2004-07-26 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "${macro}: Multi-arch yet macro" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 attrib ) : ;;
280
281 # Any GCC attributes that should be attached to the function
282 # declaration. At present this field is unused.
283
284 staticdefault ) : ;;
285
286 # To help with the GDB startup a static gdbarch object is
287 # created. STATICDEFAULT is the value to insert into that
288 # static gdbarch object. Since this a static object only
289 # simple expressions can be used.
290
291 # If STATICDEFAULT is empty, zero is used.
292
293 predefault ) : ;;
294
295 # An initial value to assign to MEMBER of the freshly
296 # malloc()ed gdbarch object. After initialization, the
297 # freshly malloc()ed object is passed to the target
298 # architecture code for further updates.
299
300 # If PREDEFAULT is empty, zero is used.
301
302 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
303 # INVALID_P are specified, PREDEFAULT will be used as the
304 # default for the non- multi-arch target.
305
306 # A zero PREDEFAULT function will force the fallback to call
307 # internal_error().
308
309 # Variable declarations can refer to ``gdbarch'' which will
310 # contain the current architecture. Care should be taken.
311
312 postdefault ) : ;;
313
314 # A value to assign to MEMBER of the new gdbarch object should
315 # the target architecture code fail to change the PREDEFAULT
316 # value.
317
318 # If POSTDEFAULT is empty, no post update is performed.
319
320 # If both INVALID_P and POSTDEFAULT are non-empty then
321 # INVALID_P will be used to determine if MEMBER should be
322 # changed to POSTDEFAULT.
323
324 # If a non-empty POSTDEFAULT and a zero INVALID_P are
325 # specified, POSTDEFAULT will be used as the default for the
326 # non- multi-arch target (regardless of the value of
327 # PREDEFAULT).
328
329 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
330
331 # Variable declarations can refer to ``current_gdbarch'' which
332 # will contain the current architecture. Care should be
333 # taken.
334
335 invalid_p ) : ;;
336
337 # A predicate equation that validates MEMBER. Non-zero is
338 # returned if the code creating the new architecture failed to
339 # initialize MEMBER or the initialized the member is invalid.
340 # If POSTDEFAULT is non-empty then MEMBER will be updated to
341 # that value. If POSTDEFAULT is empty then internal_error()
342 # is called.
343
344 # If INVALID_P is empty, a check that MEMBER is no longer
345 # equal to PREDEFAULT is used.
346
347 # The expression ``0'' disables the INVALID_P check making
348 # PREDEFAULT a legitimate value.
349
350 # See also PREDEFAULT and POSTDEFAULT.
351
352 fmt ) : ;;
353
354 # printf style format string that can be used to print out the
355 # MEMBER. Sometimes "%s" is useful. For functions, this is
356 # ignored and the function address is printed.
357
358 # If FMT is empty, ``%ld'' is used.
359
360 print ) : ;;
361
362 # An optional equation that casts MEMBER to a value suitable
363 # for formatting by FMT.
364
365 # If PRINT is empty, ``(long)'' is used.
366
367 garbage_at_eol ) : ;;
368
369 # Catches stray fields.
370
371 *)
372 echo "Bad field ${field}"
373 exit 1;;
374 esac
375 done
376
377
378 function_list ()
379 {
380 # See below (DOCO) for description of each field
381 cat <<EOF
382 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
383 #
384 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
385 #
386 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
387 # Number of bits in a char or unsigned char for the target machine.
388 # Just like CHAR_BIT in <limits.h> but describes the target machine.
389 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
390 #
391 # Number of bits in a short or unsigned short for the target machine.
392 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
393 # Number of bits in an int or unsigned int for the target machine.
394 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
395 # Number of bits in a long or unsigned long for the target machine.
396 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
397 # Number of bits in a long long or unsigned long long for the target
398 # machine.
399 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
400 # Number of bits in a float for the target machine.
401 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
402 # Number of bits in a double for the target machine.
403 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
404 # Number of bits in a long double for the target machine.
405 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
406 # For most targets, a pointer on the target and its representation as an
407 # address in GDB have the same size and "look the same". For such a
408 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
409 # / addr_bit will be set from it.
410 #
411 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
412 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
413 #
414 # ptr_bit is the size of a pointer on the target
415 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
416 # addr_bit is the size of a target address as represented in gdb
417 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
418 # Number of bits in a BFD_VMA for the target object file format.
419 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
420 #
421 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
422 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
423 #
424 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
425 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
426 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
427 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
428 # Function for getting target's idea of a frame pointer. FIXME: GDB's
429 # whole scheme for dealing with "frames" and "frame pointers" needs a
430 # serious shakedown.
431 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
432 #
433 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
434 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
435 #
436 v:=:int:num_regs::::0:-1
437 # This macro gives the number of pseudo-registers that live in the
438 # register namespace but do not get fetched or stored on the target.
439 # These pseudo-registers may be aliases for other registers,
440 # combinations of other registers, or they may be computed by GDB.
441 v:=:int:num_pseudo_regs::::0:0::0:::
442
443 # GDB's standard (or well known) register numbers. These can map onto
444 # a real register or a pseudo (computed) register or not be defined at
445 # all (-1).
446 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
447 v:=:int:sp_regnum::::-1:-1::0
448 v:=:int:pc_regnum::::-1:-1::0
449 v:=:int:ps_regnum::::-1:-1::0
450 v:=:int:fp0_regnum::::0:-1::0
451 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
454 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
456 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457 # Convert from an sdb register number to an internal gdb register number.
458 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
459 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
460 f:=:const char *:register_name:int regnr:regnr
461
462 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
463 M::struct type *:register_type:int reg_nr:reg_nr
464 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
465 F:=:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
466 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
467 # from REGISTER_TYPE.
468 v:=:int:deprecated_register_bytes
469 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
470 # register offsets computed using just REGISTER_TYPE, this can be
471 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
472 # function with predicate has a valid (callable) initial value. As a
473 # consequence, even when the predicate is false, the corresponding
474 # function works. This simplifies the migration process - old code,
475 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
476 F:=:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
477 # If all registers have identical raw and virtual sizes and those
478 # sizes agree with the value computed from REGISTER_TYPE,
479 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
480 # registers.
481 F:=:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
482 # If all registers have identical raw and virtual sizes and those
483 # sizes agree with the value computed from REGISTER_TYPE,
484 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
485 # registers.
486 F:=:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
487
488 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
489 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
490 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
491 # SAVE_DUMMY_FRAME_TOS.
492 F:=:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
493 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
494 # DEPRECATED_FP_REGNUM.
495 v:=:int:deprecated_fp_regnum::::-1:-1::0
496 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
497 # DEPRECATED_TARGET_READ_FP.
498 F:=:CORE_ADDR:deprecated_target_read_fp:void
499
500 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
501 # replacement for DEPRECATED_PUSH_ARGUMENTS.
502 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
503 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
504 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
505 # Implement PUSH_RETURN_ADDRESS, and then merge in
506 # DEPRECATED_PUSH_RETURN_ADDRESS.
507 F:=:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
508 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
509 F:=:void:deprecated_dummy_write_sp:CORE_ADDR val:val
510 # DEPRECATED_REGISTER_SIZE can be deleted.
511 v:=:int:deprecated_register_size
512 v:=:int:call_dummy_location:::::AT_ENTRY_POINT::0
513 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
514
515 F:=:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
516 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
517 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
518 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
519 # MAP a GDB RAW register number onto a simulator register number. See
520 # also include/...-sim.h.
