Add initial type alignment support
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363 # Alignment of a long long or unsigned long long for the target
364 # machine.
365 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
366
367 # The ABI default bit-size and format for "half", "float", "double", and
368 # "long double". These bit/format pairs should eventually be combined
369 # into a single object. For the moment, just initialize them as a pair.
370 # Each format describes both the big and little endian layouts (if
371 # useful).
372
373 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
381
382 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383 # starting with C++11.
384 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
385 # One if \`wchar_t' is signed, zero if unsigned.
386 v;int;wchar_signed;;;1;-1;1
387
388 # Returns the floating-point format to be used for values of length LENGTH.
389 # NAME, if non-NULL, is the type name, which may be used to distinguish
390 # different target formats of the same length.
391 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
392
393 # For most targets, a pointer on the target and its representation as an
394 # address in GDB have the same size and "look the same". For such a
395 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
396 # / addr_bit will be set from it.
397 #
398 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
399 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400 # gdbarch_address_to_pointer as well.
401 #
402 # ptr_bit is the size of a pointer on the target
403 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
404 # addr_bit is the size of a target address as represented in gdb
405 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
406 #
407 # dwarf2_addr_size is the target address size as used in the Dwarf debug
408 # info. For .debug_frame FDEs, this is supposed to be the target address
409 # size from the associated CU header, and which is equivalent to the
410 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411 # Unfortunately there is no good way to determine this value. Therefore
412 # dwarf2_addr_size simply defaults to the target pointer size.
413 #
414 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415 # defined using the target's pointer size so far.
416 #
417 # Note that dwarf2_addr_size only needs to be redefined by a target if the
418 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419 # and if Dwarf versions < 4 need to be supported.
420 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
421 #
422 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
423 v;int;char_signed;;;1;-1;1
424 #
425 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
426 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
427 # Function for getting target's idea of a frame pointer. FIXME: GDB's
428 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 # serious shakedown.
430 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
431 #
432 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
433 # Read a register into a new struct value. If the register is wholly
434 # or partly unavailable, this should call mark_value_bytes_unavailable
435 # as appropriate. If this is defined, then pseudo_register_read will
436 # never be called.
437 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
438 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
439 #
440 v;int;num_regs;;;0;-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v;int;num_pseudo_regs;;;0;0;;0
446
447 # Assemble agent expression bytecode to collect pseudo-register REG.
448 # Return -1 if something goes wrong, 0 otherwise.
449 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
450
451 # Assemble agent expression bytecode to push the value of pseudo-register
452 # REG on the interpreter stack.
453 # Return -1 if something goes wrong, 0 otherwise.
454 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
455
456 # Some targets/architectures can do extra processing/display of
457 # segmentation faults. E.g., Intel MPX boundary faults.
458 # Call the architecture dependent function to handle the fault.
459 # UIOUT is the output stream where the handler will place information.
460 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
461
462 # GDB's standard (or well known) register numbers. These can map onto
463 # a real register or a pseudo (computed) register or not be defined at
464 # all (-1).
465 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
466 v;int;sp_regnum;;;-1;-1;;0
467 v;int;pc_regnum;;;-1;-1;;0
468 v;int;ps_regnum;;;-1;-1;;0
469 v;int;fp0_regnum;;;0;-1;;0
470 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
471 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
472 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
473 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
474 # Convert from an sdb register number to an internal gdb register number.
475 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
477 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
478 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479 m;const char *;register_name;int regnr;regnr;;0
480
481 # Return the type of a register specified by the architecture. Only
482 # the register cache should call this function directly; others should
483 # use "register_type".
484 M;struct type *;register_type;int reg_nr;reg_nr
485
486 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
487 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
488 # deprecated_fp_regnum.
489 v;int;deprecated_fp_regnum;;;-1;-1;;0
490
491 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
494
495 # Return true if the code of FRAME is writable.
496 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
497
498 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
501 # MAP a GDB RAW register number onto a simulator register number. See
502 # also include/...-sim.h.
503 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
506
507 # Determine the address where a longjmp will land and save this address
508 # in PC. Return nonzero on success.
509 #
510 # FRAME corresponds to the longjmp frame.
511 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
512
513 #
514 v;int;believe_pcc_promotion;;;;;;;
515 #
516 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
519 # Construct a value representing the contents of register REGNUM in
520 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
521 # allocate and return a struct value with all value attributes
522 # (but not the value contents) filled in.
523 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
524 #
525 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
528
529 # Return the return-value convention that will be used by FUNCTION
530 # to return a value of type VALTYPE. FUNCTION may be NULL in which
531 # case the return convention is computed based only on VALTYPE.
532 #
533 # If READBUF is not NULL, extract the return value and save it in this buffer.
534 #
535 # If WRITEBUF is not NULL, it contains a return value which will be
536 # stored into the appropriate register. This can be used when we want
537 # to force the value returned by a function (see the "return" command
538 # for instance).
539 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
540
541 # Return true if the return value of function is stored in the first hidden
542 # parameter. In theory, this feature should be language-dependent, specified
543 # by language and its ABI, such as C++. Unfortunately, compiler may
544 # implement it to a target-dependent feature. So that we need such hook here
545 # to be aware of this in GDB.
546 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
547
548 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
550 # On some platforms, a single function may provide multiple entry points,
551 # e.g. one that is used for function-pointer calls and a different one
552 # that is used for direct function calls.
553 # In order to ensure that breakpoints set on the function will trigger
554 # no matter via which entry point the function is entered, a platform
555 # may provide the skip_entrypoint callback. It is called with IP set
556 # to the main entry point of a function (as determined by the symbol table),
557 # and should return the address of the innermost entry point, where the
558 # actual breakpoint needs to be set. Note that skip_entrypoint is used
559 # by GDB common code even when debugging optimized code, where skip_prologue
560 # is not used.
561 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
562
563 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
565
566 # Return the breakpoint kind for this target based on *PCPTR.
567 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
568
569 # Return the software breakpoint from KIND. KIND can have target
570 # specific meaning like the Z0 kind parameter.
571 # SIZE is set to the software breakpoint's length in memory.
572 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
573
574 # Return the breakpoint kind for this target based on the current
575 # processor state (e.g. the current instruction mode on ARM) and the
576 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
577 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
578
579 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
583
584 # A function can be addressed by either it's "pointer" (possibly a
585 # descriptor address) or "entry point" (first executable instruction).
586 # The method "convert_from_func_ptr_addr" converting the former to the
587 # latter. gdbarch_deprecated_function_start_offset is being used to implement
588 # a simplified subset of that functionality - the function's address
589 # corresponds to the "function pointer" and the function's start
590 # corresponds to the "function entry point" - and hence is redundant.
591
592 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
593
594 # Return the remote protocol register number associated with this
595 # register. Normally the identity mapping.
596 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
597
598 # Fetch the target specific address used to represent a load module.
599 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
600 #
601 v;CORE_ADDR;frame_args_skip;;;0;;;0
602 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
604 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605 # frame-base. Enable frame-base before frame-unwind.
606 F;int;frame_num_args;struct frame_info *frame;frame
607 #
608 M;CORE_ADDR;frame_align;CORE_ADDR address;address
609 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610 v;int;frame_red_zone_size
611 #
612 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
613 # On some machines there are bits in addresses which are not really
614 # part of the address, but are used by the kernel, the hardware, etc.
615 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
616 # we get a "real" address such as one would find in a symbol table.
617 # This is used only for addresses of instructions, and even then I'm
618 # not sure it's used in all contexts. It exists to deal with there
619 # being a few stray bits in the PC which would mislead us, not as some
620 # sort of generic thing to handle alignment or segmentation (it's
621 # possible it should be in TARGET_READ_PC instead).
622 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
623
624 # On some machines, not all bits of an address word are significant.
625 # For example, on AArch64, the top bits of an address known as the "tag"
626 # are ignored by the kernel, the hardware, etc. and can be regarded as
627 # additional data associated with the address.
628 v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
629
630 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
631 # indicates if the target needs software single step. An ISA method to
632 # implement it.
633 #
634 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
635 # target can single step. If not, then implement single step using breakpoints.
636 #
637 # Return a vector of addresses on which the software single step
638 # breakpoints should be inserted. NULL means software single step is
639 # not used.
640 # Multiple breakpoints may be inserted for some instructions such as
641 # conditional branch. However, each implementation must always evaluate
642 # the condition and only put the breakpoint at the branch destination if
643 # the condition is true, so that we ensure forward progress when stepping
644 # past a conditional branch to self.
