2003-06-13 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # The dummy call frame SP should be set by push_dummy_call.
434 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
435 # Function for getting target's idea of a frame pointer. FIXME: GDB's
436 # whole scheme for dealing with "frames" and "frame pointers" needs a
437 # serious shakedown.
438 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
439 #
440 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
441 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
442 #
443 v:2:NUM_REGS:int:num_regs::::0:-1
444 # This macro gives the number of pseudo-registers that live in the
445 # register namespace but do not get fetched or stored on the target.
446 # These pseudo-registers may be aliases for other registers,
447 # combinations of other registers, or they may be computed by GDB.
448 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
449
450 # GDB's standard (or well known) register numbers. These can map onto
451 # a real register or a pseudo (computed) register or not be defined at
452 # all (-1).
453 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
454 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
455 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
456 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
457 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
458 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 # This should be defined in tm.h, if REGISTER_NAMES is not set up
467 # to map one to one onto the sdb register numbers.
468 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
469 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
470 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
471 # See the dummy frame code.
472 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
473
474 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
475 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
476 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
477 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr::0:0
478 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
479 # from REGISTER_TYPE.
480 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
481 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
482 # register offsets computed using just REGISTER_TYPE, this can be
483 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
484 # function with predicate has a valid (callable) initial value. As a
485 # consequence, even when the predicate is false, the corresponding
486 # function works. This simplifies the migration process - old code,
487 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
488 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
489 # If all registers have identical raw and virtual sizes and those
490 # sizes agree with the value computed from REGISTER_TYPE,
491 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
492 # registers.
493 f:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
494 # If all registers have identical raw and virtual sizes and those
495 # sizes agree with the value computed from REGISTER_TYPE,
496 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
497 # registers.
498 f:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
499 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
502 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
503 # replaced by the constant MAX_REGISTER_SIZE.
504 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
505
506 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
507 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # SAVE_DUMMY_FRAME_TOS.
510 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_FP_REGNUM.
513 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
514 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
515 # DEPRECATED_TARGET_READ_FP.
516 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
517
518 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
519 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
520 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
521 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
522 # MAP a GDB RAW register number onto a simulator register number. See
523 # also include/...-sim.h.
524 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
525 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
526 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
527 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
528 # setjmp/longjmp support.
529 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
530 #
531 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
532 # much better but at least they are vaguely consistent). The headers
533 # and body contain convoluted #if/#else sequences for determine how
534 # things should be compiled. Instead of trying to mimic that
535 # behaviour here (and hence entrench it further) gdbarch simply
536 # reqires that these methods be set up from the word go. This also
537 # avoids any potential problems with moving beyond multi-arch partial.
538 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
539 # Replaced by push_dummy_code.
540 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
541 # Replaced by push_dummy_code.
542 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
543 # Replaced by push_dummy_code.
544 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
545 # Replaced by push_dummy_code.
546 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
547 # Replaced by push_dummy_code.
548 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
549 # NOTE: cagney/2002-11-24: This function with predicate has a valid
550 # (callable) initial value. As a consequence, even when the predicate
551 # is false, the corresponding function works. This simplifies the
552 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
553 # doesn't need to be modified.
554 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
555 # Replaced by push_dummy_code.
556 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
557 # Replaced by push_dummy_code.
558 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
559 # Replaced by push_dummy_code.
560 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
561 # Replaced by push_dummy_code.
562 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
563 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
564 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
565 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
566 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
567 #
568 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
569 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
570 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
571 #
572 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
573 # For raw <-> cooked register conversions, replaced by pseudo registers.
574 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
575 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
576 # For raw <-> cooked register conversions, replaced by pseudo registers.
577 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
581 #
582 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
583 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
584 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
585 #
586 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
587 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
588 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
589 #
590 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
591 # Replaced by PUSH_DUMMY_CALL
592 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
593 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
594 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
595 # NOTE: This can be handled directly in push_dummy_call.
596 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
621 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
622 #
623 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
624 #
625 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
626 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
627 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
628 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
629 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
630 # note, per UNWIND_PC's doco, that while the two have similar
631 # interfaces they have very different underlying implementations.
632 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
633 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
634 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
635 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
636 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
637 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
638 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
639 #
640 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
641 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
642 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
643 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
644 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
645 v:2:PARM_BOUNDARY:int:parm_boundary
646 #
647 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
648 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
649 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
650 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
651 # On some machines there are bits in addresses which are not really
652 # part of the address, but are used by the kernel, the hardware, etc.
653 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
654 # we get a "real" address such as one would find in a symbol table.
655 # This is used only for addresses of instructions, and even then I'm
656 # not sure it's used in all contexts. It exists to deal with there
657 # being a few stray bits in the PC which would mislead us, not as some
658 # sort of generic thing to handle alignment or segmentation (it's
659 # possible it should be in TARGET_READ_PC instead).
660 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
661 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
662 # ADDR_BITS_REMOVE.
663 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
664 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
665 # the target needs software single step. An ISA method to implement it.
666 #
667 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
668 # using the breakpoint system instead of blatting memory directly (as with rs6000).
669 #
670 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
671 # single step. If not, then implement single step using breakpoints.
672 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
673 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
674 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
675
676
677 # For SVR4 shared libraries, each call goes through a small piece of
678 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
679 # to nonzero if we are currently stopped in one of these.
680 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
681
682 # Some systems also have trampoline code for returning from shared libs.
683 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
684
685 # Sigtramp is a routine that the kernel calls (which then calls the
686 # signal handler). On most machines it is a library routine that is
687 # linked into the executable.
688 #
689 # This macro, given a program counter value and the name of the
690 # function in which that PC resides (which can be null if the name is
691 # not known), returns nonzero if the PC and name show that we are in
692 # sigtramp.
693 #
694 # On most machines just see if the name is sigtramp (and if we have
695 # no name, assume we are not in sigtramp).
696 #
697 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
698 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
699 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
700 # own local NAME lookup.
701 #
702 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
703 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
704 # does not.
705 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
706 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
707 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
708 # A target might have problems with watchpoints as soon as the stack
709 # frame of the current function has been destroyed. This mostly happens
710 # as the first action in a funtion's epilogue. in_function_epilogue_p()
711 # is defined to return a non-zero value if either the given addr is one
712 # instruction after the stack destroying instruction up to the trailing
713 # return instruction or if we can figure out that the stack frame has
714 # already been invalidated regardless of the value of addr. Targets
715 # which don't suffer from that problem could just let this functionality
716 # untouched.
717 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
718 # Given a vector of command-line arguments, return a newly allocated
719 # string which, when passed to the create_inferior function, will be
720 # parsed (on Unix systems, by the shell) to yield the same vector.
721 # This function should call error() if the argument vector is not
722 # representable for this target or if this target does not support
723 # command-line arguments.
724 # ARGC is the number of elements in the vector.
725 # ARGV is an array of strings, one per argument.
726 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
727 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
728 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
729 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
730 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
731 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
732 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
733 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
734 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
735 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
736 # Is a register in a group
737 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
738 # Fetch the pointer to the ith function argument.
