From David S. Miller <davem@redhat.com>:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457 # that updates PC, NPC and even NNPC.
458 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
473 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
597 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
598 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
599
600 # It has been suggested that this, well actually its predecessor,
601 # should take the type/value of the function to be called and not the
602 # return type. This is left as an exercise for the reader.
603
604 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, const void *inval, void *outval:valtype, regcache, inval, outval
605
606 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
607 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
608 # into RETURN_VALUE. For the moment do not try to fold in
609 # EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
610 # info, and the level of effort, it may well be possible to find the
611 # address of a structure being return on the stack. Someone else can
612 # make that change.
613
614 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
615 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
616 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
617 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
618 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
619 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
620
621 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
622 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
623 #
624 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
625 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
626 #
627 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
628 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
629 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
630 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
631 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
632 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
633 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
634 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
635 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
636 #
637 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
638 #
639 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
640 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
641 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
642 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
643 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
644 # note, per UNWIND_PC's doco, that while the two have similar
645 # interfaces they have very different underlying implementations.
646 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
647 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
648 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
649 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
650 # frame-base. Enable frame-base before frame-unwind.
651 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
652 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
653 # frame-base. Enable frame-base before frame-unwind.
654 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
655 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
656 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
657 #
658 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
659 # to frame_align and the requirement that methods such as
660 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
661 # alignment.
662 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
663 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
664 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
665 # stabs_argument_has_addr.
666 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
667 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
668 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
669 v:2:PARM_BOUNDARY:int:parm_boundary
670 #
671 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
672 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
673 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
674 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
675 # On some machines there are bits in addresses which are not really
676 # part of the address, but are used by the kernel, the hardware, etc.
677 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
678 # we get a "real" address such as one would find in a symbol table.
679 # This is used only for addresses of instructions, and even then I'm
680 # not sure it's used in all contexts. It exists to deal with there
681 # being a few stray bits in the PC which would mislead us, not as some
682 # sort of generic thing to handle alignment or segmentation (it's
683 # possible it should be in TARGET_READ_PC instead).
684 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
685 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
686 # ADDR_BITS_REMOVE.
687 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
688 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
689 # the target needs software single step. An ISA method to implement it.
690 #
691 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
692 # using the breakpoint system instead of blatting memory directly (as with rs6000).
693 #
694 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
695 # single step. If not, then implement single step using breakpoints.
696 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
697 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
698 # disassembler. Perhaphs objdump can handle it?
699 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
700 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
701
702
703 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
704 # evaluates non-zero, this is the address where the debugger will place
705 # a step-resume breakpoint to get us past the dynamic linker.
706 f:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
707 # For SVR4 shared libraries, each call goes through a small piece of
708 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
709 # to nonzero if we are currently stopped in one of these.
710 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
711
712 # Some systems also have trampoline code for returning from shared libs.
713 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
714
715 # Sigtramp is a routine that the kernel calls (which then calls the
716 # signal handler). On most machines it is a library routine that is
717 # linked into the executable.
718 #
719 # This macro, given a program counter value and the name of the
720 # function in which that PC resides (which can be null if the name is
721 # not known), returns nonzero if the PC and name show that we are in
722 # sigtramp.
723 #
724 # On most machines just see if the name is sigtramp (and if we have
725 # no name, assume we are not in sigtramp).
726 #
727 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
728 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
729 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
730 # own local NAME lookup.
731 #
732 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
733 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
734 # does not.
735 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
736 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
737 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
738 # A target might have problems with watchpoints as soon as the stack
739 # frame of the current function has been destroyed. This mostly happens
740 # as the first action in a funtion's epilogue. in_function_epilogue_p()
741 # is defined to return a non-zero value if either the given addr is one
742 # instruction after the stack destroying instruction up to the trailing
743 # return instruction or if we can figure out that the stack frame has
744 # already been invalidated regardless of the value of addr. Targets
745 # which don't suffer from that problem could just let this functionality
746 # untouched.
747 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
748 # Given a vector of command-line arguments, return a newly allocated
749 # string which, when passed to the create_inferior function, will be
750 # parsed (on Unix systems, by the shell) to yield the same vector.
751 # This function should call error() if the argument vector is not
752 # representable for this target or if this target does not support
753 # command-line arguments.
754 # ARGC is the number of elements in the vector.
755 # ARGV is an array of strings, one per argument.
756 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
757 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
758 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
759 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
760 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
761 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
762 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
763 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
764 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
765 # Is a register in a group
766 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
767 # Fetch the pointer to the ith function argument.
768 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
769
770 # Return the appropriate register set for a core file section with
771 # name SECT_NAME and size SECT_SIZE.
772 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
773 EOF
774 }
775
776 #
777 # The .log file
778 #
779 exec > new-gdbarch.log
780 function_list | while do_read
781 do
782 cat <<EOF
783 ${class} ${macro}(${actual})
784 ${returntype} ${function} ($formal)${attrib}
785 EOF
786 for r in ${read}
787 do
788 eval echo \"\ \ \ \ ${r}=\${${r}}\"
789 done
790 if class_is_predicate_p && fallback_default_p
791 then
792 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
793 kill $$
794 exit 1
795 fi
796 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
797 then
798 echo "Error: postdefault is useless when invalid_p=0" 1>&2
799 kill $$
800 exit 1
801 fi
802 if class_is_multiarch_p
803 then
804 if class_is_predicate_p ; then :
805 elif test "x${predefault}" = "x"
806 then
807 echo "Error: pure multi-arch function must have a predefault" 1>&2
808 kill $$
809 exit 1
810 fi
811 fi
812 echo ""
813 done
814
815 exec 1>&2
816 compare_new gdbarch.log
817
818
819 copyright ()
820 {
821 cat <<EOF
822 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
823
824 /* Dynamic architecture support for GDB, the GNU debugger.
825 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
826
827 This file is part of GDB.
828
829 This program is free software; you can redistribute it and/or modify
830 it under the terms of the GNU General Public License as published by
831 the Free Software Foundation; either version 2 of the License, or
832 (at your option) any later version.
833
834 This program is distributed in the hope that it will be useful,
835 but WITHOUT ANY WARRANTY; without even the implied warranty of
836 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
837 GNU General Public License for more details.
838
839 You should have received a copy of the GNU General Public License
840 along with this program; if not, write to the Free Software
841 Foundation, Inc., 59 Temple Place - Suite 330,
842 Boston, MA 02111-1307, USA. */
843
844 /* This file was created with the aid of \`\`gdbarch.sh''.