521 f:=:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
522 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
523 f:=:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
524 f:=:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
525 # setjmp/longjmp support.
526 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
527 F:=:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
528 #
529 v:=:int:believe_pcc_promotion:::::::
530 F:=:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
531 #
532 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
533 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
534 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
535 #
536 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
537 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
538 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
539 #
540 F:=:void:deprecated_pop_frame:void:-
541 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
542 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
543
544 # It has been suggested that this, well actually its predecessor,
545 # should take the type/value of the function to be called and not the
546 # return type. This is left as an exercise for the reader.
547
548 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
549 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
550 # (via legacy_return_value), when a small struct is involved.
551
552 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
553
554 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
555 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
556 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
557 # RETURN_VALUE.
558
559 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
560 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
561 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
562 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
563 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
564
565 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
566 # ABI suitable for the implementation of a robust extract
567 # struct-convention return-value address method (the sparc saves the
568 # address in the callers frame). All the other cases so far examined,
569 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
570 # erreneous - the code was incorrectly assuming that the return-value
571 # address, stored in a register, was preserved across the entire
572 # function call.
573
574 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
575 # the ABIs that are still to be analyzed - perhaps this should simply
576 # be deleted. The commented out extract_returned_value_address method
577 # is provided as a starting point for the 32-bit SPARC. It, or
578 # something like it, along with changes to both infcmd.c and stack.c
579 # will be needed for that case to work. NB: It is passed the callers
580 # frame since it is only after the callee has returned that this
581 # function is used.
582
583 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
584 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
585
586 F:=:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
587 F:=:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
588 #
589 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
590 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
591 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
592 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
593 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
594 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
595 v:=:CORE_ADDR:decr_pc_after_break::::0:::0
596
597 # A function can be addressed by either it's "pointer" (possibly a
598 # descriptor address) or "entry point" (first executable instruction).
599 # The method "convert_from_func_ptr_addr" converting the former to the
600 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
601 # a simplified subset of that functionality - the function's address
602 # corresponds to the "function pointer" and the function's start
603 # corresponds to the "function entry point" - and hence is redundant.
604
605 v:=:CORE_ADDR:deprecated_function_start_offset::::0:::0
606
607 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
608 #
609 v:=:CORE_ADDR:frame_args_skip::::0:::0
610 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
611 # frame code works regardless of the type of frame - frameless,
612 # stackless, or normal.
613 F:=:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
614 F:=:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
615 F:=:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
616 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
617 # note, per UNWIND_PC's doco, that while the two have similar
618 # interfaces they have very different underlying implementations.
619 F:=:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
620 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
621 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
622 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
623 # frame-base. Enable frame-base before frame-unwind.
624 F:=:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
625 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
626 # frame-base. Enable frame-base before frame-unwind.
627 F:=:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
628 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
629 F:=:int:frame_num_args:struct frame_info *frame:frame
630 #
631 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
632 # to frame_align and the requirement that methods such as
633 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
634 # alignment.
635 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
636 M::CORE_ADDR:frame_align:CORE_ADDR address:address
637 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
638 # stabs_argument_has_addr.
639 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
640 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
641 v:=:int:frame_red_zone_size
642 #
643 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
644 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
645 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
646 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
647 # On some machines there are bits in addresses which are not really
648 # part of the address, but are used by the kernel, the hardware, etc.
649 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
650 # we get a "real" address such as one would find in a symbol table.
651 # This is used only for addresses of instructions, and even then I'm
652 # not sure it's used in all contexts. It exists to deal with there
653 # being a few stray bits in the PC which would mislead us, not as some
654 # sort of generic thing to handle alignment or segmentation (it's
655 # possible it should be in TARGET_READ_PC instead).
656 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
657 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
658 # ADDR_BITS_REMOVE.
659 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
660 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
661 # the target needs software single step. An ISA method to implement it.
662 #
663 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
664 # using the breakpoint system instead of blatting memory directly (as with rs6000).
665 #
666 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
667 # single step. If not, then implement single step using breakpoints.
668 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
669 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
670 # disassembler. Perhaps objdump can handle it?
671 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
672 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
673
674
675 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
676 # evaluates non-zero, this is the address where the debugger will place
677 # a step-resume breakpoint to get us past the dynamic linker.
678 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
679 # For SVR4 shared libraries, each call goes through a small piece of
680 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
681 # to nonzero if we are currently stopped in one of these.
682 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
683
684 # Some systems also have trampoline code for returning from shared libs.
685 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
686
687 # A target might have problems with watchpoints as soon as the stack
688 # frame of the current function has been destroyed. This mostly happens
689 # as the first action in a funtion's epilogue. in_function_epilogue_p()
690 # is defined to return a non-zero value if either the given addr is one
691 # instruction after the stack destroying instruction up to the trailing
692 # return instruction or if we can figure out that the stack frame has
693 # already been invalidated regardless of the value of addr. Targets
694 # which don't suffer from that problem could just let this functionality
695 # untouched.
696 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
697 # Given a vector of command-line arguments, return a newly allocated
698 # string which, when passed to the create_inferior function, will be
699 # parsed (on Unix systems, by the shell) to yield the same vector.
700 # This function should call error() if the argument vector is not
701 # representable for this target or if this target does not support
702 # command-line arguments.
703 # ARGC is the number of elements in the vector.
704 # ARGV is an array of strings, one per argument.
705 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
706 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
707 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
708 v:=:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
709 v:=:int:cannot_step_breakpoint::::0:0::0
710 v:=:int:have_nonsteppable_watchpoint::::0:0::0
711 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
712 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
713 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
714 # Is a register in a group
715 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
716 # Fetch the pointer to the ith function argument.
717 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
718
719 # Return the appropriate register set for a core file section with
720 # name SECT_NAME and size SECT_SIZE.
721 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
722 EOF
723 }
724
725 #
726 # The .log file
727 #
728 exec > new-gdbarch.log
729 function_list | while do_read
730 do
731 cat <<EOF
732 ${class} ${returntype} ${function} ($formal)${attrib}
733 EOF
734 for r in ${read}
735 do
736 eval echo \"\ \ \ \ ${r}=\${${r}}\"
737 done
738 if class_is_predicate_p && fallback_default_p
739 then
740 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
741 kill $$
742 exit 1
743 fi
744 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
745 then
746 echo "Error: postdefault is useless when invalid_p=0" 1>&2
747 kill $$
748 exit 1
749 fi
750 if class_is_multiarch_p
751 then
752 if class_is_predicate_p ; then :
753 elif test "x${predefault}" = "x"
754 then
755 echo "Error: pure multi-arch function must have a predefault" 1>&2
756 kill $$
757 exit 1
758 fi
759 fi
760 echo ""
761 done
762
763 exec 1>&2
764 compare_new gdbarch.log
765
766
767 copyright ()
768 {
769 cat <<EOF
770 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
771
772 /* Dynamic architecture support for GDB, the GNU debugger.
773
774 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
775 Software Foundation, Inc.
776
777 This file is part of GDB.
778
779 This program is free software; you can redistribute it and/or modify
780 it under the terms of the GNU General Public License as published by
781 the Free Software Foundation; either version 2 of the License, or
782 (at your option) any later version.