739 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
740 EOF
741 }
742
743 #
744 # The .log file
745 #
746 exec > new-gdbarch.log
747 function_list | while do_read
748 do
749 cat <<EOF
750 ${class} ${macro}(${actual})
751 ${returntype} ${function} ($formal)${attrib}
752 EOF
753 for r in ${read}
754 do
755 eval echo \"\ \ \ \ ${r}=\${${r}}\"
756 done
757 if class_is_predicate_p && fallback_default_p
758 then
759 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
760 kill $$
761 exit 1
762 fi
763 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
764 then
765 echo "Error: postdefault is useless when invalid_p=0" 1>&2
766 kill $$
767 exit 1
768 fi
769 if class_is_multiarch_p
770 then
771 if class_is_predicate_p ; then :
772 elif test "x${predefault}" = "x"
773 then
774 echo "Error: pure multi-arch function must have a predefault" 1>&2
775 kill $$
776 exit 1
777 fi
778 fi
779 echo ""
780 done
781
782 exec 1>&2
783 compare_new gdbarch.log
784
785
786 copyright ()
787 {
788 cat <<EOF
789 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
790
791 /* Dynamic architecture support for GDB, the GNU debugger.
792 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 2 of the License, or
799 (at your option) any later version.
800
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
805
806 You should have received a copy of the GNU General Public License
807 along with this program; if not, write to the Free Software
808 Foundation, Inc., 59 Temple Place - Suite 330,
809 Boston, MA 02111-1307, USA. */
810
811 /* This file was created with the aid of \`\`gdbarch.sh''.
812
813 The Bourne shell script \`\`gdbarch.sh'' creates the files
814 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
815 against the existing \`\`gdbarch.[hc]''. Any differences found
816 being reported.
817
818 If editing this file, please also run gdbarch.sh and merge any
819 changes into that script. Conversely, when making sweeping changes
820 to this file, modifying gdbarch.sh and using its output may prove
821 easier. */
822
823 EOF
824 }
825
826 #
827 # The .h file
828 #
829
830 exec > new-gdbarch.h
831 copyright
832 cat <<EOF
833 #ifndef GDBARCH_H
834 #define GDBARCH_H
835
836 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
837 #if !GDB_MULTI_ARCH
838 /* Pull in function declarations refered to, indirectly, via macros. */
839 #include "inferior.h" /* For unsigned_address_to_pointer(). */
840 #include "symfile.h" /* For entry_point_address(). */
841 #endif
842
843 struct floatformat;
844 struct ui_file;
845 struct frame_info;
846 struct value;
847 struct objfile;
848 struct minimal_symbol;
849 struct regcache;
850 struct reggroup;
851
852 extern struct gdbarch *current_gdbarch;
853
854
855 /* If any of the following are defined, the target wasn't correctly
856 converted. */
857
858 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
859 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
860 #endif
861 EOF
862
863 # function typedef's
864 printf "\n"
865 printf "\n"
866 printf "/* The following are pre-initialized by GDBARCH. */\n"
867 function_list | while do_read
868 do
869 if class_is_info_p
870 then
871 printf "\n"
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
873 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
874 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
875 printf "#error \"Non multi-arch definition of ${macro}\"\n"
876 printf "#endif\n"
877 printf "#if !defined (${macro})\n"
878 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
879 printf "#endif\n"
880 fi
881 done
882
883 # function typedef's
884 printf "\n"
885 printf "\n"
886 printf "/* The following are initialized by the target dependent code. */\n"
887 function_list | while do_read
888 do
889 if [ -n "${comment}" ]
890 then
891 echo "${comment}" | sed \
892 -e '2 s,#,/*,' \
893 -e '3,$ s,#, ,' \
894 -e '$ s,$, */,'
895 fi
896 if class_is_multiarch_p
897 then
898 if class_is_predicate_p
899 then
900 printf "\n"
901 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
902 fi
903 else
904 if class_is_predicate_p
905 then
906 printf "\n"
907 printf "#if defined (${macro})\n"
908 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
909 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
910 printf "#if !defined (${macro}_P)\n"
911 printf "#define ${macro}_P() (1)\n"
912 printf "#endif\n"
913 printf "#endif\n"
914 printf "\n"
915 printf "/* Default predicate for non- multi-arch targets. */\n"
916 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (0)\n"
918 printf "#endif\n"
919 printf "\n"
920 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
922 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#endif\n"
924 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
925 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
926 printf "#endif\n"
927 fi
928 fi
929 if class_is_variable_p
930 then
931 if fallback_default_p || class_is_predicate_p
932 then
933 printf "\n"
934 printf "/* Default (value) for non- multi-arch platforms. */\n"
935 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
936 echo "#define ${macro} (${fallbackdefault})" \
937 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
938 printf "#endif\n"
939 fi
940 printf "\n"
941 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
942 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
943 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
944 printf "#error \"Non multi-arch definition of ${macro}\"\n"
945 printf "#endif\n"
946 printf "#if !defined (${macro})\n"
947 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
948 printf "#endif\n"
949 fi
950 if class_is_function_p
951 then
952 if class_is_multiarch_p ; then :
953 elif fallback_default_p || class_is_predicate_p
954 then
955 printf "\n"
956 printf "/* Default (function) for non- multi-arch platforms. */\n"
957 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
958 if [ "x${fallbackdefault}" = "x0" ]
959 then
960 if [ "x${actual}" = "x-" ]
961 then
962 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
963 else
964 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
965 fi
966 else
967 # FIXME: Should be passing current_gdbarch through!
968 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
969 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
970 fi
971 printf "#endif\n"
972 fi
973 printf "\n"
974 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
975 then
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
977 elif class_is_multiarch_p
978 then
979 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
980 else
981 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
982 fi
983 if [ "x${formal}" = "xvoid" ]
984 then
985 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
986 else
987 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
988 fi
989 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
990 if class_is_multiarch_p ; then :
991 else
992 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
993 printf "#error \"Non multi-arch definition of ${macro}\"\n"
994 printf "#endif\n"
995 if [ "x${actual}" = "x" ]
996 then
997 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1001 else
1002 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1003 fi
1004 printf "#if !defined (${macro})\n"
1005 if [ "x${actual}" = "x" ]
1006 then
1007 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1008 elif [ "x${actual}" = "x-" ]
1009 then
1010 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1011 else
1012 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1013 fi
1014 printf "#endif\n"
1015 fi
1016 fi
1017 done
1018
1019 # close it off
1020 cat <<EOF
1021
1022 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1023
1024
1025 /* Mechanism for co-ordinating the selection of a specific
1026 architecture.
1027
1028 GDB targets (*-tdep.c) can register an interest in a specific
1029 architecture. Other GDB components can register a need to maintain
1030 per-architecture data.
1031
1032 The mechanisms below ensures that there is only a loose connection
1033 between the set-architecture command and the various GDB
1034 components. Each component can independently register their need
1035 to maintain architecture specific data with gdbarch.
1036
1037 Pragmatics:
1038
1039 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1040 didn't scale.
1041
1042 The more traditional mega-struct containing architecture specific
1043 data for all the various GDB components was also considered. Since
1044 GDB is built from a variable number of (fairly independent)
1045 components it was determined that the global aproach was not
1046 applicable. */
1047
1048
1049 /* Register a new architectural family with GDB.
1050
1051 Register support for the specified ARCHITECTURE with GDB. When
1052 gdbarch determines that the specified architecture has been
1053 selected, the corresponding INIT function is called.