845
846 The Bourne shell script \`\`gdbarch.sh'' creates the files
847 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
848 against the existing \`\`gdbarch.[hc]''. Any differences found
849 being reported.
850
851 If editing this file, please also run gdbarch.sh and merge any
852 changes into that script. Conversely, when making sweeping changes
853 to this file, modifying gdbarch.sh and using its output may prove
854 easier. */
855
856 EOF
857 }
858
859 #
860 # The .h file
861 #
862
863 exec > new-gdbarch.h
864 copyright
865 cat <<EOF
866 #ifndef GDBARCH_H
867 #define GDBARCH_H
868
869 struct floatformat;
870 struct ui_file;
871 struct frame_info;
872 struct value;
873 struct objfile;
874 struct minimal_symbol;
875 struct regcache;
876 struct reggroup;
877 struct regset;
878 struct disassemble_info;
879 struct target_ops;
880
881 extern struct gdbarch *current_gdbarch;
882
883
884 /* If any of the following are defined, the target wasn't correctly
885 converted. */
886
887 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
888 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
889 #endif
890 EOF
891
892 # function typedef's
893 printf "\n"
894 printf "\n"
895 printf "/* The following are pre-initialized by GDBARCH. */\n"
896 function_list | while do_read
897 do
898 if class_is_info_p
899 then
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
903 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
904 printf "#error \"Non multi-arch definition of ${macro}\"\n"
905 printf "#endif\n"
906 printf "#if !defined (${macro})\n"
907 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
908 printf "#endif\n"
909 fi
910 done
911
912 # function typedef's
913 printf "\n"
914 printf "\n"
915 printf "/* The following are initialized by the target dependent code. */\n"
916 function_list | while do_read
917 do
918 if [ -n "${comment}" ]
919 then
920 echo "${comment}" | sed \
921 -e '2 s,#,/*,' \
922 -e '3,$ s,#, ,' \
923 -e '$ s,$, */,'
924 fi
925 if class_is_multiarch_p
926 then
927 if class_is_predicate_p
928 then
929 printf "\n"
930 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
931 fi
932 else
933 if class_is_predicate_p
934 then
935 printf "\n"
936 printf "#if defined (${macro})\n"
937 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
938 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
939 printf "#if !defined (${macro}_P)\n"
940 printf "#define ${macro}_P() (1)\n"
941 printf "#endif\n"
942 printf "#endif\n"
943 printf "\n"
944 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
945 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
946 printf "#error \"Non multi-arch definition of ${macro}\"\n"
947 printf "#endif\n"
948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
949 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
950 printf "#endif\n"
951 fi
952 fi
953 if class_is_variable_p
954 then
955 printf "\n"
956 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
957 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
958 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
959 printf "#error \"Non multi-arch definition of ${macro}\"\n"
960 printf "#endif\n"
961 printf "#if !defined (${macro})\n"
962 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
963 printf "#endif\n"
964 fi
965 if class_is_function_p
966 then
967 printf "\n"
968 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
969 then
970 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
971 elif class_is_multiarch_p
972 then
973 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
974 else
975 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
976 fi
977 if [ "x${formal}" = "xvoid" ]
978 then
979 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
980 else
981 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
982 fi
983 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
984 if class_is_multiarch_p ; then :
985 else
986 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
987 printf "#error \"Non multi-arch definition of ${macro}\"\n"
988 printf "#endif\n"
989 if [ "x${actual}" = "x" ]
990 then
991 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
992 elif [ "x${actual}" = "x-" ]
993 then
994 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
995 else
996 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
997 fi
998 printf "#if !defined (${macro})\n"
999 if [ "x${actual}" = "x" ]
1000 then
1001 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1002 elif [ "x${actual}" = "x-" ]
1003 then
1004 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1005 else
1006 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1007 fi
1008 printf "#endif\n"
1009 fi
1010 fi
1011 done
1012
1013 # close it off
1014 cat <<EOF
1015
1016 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1017
1018
1019 /* Mechanism for co-ordinating the selection of a specific
1020 architecture.
1021
1022 GDB targets (*-tdep.c) can register an interest in a specific
1023 architecture. Other GDB components can register a need to maintain
1024 per-architecture data.
1025
1026 The mechanisms below ensures that there is only a loose connection
1027 between the set-architecture command and the various GDB
1028 components. Each component can independently register their need
1029 to maintain architecture specific data with gdbarch.
1030
1031 Pragmatics:
1032
1033 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1034 didn't scale.
1035
1036 The more traditional mega-struct containing architecture specific
1037 data for all the various GDB components was also considered. Since
1038 GDB is built from a variable number of (fairly independent)
1039 components it was determined that the global aproach was not
1040 applicable. */
1041
1042
1043 /* Register a new architectural family with GDB.
1044
1045 Register support for the specified ARCHITECTURE with GDB. When
1046 gdbarch determines that the specified architecture has been
1047 selected, the corresponding INIT function is called.
1048
1049 --
1050
1051 The INIT function takes two parameters: INFO which contains the
1052 information available to gdbarch about the (possibly new)
1053 architecture; ARCHES which is a list of the previously created
1054 \`\`struct gdbarch'' for this architecture.
1055
1056 The INFO parameter is, as far as possible, be pre-initialized with
1057 information obtained from INFO.ABFD or the previously selected
1058 architecture.
1059
1060 The ARCHES parameter is a linked list (sorted most recently used)
1061 of all the previously created architures for this architecture
1062 family. The (possibly NULL) ARCHES->gdbarch can used to access
1063 values from the previously selected architecture for this
1064 architecture family. The global \`\`current_gdbarch'' shall not be
1065 used.
1066
1067 The INIT function shall return any of: NULL - indicating that it
1068 doesn't recognize the selected architecture; an existing \`\`struct
1069 gdbarch'' from the ARCHES list - indicating that the new
1070 architecture is just a synonym for an earlier architecture (see
1071 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1072 - that describes the selected architecture (see gdbarch_alloc()).