783
784 This program is distributed in the hope that it will be useful,
785 but WITHOUT ANY WARRANTY; without even the implied warranty of
786 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
787 GNU General Public License for more details.
788
789 You should have received a copy of the GNU General Public License
790 along with this program; if not, write to the Free Software
791 Foundation, Inc., 59 Temple Place - Suite 330,
792 Boston, MA 02111-1307, USA. */
793
794 /* This file was created with the aid of \`\`gdbarch.sh''.
795
796 The Bourne shell script \`\`gdbarch.sh'' creates the files
797 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
798 against the existing \`\`gdbarch.[hc]''. Any differences found
799 being reported.
800
801 If editing this file, please also run gdbarch.sh and merge any
802 changes into that script. Conversely, when making sweeping changes
803 to this file, modifying gdbarch.sh and using its output may prove
804 easier. */
805
806 EOF
807 }
808
809 #
810 # The .h file
811 #
812
813 exec > new-gdbarch.h
814 copyright
815 cat <<EOF
816 #ifndef GDBARCH_H
817 #define GDBARCH_H
818
819 struct floatformat;
820 struct ui_file;
821 struct frame_info;
822 struct value;
823 struct objfile;
824 struct minimal_symbol;
825 struct regcache;
826 struct reggroup;
827 struct regset;
828 struct disassemble_info;
829 struct target_ops;
830 struct obstack;
831
832 extern struct gdbarch *current_gdbarch;
833
834 /* If any of the following are defined, the target wasn't correctly
835 converted. */
836
837 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
838 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
839 #endif
840 EOF
841
842 # function typedef's
843 printf "\n"
844 printf "\n"
845 printf "/* The following are pre-initialized by GDBARCH. */\n"
846 function_list | while do_read
847 do
848 if class_is_info_p
849 then
850 printf "\n"
851 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
853 if test -n "${macro}"
854 then
855 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#endif\n"
858 printf "#if !defined (${macro})\n"
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860 printf "#endif\n"
861 fi
862 fi
863 done
864
865 # function typedef's
866 printf "\n"
867 printf "\n"
868 printf "/* The following are initialized by the target dependent code. */\n"
869 function_list | while do_read
870 do
871 if [ -n "${comment}" ]
872 then
873 echo "${comment}" | sed \
874 -e '2 s,#,/*,' \
875 -e '3,$ s,#, ,' \
876 -e '$ s,$, */,'
877 fi
878
879 if class_is_predicate_p
880 then
881 if test -n "${macro}"
882 then
883 printf "\n"
884 printf "#if defined (${macro})\n"
885 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
886 printf "#if !defined (${macro}_P)\n"
887 printf "#define ${macro}_P() (1)\n"
888 printf "#endif\n"
889 printf "#endif\n"
890 fi
891 printf "\n"
892 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
893 if test -n "${macro}"
894 then
895 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
896 printf "#error \"Non multi-arch definition of ${macro}\"\n"
897 printf "#endif\n"
898 printf "#if !defined (${macro}_P)\n"
899 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
900 printf "#endif\n"
901 fi
902 fi
903 if class_is_variable_p
904 then
905 printf "\n"
906 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
907 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
908 if test -n "${macro}"
909 then
910 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
911 printf "#error \"Non multi-arch definition of ${macro}\"\n"
912 printf "#endif\n"
913 printf "#if !defined (${macro})\n"
914 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
915 printf "#endif\n"
916 fi
917 fi
918 if class_is_function_p
919 then
920 printf "\n"
921 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
922 then
923 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
924 elif class_is_multiarch_p
925 then
926 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
927 else
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
929 fi
930 if [ "x${formal}" = "xvoid" ]
931 then
932 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
933 else
934 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
935 fi
936 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
937 if test -n "${macro}"
938 then
939 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940 printf "#error \"Non multi-arch definition of ${macro}\"\n"
941 printf "#endif\n"
942 if [ "x${actual}" = "x" ]
943 then
944 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
945 elif [ "x${actual}" = "x-" ]
946 then
947 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
948 else
949 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
950 fi
951 printf "#if !defined (${macro})\n"
952 if [ "x${actual}" = "x" ]
953 then
954 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
955 elif [ "x${actual}" = "x-" ]
956 then
957 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
958 else
959 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
960 fi
961 printf "#endif\n"
962 fi
963 fi
964 done
965
966 # close it off
967 cat <<EOF
968
969 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
970
971
972 /* Mechanism for co-ordinating the selection of a specific
973 architecture.
974
975 GDB targets (*-tdep.c) can register an interest in a specific
976 architecture. Other GDB components can register a need to maintain
977 per-architecture data.
978
979 The mechanisms below ensures that there is only a loose connection
980 between the set-architecture command and the various GDB
981 components. Each component can independently register their need
982 to maintain architecture specific data with gdbarch.
983
984 Pragmatics:
985
986 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
987 didn't scale.
988
989 The more traditional mega-struct containing architecture specific
990 data for all the various GDB components was also considered. Since
991 GDB is built from a variable number of (fairly independent)
992 components it was determined that the global aproach was not
993 applicable. */
994
995
996 /* Register a new architectural family with GDB.
997
998 Register support for the specified ARCHITECTURE with GDB. When
999 gdbarch determines that the specified architecture has been
1000 selected, the corresponding INIT function is called.
1001
1002 --
1003
1004 The INIT function takes two parameters: INFO which contains the
1005 information available to gdbarch about the (possibly new)
1006 architecture; ARCHES which is a list of the previously created
1007 \`\`struct gdbarch'' for this architecture.
1008
1009 The INFO parameter is, as far as possible, be pre-initialized with
1010 information obtained from INFO.ABFD or the previously selected
1011 architecture.
1012
1013 The ARCHES parameter is a linked list (sorted most recently used)
1014 of all the previously created architures for this architecture
1015 family. The (possibly NULL) ARCHES->gdbarch can used to access
1016 values from the previously selected architecture for this
1017 architecture family. The global \`\`current_gdbarch'' shall not be
1018 used.
1019
1020 The INIT function shall return any of: NULL - indicating that it
1021 doesn't recognize the selected architecture; an existing \`\`struct
1022 gdbarch'' from the ARCHES list - indicating that the new
1023 architecture is just a synonym for an earlier architecture (see
1024 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1025 - that describes the selected architecture (see gdbarch_alloc()).
1026
1027 The DUMP_TDEP function shall print out all target specific values.
1028 Care should be taken to ensure that the function works in both the
1029 multi-arch and non- multi-arch cases. */
1030
1031 struct gdbarch_list
1032 {
1033 struct gdbarch *gdbarch;
1034 struct gdbarch_list *next;
1035 };
1036
1037 struct gdbarch_info
1038 {
1039 /* Use default: NULL (ZERO). */
1040 const struct bfd_arch_info *bfd_arch_info;
1041
1042 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1043 int byte_order;
1044
1045 /* Use default: NULL (ZERO). */
1046 bfd *abfd;
1047
1048 /* Use default: NULL (ZERO). */
1049 struct gdbarch_tdep_info *tdep_info;
1050
1051 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1052 enum gdb_osabi osabi;
1053 };
1054
1055 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1056 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1057
1058 /* DEPRECATED - use gdbarch_register() */
1059 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1060
1061 extern void gdbarch_register (enum bfd_architecture architecture,
1062 gdbarch_init_ftype *,
1063 gdbarch_dump_tdep_ftype *);
1064
1065
1066 /* Return a freshly allocated, NULL terminated, array of the valid
1067 architecture names. Since architectures are registered during the
1068 _initialize phase this function only returns useful information
1069 once initialization has been completed. */
1070
1071 extern const char **gdbarch_printable_names (void);
1072
1073
1074 /* Helper function. Search the list of ARCHES for a GDBARCH that
1075 matches the information provided by INFO. */
1076
1077 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1078
1079
1080 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1081 basic initialization using values obtained from the INFO andTDEP
1082 parameters. set_gdbarch_*() functions are called to complete the
1083 initialization of the object. */
1084
1085 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1086
1087
1088 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1089 It is assumed that the caller freeds the \`\`struct
1090 gdbarch_tdep''. */
1091
1092 extern void gdbarch_free (struct gdbarch *);
1093
1094
1095 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1096 obstack. The memory is freed when the corresponding architecture
1097 is also freed. */
1098
1099 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1102
1103
1104 /* Helper function. Force an update of the current architecture.