1054
1055 --
1056
1057 The INIT function takes two parameters: INFO which contains the
1058 information available to gdbarch about the (possibly new)
1059 architecture; ARCHES which is a list of the previously created
1060 \`\`struct gdbarch'' for this architecture.
1061
1062 The INFO parameter is, as far as possible, be pre-initialized with
1063 information obtained from INFO.ABFD or the previously selected
1064 architecture.
1065
1066 The ARCHES parameter is a linked list (sorted most recently used)
1067 of all the previously created architures for this architecture
1068 family. The (possibly NULL) ARCHES->gdbarch can used to access
1069 values from the previously selected architecture for this
1070 architecture family. The global \`\`current_gdbarch'' shall not be
1071 used.
1072
1073 The INIT function shall return any of: NULL - indicating that it
1074 doesn't recognize the selected architecture; an existing \`\`struct
1075 gdbarch'' from the ARCHES list - indicating that the new
1076 architecture is just a synonym for an earlier architecture (see
1077 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1078 - that describes the selected architecture (see gdbarch_alloc()).
1079
1080 The DUMP_TDEP function shall print out all target specific values.
1081 Care should be taken to ensure that the function works in both the
1082 multi-arch and non- multi-arch cases. */
1083
1084 struct gdbarch_list
1085 {
1086 struct gdbarch *gdbarch;
1087 struct gdbarch_list *next;
1088 };
1089
1090 struct gdbarch_info
1091 {
1092 /* Use default: NULL (ZERO). */
1093 const struct bfd_arch_info *bfd_arch_info;
1094
1095 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1096 int byte_order;
1097
1098 /* Use default: NULL (ZERO). */
1099 bfd *abfd;
1100
1101 /* Use default: NULL (ZERO). */
1102 struct gdbarch_tdep_info *tdep_info;
1103
1104 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1105 enum gdb_osabi osabi;
1106 };
1107
1108 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1109 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1110
1111 /* DEPRECATED - use gdbarch_register() */
1112 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1113
1114 extern void gdbarch_register (enum bfd_architecture architecture,
1115 gdbarch_init_ftype *,
1116 gdbarch_dump_tdep_ftype *);
1117
1118
1119 /* Return a freshly allocated, NULL terminated, array of the valid
1120 architecture names. Since architectures are registered during the
1121 _initialize phase this function only returns useful information
1122 once initialization has been completed. */
1123
1124 extern const char **gdbarch_printable_names (void);
1125
1126
1127 /* Helper function. Search the list of ARCHES for a GDBARCH that
1128 matches the information provided by INFO. */
1129
1130 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1131
1132
1133 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1134 basic initialization using values obtained from the INFO andTDEP
1135 parameters. set_gdbarch_*() functions are called to complete the
1136 initialization of the object. */
1137
1138 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1139
1140
1141 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1142 It is assumed that the caller freeds the \`\`struct
1143 gdbarch_tdep''. */
1144
1145 extern void gdbarch_free (struct gdbarch *);
1146
1147
1148 /* Helper function. Force an update of the current architecture.
1149
1150 The actual architecture selected is determined by INFO, \`\`(gdb) set
1151 architecture'' et.al., the existing architecture and BFD's default
1152 architecture. INFO should be initialized to zero and then selected
1153 fields should be updated.
1154
1155 Returns non-zero if the update succeeds */
1156
1157 extern int gdbarch_update_p (struct gdbarch_info info);
1158
1159
1160
1161 /* Register per-architecture data-pointer.
1162
1163 Reserve space for a per-architecture data-pointer. An identifier
1164 for the reserved data-pointer is returned. That identifer should
1165 be saved in a local static variable.
1166
1167 The per-architecture data-pointer is either initialized explicitly
1168 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1169 gdbarch_data()). FREE() is called to delete either an existing
1170 data-pointer overridden by set_gdbarch_data() or when the
1171 architecture object is being deleted.
1172
1173 When a previously created architecture is re-selected, the
1174 per-architecture data-pointer for that previous architecture is
1175 restored. INIT() is not re-called.
1176
1177 Multiple registrarants for any architecture are allowed (and
1178 strongly encouraged). */
1179
1180 struct gdbarch_data;
1181
1182 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1183 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1184 void *pointer);
1185 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1186 gdbarch_data_free_ftype *free);
1187 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1188 struct gdbarch_data *data,
1189 void *pointer);
1190
1191 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1192
1193
1194 /* Register per-architecture memory region.
1195
1196 Provide a memory-region swap mechanism. Per-architecture memory
1197 region are created. These memory regions are swapped whenever the
1198 architecture is changed. For a new architecture, the memory region
1199 is initialized with zero (0) and the INIT function is called.
1200
1201 Memory regions are swapped / initialized in the order that they are
1202 registered. NULL DATA and/or INIT values can be specified.
1203
1204 New code should use register_gdbarch_data(). */
1205
1206 typedef void (gdbarch_swap_ftype) (void);
1207 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1208 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1209
1210
1211
1212 /* The target-system-dependent byte order is dynamic */
1213
1214 extern int target_byte_order;
1215 #ifndef TARGET_BYTE_ORDER
1216 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1217 #endif
1218
1219 extern int target_byte_order_auto;
1220 #ifndef TARGET_BYTE_ORDER_AUTO
1221 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1222 #endif
1223
1224
1225
1226 /* The target-system-dependent BFD architecture is dynamic */
1227
1228 extern int target_architecture_auto;
1229 #ifndef TARGET_ARCHITECTURE_AUTO
1230 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1231 #endif
1232
1233 extern const struct bfd_arch_info *target_architecture;
1234 #ifndef TARGET_ARCHITECTURE
1235 #define TARGET_ARCHITECTURE (target_architecture + 0)
1236 #endif
1237
1238
1239 /* The target-system-dependent disassembler is semi-dynamic */
1240
1241 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1242 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1243
1244 /* Use set_gdbarch_print_insn instead. */
1245 extern disassemble_info deprecated_tm_print_insn_info;
1246
1247 /* Set the dynamic target-system-dependent parameters (architecture,
1248 byte-order, ...) using information found in the BFD */
1249
1250 extern void set_gdbarch_from_file (bfd *);
1251
1252
1253 /* Initialize the current architecture to the "first" one we find on
1254 our list. */
1255
1256 extern void initialize_current_architecture (void);
1257
1258 /* For non-multiarched targets, do any initialization of the default