645 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
646
647 # Return non-zero if the processor is executing a delay slot and a
648 # further single-step is needed before the instruction finishes.
649 M;int;single_step_through_delay;struct frame_info *frame;frame
650 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
651 # disassembler. Perhaps objdump can handle it?
652 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
653 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
654
655
656 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
657 # evaluates non-zero, this is the address where the debugger will place
658 # a step-resume breakpoint to get us past the dynamic linker.
659 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
660 # Some systems also have trampoline code for returning from shared libs.
661 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
662
663 # Return true if PC lies inside an indirect branch thunk.
664 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
665
666 # A target might have problems with watchpoints as soon as the stack
667 # frame of the current function has been destroyed. This mostly happens
668 # as the first action in a function's epilogue. stack_frame_destroyed_p()
669 # is defined to return a non-zero value if either the given addr is one
670 # instruction after the stack destroying instruction up to the trailing
671 # return instruction or if we can figure out that the stack frame has
672 # already been invalidated regardless of the value of addr. Targets
673 # which don't suffer from that problem could just let this functionality
674 # untouched.
675 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
676 # Process an ELF symbol in the minimal symbol table in a backend-specific
677 # way. Normally this hook is supposed to do nothing, however if required,
678 # then this hook can be used to apply tranformations to symbols that are
679 # considered special in some way. For example the MIPS backend uses it
680 # to interpret \`st_other' information to mark compressed code symbols so
681 # that they can be treated in the appropriate manner in the processing of
682 # the main symbol table and DWARF-2 records.
683 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
684 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
685 # Process a symbol in the main symbol table in a backend-specific way.
686 # Normally this hook is supposed to do nothing, however if required,
687 # then this hook can be used to apply tranformations to symbols that
688 # are considered special in some way. This is currently used by the
689 # MIPS backend to make sure compressed code symbols have the ISA bit
690 # set. This in turn is needed for symbol values seen in GDB to match
691 # the values used at the runtime by the program itself, for function
692 # and label references.
693 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
694 # Adjust the address retrieved from a DWARF-2 record other than a line
695 # entry in a backend-specific way. Normally this hook is supposed to
696 # return the address passed unchanged, however if that is incorrect for
697 # any reason, then this hook can be used to fix the address up in the
698 # required manner. This is currently used by the MIPS backend to make
699 # sure addresses in FDE, range records, etc. referring to compressed
700 # code have the ISA bit set, matching line information and the symbol
701 # table.
702 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
703 # Adjust the address updated by a line entry in a backend-specific way.
704 # Normally this hook is supposed to return the address passed unchanged,
705 # however in the case of inconsistencies in these records, this hook can
706 # be used to fix them up in the required manner. This is currently used
707 # by the MIPS backend to make sure all line addresses in compressed code
708 # are presented with the ISA bit set, which is not always the case. This
709 # in turn ensures breakpoint addresses are correctly matched against the
710 # stop PC.
711 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
712 v;int;cannot_step_breakpoint;;;0;0;;0
713 v;int;have_nonsteppable_watchpoint;;;0;0;;0
714 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
715 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
716 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
717 # FS are passed from the generic execute_cfa_program function.
718 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
719
720 # Return the appropriate type_flags for the supplied address class.
721 # This function should return 1 if the address class was recognized and
722 # type_flags was set, zero otherwise.
723 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
724 # Is a register in a group
725 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
726 # Fetch the pointer to the ith function argument.
727 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
728
729 # Iterate over all supported register notes in a core file. For each
730 # supported register note section, the iterator must call CB and pass
731 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
732 # the supported register note sections based on the current register
733 # values. Otherwise it should enumerate all supported register note
734 # sections.
735 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
736
737 # Create core file notes
738 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
739
740 # Find core file memory regions
741 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
742
743 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
744 # core file into buffer READBUF with length LEN. Return the number of bytes read
745 # (zero indicates failure).
746 # failed, otherwise, return the red length of READBUF.
747 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
748
749 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
750 # libraries list from core file into buffer READBUF with length LEN.
751 # Return the number of bytes read (zero indicates failure).
752 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
753
754 # How the core target converts a PTID from a core file to a string.
755 M;const char *;core_pid_to_str;ptid_t ptid;ptid
756
757 # How the core target extracts the name of a thread from a core file.
758 M;const char *;core_thread_name;struct thread_info *thr;thr
759
760 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
761 # from core file into buffer READBUF with length LEN. Return the number
762 # of bytes read (zero indicates EOF, a negative value indicates failure).
763 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
764
765 # BFD target to use when generating a core file.
766 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
767
768 # If the elements of C++ vtables are in-place function descriptors rather
769 # than normal function pointers (which may point to code or a descriptor),
770 # set this to one.
771 v;int;vtable_function_descriptors;;;0;0;;0
772
773 # Set if the least significant bit of the delta is used instead of the least
774 # significant bit of the pfn for pointers to virtual member functions.
775 v;int;vbit_in_delta;;;0;0;;0
776
777 # Advance PC to next instruction in order to skip a permanent breakpoint.
778 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
779
780 # The maximum length of an instruction on this architecture in bytes.
781 V;ULONGEST;max_insn_length;;;0;0
782
783 # Copy the instruction at FROM to TO, and make any adjustments
784 # necessary to single-step it at that address.
785 #
786 # REGS holds the state the thread's registers will have before
787 # executing the copied instruction; the PC in REGS will refer to FROM,
788 # not the copy at TO. The caller should update it to point at TO later.
789 #
790 # Return a pointer to data of the architecture's choice to be passed
791 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
792 # the instruction's effects have been completely simulated, with the
793 # resulting state written back to REGS.
794 #
795 # For a general explanation of displaced stepping and how GDB uses it,
796 # see the comments in infrun.c.
797 #
798 # The TO area is only guaranteed to have space for
799 # gdbarch_max_insn_length (arch) bytes, so this function must not
800 # write more bytes than that to that area.
801 #
802 # If you do not provide this function, GDB assumes that the
803 # architecture does not support displaced stepping.
804 #
805 # If the instruction cannot execute out of line, return NULL. The
806 # core falls back to stepping past the instruction in-line instead in
807 # that case.
808 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
809
810 # Return true if GDB should use hardware single-stepping to execute
811 # the displaced instruction identified by CLOSURE. If false,
812 # GDB will simply restart execution at the displaced instruction
813 # location, and it is up to the target to ensure GDB will receive
814 # control again (e.g. by placing a software breakpoint instruction
815 # into the displaced instruction buffer).
816 #
817 # The default implementation returns false on all targets that
818 # provide a gdbarch_software_single_step routine, and true otherwise.
819 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
820
821 # Fix up the state resulting from successfully single-stepping a
822 # displaced instruction, to give the result we would have gotten from
823 # stepping the instruction in its original location.
824 #
825 # REGS is the register state resulting from single-stepping the
826 # displaced instruction.
827 #
828 # CLOSURE is the result from the matching call to
829 # gdbarch_displaced_step_copy_insn.
830 #
831 # If you provide gdbarch_displaced_step_copy_insn.but not this
832 # function, then GDB assumes that no fixup is needed after
833 # single-stepping the instruction.
834 #
835 # For a general explanation of displaced stepping and how GDB uses it,
836 # see the comments in infrun.c.
837 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
838
839 # Return the address of an appropriate place to put displaced
840 # instructions while we step over them. There need only be one such
841 # place, since we're only stepping one thread over a breakpoint at a
842 # time.
843 #
844 # For a general explanation of displaced stepping and how GDB uses it,
845 # see the comments in infrun.c.
846 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
847
848 # Relocate an instruction to execute at a different address. OLDLOC
849 # is the address in the inferior memory where the instruction to
850 # relocate is currently at. On input, TO points to the destination
851 # where we want the instruction to be copied (and possibly adjusted)
852 # to. On output, it points to one past the end of the resulting
853 # instruction(s). The effect of executing the instruction at TO shall
854 # be the same as if executing it at FROM. For example, call
855 # instructions that implicitly push the return address on the stack
856 # should be adjusted to return to the instruction after OLDLOC;
857 # relative branches, and other PC-relative instructions need the
858 # offset adjusted; etc.
859 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
860
861 # Refresh overlay mapped state for section OSECT.
862 F;void;overlay_update;struct obj_section *osect;osect
863
864 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
865
866 # Handle special encoding of static variables in stabs debug info.