1105
1106 The actual architecture selected is determined by INFO, \`\`(gdb) set
1107 architecture'' et.al., the existing architecture and BFD's default
1108 architecture. INFO should be initialized to zero and then selected
1109 fields should be updated.
1110
1111 Returns non-zero if the update succeeds */
1112
1113 extern int gdbarch_update_p (struct gdbarch_info info);
1114
1115
1116 /* Helper function. Find an architecture matching info.
1117
1118 INFO should be initialized using gdbarch_info_init, relevant fields
1119 set, and then finished using gdbarch_info_fill.
1120
1121 Returns the corresponding architecture, or NULL if no matching
1122 architecture was found. "current_gdbarch" is not updated. */
1123
1124 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1125
1126
1127 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1128
1129 FIXME: kettenis/20031124: Of the functions that follow, only
1130 gdbarch_from_bfd is supposed to survive. The others will
1131 dissappear since in the future GDB will (hopefully) be truly
1132 multi-arch. However, for now we're still stuck with the concept of
1133 a single active architecture. */
1134
1135 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1136
1137
1138 /* Register per-architecture data-pointer.
1139
1140 Reserve space for a per-architecture data-pointer. An identifier
1141 for the reserved data-pointer is returned. That identifer should
1142 be saved in a local static variable.
1143
1144 Memory for the per-architecture data shall be allocated using
1145 gdbarch_obstack_zalloc. That memory will be deleted when the
1146 corresponding architecture object is deleted.
1147
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
1155 struct gdbarch_data;
1156
1157 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1163 void *pointer);
1164
1165 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166
1167
1168
1169 /* Register per-architecture memory region.
1170
1171 Provide a memory-region swap mechanism. Per-architecture memory
1172 region are created. These memory regions are swapped whenever the
1173 architecture is changed. For a new architecture, the memory region
1174 is initialized with zero (0) and the INIT function is called.
1175
1176 Memory regions are swapped / initialized in the order that they are
1177 registered. NULL DATA and/or INIT values can be specified.
1178
1179 New code should use gdbarch_data_register_*(). */
1180
1181 typedef void (gdbarch_swap_ftype) (void);
1182 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184
1185
1186
1187 /* Set the dynamic target-system-dependent parameters (architecture,
1188 byte-order, ...) using information found in the BFD */
1189
1190 extern void set_gdbarch_from_file (bfd *);
1191
1192
1193 /* Initialize the current architecture to the "first" one we find on
1194 our list. */
1195
1196 extern void initialize_current_architecture (void);
1197
1198 /* gdbarch trace variable */
1199 extern int gdbarch_debug;
1200
1201 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1202
1203 #endif
1204 EOF
1205 exec 1>&2
1206 #../move-if-change new-gdbarch.h gdbarch.h
1207 compare_new gdbarch.h
1208
1209
1210 #
1211 # C file
1212 #
1213
1214 exec > new-gdbarch.c
1215 copyright
1216 cat <<EOF
1217
1218 #include "defs.h"
1219 #include "arch-utils.h"
1220
1221 #include "gdbcmd.h"
1222 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1223 #include "symcat.h"
1224
1225 #include "floatformat.h"
1226
1227 #include "gdb_assert.h"
1228 #include "gdb_string.h"
1229 #include "gdb-events.h"
1230 #include "reggroups.h"
1231 #include "osabi.h"
1232 #include "gdb_obstack.h"
1233
1234 /* Static function declarations */
1235
1236 static void alloc_gdbarch_data (struct gdbarch *);
1237
1238 /* Non-zero if we want to trace architecture code. */
1239
1240 #ifndef GDBARCH_DEBUG
1241 #define GDBARCH_DEBUG 0
1242 #endif
1243 int gdbarch_debug = GDBARCH_DEBUG;
1244
1245 EOF
1246
1247 # gdbarch open the gdbarch object
1248 printf "\n"
1249 printf "/* Maintain the struct gdbarch object */\n"
1250 printf "\n"
1251 printf "struct gdbarch\n"
1252 printf "{\n"
1253 printf " /* Has this architecture been fully initialized? */\n"
1254 printf " int initialized_p;\n"
1255 printf "\n"
1256 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1257 printf " struct obstack *obstack;\n"
1258 printf "\n"
1259 printf " /* basic architectural information */\n"
1260 function_list | while do_read
1261 do
1262 if class_is_info_p
1263 then
1264 printf " ${returntype} ${function};\n"
1265 fi
1266 done
1267 printf "\n"
1268 printf " /* target specific vector. */\n"
1269 printf " struct gdbarch_tdep *tdep;\n"
1270 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1271 printf "\n"
1272 printf " /* per-architecture data-pointers */\n"
1273 printf " unsigned nr_data;\n"
1274 printf " void **data;\n"
1275 printf "\n"
1276 printf " /* per-architecture swap-regions */\n"
1277 printf " struct gdbarch_swap *swap;\n"
1278 printf "\n"
1279 cat <<EOF
1280 /* Multi-arch values.
1281
1282 When extending this structure you must:
1283
1284 Add the field below.
1285
1286 Declare set/get functions and define the corresponding
1287 macro in gdbarch.h.
1288
1289 gdbarch_alloc(): If zero/NULL is not a suitable default,
1290 initialize the new field.
1291
1292 verify_gdbarch(): Confirm that the target updated the field
1293 correctly.
1294
1295 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1296 field is dumped out
1297
1298 \`\`startup_gdbarch()'': Append an initial value to the static
1299 variable (base values on the host's c-type system).
1300
1301 get_gdbarch(): Implement the set/get functions (probably using
1302 the macro's as shortcuts).