1259 gdbarch object necessary after the _initialize_MODULE functions
1260 have run. */
1261 extern void initialize_non_multiarch (void);
1262
1263 /* gdbarch trace variable */
1264 extern int gdbarch_debug;
1265
1266 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1267
1268 #endif
1269 EOF
1270 exec 1>&2
1271 #../move-if-change new-gdbarch.h gdbarch.h
1272 compare_new gdbarch.h
1273
1274
1275 #
1276 # C file
1277 #
1278
1279 exec > new-gdbarch.c
1280 copyright
1281 cat <<EOF
1282
1283 #include "defs.h"
1284 #include "arch-utils.h"
1285
1286 #if GDB_MULTI_ARCH
1287 #include "gdbcmd.h"
1288 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1289 #else
1290 /* Just include everything in sight so that the every old definition
1291 of macro is visible. */
1292 #include "gdb_string.h"
1293 #include <ctype.h>
1294 #include "symtab.h"
1295 #include "frame.h"
1296 #include "inferior.h"
1297 #include "breakpoint.h"
1298 #include "gdb_wait.h"
1299 #include "gdbcore.h"
1300 #include "gdbcmd.h"
1301 #include "target.h"
1302 #include "gdbthread.h"
1303 #include "annotate.h"
1304 #include "symfile.h" /* for overlay functions */
1305 #include "value.h" /* For old tm.h/nm.h macros. */
1306 #endif
1307 #include "symcat.h"
1308
1309 #include "floatformat.h"
1310
1311 #include "gdb_assert.h"
1312 #include "gdb_string.h"
1313 #include "gdb-events.h"
1314 #include "reggroups.h"
1315 #include "osabi.h"
1316 #include "symfile.h" /* For entry_point_address. */
1317
1318 /* Static function declarations */
1319
1320 static void verify_gdbarch (struct gdbarch *gdbarch);
1321 static void alloc_gdbarch_data (struct gdbarch *);
1322 static void free_gdbarch_data (struct gdbarch *);
1323 static void init_gdbarch_swap (struct gdbarch *);
1324 static void clear_gdbarch_swap (struct gdbarch *);
1325 static void swapout_gdbarch_swap (struct gdbarch *);
1326 static void swapin_gdbarch_swap (struct gdbarch *);
1327
1328 /* Non-zero if we want to trace architecture code. */
1329
1330 #ifndef GDBARCH_DEBUG
1331 #define GDBARCH_DEBUG 0
1332 #endif
1333 int gdbarch_debug = GDBARCH_DEBUG;
1334
1335 EOF
1336
1337 # gdbarch open the gdbarch object
1338 printf "\n"
1339 printf "/* Maintain the struct gdbarch object */\n"
1340 printf "\n"
1341 printf "struct gdbarch\n"
1342 printf "{\n"
1343 printf " /* Has this architecture been fully initialized? */\n"
1344 printf " int initialized_p;\n"
1345 printf " /* basic architectural information */\n"
1346 function_list | while do_read
1347 do
1348 if class_is_info_p
1349 then
1350 printf " ${returntype} ${function};\n"
1351 fi
1352 done
1353 printf "\n"
1354 printf " /* target specific vector. */\n"
1355 printf " struct gdbarch_tdep *tdep;\n"
1356 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1357 printf "\n"
1358 printf " /* per-architecture data-pointers */\n"
1359 printf " unsigned nr_data;\n"
1360 printf " void **data;\n"
1361 printf "\n"
1362 printf " /* per-architecture swap-regions */\n"
1363 printf " struct gdbarch_swap *swap;\n"
1364 printf "\n"
1365 cat <<EOF
1366 /* Multi-arch values.
1367
1368 When extending this structure you must:
1369
1370 Add the field below.
1371
1372 Declare set/get functions and define the corresponding
1373 macro in gdbarch.h.
1374
1375 gdbarch_alloc(): If zero/NULL is not a suitable default,
1376 initialize the new field.
1377
1378 verify_gdbarch(): Confirm that the target updated the field
1379 correctly.
1380
1381 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1382 field is dumped out
1383
1384 \`\`startup_gdbarch()'': Append an initial value to the static
1385 variable (base values on the host's c-type system).
1386
1387 get_gdbarch(): Implement the set/get functions (probably using
1388 the macro's as shortcuts).
1389
1390 */
1391
1392 EOF
1393 function_list | while do_read
1394 do
1395 if class_is_variable_p
1396 then
1397 printf " ${returntype} ${function};\n"
1398 elif class_is_function_p
1399 then
1400 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1401 fi
1402 done
1403 printf "};\n"
1404
1405 # A pre-initialized vector
1406 printf "\n"
1407 printf "\n"
1408 cat <<EOF
1409 /* The default architecture uses host values (for want of a better
1410 choice). */
1411 EOF
1412 printf "\n"
1413 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1414 printf "\n"
1415 printf "struct gdbarch startup_gdbarch =\n"
1416 printf "{\n"
1417 printf " 1, /* Always initialized. */\n"
1418 printf " /* basic architecture information */\n"
1419 function_list | while do_read
1420 do
1421 if class_is_info_p
1422 then
1423 printf " ${staticdefault}, /* ${function} */\n"
1424 fi
1425 done
1426 cat <<EOF
1427 /* target specific vector and its dump routine */
1428 NULL, NULL,
1429 /*per-architecture data-pointers and swap regions */
1430 0, NULL, NULL,
1431 /* Multi-arch values */
1432 EOF
1433 function_list | while do_read
1434 do
1435 if class_is_function_p || class_is_variable_p
1436 then
1437 printf " ${staticdefault}, /* ${function} */\n"
1438 fi
1439 done
1440 cat <<EOF
1441 /* startup_gdbarch() */
1442 };
1443
1444 struct gdbarch *current_gdbarch = &startup_gdbarch;
1445
1446 /* Do any initialization needed for a non-multiarch configuration
1447 after the _initialize_MODULE functions have been run. */
1448 void
1449 initialize_non_multiarch (void)
1450 {
1451 alloc_gdbarch_data (&startup_gdbarch);
1452 /* Ensure that all swap areas are zeroed so that they again think
1453 they are starting from scratch. */
1454 clear_gdbarch_swap (&startup_gdbarch);
1455 init_gdbarch_swap (&startup_gdbarch);
1456 }
1457 EOF
1458
1459 # Create a new gdbarch struct
1460 printf "\n"
1461 printf "\n"
1462 cat <<EOF
1463 /* Create a new \`\`struct gdbarch'' based on information provided by
1464 \`\`struct gdbarch_info''. */
1465 EOF
1466 printf "\n"
1467 cat <<EOF
1468 struct gdbarch *
1469 gdbarch_alloc (const struct gdbarch_info *info,
1470 struct gdbarch_tdep *tdep)
1471 {
1472 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1473 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1474 the current local architecture and not the previous global
1475 architecture. This ensures that the new architectures initial
1476 values are not influenced by the previous architecture. Once
1477 everything is parameterised with gdbarch, this will go away. */
1478 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1479 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1480
1481 alloc_gdbarch_data (current_gdbarch);
1482
1483 current_gdbarch->tdep = tdep;
1484 EOF
1485 printf "\n"
1486 function_list | while do_read
1487 do
1488 if class_is_info_p
1489 then
1490 printf " current_gdbarch->${function} = info->${function};\n"
1491 fi
1492 done
1493 printf "\n"
1494 printf " /* Force the explicit initialization of these. */\n"
1495 function_list | while do_read
1496 do
1497 if class_is_function_p || class_is_variable_p
1498 then
1499 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1500 then
1501 printf " current_gdbarch->${function} = ${predefault};\n"
1502 fi
1503 fi
1504 done
1505 cat <<EOF
1506 /* gdbarch_alloc() */
1507
1508 return current_gdbarch;
1509 }
1510 EOF
1511
1512 # Free a gdbarch struct.
1513 printf "\n"
1514 printf "\n"
1515 cat <<EOF
1516 /* Free a gdbarch struct. This should never happen in normal
1517 operation --- once you've created a gdbarch, you keep it around.
