
1505 fprintf_unfiltered (file,
1506 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1507 gdb_nm_file);
1508 #if defined (GDB_TM_FILE)
1509 gdb_tm_file = GDB_TM_FILE;
1510 #endif
1511 fprintf_unfiltered (file,
1512 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1513 gdb_tm_file);
1514 EOF
1515 function_list | sort -t: -k 4 | while do_read
1516 do
1517 # First the predicate
1518 if class_is_predicate_p
1519 then
1520 if test -n "${macro}"
1521 then
1522 printf "#ifdef ${macro}_P\n"
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1525 printf " \"${macro}_P()\",\n"
1526 printf " XSTRING (${macro}_P ()));\n"
1527 printf "#endif\n"
1528 fi
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1531 printf " gdbarch_${function}_p (current_gdbarch));\n"
1532 fi
1533 # Print the macro definition.
1534 if test -n "${macro}"
1535 then
1536 printf "#ifdef ${macro}\n"
1537 if class_is_function_p
1538 then
1539 printf " fprintf_unfiltered (file,\n"
1540 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1541 printf " \"${macro}(${actual})\",\n"
1542 printf " XSTRING (${macro} (${actual})));\n"
1543 else
1544 printf " fprintf_unfiltered (file,\n"
1545 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1546 printf " XSTRING (${macro}));\n"
1547 fi
1548 printf "#endif\n"
1549 fi
1550 # Print the corresponding value.
1551 if class_is_function_p
1552 then
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1555 printf " (long) current_gdbarch->${function});\n"
1556 else
1557 # It is a variable
1558 case "${print}:${returntype}" in
1559 :CORE_ADDR )
1560 fmt="0x%s"
1561 print="paddr_nz (current_gdbarch->${function})"
1562 ;;
1563 :* )
1564 fmt="%s"
1565 print="paddr_d (current_gdbarch->${function})"
1566 ;;
1567 * )
1568 fmt="%s"
1569 ;;
1570 esac
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1573 printf " ${print});\n"
1574 fi
1575 done
1576 cat <<EOF
1577 if (current_gdbarch->dump_tdep != NULL)
1578 current_gdbarch->dump_tdep (current_gdbarch, file);
1579 }
1580 EOF
1581
1582
1583 # GET/SET
1584 printf "\n"
1585 cat <<EOF
1586 struct gdbarch_tdep *
1587 gdbarch_tdep (struct gdbarch *gdbarch)
1588 {
1589 if (gdbarch_debug >= 2)
1590 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1591 return gdbarch->tdep;
1592 }
1593 EOF
1594 printf "\n"
1595 function_list | while do_read
1596 do
1597 if class_is_predicate_p
1598 then
1599 printf "\n"
1600 printf "int\n"
1601 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1602 printf "{\n"
1603 printf " gdb_assert (gdbarch != NULL);\n"
1604 printf " return ${predicate};\n"
1605 printf "}\n"
1606 fi
1607 if class_is_function_p
1608 then
1609 printf "\n"
1610 printf "${returntype}\n"
1611 if [ "x${formal}" = "xvoid" ]
1612 then
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1614 else
1615 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1616 fi
1617 printf "{\n"
1618 printf " gdb_assert (gdbarch != NULL);\n"
1619 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1620 if class_is_predicate_p && test -n "${predefault}"
1621 then
1622 # Allow a call to a function with a predicate.