1303
1304 */
1305
1306 EOF
1307 function_list | while do_read
1308 do
1309 if class_is_variable_p
1310 then
1311 printf " ${returntype} ${function};\n"
1312 elif class_is_function_p
1313 then
1314 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1315 fi
1316 done
1317 printf "};\n"
1318
1319 # A pre-initialized vector
1320 printf "\n"
1321 printf "\n"
1322 cat <<EOF
1323 /* The default architecture uses host values (for want of a better
1324 choice). */
1325 EOF
1326 printf "\n"
1327 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1328 printf "\n"
1329 printf "struct gdbarch startup_gdbarch =\n"
1330 printf "{\n"
1331 printf " 1, /* Always initialized. */\n"
1332 printf " NULL, /* The obstack. */\n"
1333 printf " /* basic architecture information */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_info_p
1337 then
1338 printf " ${staticdefault}, /* ${function} */\n"
1339 fi
1340 done
1341 cat <<EOF
1342 /* target specific vector and its dump routine */
1343 NULL, NULL,
1344 /*per-architecture data-pointers and swap regions */
1345 0, NULL, NULL,
1346 /* Multi-arch values */
1347 EOF
1348 function_list | while do_read
1349 do
1350 if class_is_function_p || class_is_variable_p
1351 then
1352 printf " ${staticdefault}, /* ${function} */\n"
1353 fi
1354 done
1355 cat <<EOF
1356 /* startup_gdbarch() */
1357 };
1358
1359 struct gdbarch *current_gdbarch = &startup_gdbarch;
1360 EOF
1361
1362 # Create a new gdbarch struct
1363 cat <<EOF
1364
1365 /* Create a new \`\`struct gdbarch'' based on information provided by
1366 \`\`struct gdbarch_info''. */
1367 EOF
1368 printf "\n"
1369 cat <<EOF
1370 struct gdbarch *
1371 gdbarch_alloc (const struct gdbarch_info *info,
1372 struct gdbarch_tdep *tdep)
1373 {
1374 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1375 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1376 the current local architecture and not the previous global
1377 architecture. This ensures that the new architectures initial
1378 values are not influenced by the previous architecture. Once
1379 everything is parameterised with gdbarch, this will go away. */
1380 struct gdbarch *current_gdbarch;
1381
1382 /* Create an obstack for allocating all the per-architecture memory,
1383 then use that to allocate the architecture vector. */
1384 struct obstack *obstack = XMALLOC (struct obstack);
1385 obstack_init (obstack);
1386 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1387 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1388 current_gdbarch->obstack = obstack;
1389
1390 alloc_gdbarch_data (current_gdbarch);
1391
1392 current_gdbarch->tdep = tdep;
1393 EOF
1394 printf "\n"
1395 function_list | while do_read
1396 do
1397 if class_is_info_p
1398 then
1399 printf " current_gdbarch->${function} = info->${function};\n"
1400 fi
1401 done
1402 printf "\n"
1403 printf " /* Force the explicit initialization of these. */\n"
1404 function_list | while do_read
1405 do
1406 if class_is_function_p || class_is_variable_p
1407 then
1408 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1409 then
1410 printf " current_gdbarch->${function} = ${predefault};\n"
1411 fi
1412 fi
1413 done
1414 cat <<EOF
1415 /* gdbarch_alloc() */
1416
1417 return current_gdbarch;
1418 }
1419 EOF
1420
1421 # Free a gdbarch struct.
1422 printf "\n"
1423 printf "\n"
1424 cat <<EOF
1425 /* Allocate extra space using the per-architecture obstack. */
1426
1427 void *
1428 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1429 {
1430 void *data = obstack_alloc (arch->obstack, size);
1431 memset (data, 0, size);
1432 return data;
1433 }
1434
1435
1436 /* Free a gdbarch struct. This should never happen in normal
1437 operation --- once you've created a gdbarch, you keep it around.
1438 However, if an architecture's init function encounters an error
1439 building the structure, it may need to clean up a partially
1440 constructed gdbarch. */
1441
1442 void
1443 gdbarch_free (struct gdbarch *arch)
1444 {
1445 struct obstack *obstack;
1446 gdb_assert (arch != NULL);
1447 gdb_assert (!arch->initialized_p);
1448 obstack = arch->obstack;
1449 obstack_free (obstack, 0); /* Includes the ARCH. */
1450 xfree (obstack);
1451 }
1452 EOF
1453
1454 # verify a new architecture
1455 cat <<EOF
1456
1457
1458 /* Ensure that all values in a GDBARCH are reasonable. */
1459
1460 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1461 just happens to match the global variable \`\`current_gdbarch''. That
1462 way macros refering to that variable get the local and not the global
1463 version - ulgh. Once everything is parameterised with gdbarch, this
1464 will go away. */
1465
1466 static void
1467 verify_gdbarch (struct gdbarch *current_gdbarch)
1468 {
1469 struct ui_file *log;
1470 struct cleanup *cleanups;
1471 long dummy;
1472 char *buf;
1473 log = mem_fileopen ();
1474 cleanups = make_cleanup_ui_file_delete (log);
1475 /* fundamental */
1476 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1477 fprintf_unfiltered (log, "\n\tbyte-order");
1478 if (current_gdbarch->bfd_arch_info == NULL)
1479 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1480 /* Check those that need to be defined for the given multi-arch level. */
1481 EOF
1482 function_list | while do_read
1483 do
1484 if class_is_function_p || class_is_variable_p
1485 then
1486 if [ "x${invalid_p}" = "x0" ]
1487 then
1488 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1489 elif class_is_predicate_p
1490 then
1491 printf " /* Skip verify of ${function}, has predicate */\n"
1492 # FIXME: See do_read for potential simplification
1493 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1494 then
1495 printf " if (${invalid_p})\n"
1496 printf " current_gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1498 then
1499 printf " if (current_gdbarch->${function} == ${predefault})\n"
1500 printf " current_gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${postdefault}" ]
1502 then
1503 printf " if (current_gdbarch->${function} == 0)\n"
1504 printf " current_gdbarch->${function} = ${postdefault};\n"
1505 elif [ -n "${invalid_p}" ]
1506 then
1507 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1508 printf " && (${invalid_p}))\n"
1509 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1510 elif [ -n "${predefault}" ]
1511 then
1512 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1513 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1514 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1515 fi
1516 fi
1517 done
1518 cat <<EOF
1519 buf = ui_file_xstrdup (log, &dummy);
1520 make_cleanup (xfree, buf);
1521 if (strlen (buf) > 0)
1522 internal_error (__FILE__, __LINE__,
1523 "verify_gdbarch: the following are invalid ...%s",
1524 buf);
1525 do_cleanups (cleanups);
1526 }
1527 EOF
1528
1529 # dump the structure
1530 printf "\n"
1531 printf "\n"
1532 cat <<EOF
1533 /* Print out the details of the current architecture. */
1534
1535 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536 just happens to match the global variable \`\`current_gdbarch''. That
1537 way macros refering to that variable get the local and not the global
1538 version - ulgh. Once everything is parameterised with gdbarch, this
1539 will go away. */
1540
1541 void
1542 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1543 {
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1546 GDB_MULTI_ARCH);
1547 EOF
1548 function_list | sort -t: -k 4 | while do_read
1549 do
1550 # First the predicate
1551 if class_is_predicate_p
1552 then
1553 if test -n "${macro}"
1554 then
1555 printf "#ifdef ${macro}_P\n"
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1558 printf " \"${macro}_P()\",\n"
1559 printf " XSTRING (${macro}_P ()));\n"
1560 printf "#endif\n"
1561 fi
1562 printf " fprintf_unfiltered (file,\n"
1563 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1564 printf " gdbarch_${function}_p (current_gdbarch));\n"
1565 fi
1566 # Print the macro definition.
1567 if test -n "${macro}"
1568 then
1569 printf "#ifdef ${macro}\n"
1570 if class_is_function_p
1571 then
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574 printf " \"${macro}(${actual})\",\n"
1575 printf " XSTRING (${macro} (${actual})));\n"
1576 else
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579 printf " XSTRING (${macro}));\n"
1580 fi
1581 printf "#endif\n"
1582 fi
1583 # Print the corresponding value.