1518 However, if an architecture's init function encounters an error
1519 building the structure, it may need to clean up a partially
1520 constructed gdbarch. */
1521
1522 void
1523 gdbarch_free (struct gdbarch *arch)
1524 {
1525 gdb_assert (arch != NULL);
1526 free_gdbarch_data (arch);
1527 xfree (arch);
1528 }
1529 EOF
1530
1531 # verify a new architecture
1532 printf "\n"
1533 printf "\n"
1534 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1535 printf "\n"
1536 cat <<EOF
1537 static void
1538 verify_gdbarch (struct gdbarch *gdbarch)
1539 {
1540 struct ui_file *log;
1541 struct cleanup *cleanups;
1542 long dummy;
1543 char *buf;
1544 /* Only perform sanity checks on a multi-arch target. */
1545 if (!GDB_MULTI_ARCH)
1546 return;
1547 log = mem_fileopen ();
1548 cleanups = make_cleanup_ui_file_delete (log);
1549 /* fundamental */
1550 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1551 fprintf_unfiltered (log, "\n\tbyte-order");
1552 if (gdbarch->bfd_arch_info == NULL)
1553 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1554 /* Check those that need to be defined for the given multi-arch level. */
1555 EOF
1556 function_list | while do_read
1557 do
1558 if class_is_function_p || class_is_variable_p
1559 then
1560 if [ "x${invalid_p}" = "x0" ]
1561 then
1562 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1563 elif class_is_predicate_p
1564 then
1565 printf " /* Skip verify of ${function}, has predicate */\n"
1566 # FIXME: See do_read for potential simplification
1567 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1568 then
1569 printf " if (${invalid_p})\n"
1570 printf " gdbarch->${function} = ${postdefault};\n"
1571 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1572 then
1573 printf " if (gdbarch->${function} == ${predefault})\n"
1574 printf " gdbarch->${function} = ${postdefault};\n"
1575 elif [ -n "${postdefault}" ]
1576 then
1577 printf " if (gdbarch->${function} == 0)\n"
1578 printf " gdbarch->${function} = ${postdefault};\n"
1579 elif [ -n "${invalid_p}" ]
1580 then
1581 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1582 printf " && (${invalid_p}))\n"
1583 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1584 elif [ -n "${predefault}" ]
1585 then
1586 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1587 printf " && (gdbarch->${function} == ${predefault}))\n"
1588 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1589 fi
1590 fi
1591 done
1592 cat <<EOF
1593 buf = ui_file_xstrdup (log, &dummy);
1594 make_cleanup (xfree, buf);
1595 if (strlen (buf) > 0)
1596 internal_error (__FILE__, __LINE__,
1597 "verify_gdbarch: the following are invalid ...%s",
1598 buf);
1599 do_cleanups (cleanups);
1600 }
1601 EOF
1602
1603 # dump the structure
1604 printf "\n"
1605 printf "\n"
1606 cat <<EOF
1607 /* Print out the details of the current architecture. */
1608
1609 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1610 just happens to match the global variable \`\`current_gdbarch''. That
1611 way macros refering to that variable get the local and not the global
1612 version - ulgh. Once everything is parameterised with gdbarch, this
1613 will go away. */
1614
1615 void
1616 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1617 {
1618 fprintf_unfiltered (file,
1619 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1620 GDB_MULTI_ARCH);
1621 EOF
1622 function_list | sort -t: -k 3 | while do_read
1623 do
1624 # First the predicate
1625 if class_is_predicate_p
1626 then
1627 if class_is_multiarch_p
1628 then
1629 printf " if (GDB_MULTI_ARCH)\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1632 printf " gdbarch_${function}_p (current_gdbarch));\n"
1633 else
1634 printf "#ifdef ${macro}_P\n"
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1637 printf " \"${macro}_P()\",\n"
1638 printf " XSTRING (${macro}_P ()));\n"
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1641 printf " ${macro}_P ());\n"
1642 printf "#endif\n"
1643 fi
1644 fi
1645 # multiarch functions don't have macros.
1646 if class_is_multiarch_p
1647 then
1648 printf " if (GDB_MULTI_ARCH)\n"
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1651 printf " (long) current_gdbarch->${function});\n"
1652 continue
1653 fi
1654 # Print the macro definition.
1655 printf "#ifdef ${macro}\n"
1656 if [ "x${returntype}" = "xvoid" ]
1657 then
1658 printf "#if GDB_MULTI_ARCH\n"
1659 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1660 fi
1661 if class_is_function_p
1662 then
1663 printf " fprintf_unfiltered (file,\n"
1664 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1665 printf " \"${macro}(${actual})\",\n"
1666 printf " XSTRING (${macro} (${actual})));\n"
1667 else
1668 printf " fprintf_unfiltered (file,\n"
1669 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1670 printf " XSTRING (${macro}));\n"
1671 fi
1672 # Print the architecture vector value
1673 if [ "x${returntype}" = "xvoid" ]
1674 then
1675 printf "#endif\n"
1676 fi
1677 if [ "x${print_p}" = "x()" ]
1678 then
1679 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1680 elif [ "x${print_p}" = "x0" ]
1681 then
1682 printf " /* skip print of ${macro}, print_p == 0. */\n"
1683 elif [ -n "${print_p}" ]
1684 then
1685 printf " if (${print_p})\n"
1686 printf " fprintf_unfiltered (file,\n"
1687 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1688 printf " ${print});\n"
1689 elif class_is_function_p
1690 then
1691 printf " if (GDB_MULTI_ARCH)\n"
1692 printf " fprintf_unfiltered (file,\n"
1693 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1694 printf " (long) current_gdbarch->${function}\n"
1695 printf " /*${macro} ()*/);\n"
1696 else
1697 printf " fprintf_unfiltered (file,\n"
1698 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1699 printf " ${print});\n"
1700 fi
1701 printf "#endif\n"
1702 done
1703 cat <<EOF
1704 if (current_gdbarch->dump_tdep != NULL)
1705 current_gdbarch->dump_tdep (current_gdbarch, file);
1706 }
1707 EOF
1708
1709
1710 # GET/SET
1711 printf "\n"
1712 cat <<EOF
1713 struct gdbarch_tdep *
1714 gdbarch_tdep (struct gdbarch *gdbarch)
1715 {
1716 if (gdbarch_debug >= 2)
1717 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1718 return gdbarch->tdep;
1719 }
1720 EOF
1721 printf "\n"
1722 function_list | while do_read
1723 do
1724 if class_is_predicate_p
1725 then
1726 printf "\n"
1727 printf "int\n"
1728 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1729 printf "{\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 if [ -n "${predicate}" ]
1732 then
1733 printf " return ${predicate};\n"
1734 else
1735 printf " return gdbarch->${function} != 0;\n"
1736 fi
1737 printf "}\n"
1738 fi
1739 if class_is_function_p
1740 then
1741 printf "\n"
1742 printf "${returntype}\n"
1743 if [ "x${formal}" = "xvoid" ]
1744 then
1745 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1746 else
1747 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1748 fi
1749 printf "{\n"
1750 printf " gdb_assert (gdbarch != NULL);\n"
1751 printf " if (gdbarch->${function} == 0)\n"
1752 printf " internal_error (__FILE__, __LINE__,\n"
1753 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1754 if class_is_predicate_p && test -n "${predicate}"
1755 then
1756 # Allow a call to a function with a predicate.