1623 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1624 fi
1625 printf " if (gdbarch_debug >= 2)\n"
1626 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1627 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1628 then
1629 if class_is_multiarch_p
1630 then
1631 params="gdbarch"
1632 else
1633 params=""
1634 fi
1635 else
1636 if class_is_multiarch_p
1637 then
1638 params="gdbarch, ${actual}"
1639 else
1640 params="${actual}"
1641 fi
1642 fi
1643 if [ "x${returntype}" = "xvoid" ]
1644 then
1645 printf " gdbarch->${function} (${params});\n"
1646 else
1647 printf " return gdbarch->${function} (${params});\n"
1648 fi
1649 printf "}\n"
1650 printf "\n"
1651 printf "void\n"
1652 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1653 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1654 printf "{\n"
1655 printf " gdbarch->${function} = ${function};\n"
1656 printf "}\n"
1657 elif class_is_variable_p
1658 then
1659 printf "\n"
1660 printf "${returntype}\n"
1661 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1662 printf "{\n"
1663 printf " gdb_assert (gdbarch != NULL);\n"
1664 if [ "x${invalid_p}" = "x0" ]
1665 then
1666 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1667 elif [ -n "${invalid_p}" ]
1668 then
1669 printf " /* Check variable is valid. */\n"
1670 printf " gdb_assert (!(${invalid_p}));\n"
1671 elif [ -n "${predefault}" ]
1672 then
1673 printf " /* Check variable changed from pre-default. */\n"
1674 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1675 fi
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_info_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 printf " if (gdbarch_debug >= 2)\n"
1695 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1696 printf " return gdbarch->${function};\n"
1697 printf "}\n"
1698 fi
1699 done
1700
1701 # All the trailing guff
1702 cat <<EOF
1703
1704
1705 /* Keep a registry of per-architecture data-pointers required by GDB
1706 modules. */
1707
1708 struct gdbarch_data
1709 {
1710 unsigned index;
1711 int init_p;
1712 gdbarch_data_pre_init_ftype *pre_init;
1713 gdbarch_data_post_init_ftype *post_init;
1714 };
1715
1716 struct gdbarch_data_registration
1717 {
1718 struct gdbarch_data *data;
1719 struct gdbarch_data_registration *next;
1720 };
1721
1722 struct gdbarch_data_registry
1723 {
1724 unsigned nr;
1725 struct gdbarch_data_registration *registrations;
1726 };
1727
1728 struct gdbarch_data_registry gdbarch_data_registry =
1729 {
1730 0, NULL,
1731 };
1732
1733 static struct gdbarch_data *
1734 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1735 gdbarch_data_post_init_ftype *post_init)
1736 {
1737 struct gdbarch_data_registration **curr;
1738 /* Append the new registraration. */
1739 for (curr = &gdbarch_data_registry.registrations;
1740 (*curr) != NULL;
1741 curr = &(*curr)->next);
1742 (*curr) = XMALLOC (struct gdbarch_data_registration);
1743 (*curr)->next = NULL;
1744 (*curr)->data = XMALLOC (struct gdbarch_data);
1745 (*curr)->data->index = gdbarch_data_registry.nr++;
1746 (*curr)->data->pre_init = pre_init;
1747 (*curr)->data->post_init = post_init;
1748 (*curr)->data->init_p = 1;
1749 return (*curr)->data;
1750 }
1751
1752 struct gdbarch_data *
1753 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1754 {
1755 return gdbarch_data_register (pre_init, NULL);
1756 }
1757
1758 struct gdbarch_data *
1759 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1760 {
1761 return gdbarch_data_register (NULL, post_init);
1762 }
1763
1764 /* Create/delete the gdbarch data vector. */
1765
1766 static void
1767 alloc_gdbarch_data (struct gdbarch *gdbarch)
1768 {
1769 gdb_assert (gdbarch->data == NULL);
1770 gdbarch->nr_data = gdbarch_data_registry.nr;
1771 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1772 }
1773
1774 /* Initialize the current value of the specified per-architecture
1775 data-pointer. */
1776
1777 void
1778 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1779 struct gdbarch_data *data,
1780 void *pointer)
1781 {
1782 gdb_assert (data->index < gdbarch->nr_data);
1783 gdb_assert (gdbarch->data[data->index] == NULL);
1784 gdb_assert (data->pre_init == NULL);
1785 gdbarch->data[data->index] = pointer;
1786 }
1787
1788 /* Return the current value of the specified per-architecture
1789 data-pointer. */
1790
1791 void *
1792 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1793 {
1794 gdb_assert (data->index < gdbarch->nr_data);
1795 if (gdbarch->data[data->index] == NULL)
1796 {
1797 /* The data-pointer isn't initialized, call init() to get a