867 F;const char *;static_transform_name;const char *name;name
868 # Set if the address in N_SO or N_FUN stabs may be zero.
869 v;int;sofun_address_maybe_missing;;;0;0;;0
870
871 # Parse the instruction at ADDR storing in the record execution log
872 # the registers REGCACHE and memory ranges that will be affected when
873 # the instruction executes, along with their current values.
874 # Return -1 if something goes wrong, 0 otherwise.
875 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
876
877 # Save process state after a signal.
878 # Return -1 if something goes wrong, 0 otherwise.
879 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
880
881 # Signal translation: translate inferior's signal (target's) number
882 # into GDB's representation. The implementation of this method must
883 # be host independent. IOW, don't rely on symbols of the NAT_FILE
884 # header (the nm-*.h files), the host <signal.h> header, or similar
885 # headers. This is mainly used when cross-debugging core files ---
886 # "Live" targets hide the translation behind the target interface
887 # (target_wait, target_resume, etc.).
888 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
889
890 # Signal translation: translate the GDB's internal signal number into
891 # the inferior's signal (target's) representation. The implementation
892 # of this method must be host independent. IOW, don't rely on symbols
893 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
894 # header, or similar headers.
895 # Return the target signal number if found, or -1 if the GDB internal
896 # signal number is invalid.
897 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
898
899 # Extra signal info inspection.
900 #
901 # Return a type suitable to inspect extra signal information.
902 M;struct type *;get_siginfo_type;void;
903
904 # Record architecture-specific information from the symbol table.
905 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
906
907 # Function for the 'catch syscall' feature.
908
909 # Get architecture-specific system calls information from registers.
910 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
911
912 # The filename of the XML syscall for this architecture.
913 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
914
915 # Information about system calls from this architecture
916 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
917
918 # SystemTap related fields and functions.
919
920 # A NULL-terminated array of prefixes used to mark an integer constant
921 # on the architecture's assembly.
922 # For example, on x86 integer constants are written as:
923 #
924 # \$10 ;; integer constant 10
925 #
926 # in this case, this prefix would be the character \`\$\'.
927 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
928
929 # A NULL-terminated array of suffixes used to mark an integer constant
930 # on the architecture's assembly.
931 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
932
933 # A NULL-terminated array of prefixes used to mark a register name on
934 # the architecture's assembly.
935 # For example, on x86 the register name is written as:
936 #
937 # \%eax ;; register eax
938 #
939 # in this case, this prefix would be the character \`\%\'.
940 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
941
942 # A NULL-terminated array of suffixes used to mark a register name on
943 # the architecture's assembly.
944 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
945
946 # A NULL-terminated array of prefixes used to mark a register
947 # indirection on the architecture's assembly.
948 # For example, on x86 the register indirection is written as:
949 #
950 # \(\%eax\) ;; indirecting eax
951 #
952 # in this case, this prefix would be the charater \`\(\'.
953 #
954 # Please note that we use the indirection prefix also for register
955 # displacement, e.g., \`4\(\%eax\)\' on x86.
956 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
957
958 # A NULL-terminated array of suffixes used to mark a register
959 # indirection on the architecture's assembly.
960 # For example, on x86 the register indirection is written as:
961 #
962 # \(\%eax\) ;; indirecting eax
963 #
964 # in this case, this prefix would be the charater \`\)\'.
965 #
966 # Please note that we use the indirection suffix also for register
967 # displacement, e.g., \`4\(\%eax\)\' on x86.
968 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
969
970 # Prefix(es) used to name a register using GDB's nomenclature.
971 #
972 # For example, on PPC a register is represented by a number in the assembly
973 # language (e.g., \`10\' is the 10th general-purpose register). However,
974 # inside GDB this same register has an \`r\' appended to its name, so the 10th
975 # register would be represented as \`r10\' internally.
976 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
977
978 # Suffix used to name a register using GDB's nomenclature.
979 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
980
981 # Check if S is a single operand.
982 #
983 # Single operands can be:
984 # \- Literal integers, e.g. \`\$10\' on x86
985 # \- Register access, e.g. \`\%eax\' on x86
986 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
987 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
988 #
989 # This function should check for these patterns on the string
990 # and return 1 if some were found, or zero otherwise. Please try to match
991 # as much info as you can from the string, i.e., if you have to match
992 # something like \`\(\%\', do not match just the \`\(\'.
993 M;int;stap_is_single_operand;const char *s;s
994
995 # Function used to handle a "special case" in the parser.
996 #
997 # A "special case" is considered to be an unknown token, i.e., a token
998 # that the parser does not know how to parse. A good example of special
999 # case would be ARM's register displacement syntax:
1000 #
1001 # [R0, #4] ;; displacing R0 by 4
1002 #
1003 # Since the parser assumes that a register displacement is of the form:
1004 #
1005 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1006 #
1007 # it means that it will not be able to recognize and parse this odd syntax.
1008 # Therefore, we should add a special case function that will handle this token.
1009 #
1010 # This function should generate the proper expression form of the expression
1011 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1012 # and so on). It should also return 1 if the parsing was successful, or zero
1013 # if the token was not recognized as a special token (in this case, returning
1014 # zero means that the special parser is deferring the parsing to the generic
1015 # parser), and should advance the buffer pointer (p->arg).
1016 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1017
1018 # DTrace related functions.
1019
1020 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1021 # NARG must be >= 0.
1022 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1023
1024 # True if the given ADDR does not contain the instruction sequence
1025 # corresponding to a disabled DTrace is-enabled probe.
1026 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1027
1028 # Enable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1030
1031 # Disable a DTrace is-enabled probe at ADDR.
1032 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1033
1034 # True if the list of shared libraries is one and only for all
1035 # processes, as opposed to a list of shared libraries per inferior.
1036 # This usually means that all processes, although may or may not share
1037 # an address space, will see the same set of symbols at the same
1038 # addresses.
1039 v;int;has_global_solist;;;0;0;;0
1040
1041 # On some targets, even though each inferior has its own private
1042 # address space, the debug interface takes care of making breakpoints
1043 # visible to all address spaces automatically. For such cases,
1044 # this property should be set to true.
1045 v;int;has_global_breakpoints;;;0;0;;0
1046
1047 # True if inferiors share an address space (e.g., uClinux).
1048 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1049
1050 # True if a fast tracepoint can be set at an address.
1051 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1052
1053 # Guess register state based on tracepoint location. Used for tracepoints
1054 # where no registers have been collected, but there's only one location,
1055 # allowing us to guess the PC value, and perhaps some other registers.
1056 # On entry, regcache has all registers marked as unavailable.
1057 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1058
1059 # Return the "auto" target charset.
1060 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1061 # Return the "auto" target wide charset.
1062 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1063
1064 # If non-empty, this is a file extension that will be opened in place
1065 # of the file extension reported by the shared library list.
1066 #
1067 # This is most useful for toolchains that use a post-linker tool,
1068 # where the names of the files run on the target differ in extension
1069 # compared to the names of the files GDB should load for debug info.
1070 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1071
1072 # If true, the target OS has DOS-based file system semantics. That
1073 # is, absolute paths include a drive name, and the backslash is
1074 # considered a directory separator.
1075 v;int;has_dos_based_file_system;;;0;0;;0
1076
1077 # Generate bytecodes to collect the return address in a frame.
1078 # Since the bytecodes run on the target, possibly with GDB not even
1079 # connected, the full unwinding machinery is not available, and
1080 # typically this function will issue bytecodes for one or more likely
1081 # places that the return address may be found.
1082 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1083
1084 # Implement the "info proc" command.
1085 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1086
1087 # Implement the "info proc" command for core files. Noe that there
1088 # are two "info_proc"-like methods on gdbarch -- one for core files,
1089 # one for live targets.
1090 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1091
1092 # Iterate over all objfiles in the order that makes the most sense
1093 # for the architecture to make global symbol searches.
1094 #
1095 # CB is a callback function where OBJFILE is the objfile to be searched,
1096 # and CB_DATA a pointer to user-defined data (the same data that is passed
1097 # when calling this gdbarch method). The iteration stops if this function
1098 # returns nonzero.
1099 #
1100 # CB_DATA is a pointer to some user-defined data to be passed to
1101 # the callback.
1102 #
1103 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1104 # inspected when the symbol search was requested.
1105 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1106
1107 # Ravenscar arch-dependent ops.
1108 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1109
1110 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1111 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1112
1113 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1114 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1115
1116 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1117 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1118
1119 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1120 # Return 0 if *READPTR is already at the end of the buffer.