1757 printf " /* Ignore predicate (${predicate}). */\n"
1758 fi
1759 printf " if (gdbarch_debug >= 2)\n"
1760 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1761 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1762 then
1763 if class_is_multiarch_p
1764 then
1765 params="gdbarch"
1766 else
1767 params=""
1768 fi
1769 else
1770 if class_is_multiarch_p
1771 then
1772 params="gdbarch, ${actual}"
1773 else
1774 params="${actual}"
1775 fi
1776 fi
1777 if [ "x${returntype}" = "xvoid" ]
1778 then
1779 printf " gdbarch->${function} (${params});\n"
1780 else
1781 printf " return gdbarch->${function} (${params});\n"
1782 fi
1783 printf "}\n"
1784 printf "\n"
1785 printf "void\n"
1786 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1787 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1788 printf "{\n"
1789 printf " gdbarch->${function} = ${function};\n"
1790 printf "}\n"
1791 elif class_is_variable_p
1792 then
1793 printf "\n"
1794 printf "${returntype}\n"
1795 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1796 printf "{\n"
1797 printf " gdb_assert (gdbarch != NULL);\n"
1798 if [ "x${invalid_p}" = "x0" ]
1799 then
1800 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1801 elif [ -n "${invalid_p}" ]
1802 then
1803 printf " if (${invalid_p})\n"
1804 printf " internal_error (__FILE__, __LINE__,\n"
1805 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1806 elif [ -n "${predefault}" ]
1807 then
1808 printf " if (gdbarch->${function} == ${predefault})\n"
1809 printf " internal_error (__FILE__, __LINE__,\n"
1810 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1811 fi
1812 printf " if (gdbarch_debug >= 2)\n"
1813 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1814 printf " return gdbarch->${function};\n"
1815 printf "}\n"
1816 printf "\n"
1817 printf "void\n"
1818 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1819 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1820 printf "{\n"
1821 printf " gdbarch->${function} = ${function};\n"
1822 printf "}\n"
1823 elif class_is_info_p
1824 then
1825 printf "\n"
1826 printf "${returntype}\n"
1827 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1828 printf "{\n"
1829 printf " gdb_assert (gdbarch != NULL);\n"
1830 printf " if (gdbarch_debug >= 2)\n"
1831 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1832 printf " return gdbarch->${function};\n"
1833 printf "}\n"
1834 fi
1835 done
1836
1837 # All the trailing guff
1838 cat <<EOF
1839
1840
1841 /* Keep a registry of per-architecture data-pointers required by GDB
1842 modules. */
1843
1844 struct gdbarch_data
1845 {
1846 unsigned index;
1847 int init_p;
1848 gdbarch_data_init_ftype *init;
1849 gdbarch_data_free_ftype *free;
1850 };
1851
1852 struct gdbarch_data_registration
1853 {
1854 struct gdbarch_data *data;
1855 struct gdbarch_data_registration *next;
1856 };
1857
1858 struct gdbarch_data_registry
1859 {
1860 unsigned nr;
1861 struct gdbarch_data_registration *registrations;
1862 };
1863
1864 struct gdbarch_data_registry gdbarch_data_registry =
1865 {
1866 0, NULL,
1867 };
1868
1869 struct gdbarch_data *
1870 register_gdbarch_data (gdbarch_data_init_ftype *init,
1871 gdbarch_data_free_ftype *free)
1872 {
1873 struct gdbarch_data_registration **curr;
1874 /* Append the new registraration. */
1875 for (curr = &gdbarch_data_registry.registrations;
1876 (*curr) != NULL;
1877 curr = &(*curr)->next);
1878 (*curr) = XMALLOC (struct gdbarch_data_registration);
1879 (*curr)->next = NULL;
1880 (*curr)->data = XMALLOC (struct gdbarch_data);
1881 (*curr)->data->index = gdbarch_data_registry.nr++;
1882 (*curr)->data->init = init;
1883 (*curr)->data->init_p = 1;
1884 (*curr)->data->free = free;
1885 return (*curr)->data;
1886 }
1887
1888
1889 /* Create/delete the gdbarch data vector. */
1890
1891 static void
1892 alloc_gdbarch_data (struct gdbarch *gdbarch)
1893 {
1894 gdb_assert (gdbarch->data == NULL);
1895 gdbarch->nr_data = gdbarch_data_registry.nr;
1896 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1897 }
1898
1899 static void
1900 free_gdbarch_data (struct gdbarch *gdbarch)
1901 {
1902 struct gdbarch_data_registration *rego;
1903 gdb_assert (gdbarch->data != NULL);
1904 for (rego = gdbarch_data_registry.registrations;
1905 rego != NULL;
1906 rego = rego->next)
1907 {
1908 struct gdbarch_data *data = rego->data;
1909 gdb_assert (data->index < gdbarch->nr_data);
1910 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1911 {
1912 data->free (gdbarch, gdbarch->data[data->index]);
1913 gdbarch->data[data->index] = NULL;
1914 }
1915 }
1916 xfree (gdbarch->data);
1917 gdbarch->data = NULL;
1918 }
1919
1920
1921 /* Initialize the current value of the specified per-architecture
1922 data-pointer. */
1923
1924 void
1925 set_gdbarch_data (struct gdbarch *gdbarch,
1926 struct gdbarch_data *data,
1927 void *pointer)
1928 {
1929 gdb_assert (data->index < gdbarch->nr_data);
1930 if (gdbarch->data[data->index] != NULL)
1931 {
1932 gdb_assert (data->free != NULL);
1933 data->free (gdbarch, gdbarch->data[data->index]);
1934 }
1935 gdbarch->data[data->index] = pointer;
1936 }
1937
1938 /* Return the current value of the specified per-architecture
1939 data-pointer. */
1940
1941 void *
1942 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1943 {
1944 gdb_assert (data->index < gdbarch->nr_data);
1945 /* The data-pointer isn't initialized, call init() to get a value but
1946 only if the architecture initializaiton has completed. Otherwise
1947 punt - hope that the caller knows what they are doing. */
1948 if (gdbarch->data[data->index] == NULL
1949 && gdbarch->initialized_p)
1950 {
1951 /* Be careful to detect an initialization cycle. */
1952 gdb_assert (data->init_p);
1953 data->init_p = 0;
1954 gdb_assert (data->init != NULL);
1955 gdbarch->data[data->index] = data->init (gdbarch);
1956 data->init_p = 1;
1957 gdb_assert (gdbarch->data[data->index] != NULL);
1958 }
1959 return gdbarch->data[data->index];
1960 }
1961
1962
1963
1964 /* Keep a registry of swapped data required by GDB modules. */
1965
1966 struct gdbarch_swap
1967 {
1968 void *swap;
1969 struct gdbarch_swap_registration *source;
1970 struct gdbarch_swap *next;
1971 };
1972
1973 struct gdbarch_swap_registration
1974 {
1975 void *data;
1976 unsigned long sizeof_data;
1977 gdbarch_swap_ftype *init;
1978 struct gdbarch_swap_registration *next;
1979 };
1980
1981 struct gdbarch_swap_registry
1982 {
1983 int nr;
1984 struct gdbarch_swap_registration *registrations;
1985 };
1986
1987 struct gdbarch_swap_registry gdbarch_swap_registry =
1988 {
1989 0, NULL,
1990 };
1991
1992 void
1993 register_gdbarch_swap (void *data,
1994 unsigned long sizeof_data,
1995 gdbarch_swap_ftype *init)
1996 {
1997 struct gdbarch_swap_registration **rego;