1073
1074 The DUMP_TDEP function shall print out all target specific values.
1075 Care should be taken to ensure that the function works in both the
1076 multi-arch and non- multi-arch cases. */
1077
1078 struct gdbarch_list
1079 {
1080 struct gdbarch *gdbarch;
1081 struct gdbarch_list *next;
1082 };
1083
1084 struct gdbarch_info
1085 {
1086 /* Use default: NULL (ZERO). */
1087 const struct bfd_arch_info *bfd_arch_info;
1088
1089 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1090 int byte_order;
1091
1092 /* Use default: NULL (ZERO). */
1093 bfd *abfd;
1094
1095 /* Use default: NULL (ZERO). */
1096 struct gdbarch_tdep_info *tdep_info;
1097
1098 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1099 enum gdb_osabi osabi;
1100 };
1101
1102 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1103 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1104
1105 /* DEPRECATED - use gdbarch_register() */
1106 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1107
1108 extern void gdbarch_register (enum bfd_architecture architecture,
1109 gdbarch_init_ftype *,
1110 gdbarch_dump_tdep_ftype *);
1111
1112
1113 /* Return a freshly allocated, NULL terminated, array of the valid
1114 architecture names. Since architectures are registered during the
1115 _initialize phase this function only returns useful information
1116 once initialization has been completed. */
1117
1118 extern const char **gdbarch_printable_names (void);
1119
1120
1121 /* Helper function. Search the list of ARCHES for a GDBARCH that
1122 matches the information provided by INFO. */
1123
1124 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1125
1126
1127 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1128 basic initialization using values obtained from the INFO andTDEP
1129 parameters. set_gdbarch_*() functions are called to complete the
1130 initialization of the object. */
1131
1132 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1133
1134
1135 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1136 It is assumed that the caller freeds the \`\`struct
1137 gdbarch_tdep''. */
1138
1139 extern void gdbarch_free (struct gdbarch *);
1140
1141
1142 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1143 obstack. The memory is freed when the corresponding architecture
1144 is also freed. */
1145
1146 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1147 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1148 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1149
1150
1151 /* Helper function. Force an update of the current architecture.
1152
1153 The actual architecture selected is determined by INFO, \`\`(gdb) set
1154 architecture'' et.al., the existing architecture and BFD's default
1155 architecture. INFO should be initialized to zero and then selected
1156 fields should be updated.
1157
1158 Returns non-zero if the update succeeds */
1159
1160 extern int gdbarch_update_p (struct gdbarch_info info);
1161
1162
1163
1164 /* Register per-architecture data-pointer.
1165
1166 Reserve space for a per-architecture data-pointer. An identifier
1167 for the reserved data-pointer is returned. That identifer should
1168 be saved in a local static variable.
1169
1170 The per-architecture data-pointer is either initialized explicitly
1171 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1172 gdbarch_data()).
1173
1174 Memory for the per-architecture data shall be allocated using
1175 gdbarch_obstack_zalloc. That memory will be deleted when the
1176 corresponding architecture object is deleted.
1177
1178 When a previously created architecture is re-selected, the
1179 per-architecture data-pointer for that previous architecture is
1180 restored. INIT() is not re-called.
1181
1182 Multiple registrarants for any architecture are allowed (and
1183 strongly encouraged). */
1184
1185 struct gdbarch_data;
1186
1187 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1188 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1189 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1190 struct gdbarch_data *data,
1191 void *pointer);
1192
1193 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1194
1195
1196 /* Register per-architecture memory region.
1197
1198 Provide a memory-region swap mechanism. Per-architecture memory
1199 region are created. These memory regions are swapped whenever the
1200 architecture is changed. For a new architecture, the memory region
1201 is initialized with zero (0) and the INIT function is called.
1202
1203 Memory regions are swapped / initialized in the order that they are
1204 registered. NULL DATA and/or INIT values can be specified.
1205
1206 New code should use register_gdbarch_data(). */
1207
1208 typedef void (gdbarch_swap_ftype) (void);
1209 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1210 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1211
1212
1213
1214 /* The target-system-dependent byte order is dynamic */
1215
1216 extern int target_byte_order;
1217 #ifndef TARGET_BYTE_ORDER
1218 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1219 #endif
1220
1221 extern int target_byte_order_auto;
1222 #ifndef TARGET_BYTE_ORDER_AUTO
1223 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1224 #endif
1225
1226
1227
1228 /* The target-system-dependent BFD architecture is dynamic */
1229
1230 extern int target_architecture_auto;
1231 #ifndef TARGET_ARCHITECTURE_AUTO
1232 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1233 #endif
1234
1235 extern const struct bfd_arch_info *target_architecture;
1236 #ifndef TARGET_ARCHITECTURE
1237 #define TARGET_ARCHITECTURE (target_architecture + 0)
1238 #endif
1239
1240
1241 /* Set the dynamic target-system-dependent parameters (architecture,
1242 byte-order, ...) using information found in the BFD */
1243
1244 extern void set_gdbarch_from_file (bfd *);
1245
1246
1247 /* Initialize the current architecture to the "first" one we find on
1248 our list. */
1249
1250 extern void initialize_current_architecture (void);
1251
1252 /* For non-multiarched targets, do any initialization of the default
1253 gdbarch object necessary after the _initialize_MODULE functions
1254 have run. */
1255 extern void initialize_non_multiarch (void);
1256
1257 /* gdbarch trace variable */
1258 extern int gdbarch_debug;
1259
1260 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1261
1262 #endif
1263 EOF
1264 exec 1>&2
1265 #../move-if-change new-gdbarch.h gdbarch.h
1266 compare_new gdbarch.h
1267
1268
1269 #
1270 # C file
1271 #
1272
1273 exec > new-gdbarch.c
1274 copyright
1275 cat <<EOF
1276
1277 #include "defs.h"
1278 #include "arch-utils.h"
1279
1280 #include "gdbcmd.h"
1281 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1282 #include "symcat.h"
1283
1284 #include "floatformat.h"
1285
1286 #include "gdb_assert.h"
1287 #include "gdb_string.h"
1288 #include "gdb-events.h"
1289 #include "reggroups.h"
1290 #include "osabi.h"
1291 #include "symfile.h" /* For entry_point_address. */
1292 #include "gdb_obstack.h"
1293
1294 /* Static function declarations */
1295
1296 static void verify_gdbarch (struct gdbarch *gdbarch);
1297 static void alloc_gdbarch_data (struct gdbarch *);
1298 static void init_gdbarch_swap (struct gdbarch *);
1299 static void clear_gdbarch_swap (struct gdbarch *);
1300 static void swapout_gdbarch_swap (struct gdbarch *);
1301 static void swapin_gdbarch_swap (struct gdbarch *);
1302
1303 /* Non-zero if we want to trace architecture code. */
1304
1305 #ifndef GDBARCH_DEBUG
1306 #define GDBARCH_DEBUG 0
1307 #endif
1308 int gdbarch_debug = GDBARCH_DEBUG;
1309
1310 EOF
1311
1312 # gdbarch open the gdbarch object
1313 printf "\n"
1314 printf "/* Maintain the struct gdbarch object */\n"
1315 printf "\n"
1316 printf "struct gdbarch\n"
1317 printf "{\n"
1318 printf " /* Has this architecture been fully initialized? */\n"
1319 printf " int initialized_p;\n"
1320 printf "\n"
1321 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1322 printf " struct obstack *obstack;\n"
1323 printf "\n"
1324 printf " /* basic architectural information */\n"
1325 function_list | while do_read
1326 do
1327 if class_is_info_p
1328 then
1329 printf " ${returntype} ${function};\n"
1330 fi
1331 done
1332 printf "\n"
1333 printf " /* target specific vector. */\n"
1334 printf " struct gdbarch_tdep *tdep;\n"
1335 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1336 printf "\n"
1337 printf " /* per-architecture data-pointers */\n"
1338 printf " unsigned nr_data;\n"
1339 printf " void **data;\n"
1340 printf "\n"
1341 printf " /* per-architecture swap-regions */\n"
1342 printf " struct gdbarch_swap *swap;\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* Multi-arch values.