1121 # Return -1 if there is insufficient buffer for a whole entry.
1122 # Return 1 if an entry was read into *TYPEP and *VALP.
1123 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1124
1125 # Print the description of a single auxv entry described by TYPE and VAL
1126 # to FILE.
1127 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1128
1129 # Find the address range of the current inferior's vsyscall/vDSO, and
1130 # write it to *RANGE. If the vsyscall's length can't be determined, a
1131 # range with zero length is returned. Returns true if the vsyscall is
1132 # found, false otherwise.
1133 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1134
1135 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1136 # PROT has GDB_MMAP_PROT_* bitmask format.
1137 # Throw an error if it is not possible. Returned address is always valid.
1138 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1139
1140 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1141 # Print a warning if it is not possible.
1142 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1143
1144 # Return string (caller has to use xfree for it) with options for GCC
1145 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1146 # These options are put before CU's DW_AT_producer compilation options so that
1147 # they can override it. Method may also return NULL.
1148 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1149
1150 # Return a regular expression that matches names used by this
1151 # architecture in GNU configury triplets. The result is statically
1152 # allocated and must not be freed. The default implementation simply
1153 # returns the BFD architecture name, which is correct in nearly every
1154 # case.
1155 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1156
1157 # Return the size in 8-bit bytes of an addressable memory unit on this
1158 # architecture. This corresponds to the number of 8-bit bytes associated to
1159 # each address in memory.
1160 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1161
1162 # Functions for allowing a target to modify its disassembler options.
1163 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1164 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1165
1166 # Type alignment.
1167 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1168
1169 EOF
1170 }
1171
1172 #
1173 # The .log file
1174 #
1175 exec > new-gdbarch.log
1176 function_list | while do_read
1177 do
1178 cat <<EOF
1179 ${class} ${returntype} ${function} ($formal)
1180 EOF
1181 for r in ${read}
1182 do
1183 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1184 done
1185 if class_is_predicate_p && fallback_default_p
1186 then
1187 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1188 kill $$
1189 exit 1
1190 fi
1191 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1192 then
1193 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1194 kill $$
1195 exit 1
1196 fi
1197 if class_is_multiarch_p
1198 then
1199 if class_is_predicate_p ; then :
1200 elif test "x${predefault}" = "x"
1201 then
1202 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1203 kill $$
1204 exit 1
1205 fi
1206 fi
1207 echo ""
1208 done
1209
1210 exec 1>&2
1211 compare_new gdbarch.log
1212
1213
1214 copyright ()
1215 {
1216 cat <<EOF
1217 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1218 /* vi:set ro: */
1219
1220 /* Dynamic architecture support for GDB, the GNU debugger.
1221
1222 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1223
1224 This file is part of GDB.
1225
1226 This program is free software; you can redistribute it and/or modify
1227 it under the terms of the GNU General Public License as published by
1228 the Free Software Foundation; either version 3 of the License, or
1229 (at your option) any later version.
1230
1231 This program is distributed in the hope that it will be useful,
1232 but WITHOUT ANY WARRANTY; without even the implied warranty of
1233 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1234 GNU General Public License for more details.
1235
1236 You should have received a copy of the GNU General Public License
1237 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1238
1239 /* This file was created with the aid of \`\`gdbarch.sh''.
1240
1241 The Bourne shell script \`\`gdbarch.sh'' creates the files
1242 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1243 against the existing \`\`gdbarch.[hc]''. Any differences found
1244 being reported.
1245
1246 If editing this file, please also run gdbarch.sh and merge any
1247 changes into that script. Conversely, when making sweeping changes
1248 to this file, modifying gdbarch.sh and using its output may prove
1249 easier. */
1250
1251 EOF
1252 }
1253
1254 #
1255 # The .h file
1256 #
1257
1258 exec > new-gdbarch.h
1259 copyright
1260 cat <<EOF
1261 #ifndef GDBARCH_H
1262 #define GDBARCH_H
1263
1264 #include <vector>
1265 #include "frame.h"
1266 #include "dis-asm.h"
1267
1268 struct floatformat;
1269 struct ui_file;
1270 struct value;
1271 struct objfile;
1272 struct obj_section;
1273 struct minimal_symbol;
1274 struct regcache;
1275 struct reggroup;
1276 struct regset;
1277 struct disassemble_info;
1278 struct target_ops;
1279 struct obstack;
1280 struct bp_target_info;
1281 struct target_desc;
1282 struct symbol;
1283 struct displaced_step_closure;
1284 struct syscall;
1285 struct agent_expr;
1286 struct axs_value;
1287 struct stap_parse_info;
1288 struct parser_state;
1289 struct ravenscar_arch_ops;
1290 struct mem_range;
1291 struct syscalls_info;
1292 struct thread_info;
1293 struct ui_out;
1294
1295 #include "regcache.h"
1296
1297 /* The architecture associated with the inferior through the
1298 connection to the target.
1299
1300 The architecture vector provides some information that is really a
1301 property of the inferior, accessed through a particular target:
1302 ptrace operations; the layout of certain RSP packets; the solib_ops
1303 vector; etc. To differentiate architecture accesses to
1304 per-inferior/target properties from
1305 per-thread/per-frame/per-objfile properties, accesses to
1306 per-inferior/target properties should be made through this
1307 gdbarch. */
1308
1309 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1310 extern struct gdbarch *target_gdbarch (void);
1311
1312 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1313 gdbarch method. */
1314
1315 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1316 (struct objfile *objfile, void *cb_data);
1317
1318 /* Callback type for regset section iterators. The callback usually
1319 invokes the REGSET's supply or collect method, to which it must
1320 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1321 section name, and HUMAN_NAME is used for diagnostic messages.
1322 CB_DATA should have been passed unchanged through the iterator. */
1323
1324 typedef void (iterate_over_regset_sections_cb)
1325 (const char *sect_name, int size, const struct regset *regset,
1326 const char *human_name, void *cb_data);
1327 EOF
1328
1329 # function typedef's
1330 printf "\n"
1331 printf "\n"
1332 printf "/* The following are pre-initialized by GDBARCH. */\n"
1333 function_list | while do_read
1334 do
1335 if class_is_info_p
1336 then
1337 printf "\n"
1338 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1339 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1340 fi
1341 done
1342
1343 # function typedef's
1344 printf "\n"
1345 printf "\n"
1346 printf "/* The following are initialized by the target dependent code. */\n"
1347 function_list | while do_read
1348 do
1349 if [ -n "${comment}" ]
1350 then
1351 echo "${comment}" | sed \
1352 -e '2 s,#,/*,' \
1353 -e '3,$ s,#, ,' \
1354 -e '$ s,$, */,'
1355 fi
1356
1357 if class_is_predicate_p
1358 then
1359 printf "\n"
1360 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1361 fi
1362 if class_is_variable_p
1363 then
1364 printf "\n"
1365 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1366 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1367 fi
1368 if class_is_function_p
1369 then
1370 printf "\n"
1371 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1372 then
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1374 elif class_is_multiarch_p
1375 then
1376 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1377 else
1378 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1379 fi
1380 if [ "x${formal}" = "xvoid" ]
1381 then
1382 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1383 else
1384 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1385 fi
1386 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1387 fi
1388 done
1389
1390 # close it off
1391 cat <<EOF
1392
1393 /* Definition for an unknown syscall, used basically in error-cases. */
1394 #define UNKNOWN_SYSCALL (-1)
1395
1396 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1397
1398
1399 /* Mechanism for co-ordinating the selection of a specific
1400 architecture.
1401
1402 GDB targets (*-tdep.c) can register an interest in a specific
1403 architecture. Other GDB components can register a need to maintain
1404 per-architecture data.
1405
1406 The mechanisms below ensures that there is only a loose connection
1407 between the set-architecture command and the various GDB
1408 components. Each component can independently register their need
1409 to maintain architecture specific data with gdbarch.
1410
1411 Pragmatics:
1412
1413 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1414 didn't scale.
1415
1416 The more traditional mega-struct containing architecture specific
1417 data for all the various GDB components was also considered. Since
1418 GDB is built from a variable number of (fairly independent)
1419 components it was determined that the global aproach was not
1420 applicable. */
1421
1422
1423 /* Register a new architectural family with GDB.
1424
1425 Register support for the specified ARCHITECTURE with GDB. When
1426 gdbarch determines that the specified architecture has been
1427 selected, the corresponding INIT function is called.