1798 value. */
1799 if (data->pre_init != NULL)
1800 /* Mid architecture creation: pass just the obstack, and not
1801 the entire architecture, as that way it isn't possible for
1802 pre-init code to refer to undefined architecture
1803 fields. */
1804 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1805 else if (gdbarch->initialized_p
1806 && data->post_init != NULL)
1807 /* Post architecture creation: pass the entire architecture
1808 (as all fields are valid), but be careful to also detect
1809 recursive references. */
1810 {
1811 gdb_assert (data->init_p);
1812 data->init_p = 0;
1813 gdbarch->data[data->index] = data->post_init (gdbarch);
1814 data->init_p = 1;
1815 }
1816 else
1817 /* The architecture initialization hasn't completed - punt -
1818 hope that the caller knows what they are doing. Once
1819 deprecated_set_gdbarch_data has been initialized, this can be
1820 changed to an internal error. */
1821 return NULL;
1822 gdb_assert (gdbarch->data[data->index] != NULL);
1823 }
1824 return gdbarch->data[data->index];
1825 }
1826
1827
1828
1829 /* Keep a registry of swapped data required by GDB modules. */
1830
1831 struct gdbarch_swap
1832 {
1833 void *swap;
1834 struct gdbarch_swap_registration *source;
1835 struct gdbarch_swap *next;
1836 };
1837
1838 struct gdbarch_swap_registration
1839 {
1840 void *data;
1841 unsigned long sizeof_data;
1842 gdbarch_swap_ftype *init;
1843 struct gdbarch_swap_registration *next;
1844 };
1845
1846 struct gdbarch_swap_registry
1847 {
1848 int nr;
1849 struct gdbarch_swap_registration *registrations;
1850 };
1851
1852 struct gdbarch_swap_registry gdbarch_swap_registry =
1853 {
1854 0, NULL,
1855 };
1856
1857 void
1858 deprecated_register_gdbarch_swap (void *data,
1859 unsigned long sizeof_data,
1860 gdbarch_swap_ftype *init)
1861 {
1862 struct gdbarch_swap_registration **rego;
1863 for (rego = &gdbarch_swap_registry.registrations;
1864 (*rego) != NULL;
1865 rego = &(*rego)->next);
1866 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1867 (*rego)->next = NULL;
1868 (*rego)->init = init;
1869 (*rego)->data = data;
1870 (*rego)->sizeof_data = sizeof_data;
1871 }
1872
1873 static void
1874 current_gdbarch_swap_init_hack (void)
1875 {
1876 struct gdbarch_swap_registration *rego;
1877 struct gdbarch_swap **curr = &current_gdbarch->swap;
1878 for (rego = gdbarch_swap_registry.registrations;
1879 rego != NULL;
1880 rego = rego->next)
1881 {
1882 if (rego->data != NULL)
1883 {
1884 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1885 struct gdbarch_swap);
1886 (*curr)->source = rego;
1887 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1888 rego->sizeof_data);
1889 (*curr)->next = NULL;
1890 curr = &(*curr)->next;
1891 }
1892 if (rego->init != NULL)
1893 rego->init ();
1894 }
1895 }
1896
1897 static struct gdbarch *
1898 current_gdbarch_swap_out_hack (void)
1899 {
1900 struct gdbarch *old_gdbarch = current_gdbarch;
1901 struct gdbarch_swap *curr;
1902
1903 gdb_assert (old_gdbarch != NULL);
1904 for (curr = old_gdbarch->swap;
1905 curr != NULL;
1906 curr = curr->next)
1907 {
1908 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1909 memset (curr->source->data, 0, curr->source->sizeof_data);
1910 }
1911 current_gdbarch = NULL;
1912 return old_gdbarch;
1913 }
1914
1915 static void
1916 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1917 {
1918 struct gdbarch_swap *curr;
1919
1920 gdb_assert (current_gdbarch == NULL);
1921 for (curr = new_gdbarch->swap;
1922 curr != NULL;
1923 curr = curr->next)
1924 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1925 current_gdbarch = new_gdbarch;
1926 }
1927
1928
1929 /* Keep a registry of the architectures known by GDB. */
1930
1931 struct gdbarch_registration
1932 {
1933 enum bfd_architecture bfd_architecture;
1934 gdbarch_init_ftype *init;
1935 gdbarch_dump_tdep_ftype *dump_tdep;
1936 struct gdbarch_list *arches;
1937 struct gdbarch_registration *next;
1938 };
1939
1940 static struct gdbarch_registration *gdbarch_registry = NULL;
1941
1942 static void
1943 append_name (const char ***buf, int *nr, const char *name)
1944 {
1945 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1946 (*buf)[*nr] = name;
1947 *nr += 1;
1948 }
1949
1950 const char **
1951 gdbarch_printable_names (void)
1952 {
1953 /* Accumulate a list of names based on the registed list of
1954 architectures. */
1955 enum bfd_architecture a;
1956 int nr_arches = 0;
1957 const char **arches = NULL;
1958 struct gdbarch_registration *rego;
1959 for (rego = gdbarch_registry;