1346
1347 When extending this structure you must:
1348
1349 Add the field below.
1350
1351 Declare set/get functions and define the corresponding
1352 macro in gdbarch.h.
1353
1354 gdbarch_alloc(): If zero/NULL is not a suitable default,
1355 initialize the new field.
1356
1357 verify_gdbarch(): Confirm that the target updated the field
1358 correctly.
1359
1360 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1361 field is dumped out
1362
1363 \`\`startup_gdbarch()'': Append an initial value to the static
1364 variable (base values on the host's c-type system).
1365
1366 get_gdbarch(): Implement the set/get functions (probably using
1367 the macro's as shortcuts).
1368
1369 */
1370
1371 EOF
1372 function_list | while do_read
1373 do
1374 if class_is_variable_p
1375 then
1376 printf " ${returntype} ${function};\n"
1377 elif class_is_function_p
1378 then
1379 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1380 fi
1381 done
1382 printf "};\n"
1383
1384 # A pre-initialized vector
1385 printf "\n"
1386 printf "\n"
1387 cat <<EOF
1388 /* The default architecture uses host values (for want of a better
1389 choice). */
1390 EOF
1391 printf "\n"
1392 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1393 printf "\n"
1394 printf "struct gdbarch startup_gdbarch =\n"
1395 printf "{\n"
1396 printf " 1, /* Always initialized. */\n"
1397 printf " NULL, /* The obstack. */\n"
1398 printf " /* basic architecture information */\n"
1399 function_list | while do_read
1400 do
1401 if class_is_info_p
1402 then
1403 printf " ${staticdefault}, /* ${function} */\n"
1404 fi
1405 done
1406 cat <<EOF
1407 /* target specific vector and its dump routine */
1408 NULL, NULL,
1409 /*per-architecture data-pointers and swap regions */
1410 0, NULL, NULL,
1411 /* Multi-arch values */
1412 EOF
1413 function_list | while do_read
1414 do
1415 if class_is_function_p || class_is_variable_p
1416 then
1417 printf " ${staticdefault}, /* ${function} */\n"
1418 fi
1419 done
1420 cat <<EOF
1421 /* startup_gdbarch() */
1422 };
1423
1424 struct gdbarch *current_gdbarch = &startup_gdbarch;
1425
1426 /* Do any initialization needed for a non-multiarch configuration
1427 after the _initialize_MODULE functions have been run. */
1428 void
1429 initialize_non_multiarch (void)
1430 {
1431 alloc_gdbarch_data (&startup_gdbarch);
1432 /* Ensure that all swap areas are zeroed so that they again think
1433 they are starting from scratch. */
1434 clear_gdbarch_swap (&startup_gdbarch);
1435 init_gdbarch_swap (&startup_gdbarch);
1436 }
1437 EOF
1438
1439 # Create a new gdbarch struct
1440 printf "\n"
1441 printf "\n"
1442 cat <<EOF
1443 /* Create a new \`\`struct gdbarch'' based on information provided by
1444 \`\`struct gdbarch_info''. */
1445 EOF
1446 printf "\n"
1447 cat <<EOF
1448 struct gdbarch *
1449 gdbarch_alloc (const struct gdbarch_info *info,
1450 struct gdbarch_tdep *tdep)
1451 {
1452 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1453 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1454 the current local architecture and not the previous global
1455 architecture. This ensures that the new architectures initial
1456 values are not influenced by the previous architecture. Once
1457 everything is parameterised with gdbarch, this will go away. */
1458 struct gdbarch *current_gdbarch;
1459
1460 /* Create an obstack for allocating all the per-architecture memory,
1461 then use that to allocate the architecture vector. */
1462 struct obstack *obstack = XMALLOC (struct obstack);
1463 obstack_init (obstack);
1464 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1465 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1466 current_gdbarch->obstack = obstack;
1467
1468 alloc_gdbarch_data (current_gdbarch);
1469
1470 current_gdbarch->tdep = tdep;
1471 EOF
1472 printf "\n"
1473 function_list | while do_read
1474 do
1475 if class_is_info_p
1476 then
1477 printf " current_gdbarch->${function} = info->${function};\n"
1478 fi
1479 done
1480 printf "\n"
1481 printf " /* Force the explicit initialization of these. */\n"
1482 function_list | while do_read
1483 do
1484 if class_is_function_p || class_is_variable_p
1485 then
1486 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1487 then
1488 printf " current_gdbarch->${function} = ${predefault};\n"
1489 fi
1490 fi
1491 done
1492 cat <<EOF
1493 /* gdbarch_alloc() */
1494
1495 return current_gdbarch;
1496 }
1497 EOF
1498
1499 # Free a gdbarch struct.
1500 printf "\n"
1501 printf "\n"
1502 cat <<EOF
1503 /* Allocate extra space using the per-architecture obstack. */
1504
1505 void *
1506 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1507 {
1508 void *data = obstack_alloc (arch->obstack, size);
1509 memset (data, 0, size);
1510 return data;
1511 }
1512
1513
1514 /* Free a gdbarch struct. This should never happen in normal
1515 operation --- once you've created a gdbarch, you keep it around.