1428
1429 --
1430
1431 The INIT function takes two parameters: INFO which contains the
1432 information available to gdbarch about the (possibly new)
1433 architecture; ARCHES which is a list of the previously created
1434 \`\`struct gdbarch'' for this architecture.
1435
1436 The INFO parameter is, as far as possible, be pre-initialized with
1437 information obtained from INFO.ABFD or the global defaults.
1438
1439 The ARCHES parameter is a linked list (sorted most recently used)
1440 of all the previously created architures for this architecture
1441 family. The (possibly NULL) ARCHES->gdbarch can used to access
1442 values from the previously selected architecture for this
1443 architecture family.
1444
1445 The INIT function shall return any of: NULL - indicating that it
1446 doesn't recognize the selected architecture; an existing \`\`struct
1447 gdbarch'' from the ARCHES list - indicating that the new
1448 architecture is just a synonym for an earlier architecture (see
1449 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1450 - that describes the selected architecture (see gdbarch_alloc()).
1451
1452 The DUMP_TDEP function shall print out all target specific values.
1453 Care should be taken to ensure that the function works in both the
1454 multi-arch and non- multi-arch cases. */
1455
1456 struct gdbarch_list
1457 {
1458 struct gdbarch *gdbarch;
1459 struct gdbarch_list *next;
1460 };
1461
1462 struct gdbarch_info
1463 {
1464 /* Use default: NULL (ZERO). */
1465 const struct bfd_arch_info *bfd_arch_info;
1466
1467 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1468 enum bfd_endian byte_order;
1469
1470 enum bfd_endian byte_order_for_code;
1471
1472 /* Use default: NULL (ZERO). */
1473 bfd *abfd;
1474
1475 /* Use default: NULL (ZERO). */
1476 union
1477 {
1478 /* Architecture-specific information. The generic form for targets
1479 that have extra requirements. */
1480 struct gdbarch_tdep_info *tdep_info;
1481
1482 /* Architecture-specific target description data. Numerous targets
1483 need only this, so give them an easy way to hold it. */
1484 struct tdesc_arch_data *tdesc_data;
1485
1486 /* SPU file system ID. This is a single integer, so using the
1487 generic form would only complicate code. Other targets may
1488 reuse this member if suitable. */
1489 int *id;
1490 };
1491
1492 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1493 enum gdb_osabi osabi;
1494
1495 /* Use default: NULL (ZERO). */
1496 const struct target_desc *target_desc;
1497 };
1498
1499 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1500 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1501
1502 /* DEPRECATED - use gdbarch_register() */
1503 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1504
1505 extern void gdbarch_register (enum bfd_architecture architecture,
1506 gdbarch_init_ftype *,
1507 gdbarch_dump_tdep_ftype *);
1508
1509
1510 /* Return a freshly allocated, NULL terminated, array of the valid
1511 architecture names. Since architectures are registered during the
1512 _initialize phase this function only returns useful information
1513 once initialization has been completed. */
1514
1515 extern const char **gdbarch_printable_names (void);
1516
1517
1518 /* Helper function. Search the list of ARCHES for a GDBARCH that
1519 matches the information provided by INFO. */
1520
1521 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1522
1523
1524 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1525 basic initialization using values obtained from the INFO and TDEP
1526 parameters. set_gdbarch_*() functions are called to complete the
1527 initialization of the object. */
1528
1529 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1530
1531
1532 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1533 It is assumed that the caller freeds the \`\`struct
1534 gdbarch_tdep''. */
1535
1536 extern void gdbarch_free (struct gdbarch *);
1537
1538
1539 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1540 obstack. The memory is freed when the corresponding architecture
1541 is also freed. */
1542
1543 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1544 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1545 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1546
1547 /* Duplicate STRING, returning an equivalent string that's allocated on the
1548 obstack associated with GDBARCH. The string is freed when the corresponding
1549 architecture is also freed. */
1550
1551 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1552
1553 /* Helper function. Force an update of the current architecture.
1554
1555 The actual architecture selected is determined by INFO, \`\`(gdb) set
1556 architecture'' et.al., the existing architecture and BFD's default
1557 architecture. INFO should be initialized to zero and then selected
1558 fields should be updated.
1559
1560 Returns non-zero if the update succeeds. */
1561
1562 extern int gdbarch_update_p (struct gdbarch_info info);
1563
1564
1565 /* Helper function. Find an architecture matching info.
1566
1567 INFO should be initialized using gdbarch_info_init, relevant fields
1568 set, and then finished using gdbarch_info_fill.
1569
1570 Returns the corresponding architecture, or NULL if no matching
1571 architecture was found. */
1572
1573 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1574
1575
1576 /* Helper function. Set the target gdbarch to "gdbarch". */
1577
1578 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1579
1580
1581 /* Register per-architecture data-pointer.
1582
1583 Reserve space for a per-architecture data-pointer. An identifier
1584 for the reserved data-pointer is returned. That identifer should
1585 be saved in a local static variable.
1586
1587 Memory for the per-architecture data shall be allocated using
1588 gdbarch_obstack_zalloc. That memory will be deleted when the
1589 corresponding architecture object is deleted.
1590
1591 When a previously created architecture is re-selected, the
1592 per-architecture data-pointer for that previous architecture is
1593 restored. INIT() is not re-called.
1594
1595 Multiple registrarants for any architecture are allowed (and
1596 strongly encouraged). */
1597
1598 struct gdbarch_data;
1599
1600 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1601 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1602 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1603 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1604 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1605 struct gdbarch_data *data,
1606 void *pointer);
1607
1608 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1609
1610
1611 /* Set the dynamic target-system-dependent parameters (architecture,
1612 byte-order, ...) using information found in the BFD. */
1613
1614 extern void set_gdbarch_from_file (bfd *);
1615
1616
1617 /* Initialize the current architecture to the "first" one we find on
1618 our list. */
1619
1620 extern void initialize_current_architecture (void);
1621
1622 /* gdbarch trace variable */
1623 extern unsigned int gdbarch_debug;
1624
1625 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1626
1627 #endif
1628 EOF
1629 exec 1>&2
1630 #../move-if-change new-gdbarch.h gdbarch.h
1631 compare_new gdbarch.h
1632
1633
1634 #
1635 # C file
1636 #
1637
1638 exec > new-gdbarch.c
1639 copyright
1640 cat <<EOF
1641
1642 #include "defs.h"
1643 #include "arch-utils.h"
1644
1645 #include "gdbcmd.h"
1646 #include "inferior.h"
1647 #include "symcat.h"
1648
1649 #include "floatformat.h"
1650 #include "reggroups.h"
1651 #include "osabi.h"
1652 #include "gdb_obstack.h"
1653 #include "observable.h"
1654 #include "regcache.h"
1655 #include "objfiles.h"
1656 #include "auxv.h"
1657
1658 /* Static function declarations */
1659
1660 static void alloc_gdbarch_data (struct gdbarch *);
1661
1662 /* Non-zero if we want to trace architecture code. */
1663
1664 #ifndef GDBARCH_DEBUG
1665 #define GDBARCH_DEBUG 0
1666 #endif
1667 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1668 static void
1669 show_gdbarch_debug (struct ui_file *file, int from_tty,
1670 struct cmd_list_element *c, const char *value)
1671 {
1672 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1673 }
1674
1675 static const char *
1676 pformat (const struct floatformat **format)
1677 {
1678 if (format == NULL)
1679 return "(null)";
1680 else
1681 /* Just print out one of them - this is only for diagnostics. */
1682 return format[0]->name;
1683 }
1684
1685 static const char *
1686 pstring (const char *string)
1687 {
1688 if (string == NULL)
1689 return "(null)";
1690 return string;
1691 }
1692
1693 static const char *
1694 pstring_ptr (char **string)
1695 {
1696 if (string == NULL || *string == NULL)
1697 return "(null)";
1698 return *string;
1699 }
1700
1701 /* Helper function to print a list of strings, represented as "const
1702 char *const *". The list is printed comma-separated. */
1703
1704 static const char *
1705 pstring_list (const char *const *list)
1706 {
1707 static char ret[100];
1708 const char *const *p;
1709 size_t offset = 0;
1710
1711 if (list == NULL)
1712 return "(null)";
1713
1714 ret[0] = '\0';
1715 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1716 {
1717 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1718 offset += 2 + s;
1719 }
1720
1721 if (offset > 0)
1722 {
1723 gdb_assert (offset - 2 < sizeof (ret));
1724 ret[offset - 2] = '\0';
1725 }
1726
1727 return ret;
1728 }
1729
1730 EOF
1731
1732 # gdbarch open the gdbarch object
1733 printf "\n"
1734 printf "/* Maintain the struct gdbarch object. */\n"
1735 printf "\n"
1736 printf "struct gdbarch\n"
1737 printf "{\n"
1738 printf " /* Has this architecture been fully initialized? */\n"
1739 printf " int initialized_p;\n"
1740 printf "\n"
1741 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1742 printf " struct obstack *obstack;\n"
1743 printf "\n"
1744 printf " /* basic architectural information. */\n"
1745 function_list | while do_read
1746 do
1747 if class_is_info_p
1748 then
1749 printf " ${returntype} ${function};\n"
1750 fi
1751 done
1752 printf "\n"
1753 printf " /* target specific vector. */\n"
1754 printf " struct gdbarch_tdep *tdep;\n"
1755 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1756 printf "\n"
1757 printf " /* per-architecture data-pointers. */\n"
1758 printf " unsigned nr_data;\n"
1759 printf " void **data;\n"
1760 printf "\n"
1761 cat <<EOF
1762 /* Multi-arch values.