1960 rego != NULL;
1961 rego = rego->next)
1962 {
1963 const struct bfd_arch_info *ap;
1964 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1965 if (ap == NULL)
1966 internal_error (__FILE__, __LINE__,
1967 _("gdbarch_architecture_names: multi-arch unknown"));
1968 do
1969 {
1970 append_name (&arches, &nr_arches, ap->printable_name);
1971 ap = ap->next;
1972 }
1973 while (ap != NULL);
1974 }
1975 append_name (&arches, &nr_arches, NULL);
1976 return arches;
1977 }
1978
1979
1980 void
1981 gdbarch_register (enum bfd_architecture bfd_architecture,
1982 gdbarch_init_ftype *init,
1983 gdbarch_dump_tdep_ftype *dump_tdep)
1984 {
1985 struct gdbarch_registration **curr;
1986 const struct bfd_arch_info *bfd_arch_info;
1987 /* Check that BFD recognizes this architecture */
1988 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1989 if (bfd_arch_info == NULL)
1990 {
1991 internal_error (__FILE__, __LINE__,
1992 _("gdbarch: Attempt to register unknown architecture (%d)"),
1993 bfd_architecture);
1994 }
1995 /* Check that we haven't seen this architecture before */
1996 for (curr = &gdbarch_registry;
1997 (*curr) != NULL;
1998 curr = &(*curr)->next)
1999 {
2000 if (bfd_architecture == (*curr)->bfd_architecture)
2001 internal_error (__FILE__, __LINE__,
2002 _("gdbarch: Duplicate registraration of architecture (%s)"),
2003 bfd_arch_info->printable_name);
2004 }
2005 /* log it */
2006 if (gdbarch_debug)
2007 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2008 bfd_arch_info->printable_name,
2009 (long) init);
2010 /* Append it */
2011 (*curr) = XMALLOC (struct gdbarch_registration);
2012 (*curr)->bfd_architecture = bfd_architecture;
2013 (*curr)->init = init;
2014 (*curr)->dump_tdep = dump_tdep;
2015 (*curr)->arches = NULL;
2016 (*curr)->next = NULL;
2017 }
2018
2019 void
2020 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2021 gdbarch_init_ftype *init)
2022 {
2023 gdbarch_register (bfd_architecture, init, NULL);
2024 }
2025
2026
2027 /* Look for an architecture using gdbarch_info. Base search on only
2028 BFD_ARCH_INFO and BYTE_ORDER. */
2029
2030 struct gdbarch_list *
2031 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2032 const struct gdbarch_info *info)
2033 {
2034 for (; arches != NULL; arches = arches->next)
2035 {
2036 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2037 continue;
2038 if (info->byte_order != arches->gdbarch->byte_order)
2039 continue;
2040 if (info->osabi != arches->gdbarch->osabi)
2041 continue;
2042 return arches;
2043 }
2044 return NULL;
2045 }
2046
2047
2048 /* Find an architecture that matches the specified INFO. Create a new
2049 architecture if needed. Return that new architecture. Assumes
2050 that there is no current architecture. */
2051
2052 static struct gdbarch *
2053 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2054 {
2055 struct gdbarch *new_gdbarch;
2056 struct gdbarch_registration *rego;
2057
2058 /* The existing architecture has been swapped out - all this code
2059 works from a clean slate. */
2060 gdb_assert (current_gdbarch == NULL);
2061
2062 /* Fill in missing parts of the INFO struct using a number of
2063 sources: "set ..."; INFOabfd supplied; and the existing
2064 architecture. */
2065 gdbarch_info_fill (old_gdbarch, &info);
2066
2067 /* Must have found some sort of architecture. */
2068 gdb_assert (info.bfd_arch_info != NULL);
2069
2070 if (gdbarch_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog,
2073 "find_arch_by_info: info.bfd_arch_info %s\n",
2074 (info.bfd_arch_info != NULL
2075 ? info.bfd_arch_info->printable_name
2076 : "(null)"));
2077 fprintf_unfiltered (gdb_stdlog,
2078 "find_arch_by_info: info.byte_order %d (%s)\n",
2079 info.byte_order,
2080 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2081 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2082 : "default"));
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.osabi %d (%s)\n",
2085 info.osabi, gdbarch_osabi_name (info.osabi));
2086 fprintf_unfiltered (gdb_stdlog,
2087 "find_arch_by_info: info.abfd 0x%lx\n",
2088 (long) info.abfd);
2089 fprintf_unfiltered (gdb_stdlog,
2090 "find_arch_by_info: info.tdep_info 0x%lx\n",
2091 (long) info.tdep_info);
2092 }
2093
2094 /* Find the tdep code that knows about this architecture. */
2095 for (rego = gdbarch_registry;
2096 rego != NULL;
2097 rego = rego->next)
2098 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2099 break;
2100 if (rego == NULL)
2101 {
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2104 "No matching architecture\n");