1516 However, if an architecture's init function encounters an error
1517 building the structure, it may need to clean up a partially
1518 constructed gdbarch. */
1519
1520 void
1521 gdbarch_free (struct gdbarch *arch)
1522 {
1523 struct obstack *obstack;
1524 gdb_assert (arch != NULL);
1525 gdb_assert (!arch->initialized_p);
1526 obstack = arch->obstack;
1527 obstack_free (obstack, 0); /* Includes the ARCH. */
1528 xfree (obstack);
1529 }
1530 EOF
1531
1532 # verify a new architecture
1533 printf "\n"
1534 printf "\n"
1535 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1536 printf "\n"
1537 cat <<EOF
1538 static void
1539 verify_gdbarch (struct gdbarch *gdbarch)
1540 {
1541 struct ui_file *log;
1542 struct cleanup *cleanups;
1543 long dummy;
1544 char *buf;
1545 log = mem_fileopen ();
1546 cleanups = make_cleanup_ui_file_delete (log);
1547 /* fundamental */
1548 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1549 fprintf_unfiltered (log, "\n\tbyte-order");
1550 if (gdbarch->bfd_arch_info == NULL)
1551 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1552 /* Check those that need to be defined for the given multi-arch level. */
1553 EOF
1554 function_list | while do_read
1555 do
1556 if class_is_function_p || class_is_variable_p
1557 then
1558 if [ "x${invalid_p}" = "x0" ]
1559 then
1560 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1561 elif class_is_predicate_p
1562 then
1563 printf " /* Skip verify of ${function}, has predicate */\n"
1564 # FIXME: See do_read for potential simplification
1565 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1566 then
1567 printf " if (${invalid_p})\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
1569 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1570 then
1571 printf " if (gdbarch->${function} == ${predefault})\n"
1572 printf " gdbarch->${function} = ${postdefault};\n"
1573 elif [ -n "${postdefault}" ]
1574 then
1575 printf " if (gdbarch->${function} == 0)\n"
1576 printf " gdbarch->${function} = ${postdefault};\n"
1577 elif [ -n "${invalid_p}" ]
1578 then
1579 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1580 printf " && (${invalid_p}))\n"
1581 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1582 elif [ -n "${predefault}" ]
1583 then
1584 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1585 printf " && (gdbarch->${function} == ${predefault}))\n"
1586 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1587 fi
1588 fi
1589 done
1590 cat <<EOF
1591 buf = ui_file_xstrdup (log, &dummy);
1592 make_cleanup (xfree, buf);
1593 if (strlen (buf) > 0)
1594 internal_error (__FILE__, __LINE__,
1595 "verify_gdbarch: the following are invalid ...%s",
1596 buf);
1597 do_cleanups (cleanups);
1598 }
1599 EOF
1600
1601 # dump the structure
1602 printf "\n"
1603 printf "\n"
1604 cat <<EOF
1605 /* Print out the details of the current architecture. */
1606
1607 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1608 just happens to match the global variable \`\`current_gdbarch''. That
1609 way macros refering to that variable get the local and not the global
1610 version - ulgh. Once everything is parameterised with gdbarch, this
1611 will go away. */
1612
1613 void
1614 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1615 {
1616 fprintf_unfiltered (file,
1617 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1618 GDB_MULTI_ARCH);
1619 EOF
1620 function_list | sort -t: -k 3 | while do_read
1621 do
1622 # First the predicate
1623 if class_is_predicate_p
1624 then
1625 if class_is_multiarch_p
1626 then
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1629 printf " gdbarch_${function}_p (current_gdbarch));\n"
1630 else
1631 printf "#ifdef ${macro}_P\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1634 printf " \"${macro}_P()\",\n"
1635 printf " XSTRING (${macro}_P ()));\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1638 printf " ${macro}_P ());\n"
1639 printf "#endif\n"
1640 fi
1641 fi
1642 # multiarch functions don't have macros.
1643 if class_is_multiarch_p
1644 then
1645 printf " fprintf_unfiltered (file,\n"
1646 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1647 printf " (long) current_gdbarch->${function});\n"
1648 continue
1649 fi
1650 # Print the macro definition.
1651 printf "#ifdef ${macro}\n"
1652 if class_is_function_p
1653 then
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1656 printf " \"${macro}(${actual})\",\n"
1657 printf " XSTRING (${macro} (${actual})));\n"
1658 else
1659 printf " fprintf_unfiltered (file,\n"
1660 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1661 printf " XSTRING (${macro}));\n"
1662 fi
1663 if [ "x${print_p}" = "x()" ]
1664 then
1665 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1666 elif [ "x${print_p}" = "x0" ]
1667 then
1668 printf " /* skip print of ${macro}, print_p == 0. */\n"
1669 elif [ -n "${print_p}" ]
1670 then
1671 printf " if (${print_p})\n"
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1674 printf " ${print});\n"
1675 elif class_is_function_p
1676 then
1677 printf " fprintf_unfiltered (file,\n"
1678 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1679 printf " (long) current_gdbarch->${function}\n"
1680 printf " /*${macro} ()*/);\n"
1681 else
1682 printf " fprintf_unfiltered (file,\n"
1683 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1684 printf " ${print});\n"
1685 fi
1686 printf "#endif\n"
1687 done
1688 cat <<EOF
1689 if (current_gdbarch->dump_tdep != NULL)
1690 current_gdbarch->dump_tdep (current_gdbarch, file);
1691 }
1692 EOF
1693
1694
1695 # GET/SET
1696 printf "\n"
1697 cat <<EOF
1698 struct gdbarch_tdep *
1699 gdbarch_tdep (struct gdbarch *gdbarch)
1700 {
1701 if (gdbarch_debug >= 2)
1702 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1703 return gdbarch->tdep;
1704 }
1705 EOF
1706 printf "\n"
1707 function_list | while do_read
1708 do
1709 if class_is_predicate_p
1710 then
1711 printf "\n"
1712 printf "int\n"
1713 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1714 printf "{\n"
1715 printf " gdb_assert (gdbarch != NULL);\n"
1716 printf " return ${predicate};\n"
1717 printf "}\n"
1718 fi
1719 if class_is_function_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 if [ "x${formal}" = "xvoid" ]
1724 then
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 else
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1728 fi
1729 printf "{\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1732 if class_is_predicate_p && test -n "${predefault}"
1733 then
1734 # Allow a call to a function with a predicate.