1763
1764 When extending this structure you must:
1765
1766 Add the field below.
1767
1768 Declare set/get functions and define the corresponding
1769 macro in gdbarch.h.
1770
1771 gdbarch_alloc(): If zero/NULL is not a suitable default,
1772 initialize the new field.
1773
1774 verify_gdbarch(): Confirm that the target updated the field
1775 correctly.
1776
1777 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1778 field is dumped out
1779
1780 get_gdbarch(): Implement the set/get functions (probably using
1781 the macro's as shortcuts).
1782
1783 */
1784
1785 EOF
1786 function_list | while do_read
1787 do
1788 if class_is_variable_p
1789 then
1790 printf " ${returntype} ${function};\n"
1791 elif class_is_function_p
1792 then
1793 printf " gdbarch_${function}_ftype *${function};\n"
1794 fi
1795 done
1796 printf "};\n"
1797
1798 # Create a new gdbarch struct
1799 cat <<EOF
1800
1801 /* Create a new \`\`struct gdbarch'' based on information provided by
1802 \`\`struct gdbarch_info''. */
1803 EOF
1804 printf "\n"
1805 cat <<EOF
1806 struct gdbarch *
1807 gdbarch_alloc (const struct gdbarch_info *info,
1808 struct gdbarch_tdep *tdep)
1809 {
1810 struct gdbarch *gdbarch;
1811
1812 /* Create an obstack for allocating all the per-architecture memory,
1813 then use that to allocate the architecture vector. */
1814 struct obstack *obstack = XNEW (struct obstack);
1815 obstack_init (obstack);
1816 gdbarch = XOBNEW (obstack, struct gdbarch);
1817 memset (gdbarch, 0, sizeof (*gdbarch));
1818 gdbarch->obstack = obstack;
1819
1820 alloc_gdbarch_data (gdbarch);
1821
1822 gdbarch->tdep = tdep;
1823 EOF
1824 printf "\n"
1825 function_list | while do_read
1826 do
1827 if class_is_info_p
1828 then
1829 printf " gdbarch->${function} = info->${function};\n"
1830 fi
1831 done
1832 printf "\n"
1833 printf " /* Force the explicit initialization of these. */\n"
1834 function_list | while do_read
1835 do
1836 if class_is_function_p || class_is_variable_p
1837 then
1838 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1839 then
1840 printf " gdbarch->${function} = ${predefault};\n"
1841 fi
1842 fi
1843 done
1844 cat <<EOF
1845 /* gdbarch_alloc() */
1846
1847 return gdbarch;
1848 }
1849 EOF
1850
1851 # Free a gdbarch struct.
1852 printf "\n"
1853 printf "\n"
1854 cat <<EOF
1855 /* Allocate extra space using the per-architecture obstack. */
1856
1857 void *
1858 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1859 {
1860 void *data = obstack_alloc (arch->obstack, size);
1861
1862 memset (data, 0, size);
1863 return data;
1864 }
1865
1866 /* See gdbarch.h. */
1867
1868 char *
1869 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1870 {
1871 return obstack_strdup (arch->obstack, string);
1872 }
1873
1874
1875 /* Free a gdbarch struct. This should never happen in normal
1876 operation --- once you've created a gdbarch, you keep it around.
1877 However, if an architecture's init function encounters an error
1878 building the structure, it may need to clean up a partially
1879 constructed gdbarch. */
1880
1881 void
1882 gdbarch_free (struct gdbarch *arch)
1883 {
1884 struct obstack *obstack;
1885
1886 gdb_assert (arch != NULL);
1887 gdb_assert (!arch->initialized_p);
1888 obstack = arch->obstack;
1889 obstack_free (obstack, 0); /* Includes the ARCH. */
1890 xfree (obstack);
1891 }
1892 EOF
1893
1894 # verify a new architecture
1895 cat <<EOF
1896
1897
1898 /* Ensure that all values in a GDBARCH are reasonable. */
1899
1900 static void
1901 verify_gdbarch (struct gdbarch *gdbarch)
1902 {
1903 string_file log;
1904
1905 /* fundamental */
1906 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1907 log.puts ("\n\tbyte-order");
1908 if (gdbarch->bfd_arch_info == NULL)
1909 log.puts ("\n\tbfd_arch_info");
1910 /* Check those that need to be defined for the given multi-arch level. */
1911 EOF
1912 function_list | while do_read
1913 do
1914 if class_is_function_p || class_is_variable_p
1915 then
1916 if [ "x${invalid_p}" = "x0" ]
1917 then
1918 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1919 elif class_is_predicate_p
1920 then
1921 printf " /* Skip verify of ${function}, has predicate. */\n"
1922 # FIXME: See do_read for potential simplification
1923 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1924 then
1925 printf " if (${invalid_p})\n"
1926 printf " gdbarch->${function} = ${postdefault};\n"
1927 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1928 then
1929 printf " if (gdbarch->${function} == ${predefault})\n"
1930 printf " gdbarch->${function} = ${postdefault};\n"
1931 elif [ -n "${postdefault}" ]
1932 then
1933 printf " if (gdbarch->${function} == 0)\n"
1934 printf " gdbarch->${function} = ${postdefault};\n"
1935 elif [ -n "${invalid_p}" ]
1936 then
1937 printf " if (${invalid_p})\n"
1938 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1939 elif [ -n "${predefault}" ]
1940 then
1941 printf " if (gdbarch->${function} == ${predefault})\n"
1942 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1943 fi
1944 fi
1945 done
1946 cat <<EOF
1947 if (!log.empty ())
1948 internal_error (__FILE__, __LINE__,
1949 _("verify_gdbarch: the following are invalid ...%s"),
1950 log.c_str ());
1951 }
1952 EOF
1953
1954 # dump the structure
1955 printf "\n"
1956 printf "\n"
1957 cat <<EOF
1958 /* Print out the details of the current architecture. */
1959
1960 void
1961 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1962 {
1963 const char *gdb_nm_file = "<not-defined>";
1964
1965 #if defined (GDB_NM_FILE)
1966 gdb_nm_file = GDB_NM_FILE;
1967 #endif
1968 fprintf_unfiltered (file,
1969 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1970 gdb_nm_file);
1971 EOF
1972 function_list | sort '-t;' -k 3 | while do_read
1973 do
1974 # First the predicate
1975 if class_is_predicate_p
1976 then
1977 printf " fprintf_unfiltered (file,\n"
1978 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1979 printf " gdbarch_${function}_p (gdbarch));\n"
1980 fi
1981 # Print the corresponding value.