1584 if class_is_function_p
1585 then
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1588 printf " (long) current_gdbarch->${function});\n"
1589 else
1590 # It is a variable
1591 case "${fmt}:${print}:${returntype}" in
1592 ::CORE_ADDR )
1593 fmt="0x%s"
1594 print="paddr_nz (current_gdbarch->${function})"
1595 ;;
1596 ::* )
1597 fmt="%s"
1598 print="paddr_d (current_gdbarch->${function})"
1599 ;;
1600 * )
1601 test "${fmt}" || fmt="%ld"
1602 test "${print}" || print="(long) (current_gdbarch->${function})"
1603 ;;
1604 esac
1605 printf " fprintf_unfiltered (file,\n"
1606 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1607 printf " ${print});\n"
1608 fi
1609 done
1610 cat <<EOF
1611 if (current_gdbarch->dump_tdep != NULL)
1612 current_gdbarch->dump_tdep (current_gdbarch, file);
1613 }
1614 EOF
1615
1616
1617 # GET/SET
1618 printf "\n"
1619 cat <<EOF
1620 struct gdbarch_tdep *
1621 gdbarch_tdep (struct gdbarch *gdbarch)
1622 {
1623 if (gdbarch_debug >= 2)
1624 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1625 return gdbarch->tdep;
1626 }
1627 EOF
1628 printf "\n"
1629 function_list | while do_read
1630 do
1631 if class_is_predicate_p
1632 then
1633 printf "\n"
1634 printf "int\n"
1635 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1636 printf "{\n"
1637 printf " gdb_assert (gdbarch != NULL);\n"
1638 printf " return ${predicate};\n"
1639 printf "}\n"
1640 fi
1641 if class_is_function_p
1642 then
1643 printf "\n"
1644 printf "${returntype}\n"
1645 if [ "x${formal}" = "xvoid" ]
1646 then
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648 else
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1650 fi
1651 printf "{\n"
1652 printf " gdb_assert (gdbarch != NULL);\n"
1653 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1654 if class_is_predicate_p && test -n "${predefault}"
1655 then
1656 # Allow a call to a function with a predicate.
1657 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1658 fi
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1662 then
1663 if class_is_multiarch_p
1664 then
1665 params="gdbarch"
1666 else
1667 params=""
1668 fi
1669 else
1670 if class_is_multiarch_p
1671 then
1672 params="gdbarch, ${actual}"
1673 else
1674 params="${actual}"
1675 fi
1676 fi
1677 if [ "x${returntype}" = "xvoid" ]
1678 then
1679 printf " gdbarch->${function} (${params});\n"
1680 else
1681 printf " return gdbarch->${function} (${params});\n"
1682 fi
1683 printf "}\n"
1684 printf "\n"
1685 printf "void\n"
1686 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1687 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1688 printf "{\n"
1689 printf " gdbarch->${function} = ${function};\n"
1690 printf "}\n"
1691 elif class_is_variable_p
1692 then
1693 printf "\n"
1694 printf "${returntype}\n"
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1696 printf "{\n"
1697 printf " gdb_assert (gdbarch != NULL);\n"
1698 if [ "x${invalid_p}" = "x0" ]
1699 then
1700 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1701 elif [ -n "${invalid_p}" ]
1702 then
1703 printf " /* Check variable is valid. */\n"
1704 printf " gdb_assert (!(${invalid_p}));\n"
1705 elif [ -n "${predefault}" ]
1706 then
1707 printf " /* Check variable changed from pre-default. */\n"
1708 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1709 fi
1710 printf " if (gdbarch_debug >= 2)\n"
1711 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1712 printf " return gdbarch->${function};\n"
1713 printf "}\n"
1714 printf "\n"
1715 printf "void\n"
1716 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1718 printf "{\n"
1719 printf " gdbarch->${function} = ${function};\n"
1720 printf "}\n"
1721 elif class_is_info_p
1722 then
1723 printf "\n"
1724 printf "${returntype}\n"
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 printf "{\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 printf " if (gdbarch_debug >= 2)\n"
1729 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1730 printf " return gdbarch->${function};\n"
1731 printf "}\n"
1732 fi
1733 done
1734
1735 # All the trailing guff
1736 cat <<EOF
1737
1738
1739 /* Keep a registry of per-architecture data-pointers required by GDB
1740 modules. */
1741
1742 struct gdbarch_data
1743 {
1744 unsigned index;
1745 int init_p;
1746 gdbarch_data_pre_init_ftype *pre_init;
1747 gdbarch_data_post_init_ftype *post_init;
1748 };
1749
1750 struct gdbarch_data_registration
1751 {
1752 struct gdbarch_data *data;
1753 struct gdbarch_data_registration *next;
1754 };
1755
1756 struct gdbarch_data_registry
1757 {
1758 unsigned nr;
1759 struct gdbarch_data_registration *registrations;
1760 };
1761
1762 struct gdbarch_data_registry gdbarch_data_registry =
1763 {
1764 0, NULL,
1765 };
1766
1767 static struct gdbarch_data *
1768 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1769 gdbarch_data_post_init_ftype *post_init)
1770 {
1771 struct gdbarch_data_registration **curr;
1772 /* Append the new registraration. */
1773 for (curr = &gdbarch_data_registry.registrations;
1774 (*curr) != NULL;
1775 curr = &(*curr)->next);
1776 (*curr) = XMALLOC (struct gdbarch_data_registration);
1777 (*curr)->next = NULL;
1778 (*curr)->data = XMALLOC (struct gdbarch_data);
1779 (*curr)->data->index = gdbarch_data_registry.nr++;
1780 (*curr)->data->pre_init = pre_init;
1781 (*curr)->data->post_init = post_init;
1782 (*curr)->data->init_p = 1;
1783 return (*curr)->data;
1784 }
1785
1786 struct gdbarch_data *
1787 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1788 {
1789 return gdbarch_data_register (pre_init, NULL);
1790 }
1791
1792 struct gdbarch_data *
1793 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1794 {
1795 return gdbarch_data_register (NULL, post_init);
1796 }
1797
1798 /* Create/delete the gdbarch data vector. */
1799
1800 static void
1801 alloc_gdbarch_data (struct gdbarch *gdbarch)
1802 {
1803 gdb_assert (gdbarch->data == NULL);
1804 gdbarch->nr_data = gdbarch_data_registry.nr;
1805 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1806 }
1807
1808 /* Initialize the current value of the specified per-architecture
1809 data-pointer. */
1810
1811 void
1812 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1813 struct gdbarch_data *data,
1814 void *pointer)
1815 {
1816 gdb_assert (data->index < gdbarch->nr_data);
1817 gdb_assert (gdbarch->data[data->index] == NULL);
1818 gdb_assert (data->pre_init == NULL);
1819 gdbarch->data[data->index] = pointer;
1820 }
1821
1822 /* Return the current value of the specified per-architecture
1823 data-pointer. */
1824
1825 void *
1826 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1827 {
1828 gdb_assert (data->index < gdbarch->nr_data);
1829 if (gdbarch->data[data->index] == NULL)
1830 {
1831 /* The data-pointer isn't initialized, call init() to get a
1832 value. */
1833 if (data->pre_init != NULL)
1834 /* Mid architecture creation: pass just the obstack, and not