1735 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1736 fi
1737 printf " if (gdbarch_debug >= 2)\n"
1738 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1739 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1740 then
1741 if class_is_multiarch_p
1742 then
1743 params="gdbarch"
1744 else
1745 params=""
1746 fi
1747 else
1748 if class_is_multiarch_p
1749 then
1750 params="gdbarch, ${actual}"
1751 else
1752 params="${actual}"
1753 fi
1754 fi
1755 if [ "x${returntype}" = "xvoid" ]
1756 then
1757 printf " gdbarch->${function} (${params});\n"
1758 else
1759 printf " return gdbarch->${function} (${params});\n"
1760 fi
1761 printf "}\n"
1762 printf "\n"
1763 printf "void\n"
1764 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1765 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1766 printf "{\n"
1767 printf " gdbarch->${function} = ${function};\n"
1768 printf "}\n"
1769 elif class_is_variable_p
1770 then
1771 printf "\n"
1772 printf "${returntype}\n"
1773 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1774 printf "{\n"
1775 printf " gdb_assert (gdbarch != NULL);\n"
1776 if [ "x${invalid_p}" = "x0" ]
1777 then
1778 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1779 elif [ -n "${invalid_p}" ]
1780 then
1781 printf " /* Check variable is valid. */\n"
1782 printf " gdb_assert (!(${invalid_p}));\n"
1783 elif [ -n "${predefault}" ]
1784 then
1785 printf " /* Check variable changed from pre-default. */\n"
1786 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1787 fi
1788 printf " if (gdbarch_debug >= 2)\n"
1789 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1790 printf " return gdbarch->${function};\n"
1791 printf "}\n"
1792 printf "\n"
1793 printf "void\n"
1794 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1795 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1796 printf "{\n"
1797 printf " gdbarch->${function} = ${function};\n"
1798 printf "}\n"
1799 elif class_is_info_p
1800 then
1801 printf "\n"
1802 printf "${returntype}\n"
1803 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1804 printf "{\n"
1805 printf " gdb_assert (gdbarch != NULL);\n"
1806 printf " if (gdbarch_debug >= 2)\n"
1807 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1808 printf " return gdbarch->${function};\n"
1809 printf "}\n"
1810 fi
1811 done
1812
1813 # All the trailing guff
1814 cat <<EOF
1815
1816
1817 /* Keep a registry of per-architecture data-pointers required by GDB
1818 modules. */
1819
1820 struct gdbarch_data
1821 {
1822 unsigned index;
1823 int init_p;
1824 gdbarch_data_init_ftype *init;
1825 };
1826
1827 struct gdbarch_data_registration
1828 {
1829 struct gdbarch_data *data;
1830 struct gdbarch_data_registration *next;
1831 };
1832
1833 struct gdbarch_data_registry
1834 {
1835 unsigned nr;
1836 struct gdbarch_data_registration *registrations;
1837 };
1838
1839 struct gdbarch_data_registry gdbarch_data_registry =
1840 {
1841 0, NULL,
1842 };
1843
1844 struct gdbarch_data *
1845 register_gdbarch_data (gdbarch_data_init_ftype *init)
1846 {
1847 struct gdbarch_data_registration **curr;
1848 /* Append the new registraration. */
1849 for (curr = &gdbarch_data_registry.registrations;
1850 (*curr) != NULL;
1851 curr = &(*curr)->next);
1852 (*curr) = XMALLOC (struct gdbarch_data_registration);
1853 (*curr)->next = NULL;
1854 (*curr)->data = XMALLOC (struct gdbarch_data);
1855 (*curr)->data->index = gdbarch_data_registry.nr++;
1856 (*curr)->data->init = init;
1857 (*curr)->data->init_p = 1;
1858 return (*curr)->data;
1859 }
1860
1861
1862 /* Create/delete the gdbarch data vector. */
1863
1864 static void
1865 alloc_gdbarch_data (struct gdbarch *gdbarch)
1866 {
1867 gdb_assert (gdbarch->data == NULL);
1868 gdbarch->nr_data = gdbarch_data_registry.nr;
1869 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1870 }
1871
1872 /* Initialize the current value of the specified per-architecture
1873 data-pointer. */
1874
1875 void
1876 set_gdbarch_data (struct gdbarch *gdbarch,
1877 struct gdbarch_data *data,
1878 void *pointer)
1879 {
1880 gdb_assert (data->index < gdbarch->nr_data);
1881 gdb_assert (gdbarch->data[data->index] == NULL);
1882 gdbarch->data[data->index] = pointer;
1883 }
1884
1885 /* Return the current value of the specified per-architecture
1886 data-pointer. */
1887
1888 void *
1889 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1890 {
1891 gdb_assert (data->index < gdbarch->nr_data);
1892 /* The data-pointer isn't initialized, call init() to get a value but
1893 only if the architecture initializaiton has completed. Otherwise
1894 punt - hope that the caller knows what they are doing. */
1895 if (gdbarch->data[data->index] == NULL
1896 && gdbarch->initialized_p)
1897 {
1898 /* Be careful to detect an initialization cycle. */
1899 gdb_assert (data->init_p);
1900 data->init_p = 0;
1901 gdb_assert (data->init != NULL);
1902 gdbarch->data[data->index] = data->init (gdbarch);
1903 data->init_p = 1;
1904 gdb_assert (gdbarch->data[data->index] != NULL);
1905 }
1906 return gdbarch->data[data->index];
1907 }
1908
1909
1910
1911 /* Keep a registry of swapped data required by GDB modules. */
1912
1913 struct gdbarch_swap
1914 {
1915 void *swap;
1916 struct gdbarch_swap_registration *source;
1917 struct gdbarch_swap *next;
1918 };
1919
1920 struct gdbarch_swap_registration
1921 {
1922 void *data;
1923 unsigned long sizeof_data;
1924 gdbarch_swap_ftype *init;
1925 struct gdbarch_swap_registration *next;
1926 };
1927
1928 struct gdbarch_swap_registry
1929 {
1930 int nr;
1931 struct gdbarch_swap_registration *registrations;
1932 };
1933
1934 struct gdbarch_swap_registry gdbarch_swap_registry =
1935 {
1936 0, NULL,
1937 };
1938
1939 void
1940 register_gdbarch_swap (void *data,
1941 unsigned long sizeof_data,
1942 gdbarch_swap_ftype *init)
1943 {
1944 struct gdbarch_swap_registration **rego;
1945 for (rego = &gdbarch_swap_registry.registrations;
1946 (*rego) != NULL;
1947 rego = &(*rego)->next);
1948 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1949 (*rego)->next = NULL;
1950 (*rego)->init = init;
1951 (*rego)->data = data;
1952 (*rego)->sizeof_data = sizeof_data;
1953 }
1954
1955 static void
1956 clear_gdbarch_swap (struct gdbarch *gdbarch)