1982 if class_is_function_p
1983 then
1984 printf " fprintf_unfiltered (file,\n"
1985 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1986 printf " host_address_to_string (gdbarch->${function}));\n"
1987 else
1988 # It is a variable
1989 case "${print}:${returntype}" in
1990 :CORE_ADDR )
1991 fmt="%s"
1992 print="core_addr_to_string_nz (gdbarch->${function})"
1993 ;;
1994 :* )
1995 fmt="%s"
1996 print="plongest (gdbarch->${function})"
1997 ;;
1998 * )
1999 fmt="%s"
2000 ;;
2001 esac
2002 printf " fprintf_unfiltered (file,\n"
2003 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2004 printf " ${print});\n"
2005 fi
2006 done
2007 cat <<EOF
2008 if (gdbarch->dump_tdep != NULL)
2009 gdbarch->dump_tdep (gdbarch, file);
2010 }
2011 EOF
2012
2013
2014 # GET/SET
2015 printf "\n"
2016 cat <<EOF
2017 struct gdbarch_tdep *
2018 gdbarch_tdep (struct gdbarch *gdbarch)
2019 {
2020 if (gdbarch_debug >= 2)
2021 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2022 return gdbarch->tdep;
2023 }
2024 EOF
2025 printf "\n"
2026 function_list | while do_read
2027 do
2028 if class_is_predicate_p
2029 then
2030 printf "\n"
2031 printf "int\n"
2032 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2033 printf "{\n"
2034 printf " gdb_assert (gdbarch != NULL);\n"
2035 printf " return ${predicate};\n"
2036 printf "}\n"
2037 fi
2038 if class_is_function_p
2039 then
2040 printf "\n"
2041 printf "${returntype}\n"
2042 if [ "x${formal}" = "xvoid" ]
2043 then
2044 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2045 else
2046 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2047 fi
2048 printf "{\n"
2049 printf " gdb_assert (gdbarch != NULL);\n"
2050 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2051 if class_is_predicate_p && test -n "${predefault}"
2052 then
2053 # Allow a call to a function with a predicate.
2054 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2055 fi
2056 printf " if (gdbarch_debug >= 2)\n"
2057 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2058 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2059 then
2060 if class_is_multiarch_p
2061 then
2062 params="gdbarch"
2063 else
2064 params=""
2065 fi
2066 else
2067 if class_is_multiarch_p
2068 then
2069 params="gdbarch, ${actual}"
2070 else
2071 params="${actual}"
2072 fi
2073 fi
2074 if [ "x${returntype}" = "xvoid" ]
2075 then
2076 printf " gdbarch->${function} (${params});\n"
2077 else
2078 printf " return gdbarch->${function} (${params});\n"
2079 fi
2080 printf "}\n"
2081 printf "\n"
2082 printf "void\n"
2083 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2084 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2085 printf "{\n"
2086 printf " gdbarch->${function} = ${function};\n"
2087 printf "}\n"
2088 elif class_is_variable_p
2089 then
2090 printf "\n"
2091 printf "${returntype}\n"
2092 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2093 printf "{\n"
2094 printf " gdb_assert (gdbarch != NULL);\n"
2095 if [ "x${invalid_p}" = "x0" ]
2096 then
2097 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2098 elif [ -n "${invalid_p}" ]
2099 then
2100 printf " /* Check variable is valid. */\n"
2101 printf " gdb_assert (!(${invalid_p}));\n"
2102 elif [ -n "${predefault}" ]
2103 then
2104 printf " /* Check variable changed from pre-default. */\n"
2105 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2106 fi
2107 printf " if (gdbarch_debug >= 2)\n"
2108 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2109 printf " return gdbarch->${function};\n"
2110 printf "}\n"
2111 printf "\n"
2112 printf "void\n"
2113 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2114 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2115 printf "{\n"
2116 printf " gdbarch->${function} = ${function};\n"
2117 printf "}\n"
2118 elif class_is_info_p
2119 then
2120 printf "\n"
2121 printf "${returntype}\n"
2122 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2123 printf "{\n"
2124 printf " gdb_assert (gdbarch != NULL);\n"
2125 printf " if (gdbarch_debug >= 2)\n"
2126 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2127 printf " return gdbarch->${function};\n"
2128 printf "}\n"
2129 fi
2130 done
2131
2132 # All the trailing guff
2133 cat <<EOF
2134
2135
2136 /* Keep a registry of per-architecture data-pointers required by GDB
2137 modules. */
2138
2139 struct gdbarch_data
2140 {
2141 unsigned index;
2142 int init_p;
2143 gdbarch_data_pre_init_ftype *pre_init;
2144 gdbarch_data_post_init_ftype *post_init;
2145 };
2146
2147 struct gdbarch_data_registration
2148 {
2149 struct gdbarch_data *data;
2150 struct gdbarch_data_registration *next;
2151 };
2152
2153 struct gdbarch_data_registry
2154 {
2155 unsigned nr;
2156 struct gdbarch_data_registration *registrations;
2157 };
2158
2159 struct gdbarch_data_registry gdbarch_data_registry =
2160 {
2161 0, NULL,
2162 };
2163
2164 static struct gdbarch_data *
2165 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2166 gdbarch_data_post_init_ftype *post_init)
2167 {
2168 struct gdbarch_data_registration **curr;
2169
2170 /* Append the new registration. */
2171 for (curr = &gdbarch_data_registry.registrations;
2172 (*curr) != NULL;
2173 curr = &(*curr)->next);
2174 (*curr) = XNEW (struct gdbarch_data_registration);
2175 (*curr)->next = NULL;
2176 (*curr)->data = XNEW (struct gdbarch_data);
2177 (*curr)->data->index = gdbarch_data_registry.nr++;
2178 (*curr)->data->pre_init = pre_init;
2179 (*curr)->data->post_init = post_init;
2180 (*curr)->data->init_p = 1;
2181 return (*curr)->data;
2182 }
2183
2184 struct gdbarch_data *
2185 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2186 {
2187 return gdbarch_data_register (pre_init, NULL);
2188 }
2189
2190 struct gdbarch_data *
2191 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2192 {
2193 return gdbarch_data_register (NULL, post_init);
2194 }
2195
2196 /* Create/delete the gdbarch data vector. */
2197
2198 static void
2199 alloc_gdbarch_data (struct gdbarch *gdbarch)
2200 {
2201 gdb_assert (gdbarch->data == NULL);
2202 gdbarch->nr_data = gdbarch_data_registry.nr;
2203 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2204 }
2205
2206 /* Initialize the current value of the specified per-architecture
2207 data-pointer. */
2208
2209 void
2210 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2211 struct gdbarch_data *data,
2212 void *pointer)
2213 {
2214 gdb_assert (data->index < gdbarch->nr_data);
2215 gdb_assert (gdbarch->data[data->index] == NULL);
2216 gdb_assert (data->pre_init == NULL);
2217 gdbarch->data[data->index] = pointer;
2218 }
2219
2220 /* Return the current value of the specified per-architecture
2221 data-pointer. */
2222
2223 void *
2224 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2225 {
2226 gdb_assert (data->index < gdbarch->nr_data);
2227 if (gdbarch->data[data->index] == NULL)
2228 {
2229 /* The data-pointer isn't initialized, call init() to get a
2230 value. */
2231 if (data->pre_init != NULL)
2232 /* Mid architecture creation: pass just the obstack, and not
2233 the entire architecture, as that way it isn't possible for
2234 pre-init code to refer to undefined architecture
2235 fields. */
2236 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2237 else if (gdbarch->initialized_p
2238 && data->post_init != NULL)
2239 /* Post architecture creation: pass the entire architecture
2240 (as all fields are valid), but be careful to also detect
2241 recursive references. */
2242 {
2243 gdb_assert (data->init_p);
2244 data->init_p = 0;
2245 gdbarch->data[data->index] = data->post_init (gdbarch);
2246 data->init_p = 1;
2247 }
2248 else
2249 /* The architecture initialization hasn't completed - punt -
2250 hope that the caller knows what they are doing. Once
2251 deprecated_set_gdbarch_data has been initialized, this can be
2252 changed to an internal error. */
2253 return NULL;
2254 gdb_assert (gdbarch->data[data->index] != NULL);
2255 }
2256 return gdbarch->data[data->index];
2257 }
2258
2259
2260 /* Keep a registry of the architectures known by GDB. */
2261
2262 struct gdbarch_registration
2263 {
2264 enum bfd_architecture bfd_architecture;
2265 gdbarch_init_ftype *init;
2266 gdbarch_dump_tdep_ftype *dump_tdep;
2267 struct gdbarch_list *arches;
2268 struct gdbarch_registration *next;
2269 };
2270
2271 static struct gdbarch_registration *gdbarch_registry = NULL;
2272