1835 the entire architecture, as that way it isn't possible for
1836 pre-init code to refer to undefined architecture
1837 fields. */
1838 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1839 else if (gdbarch->initialized_p
1840 && data->post_init != NULL)
1841 /* Post architecture creation: pass the entire architecture
1842 (as all fields are valid), but be careful to also detect
1843 recursive references. */
1844 {
1845 gdb_assert (data->init_p);
1846 data->init_p = 0;
1847 gdbarch->data[data->index] = data->post_init (gdbarch);
1848 data->init_p = 1;
1849 }
1850 else
1851 /* The architecture initialization hasn't completed - punt -
1852 hope that the caller knows what they are doing. Once
1853 deprecated_set_gdbarch_data has been initialized, this can be
1854 changed to an internal error. */
1855 return NULL;
1856 gdb_assert (gdbarch->data[data->index] != NULL);
1857 }
1858 return gdbarch->data[data->index];
1859 }
1860
1861
1862
1863 /* Keep a registry of swapped data required by GDB modules. */
1864
1865 struct gdbarch_swap
1866 {
1867 void *swap;
1868 struct gdbarch_swap_registration *source;
1869 struct gdbarch_swap *next;
1870 };
1871
1872 struct gdbarch_swap_registration
1873 {
1874 void *data;
1875 unsigned long sizeof_data;
1876 gdbarch_swap_ftype *init;
1877 struct gdbarch_swap_registration *next;
1878 };
1879
1880 struct gdbarch_swap_registry
1881 {
1882 int nr;
1883 struct gdbarch_swap_registration *registrations;
1884 };
1885
1886 struct gdbarch_swap_registry gdbarch_swap_registry =
1887 {
1888 0, NULL,
1889 };
1890
1891 void
1892 deprecated_register_gdbarch_swap (void *data,
1893 unsigned long sizeof_data,
1894 gdbarch_swap_ftype *init)
1895 {
1896 struct gdbarch_swap_registration **rego;
1897 for (rego = &gdbarch_swap_registry.registrations;
1898 (*rego) != NULL;
1899 rego = &(*rego)->next);
1900 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1901 (*rego)->next = NULL;
1902 (*rego)->init = init;
1903 (*rego)->data = data;
1904 (*rego)->sizeof_data = sizeof_data;
1905 }
1906
1907 static void
1908 current_gdbarch_swap_init_hack (void)
1909 {
1910 struct gdbarch_swap_registration *rego;
1911 struct gdbarch_swap **curr = &current_gdbarch->swap;
1912 for (rego = gdbarch_swap_registry.registrations;
1913 rego != NULL;
1914 rego = rego->next)
1915 {
1916 if (rego->data != NULL)
1917 {
1918 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1919 struct gdbarch_swap);
1920 (*curr)->source = rego;
1921 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1922 rego->sizeof_data);
1923 (*curr)->next = NULL;
1924 curr = &(*curr)->next;
1925 }
1926 if (rego->init != NULL)
1927 rego->init ();
1928 }
1929 }
1930
1931 static struct gdbarch *
1932 current_gdbarch_swap_out_hack (void)
1933 {
1934 struct gdbarch *old_gdbarch = current_gdbarch;
1935 struct gdbarch_swap *curr;
1936
1937 gdb_assert (old_gdbarch != NULL);
1938 for (curr = old_gdbarch->swap;
1939 curr != NULL;
1940 curr = curr->next)
1941 {
1942 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1943 memset (curr->source->data, 0, curr->source->sizeof_data);
1944 }
1945 current_gdbarch = NULL;
1946 return old_gdbarch;
1947 }
1948
1949 static void
1950 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1951 {
1952 struct gdbarch_swap *curr;
1953
1954 gdb_assert (current_gdbarch == NULL);
1955 for (curr = new_gdbarch->swap;
1956 curr != NULL;
1957 curr = curr->next)
1958 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1959 current_gdbarch = new_gdbarch;
1960 }
1961
1962
1963 /* Keep a registry of the architectures known by GDB. */
1964
1965 struct gdbarch_registration
1966 {
1967 enum bfd_architecture bfd_architecture;
1968 gdbarch_init_ftype *init;
1969 gdbarch_dump_tdep_ftype *dump_tdep;
1970 struct gdbarch_list *arches;
1971 struct gdbarch_registration *next;
1972 };
1973
1974 static struct gdbarch_registration *gdbarch_registry = NULL;
1975
1976 static void
1977 append_name (const char ***buf, int *nr, const char *name)
1978 {
1979 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1980 (*buf)[*nr] = name;
1981 *nr += 1;
1982 }
1983
1984 const char **
1985 gdbarch_printable_names (void)
1986 {
1987 /* Accumulate a list of names based on the registed list of
1988 architectures. */
1989 enum bfd_architecture a;
1990 int nr_arches = 0;
1991 const char **arches = NULL;
1992 struct gdbarch_registration *rego;
1993 for (rego = gdbarch_registry;
1994 rego != NULL;
1995 rego = rego->next)
1996 {
1997 const struct bfd_arch_info *ap;
1998 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1999 if (ap == NULL)
2000 internal_error (__FILE__, __LINE__,
2001 "gdbarch_architecture_names: multi-arch unknown");
2002 do
2003 {
2004 append_name (&arches, &nr_arches, ap->printable_name);
2005 ap = ap->next;
2006 }
2007 while (ap != NULL);
2008 }
2009 append_name (&arches, &nr_arches, NULL);
2010 return arches;
2011 }
2012
2013
2014 void
2015 gdbarch_register (enum bfd_architecture bfd_architecture,
2016 gdbarch_init_ftype *init,
2017 gdbarch_dump_tdep_ftype *dump_tdep)
2018 {
2019 struct gdbarch_registration **curr;
2020 const struct bfd_arch_info *bfd_arch_info;
2021 /* Check that BFD recognizes this architecture */
2022 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2023 if (bfd_arch_info == NULL)
2024 {
2025 internal_error (__FILE__, __LINE__,
2026 "gdbarch: Attempt to register unknown architecture (%d)",
2027 bfd_architecture);
2028 }
2029 /* Check that we haven't seen this architecture before */
2030 for (curr = &gdbarch_registry;
2031 (*curr) != NULL;
2032 curr = &(*curr)->next)
2033 {
2034 if (bfd_architecture == (*curr)->bfd_architecture)
2035 internal_error (__FILE__, __LINE__,
2036 "gdbarch: Duplicate registraration of architecture (%s)",
2037 bfd_arch_info->printable_name);
2038 }
2039 /* log it */
2040 if (gdbarch_debug)
2041 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2042 bfd_arch_info->printable_name,
2043 (long) init);
2044 /* Append it */
2045 (*curr) = XMALLOC (struct gdbarch_registration);
2046 (*curr)->bfd_architecture = bfd_architecture;
2047 (*curr)->init = init;
2048 (*curr)->dump_tdep = dump_tdep;
2049 (*curr)->arches = NULL;
2050 (*curr)->next = NULL;
2051 }
2052
2053 void
2054 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2055 gdbarch_init_ftype *init)
2056 {
2057 gdbarch_register (bfd_architecture, init, NULL);
2058 }
2059
2060
2061 /* Look for an architecture using gdbarch_info. Base search on only
2062 BFD_ARCH_INFO and BYTE_ORDER. */
2063
2064 struct gdbarch_list *
2065 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2066 const struct gdbarch_info *info)
2067 {
2068 for (; arches != NULL; arches = arches->next)
2069 {
2070 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2071 continue;
2072 if (info->byte_order != arches->gdbarch->byte_order)
2073 continue;
2074 if (info->osabi != arches->gdbarch->osabi)