1957 {
1958 struct gdbarch_swap *curr;
1959 for (curr = gdbarch->swap;
1960 curr != NULL;
1961 curr = curr->next)
1962 {
1963 memset (curr->source->data, 0, curr->source->sizeof_data);
1964 }
1965 }
1966
1967 static void
1968 init_gdbarch_swap (struct gdbarch *gdbarch)
1969 {
1970 struct gdbarch_swap_registration *rego;
1971 struct gdbarch_swap **curr = &gdbarch->swap;
1972 for (rego = gdbarch_swap_registry.registrations;
1973 rego != NULL;
1974 rego = rego->next)
1975 {
1976 if (rego->data != NULL)
1977 {
1978 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1979 (*curr)->source = rego;
1980 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1981 (*curr)->next = NULL;
1982 curr = &(*curr)->next;
1983 }
1984 if (rego->init != NULL)
1985 rego->init ();
1986 }
1987 }
1988
1989 static void
1990 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1991 {
1992 struct gdbarch_swap *curr;
1993 for (curr = gdbarch->swap;
1994 curr != NULL;
1995 curr = curr->next)
1996 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1997 }
1998
1999 static void
2000 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2001 {
2002 struct gdbarch_swap *curr;
2003 for (curr = gdbarch->swap;
2004 curr != NULL;
2005 curr = curr->next)
2006 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2007 }
2008
2009
2010 /* Keep a registry of the architectures known by GDB. */
2011
2012 struct gdbarch_registration
2013 {
2014 enum bfd_architecture bfd_architecture;
2015 gdbarch_init_ftype *init;
2016 gdbarch_dump_tdep_ftype *dump_tdep;
2017 struct gdbarch_list *arches;
2018 struct gdbarch_registration *next;
2019 };
2020
2021 static struct gdbarch_registration *gdbarch_registry = NULL;
2022
2023 static void
2024 append_name (const char ***buf, int *nr, const char *name)
2025 {
2026 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2027 (*buf)[*nr] = name;
2028 *nr += 1;
2029 }
2030
2031 const char **
2032 gdbarch_printable_names (void)
2033 {
2034 /* Accumulate a list of names based on the registed list of
2035 architectures. */
2036 enum bfd_architecture a;
2037 int nr_arches = 0;
2038 const char **arches = NULL;
2039 struct gdbarch_registration *rego;
2040 for (rego = gdbarch_registry;
2041 rego != NULL;
2042 rego = rego->next)
2043 {
2044 const struct bfd_arch_info *ap;
2045 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2046 if (ap == NULL)
2047 internal_error (__FILE__, __LINE__,
2048 "gdbarch_architecture_names: multi-arch unknown");
2049 do
2050 {
2051 append_name (&arches, &nr_arches, ap->printable_name);
2052 ap = ap->next;
2053 }
2054 while (ap != NULL);
2055 }
2056 append_name (&arches, &nr_arches, NULL);
2057 return arches;
2058 }
2059
2060
2061 void
2062 gdbarch_register (enum bfd_architecture bfd_architecture,
2063 gdbarch_init_ftype *init,
2064 gdbarch_dump_tdep_ftype *dump_tdep)
2065 {
2066 struct gdbarch_registration **curr;
2067 const struct bfd_arch_info *bfd_arch_info;
2068 /* Check that BFD recognizes this architecture */
2069 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2070 if (bfd_arch_info == NULL)
2071 {
2072 internal_error (__FILE__, __LINE__,
2073 "gdbarch: Attempt to register unknown architecture (%d)",
2074 bfd_architecture);
2075 }
2076 /* Check that we haven't seen this architecture before */
2077 for (curr = &gdbarch_registry;
2078 (*curr) != NULL;
2079 curr = &(*curr)->next)
2080 {
2081 if (bfd_architecture == (*curr)->bfd_architecture)
2082 internal_error (__FILE__, __LINE__,
2083 "gdbarch: Duplicate registraration of architecture (%s)",
2084 bfd_arch_info->printable_name);
2085 }
2086 /* log it */
2087 if (gdbarch_debug)
2088 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2089 bfd_arch_info->printable_name,
2090 (long) init);
2091 /* Append it */
2092 (*curr) = XMALLOC (struct gdbarch_registration);
2093 (*curr)->bfd_architecture = bfd_architecture;
2094 (*curr)->init = init;
2095 (*curr)->dump_tdep = dump_tdep;
2096 (*curr)->arches = NULL;
2097 (*curr)->next = NULL;
2098 }
2099
2100 void
2101 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2102 gdbarch_init_ftype *init)
2103 {
2104 gdbarch_register (bfd_architecture, init, NULL);
2105 }
2106
2107
2108 /* Look for an architecture using gdbarch_info. Base search on only
2109 BFD_ARCH_INFO and BYTE_ORDER. */
2110
2111 struct gdbarch_list *
2112 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2113 const struct gdbarch_info *info)
2114 {
2115 for (; arches != NULL; arches = arches->next)
2116 {
2117 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2118 continue;
2119 if (info->byte_order != arches->gdbarch->byte_order)
2120 continue;
2121 if (info->osabi != arches->gdbarch->osabi)
2122 continue;
2123 return arches;
2124 }
2125 return NULL;
2126 }
2127
2128
2129 /* Update the current architecture. Return ZERO if the update request
2130 failed. */
2131
2132 int
2133 gdbarch_update_p (struct gdbarch_info info)
2134 {
2135 struct gdbarch *new_gdbarch;
2136 struct gdbarch *old_gdbarch;
2137 struct gdbarch_registration *rego;
2138
2139 /* Fill in missing parts of the INFO struct using a number of
2140 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2141
2142 /* \`\`(gdb) set architecture ...'' */
2143 if (info.bfd_arch_info == NULL
2144 && !TARGET_ARCHITECTURE_AUTO)
2145 info.bfd_arch_info = TARGET_ARCHITECTURE;
2146 if (info.bfd_arch_info == NULL
2147 && info.abfd != NULL
2148 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2149 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2150 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2151 if (info.bfd_arch_info == NULL)
2152 info.bfd_arch_info = TARGET_ARCHITECTURE;
2153
2154 /* \`\`(gdb) set byte-order ...'' */
2155 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2156 && !TARGET_BYTE_ORDER_AUTO)
2157 info.byte_order = TARGET_BYTE_ORDER;
2158 /* From the INFO struct. */
2159 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2160 && info.abfd != NULL)
2161 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2162 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2163 : BFD_ENDIAN_UNKNOWN);
2164 /* From the current target. */
2165 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2166 info.byte_order = TARGET_BYTE_ORDER;