1998 for (rego = &gdbarch_swap_registry.registrations;
1999 (*rego) != NULL;
2000 rego = &(*rego)->next);
2001 (*rego) = XMALLOC (struct gdbarch_swap_registration);
2002 (*rego)->next = NULL;
2003 (*rego)->init = init;
2004 (*rego)->data = data;
2005 (*rego)->sizeof_data = sizeof_data;
2006 }
2007
2008 static void
2009 clear_gdbarch_swap (struct gdbarch *gdbarch)
2010 {
2011 struct gdbarch_swap *curr;
2012 for (curr = gdbarch->swap;
2013 curr != NULL;
2014 curr = curr->next)
2015 {
2016 memset (curr->source->data, 0, curr->source->sizeof_data);
2017 }
2018 }
2019
2020 static void
2021 init_gdbarch_swap (struct gdbarch *gdbarch)
2022 {
2023 struct gdbarch_swap_registration *rego;
2024 struct gdbarch_swap **curr = &gdbarch->swap;
2025 for (rego = gdbarch_swap_registry.registrations;
2026 rego != NULL;
2027 rego = rego->next)
2028 {
2029 if (rego->data != NULL)
2030 {
2031 (*curr) = XMALLOC (struct gdbarch_swap);
2032 (*curr)->source = rego;
2033 (*curr)->swap = xmalloc (rego->sizeof_data);
2034 (*curr)->next = NULL;
2035 curr = &(*curr)->next;
2036 }
2037 if (rego->init != NULL)
2038 rego->init ();
2039 }
2040 }
2041
2042 static void
2043 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2044 {
2045 struct gdbarch_swap *curr;
2046 for (curr = gdbarch->swap;
2047 curr != NULL;
2048 curr = curr->next)
2049 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2050 }
2051
2052 static void
2053 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2054 {
2055 struct gdbarch_swap *curr;
2056 for (curr = gdbarch->swap;
2057 curr != NULL;
2058 curr = curr->next)
2059 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2060 }
2061
2062
2063 /* Keep a registry of the architectures known by GDB. */
2064
2065 struct gdbarch_registration
2066 {
2067 enum bfd_architecture bfd_architecture;
2068 gdbarch_init_ftype *init;
2069 gdbarch_dump_tdep_ftype *dump_tdep;
2070 struct gdbarch_list *arches;
2071 struct gdbarch_registration *next;
2072 };
2073
2074 static struct gdbarch_registration *gdbarch_registry = NULL;
2075
2076 static void
2077 append_name (const char ***buf, int *nr, const char *name)
2078 {
2079 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2080 (*buf)[*nr] = name;
2081 *nr += 1;
2082 }
2083
2084 const char **
2085 gdbarch_printable_names (void)
2086 {
2087 if (GDB_MULTI_ARCH)
2088 {
2089 /* Accumulate a list of names based on the registed list of
2090 architectures. */
2091 enum bfd_architecture a;
2092 int nr_arches = 0;
2093 const char **arches = NULL;
2094 struct gdbarch_registration *rego;
2095 for (rego = gdbarch_registry;
2096 rego != NULL;
2097 rego = rego->next)
2098 {
2099 const struct bfd_arch_info *ap;
2100 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2101 if (ap == NULL)
2102 internal_error (__FILE__, __LINE__,
2103 "gdbarch_architecture_names: multi-arch unknown");
2104 do
2105 {
2106 append_name (&arches, &nr_arches, ap->printable_name);
2107 ap = ap->next;
2108 }
2109 while (ap != NULL);
2110 }
2111 append_name (&arches, &nr_arches, NULL);
2112 return arches;
2113 }
2114 else
2115 /* Just return all the architectures that BFD knows. Assume that
2116 the legacy architecture framework supports them. */
2117 return bfd_arch_list ();
2118 }
2119
2120
2121 void
2122 gdbarch_register (enum bfd_architecture bfd_architecture,
2123 gdbarch_init_ftype *init,
2124 gdbarch_dump_tdep_ftype *dump_tdep)
2125 {
2126 struct gdbarch_registration **curr;
2127 const struct bfd_arch_info *bfd_arch_info;
2128 /* Check that BFD recognizes this architecture */
2129 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2130 if (bfd_arch_info == NULL)
2131 {
2132 internal_error (__FILE__, __LINE__,
2133 "gdbarch: Attempt to register unknown architecture (%d)",
2134 bfd_architecture);
2135 }
2136 /* Check that we haven't seen this architecture before */
2137 for (curr = &gdbarch_registry;
2138 (*curr) != NULL;
2139 curr = &(*curr)->next)
2140 {
2141 if (bfd_architecture == (*curr)->bfd_architecture)
2142 internal_error (__FILE__, __LINE__,
2143 "gdbarch: Duplicate registraration of architecture (%s)",
2144 bfd_arch_info->printable_name);
2145 }
2146 /* log it */
2147 if (gdbarch_debug)
2148 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2149 bfd_arch_info->printable_name,
2150 (long) init);
2151 /* Append it */
2152 (*curr) = XMALLOC (struct gdbarch_registration);
2153 (*curr)->bfd_architecture = bfd_architecture;
2154 (*curr)->init = init;
2155 (*curr)->dump_tdep = dump_tdep;
2156 (*curr)->arches = NULL;
2157 (*curr)->next = NULL;
2158 /* When non- multi-arch, install whatever target dump routine we've
2159 been provided - hopefully that routine has been written correctly
2160 and works regardless of multi-arch. */
2161 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2162 && startup_gdbarch.dump_tdep == NULL)
2163 startup_gdbarch.dump_tdep = dump_tdep;
2164 }
2165
2166 void
2167 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2168 gdbarch_init_ftype *init)
2169 {
2170 gdbarch_register (bfd_architecture, init, NULL);
2171 }
2172
2173
2174 /* Look for an architecture using gdbarch_info. Base search on only
2175 BFD_ARCH_INFO and BYTE_ORDER. */
2176
2177 struct gdbarch_list *
2178 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2179 const struct gdbarch_info *info)
2180 {
2181 for (; arches != NULL; arches = arches->next)
2182 {
2183 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2184 continue;
2185 if (info->byte_order != arches->gdbarch->byte_order)
2186 continue;
2187 if (info->osabi != arches->gdbarch->osabi)
2188 continue;
2189 return arches;
2190 }
2191 return NULL;
2192 }
2193
2194
2195 /* Update the current architecture. Return ZERO if the update request
2196 failed. */
2197
2198 int
2199 gdbarch_update_p (struct gdbarch_info info)
2200 {
2201 struct gdbarch *new_gdbarch;
2202 struct gdbarch *old_gdbarch;
2203 struct gdbarch_registration *rego;
2204
2205 /* Fill in missing parts of the INFO struct using a number of
2206 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2207
2208 /* \`\`(gdb) set architecture ...'' */
2209 if (info.bfd_arch_info == NULL
2210 && !TARGET_ARCHITECTURE_AUTO)
2211 info.bfd_arch_info = TARGET_ARCHITECTURE;
2212 if (info.bfd_arch_info == NULL
2213 && info.abfd != NULL
2214 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2215 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2216 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2217 if (info.bfd_arch_info == NULL)
2218 info.bfd_arch_info = TARGET_ARCHITECTURE;
2219
2220 /* \`\`(gdb) set byte-order ...'' */
2221 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2222 && !TARGET_BYTE_ORDER_AUTO)
2223 info.byte_order = TARGET_BYTE_ORDER;