2273 static void
2274 append_name (const char ***buf, int *nr, const char *name)
2275 {
2276 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2277 (*buf)[*nr] = name;
2278 *nr += 1;
2279 }
2280
2281 const char **
2282 gdbarch_printable_names (void)
2283 {
2284 /* Accumulate a list of names based on the registed list of
2285 architectures. */
2286 int nr_arches = 0;
2287 const char **arches = NULL;
2288 struct gdbarch_registration *rego;
2289
2290 for (rego = gdbarch_registry;
2291 rego != NULL;
2292 rego = rego->next)
2293 {
2294 const struct bfd_arch_info *ap;
2295 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2296 if (ap == NULL)
2297 internal_error (__FILE__, __LINE__,
2298 _("gdbarch_architecture_names: multi-arch unknown"));
2299 do
2300 {
2301 append_name (&arches, &nr_arches, ap->printable_name);
2302 ap = ap->next;
2303 }
2304 while (ap != NULL);
2305 }
2306 append_name (&arches, &nr_arches, NULL);
2307 return arches;
2308 }
2309
2310
2311 void
2312 gdbarch_register (enum bfd_architecture bfd_architecture,
2313 gdbarch_init_ftype *init,
2314 gdbarch_dump_tdep_ftype *dump_tdep)
2315 {
2316 struct gdbarch_registration **curr;
2317 const struct bfd_arch_info *bfd_arch_info;
2318
2319 /* Check that BFD recognizes this architecture */
2320 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2321 if (bfd_arch_info == NULL)
2322 {
2323 internal_error (__FILE__, __LINE__,
2324 _("gdbarch: Attempt to register "
2325 "unknown architecture (%d)"),
2326 bfd_architecture);
2327 }
2328 /* Check that we haven't seen this architecture before. */
2329 for (curr = &gdbarch_registry;
2330 (*curr) != NULL;
2331 curr = &(*curr)->next)
2332 {
2333 if (bfd_architecture == (*curr)->bfd_architecture)
2334 internal_error (__FILE__, __LINE__,
2335 _("gdbarch: Duplicate registration "
2336 "of architecture (%s)"),
2337 bfd_arch_info->printable_name);
2338 }
2339 /* log it */
2340 if (gdbarch_debug)
2341 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2342 bfd_arch_info->printable_name,
2343 host_address_to_string (init));
2344 /* Append it */
2345 (*curr) = XNEW (struct gdbarch_registration);
2346 (*curr)->bfd_architecture = bfd_architecture;
2347 (*curr)->init = init;
2348 (*curr)->dump_tdep = dump_tdep;
2349 (*curr)->arches = NULL;
2350 (*curr)->next = NULL;
2351 }
2352
2353 void
2354 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2355 gdbarch_init_ftype *init)
2356 {
2357 gdbarch_register (bfd_architecture, init, NULL);
2358 }
2359
2360
2361 /* Look for an architecture using gdbarch_info. */
2362
2363 struct gdbarch_list *
2364 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2365 const struct gdbarch_info *info)
2366 {
2367 for (; arches != NULL; arches = arches->next)
2368 {
2369 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2370 continue;
2371 if (info->byte_order != arches->gdbarch->byte_order)
2372 continue;
2373 if (info->osabi != arches->gdbarch->osabi)
2374 continue;
2375 if (info->target_desc != arches->gdbarch->target_desc)
2376 continue;
2377 return arches;
2378 }
2379 return NULL;
2380 }
2381
2382
2383 /* Find an architecture that matches the specified INFO. Create a new
2384 architecture if needed. Return that new architecture. */
2385
2386 struct gdbarch *
2387 gdbarch_find_by_info (struct gdbarch_info info)
2388 {
2389 struct gdbarch *new_gdbarch;
2390 struct gdbarch_registration *rego;
2391
2392 /* Fill in missing parts of the INFO struct using a number of
2393 sources: "set ..."; INFOabfd supplied; and the global
2394 defaults. */
2395 gdbarch_info_fill (&info);
2396
2397 /* Must have found some sort of architecture. */
2398 gdb_assert (info.bfd_arch_info != NULL);
2399
2400 if (gdbarch_debug)
2401 {
2402 fprintf_unfiltered (gdb_stdlog,
2403 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2404 (info.bfd_arch_info != NULL
2405 ? info.bfd_arch_info->printable_name
2406 : "(null)"));
2407 fprintf_unfiltered (gdb_stdlog,
2408 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2409 info.byte_order,
2410 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2411 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2412 : "default"));
2413 fprintf_unfiltered (gdb_stdlog,
2414 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2415 info.osabi, gdbarch_osabi_name (info.osabi));
2416 fprintf_unfiltered (gdb_stdlog,
2417 "gdbarch_find_by_info: info.abfd %s\n",
2418 host_address_to_string (info.abfd));
2419 fprintf_unfiltered (gdb_stdlog,
2420 "gdbarch_find_by_info: info.tdep_info %s\n",
2421 host_address_to_string (info.tdep_info));
2422 }
2423
2424 /* Find the tdep code that knows about this architecture. */
2425 for (rego = gdbarch_registry;
2426 rego != NULL;
2427 rego = rego->next)
2428 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2429 break;
2430 if (rego == NULL)
2431 {
2432 if (gdbarch_debug)
2433 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2434 "No matching architecture\n");
2435 return 0;
2436 }
2437
2438 /* Ask the tdep code for an architecture that matches "info". */
2439 new_gdbarch = rego->init (info, rego->arches);
2440
2441 /* Did the tdep code like it? No. Reject the change and revert to
2442 the old architecture. */
2443 if (new_gdbarch == NULL)
2444 {
2445 if (gdbarch_debug)
2446 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2447 "Target rejected architecture\n");
2448 return NULL;
2449 }
2450
2451 /* Is this a pre-existing architecture (as determined by already
2452 being initialized)? Move it to the front of the architecture
2453 list (keeping the list sorted Most Recently Used). */
2454 if (new_gdbarch->initialized_p)
2455 {
2456 struct gdbarch_list **list;
2457 struct gdbarch_list *self;
2458 if (gdbarch_debug)
2459 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2460 "Previous architecture %s (%s) selected\n",
2461 host_address_to_string (new_gdbarch),
2462 new_gdbarch->bfd_arch_info->printable_name);
2463 /* Find the existing arch in the list. */
2464 for (list = &rego->arches;
2465 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2466 list = &(*list)->next);
2467 /* It had better be in the list of architectures. */
2468 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2469 /* Unlink SELF. */
2470 self = (*list);
2471 (*list) = self->next;
2472 /* Insert SELF at the front. */
2473 self->next = rego->arches;
2474 rego->arches = self;
2475 /* Return it. */
2476 return new_gdbarch;
2477 }
2478
2479 /* It's a new architecture. */
2480 if (gdbarch_debug)
2481 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2482 "New architecture %s (%s) selected\n",
2483 host_address_to_string (new_gdbarch),
2484 new_gdbarch->bfd_arch_info->printable_name);
2485
2486 /* Insert the new architecture into the front of the architecture
2487 list (keep the list sorted Most Recently Used). */
2488 {
2489 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2490 self->next = rego->arches;
2491 self->gdbarch = new_gdbarch;
2492 rego->arches = self;
2493 }
2494
2495 /* Check that the newly installed architecture is valid. Plug in
2496 any post init values. */
2497 new_gdbarch->dump_tdep = rego->dump_tdep;
2498 verify_gdbarch (new_gdbarch);
2499 new_gdbarch->initialized_p = 1;
2500
2501 if (gdbarch_debug)
2502 gdbarch_dump (new_gdbarch, gdb_stdlog);
2503
2504 return new_gdbarch;
2505 }
2506
2507 /* Make the specified architecture current. */
2508
2509 void
2510 set_target_gdbarch (struct gdbarch *new_gdbarch)
2511 {
2512 gdb_assert (new_gdbarch != NULL);
2513 gdb_assert (new_gdbarch->initialized_p);
2514 current_inferior ()->gdbarch = new_gdbarch;
2515 gdb::observers::architecture_changed.notify (new_gdbarch);
2516 registers_changed ();
2517 }
2518
2519 /* Return the current inferior's arch. */
2520
2521 struct gdbarch *
2522 target_gdbarch (void)
2523 {
2524 return current_inferior ()->gdbarch;
2525 }
2526
2527 void
2528 _initialize_gdbarch (void)
2529 {
2530 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2531 Set architecture debugging."), _("\\
2532 Show architecture debugging."), _("\\
2533 When non-zero, architecture debugging is enabled."),
2534 NULL,
2535 show_gdbarch_debug,
2536 &setdebuglist, &showdebuglist);
2537 }
2538 EOF
2539
2540 # close things off
2541 exec 1>&2
2542 #../move-if-change new-gdbarch.c gdbarch.c
2543 compare_new gdbarch.c
This page took 0.109309 seconds and 4 git commands to generate.