2167
2168 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2169 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2170 info.osabi = gdbarch_lookup_osabi (info.abfd);
2171 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2172 info.osabi = current_gdbarch->osabi;
2173
2174 /* Must have found some sort of architecture. */
2175 gdb_assert (info.bfd_arch_info != NULL);
2176
2177 if (gdbarch_debug)
2178 {
2179 fprintf_unfiltered (gdb_stdlog,
2180 "gdbarch_update: info.bfd_arch_info %s\n",
2181 (info.bfd_arch_info != NULL
2182 ? info.bfd_arch_info->printable_name
2183 : "(null)"));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "gdbarch_update: info.byte_order %d (%s)\n",
2186 info.byte_order,
2187 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2188 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2189 : "default"));
2190 fprintf_unfiltered (gdb_stdlog,
2191 "gdbarch_update: info.osabi %d (%s)\n",
2192 info.osabi, gdbarch_osabi_name (info.osabi));
2193 fprintf_unfiltered (gdb_stdlog,
2194 "gdbarch_update: info.abfd 0x%lx\n",
2195 (long) info.abfd);
2196 fprintf_unfiltered (gdb_stdlog,
2197 "gdbarch_update: info.tdep_info 0x%lx\n",
2198 (long) info.tdep_info);
2199 }
2200
2201 /* Find the target that knows about this architecture. */
2202 for (rego = gdbarch_registry;
2203 rego != NULL;
2204 rego = rego->next)
2205 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2206 break;
2207 if (rego == NULL)
2208 {
2209 if (gdbarch_debug)
2210 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2211 return 0;
2212 }
2213
2214 /* Swap the data belonging to the old target out setting the
2215 installed data to zero. This stops the ->init() function trying
2216 to refer to the previous architecture's global data structures. */
2217 swapout_gdbarch_swap (current_gdbarch);
2218 clear_gdbarch_swap (current_gdbarch);
2219
2220 /* Save the previously selected architecture, setting the global to
2221 NULL. This stops ->init() trying to use the previous
2222 architecture's configuration. The previous architecture may not
2223 even be of the same architecture family. The most recent
2224 architecture of the same family is found at the head of the
2225 rego->arches list. */
2226 old_gdbarch = current_gdbarch;
2227 current_gdbarch = NULL;
2228
2229 /* Ask the target for a replacement architecture. */
2230 new_gdbarch = rego->init (info, rego->arches);
2231
2232 /* Did the target like it? No. Reject the change and revert to the
2233 old architecture. */
2234 if (new_gdbarch == NULL)
2235 {
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2238 swapin_gdbarch_swap (old_gdbarch);
2239 current_gdbarch = old_gdbarch;
2240 return 0;
2241 }
2242
2243 /* Did the architecture change? No. Oops, put the old architecture
2244 back. */
2245 if (old_gdbarch == new_gdbarch)
2246 {
2247 if (gdbarch_debug)
2248 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2249 (long) new_gdbarch,
2250 new_gdbarch->bfd_arch_info->printable_name);
2251 swapin_gdbarch_swap (old_gdbarch);
2252 current_gdbarch = old_gdbarch;
2253 return 1;
2254 }
2255
2256 /* Is this a pre-existing architecture? Yes. Move it to the front
2257 of the list of architectures (keeping the list sorted Most
2258 Recently Used) and then copy it in. */
2259 {
2260 struct gdbarch_list **list;
2261 for (list = &rego->arches;
2262 (*list) != NULL;
2263 list = &(*list)->next)
2264 {
2265 if ((*list)->gdbarch == new_gdbarch)
2266 {
2267 struct gdbarch_list *this;
2268 if (gdbarch_debug)
2269 fprintf_unfiltered (gdb_stdlog,
2270 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2271 (long) new_gdbarch,
2272 new_gdbarch->bfd_arch_info->printable_name);
2273 /* Unlink this. */
2274 this = (*list);
2275 (*list) = this->next;
2276 /* Insert in the front. */
2277 this->next = rego->arches;
2278 rego->arches = this;
2279 /* Copy the new architecture in. */
2280 current_gdbarch = new_gdbarch;
2281 swapin_gdbarch_swap (new_gdbarch);
2282 architecture_changed_event ();
2283 return 1;
2284 }
2285 }
2286 }
2287
2288 /* Prepend this new architecture to the architecture list (keep the
2289 list sorted Most Recently Used). */
2290 {
2291 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2292 this->next = rego->arches;
2293 this->gdbarch = new_gdbarch;
2294 rego->arches = this;
2295 }
2296
2297 /* Switch to this new architecture marking it initialized. */
2298 current_gdbarch = new_gdbarch;
2299 current_gdbarch->initialized_p = 1;
2300 if (gdbarch_debug)
2301 {
2302 fprintf_unfiltered (gdb_stdlog,
2303 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2304 (long) new_gdbarch,
2305 new_gdbarch->bfd_arch_info->printable_name);
2306 }
2307
2308 /* Check that the newly installed architecture is valid. Plug in
2309 any post init values. */
2310 new_gdbarch->dump_tdep = rego->dump_tdep;
2311 verify_gdbarch (new_gdbarch);
2312
2313 /* Initialize the per-architecture memory (swap) areas.
2314 CURRENT_GDBARCH must be update before these modules are
2315 called. */
2316 init_gdbarch_swap (new_gdbarch);
2317
2318 /* Initialize the per-architecture data. CURRENT_GDBARCH
2319 must be updated before these modules are called. */
2320 architecture_changed_event ();
2321
2322 if (gdbarch_debug)
2323 gdbarch_dump (current_gdbarch, gdb_stdlog);
2324
2325 return 1;
2326 }
2327
2328
2329 extern void _initialize_gdbarch (void);
2330
2331 void
2332 _initialize_gdbarch (void)
2333 {
2334 struct cmd_list_element *c;
2335
2336 add_show_from_set (add_set_cmd ("arch",
2337 class_maintenance,
2338 var_zinteger,
2339 (char *)&gdbarch_debug,
2340 "Set architecture debugging.\\n\\
2341 When non-zero, architecture debugging is enabled.", &setdebuglist),
2342 &showdebuglist);
2343 c = add_set_cmd ("archdebug",
2344 class_maintenance,
2345 var_zinteger,
2346 (char *)&gdbarch_debug,
2347 "Set architecture debugging.\\n\\
2348 When non-zero, architecture debugging is enabled.", &setlist);
2349
2350 deprecate_cmd (c, "set debug arch");
2351 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2352 }
2353 EOF
2354
2355 # close things off
2356 exec 1>&2
2357 #../move-if-change new-gdbarch.c gdbarch.c
2358 compare_new gdbarch.c
This page took 0.089593 seconds and 4 git commands to generate.