2224 /* From the INFO struct. */
2225 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2226 && info.abfd != NULL)
2227 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2228 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2229 : BFD_ENDIAN_UNKNOWN);
2230 /* From the current target. */
2231 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2232 info.byte_order = TARGET_BYTE_ORDER;
2233
2234 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2235 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2236 info.osabi = gdbarch_lookup_osabi (info.abfd);
2237 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2238 info.osabi = current_gdbarch->osabi;
2239
2240 /* Must have found some sort of architecture. */
2241 gdb_assert (info.bfd_arch_info != NULL);
2242
2243 if (gdbarch_debug)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "gdbarch_update: info.bfd_arch_info %s\n",
2247 (info.bfd_arch_info != NULL
2248 ? info.bfd_arch_info->printable_name
2249 : "(null)"));
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: info.byte_order %d (%s)\n",
2252 info.byte_order,
2253 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2254 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2255 : "default"));
2256 fprintf_unfiltered (gdb_stdlog,
2257 "gdbarch_update: info.osabi %d (%s)\n",
2258 info.osabi, gdbarch_osabi_name (info.osabi));
2259 fprintf_unfiltered (gdb_stdlog,
2260 "gdbarch_update: info.abfd 0x%lx\n",
2261 (long) info.abfd);
2262 fprintf_unfiltered (gdb_stdlog,
2263 "gdbarch_update: info.tdep_info 0x%lx\n",
2264 (long) info.tdep_info);
2265 }
2266
2267 /* Find the target that knows about this architecture. */
2268 for (rego = gdbarch_registry;
2269 rego != NULL;
2270 rego = rego->next)
2271 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2272 break;
2273 if (rego == NULL)
2274 {
2275 if (gdbarch_debug)
2276 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2277 return 0;
2278 }
2279
2280 /* Swap the data belonging to the old target out setting the
2281 installed data to zero. This stops the ->init() function trying
2282 to refer to the previous architecture's global data structures. */
2283 swapout_gdbarch_swap (current_gdbarch);
2284 clear_gdbarch_swap (current_gdbarch);
2285
2286 /* Save the previously selected architecture, setting the global to
2287 NULL. This stops ->init() trying to use the previous
2288 architecture's configuration. The previous architecture may not
2289 even be of the same architecture family. The most recent
2290 architecture of the same family is found at the head of the
2291 rego->arches list. */
2292 old_gdbarch = current_gdbarch;
2293 current_gdbarch = NULL;
2294
2295 /* Ask the target for a replacement architecture. */
2296 new_gdbarch = rego->init (info, rego->arches);
2297
2298 /* Did the target like it? No. Reject the change and revert to the
2299 old architecture. */
2300 if (new_gdbarch == NULL)
2301 {
2302 if (gdbarch_debug)
2303 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2304 swapin_gdbarch_swap (old_gdbarch);
2305 current_gdbarch = old_gdbarch;
2306 return 0;
2307 }
2308
2309 /* Did the architecture change? No. Oops, put the old architecture
2310 back. */
2311 if (old_gdbarch == new_gdbarch)
2312 {
2313 if (gdbarch_debug)
2314 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2315 (long) new_gdbarch,
2316 new_gdbarch->bfd_arch_info->printable_name);
2317 swapin_gdbarch_swap (old_gdbarch);
2318 current_gdbarch = old_gdbarch;
2319 return 1;
2320 }
2321
2322 /* Is this a pre-existing architecture? Yes. Move it to the front
2323 of the list of architectures (keeping the list sorted Most
2324 Recently Used) and then copy it in. */
2325 {
2326 struct gdbarch_list **list;
2327 for (list = &rego->arches;
2328 (*list) != NULL;
2329 list = &(*list)->next)
2330 {
2331 if ((*list)->gdbarch == new_gdbarch)
2332 {
2333 struct gdbarch_list *this;
2334 if (gdbarch_debug)
2335 fprintf_unfiltered (gdb_stdlog,
2336 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2337 (long) new_gdbarch,
2338 new_gdbarch->bfd_arch_info->printable_name);
2339 /* Unlink this. */
2340 this = (*list);
2341 (*list) = this->next;
2342 /* Insert in the front. */
2343 this->next = rego->arches;
2344 rego->arches = this;
2345 /* Copy the new architecture in. */
2346 current_gdbarch = new_gdbarch;
2347 swapin_gdbarch_swap (new_gdbarch);
2348 architecture_changed_event ();
2349 return 1;
2350 }
2351 }
2352 }
2353
2354 /* Prepend this new architecture to the architecture list (keep the
2355 list sorted Most Recently Used). */
2356 {
2357 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2358 this->next = rego->arches;
2359 this->gdbarch = new_gdbarch;
2360 rego->arches = this;
2361 }
2362
2363 /* Switch to this new architecture marking it initialized. */
2364 current_gdbarch = new_gdbarch;
2365 current_gdbarch->initialized_p = 1;
2366 if (gdbarch_debug)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2370 (long) new_gdbarch,
2371 new_gdbarch->bfd_arch_info->printable_name);
2372 }
2373
2374 /* Check that the newly installed architecture is valid. Plug in
2375 any post init values. */
2376 new_gdbarch->dump_tdep = rego->dump_tdep;
2377 verify_gdbarch (new_gdbarch);
2378
2379 /* Initialize the per-architecture memory (swap) areas.
2380 CURRENT_GDBARCH must be update before these modules are
2381 called. */
2382 init_gdbarch_swap (new_gdbarch);
2383
2384 /* Initialize the per-architecture data. CURRENT_GDBARCH
2385 must be updated before these modules are called. */
2386 architecture_changed_event ();
2387
2388 if (gdbarch_debug)
2389 gdbarch_dump (current_gdbarch, gdb_stdlog);
2390
2391 return 1;
2392 }
2393
2394
2395 /* Disassembler */
2396
2397 /* Pointer to the target-dependent disassembly function. */
2398 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2399
2400 extern void _initialize_gdbarch (void);
2401
2402 void
2403 _initialize_gdbarch (void)
2404 {
2405 struct cmd_list_element *c;
2406
2407 add_show_from_set (add_set_cmd ("arch",
2408 class_maintenance,
2409 var_zinteger,
2410 (char *)&gdbarch_debug,
2411 "Set architecture debugging.\\n\\
2412 When non-zero, architecture debugging is enabled.", &setdebuglist),
2413 &showdebuglist);
2414 c = add_set_cmd ("archdebug",
2415 class_maintenance,
2416 var_zinteger,
2417 (char *)&gdbarch_debug,
2418 "Set architecture debugging.\\n\\
2419 When non-zero, architecture debugging is enabled.", &setlist);
2420
2421 deprecate_cmd (c, "set debug arch");
2422 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2423 }
2424 EOF
2425
2426 # close things off
2427 exec 1>&2
2428 #../move-if-change new-gdbarch.c gdbarch.c
2429 compare_new gdbarch.c
This page took 0.084402 seconds and 4 git commands to generate.