2075 continue;
2076 return arches;
2077 }
2078 return NULL;
2079 }
2080
2081
2082 /* Find an architecture that matches the specified INFO. Create a new
2083 architecture if needed. Return that new architecture. Assumes
2084 that there is no current architecture. */
2085
2086 static struct gdbarch *
2087 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2088 {
2089 struct gdbarch *new_gdbarch;
2090 struct gdbarch_registration *rego;
2091
2092 /* The existing architecture has been swapped out - all this code
2093 works from a clean slate. */
2094 gdb_assert (current_gdbarch == NULL);
2095
2096 /* Fill in missing parts of the INFO struct using a number of
2097 sources: "set ..."; INFOabfd supplied; and the existing
2098 architecture. */
2099 gdbarch_info_fill (old_gdbarch, &info);
2100
2101 /* Must have found some sort of architecture. */
2102 gdb_assert (info.bfd_arch_info != NULL);
2103
2104 if (gdbarch_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.bfd_arch_info %s\n",
2108 (info.bfd_arch_info != NULL
2109 ? info.bfd_arch_info->printable_name
2110 : "(null)"));
2111 fprintf_unfiltered (gdb_stdlog,
2112 "find_arch_by_info: info.byte_order %d (%s)\n",
2113 info.byte_order,
2114 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2115 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2116 : "default"));
2117 fprintf_unfiltered (gdb_stdlog,
2118 "find_arch_by_info: info.osabi %d (%s)\n",
2119 info.osabi, gdbarch_osabi_name (info.osabi));
2120 fprintf_unfiltered (gdb_stdlog,
2121 "find_arch_by_info: info.abfd 0x%lx\n",
2122 (long) info.abfd);
2123 fprintf_unfiltered (gdb_stdlog,
2124 "find_arch_by_info: info.tdep_info 0x%lx\n",
2125 (long) info.tdep_info);
2126 }
2127
2128 /* Find the tdep code that knows about this architecture. */
2129 for (rego = gdbarch_registry;
2130 rego != NULL;
2131 rego = rego->next)
2132 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2133 break;
2134 if (rego == NULL)
2135 {
2136 if (gdbarch_debug)
2137 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2138 "No matching architecture\n");
2139 return 0;
2140 }
2141
2142 /* Ask the tdep code for an architecture that matches "info". */
2143 new_gdbarch = rego->init (info, rego->arches);
2144
2145 /* Did the tdep code like it? No. Reject the change and revert to
2146 the old architecture. */
2147 if (new_gdbarch == NULL)
2148 {
2149 if (gdbarch_debug)
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "Target rejected architecture\n");
2152 return NULL;
2153 }
2154
2155 /* Is this a pre-existing architecture (as determined by already
2156 being initialized)? Move it to the front of the architecture
2157 list (keeping the list sorted Most Recently Used). */
2158 if (new_gdbarch->initialized_p)
2159 {
2160 struct gdbarch_list **list;
2161 struct gdbarch_list *this;
2162 if (gdbarch_debug)
2163 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2164 "Previous architecture 0x%08lx (%s) selected\n",
2165 (long) new_gdbarch,
2166 new_gdbarch->bfd_arch_info->printable_name);
2167 /* Find the existing arch in the list. */
2168 for (list = &rego->arches;
2169 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2170 list = &(*list)->next);
2171 /* It had better be in the list of architectures. */
2172 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2173 /* Unlink THIS. */
2174 this = (*list);
2175 (*list) = this->next;
2176 /* Insert THIS at the front. */
2177 this->next = rego->arches;
2178 rego->arches = this;
2179 /* Return it. */
2180 return new_gdbarch;
2181 }
2182
2183 /* It's a new architecture. */
2184 if (gdbarch_debug)
2185 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2186 "New architecture 0x%08lx (%s) selected\n",
2187 (long) new_gdbarch,
2188 new_gdbarch->bfd_arch_info->printable_name);
2189
2190 /* Insert the new architecture into the front of the architecture
2191 list (keep the list sorted Most Recently Used). */
2192 {
2193 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2194 this->next = rego->arches;
2195 this->gdbarch = new_gdbarch;
2196 rego->arches = this;
2197 }
2198
2199 /* Check that the newly installed architecture is valid. Plug in
2200 any post init values. */
2201 new_gdbarch->dump_tdep = rego->dump_tdep;
2202 verify_gdbarch (new_gdbarch);
2203 new_gdbarch->initialized_p = 1;
2204
2205 /* Initialize any per-architecture swap areas. This phase requires
2206 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2207 swap the entire architecture out. */
2208 current_gdbarch = new_gdbarch;
2209 current_gdbarch_swap_init_hack ();
2210 current_gdbarch_swap_out_hack ();
2211
2212 if (gdbarch_debug)
2213 gdbarch_dump (new_gdbarch, gdb_stdlog);
2214
2215 return new_gdbarch;
2216 }
2217
2218 struct gdbarch *
2219 gdbarch_find_by_info (struct gdbarch_info info)
2220 {
2221 /* Save the previously selected architecture, setting the global to
2222 NULL. This stops things like gdbarch->init() trying to use the
2223 previous architecture's configuration. The previous architecture
2224 may not even be of the same architecture family. The most recent
2225 architecture of the same family is found at the head of the
2226 rego->arches list. */
2227 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2228
2229 /* Find the specified architecture. */
2230 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2231
2232 /* Restore the existing architecture. */
2233 gdb_assert (current_gdbarch == NULL);
2234 current_gdbarch_swap_in_hack (old_gdbarch);
2235
2236 return new_gdbarch;
2237 }
2238
2239 /* Make the specified architecture current, swapping the existing one
2240 out. */
2241
2242 void
2243 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2244 {
2245 gdb_assert (new_gdbarch != NULL);
2246 gdb_assert (current_gdbarch != NULL);
2247 gdb_assert (new_gdbarch->initialized_p);
2248 current_gdbarch_swap_out_hack ();
2249 current_gdbarch_swap_in_hack (new_gdbarch);
2250 architecture_changed_event ();
2251 }
2252
2253 extern void _initialize_gdbarch (void);
2254
2255 void
2256 _initialize_gdbarch (void)
2257 {
2258 struct cmd_list_element *c;
2259
2260 deprecated_add_show_from_set
2261 (add_set_cmd ("arch",
2262 class_maintenance,
2263 var_zinteger,
2264 (char *)&gdbarch_debug,
2265 "Set architecture debugging.\\n\\
2266 When non-zero, architecture debugging is enabled.", &setdebuglist),
2267 &showdebuglist);
2268 c = add_set_cmd ("archdebug",
2269 class_maintenance,
2270 var_zinteger,
2271 (char *)&gdbarch_debug,
2272 "Set architecture debugging.\\n\\
2273 When non-zero, architecture debugging is enabled.", &setlist);
2274
2275 deprecate_cmd (c, "set debug arch");
2276 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2277 }
2278 EOF
2279
2280 # close things off
2281 exec 1>&2
2282 #../move-if-change new-gdbarch.c gdbarch.c
2283 compare_new gdbarch.c
This page took 0.118288 seconds and 4 git commands to generate.