2105 return 0;
2106 }
2107
2108 /* Ask the tdep code for an architecture that matches "info". */
2109 new_gdbarch = rego->init (info, rego->arches);
2110
2111 /* Did the tdep code like it? No. Reject the change and revert to
2112 the old architecture. */
2113 if (new_gdbarch == NULL)
2114 {
2115 if (gdbarch_debug)
2116 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2117 "Target rejected architecture\n");
2118 return NULL;
2119 }
2120
2121 /* Is this a pre-existing architecture (as determined by already
2122 being initialized)? Move it to the front of the architecture
2123 list (keeping the list sorted Most Recently Used). */
2124 if (new_gdbarch->initialized_p)
2125 {
2126 struct gdbarch_list **list;
2127 struct gdbarch_list *this;
2128 if (gdbarch_debug)
2129 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2130 "Previous architecture 0x%08lx (%s) selected\n",
2131 (long) new_gdbarch,
2132 new_gdbarch->bfd_arch_info->printable_name);
2133 /* Find the existing arch in the list. */
2134 for (list = &rego->arches;
2135 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2136 list = &(*list)->next);
2137 /* It had better be in the list of architectures. */
2138 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2139 /* Unlink THIS. */
2140 this = (*list);
2141 (*list) = this->next;
2142 /* Insert THIS at the front. */
2143 this->next = rego->arches;
2144 rego->arches = this;
2145 /* Return it. */
2146 return new_gdbarch;
2147 }
2148
2149 /* It's a new architecture. */
2150 if (gdbarch_debug)
2151 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2152 "New architecture 0x%08lx (%s) selected\n",
2153 (long) new_gdbarch,
2154 new_gdbarch->bfd_arch_info->printable_name);
2155
2156 /* Insert the new architecture into the front of the architecture
2157 list (keep the list sorted Most Recently Used). */
2158 {
2159 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2160 this->next = rego->arches;
2161 this->gdbarch = new_gdbarch;
2162 rego->arches = this;
2163 }
2164
2165 /* Check that the newly installed architecture is valid. Plug in
2166 any post init values. */
2167 new_gdbarch->dump_tdep = rego->dump_tdep;
2168 verify_gdbarch (new_gdbarch);
2169 new_gdbarch->initialized_p = 1;
2170
2171 /* Initialize any per-architecture swap areas. This phase requires
2172 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2173 swap the entire architecture out. */
2174 current_gdbarch = new_gdbarch;
2175 current_gdbarch_swap_init_hack ();
2176 current_gdbarch_swap_out_hack ();
2177
2178 if (gdbarch_debug)
2179 gdbarch_dump (new_gdbarch, gdb_stdlog);
2180
2181 return new_gdbarch;
2182 }
2183
2184 struct gdbarch *
2185 gdbarch_find_by_info (struct gdbarch_info info)
2186 {
2187 /* Save the previously selected architecture, setting the global to
2188 NULL. This stops things like gdbarch->init() trying to use the
2189 previous architecture's configuration. The previous architecture
2190 may not even be of the same architecture family. The most recent
2191 architecture of the same family is found at the head of the
2192 rego->arches list. */
2193 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2194
2195 /* Find the specified architecture. */
2196 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2197
2198 /* Restore the existing architecture. */
2199 gdb_assert (current_gdbarch == NULL);
2200 current_gdbarch_swap_in_hack (old_gdbarch);
2201
2202 return new_gdbarch;
2203 }
2204
2205 /* Make the specified architecture current, swapping the existing one
2206 out. */
2207
2208 void
2209 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2210 {
2211 gdb_assert (new_gdbarch != NULL);
2212 gdb_assert (current_gdbarch != NULL);
2213 gdb_assert (new_gdbarch->initialized_p);
2214 current_gdbarch_swap_out_hack ();
2215 current_gdbarch_swap_in_hack (new_gdbarch);
2216 architecture_changed_event ();
2217 flush_cached_frames ();
2218 }
2219
2220 extern void _initialize_gdbarch (void);
2221
2222 void
2223 _initialize_gdbarch (void)
2224 {
2225 struct cmd_list_element *c;
2226
2227 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2228 Set architecture debugging."), _("\\
2229 Show architecture debugging."), _("\\
2230 When non-zero, architecture debugging is enabled."),
2231 NULL,
2232 show_gdbarch_debug,
2233 &setdebuglist, &showdebuglist);
2234 }
2235 EOF
2236
2237 # close things off
2238 exec 1>&2
2239 #../move-if-change new-gdbarch.c gdbarch.c
2240 compare_new gdbarch.c
This page took 0.080973 seconds and 4 git commands to generate.