2013-06-09 Sandra Loosemore <sandra@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
482
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
493 #
494 v:int:believe_pcc_promotion:::::::
495 #
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
512 #
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
514 #
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
518 # for instance).
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
520
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
540
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
548
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
550
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
554
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
557 #
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
564 #
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
568 #
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # The elfcore writer hook to use to write Linux prpsinfo notes to core
645 # files. Most Linux architectures use the same prpsinfo32 or
646 # prpsinfo64 layouts, and so won't need to provide this hook, as we
647 # call the Linux generic routines in bfd to write prpsinfo notes by
648 # default.
649 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
650
651 # Find core file memory regions
652 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
653
654 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
655 # core file into buffer READBUF with length LEN.
656 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
657
658 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
659 # libraries list from core file into buffer READBUF with length LEN.
660 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
661
662 # How the core target converts a PTID from a core file to a string.
663 M:char *:core_pid_to_str:ptid_t ptid:ptid
664
665 # BFD target to use when generating a core file.
666 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
667
668 # If the elements of C++ vtables are in-place function descriptors rather
669 # than normal function pointers (which may point to code or a descriptor),
670 # set this to one.
671 v:int:vtable_function_descriptors:::0:0::0
672
673 # Set if the least significant bit of the delta is used instead of the least
674 # significant bit of the pfn for pointers to virtual member functions.
675 v:int:vbit_in_delta:::0:0::0
676
677 # Advance PC to next instruction in order to skip a permanent breakpoint.
678 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
679
680 # The maximum length of an instruction on this architecture in bytes.
681 V:ULONGEST:max_insn_length:::0:0
682
683 # Copy the instruction at FROM to TO, and make any adjustments
684 # necessary to single-step it at that address.
685 #
686 # REGS holds the state the thread's registers will have before
687 # executing the copied instruction; the PC in REGS will refer to FROM,
688 # not the copy at TO. The caller should update it to point at TO later.
689 #
690 # Return a pointer to data of the architecture's choice to be passed
691 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
692 # the instruction's effects have been completely simulated, with the
693 # resulting state written back to REGS.
694 #
695 # For a general explanation of displaced stepping and how GDB uses it,
696 # see the comments in infrun.c.
697 #
698 # The TO area is only guaranteed to have space for
699 # gdbarch_max_insn_length (arch) bytes, so this function must not
700 # write more bytes than that to that area.
701 #
702 # If you do not provide this function, GDB assumes that the
703 # architecture does not support displaced stepping.
704 #
705 # If your architecture doesn't need to adjust instructions before
706 # single-stepping them, consider using simple_displaced_step_copy_insn
707 # here.
708 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
709
710 # Return true if GDB should use hardware single-stepping to execute
711 # the displaced instruction identified by CLOSURE. If false,
712 # GDB will simply restart execution at the displaced instruction
713 # location, and it is up to the target to ensure GDB will receive
714 # control again (e.g. by placing a software breakpoint instruction
715 # into the displaced instruction buffer).
716 #
717 # The default implementation returns false on all targets that
718 # provide a gdbarch_software_single_step routine, and true otherwise.
719 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
720
721 # Fix up the state resulting from successfully single-stepping a
722 # displaced instruction, to give the result we would have gotten from
723 # stepping the instruction in its original location.
724 #
725 # REGS is the register state resulting from single-stepping the
726 # displaced instruction.
727 #
728 # CLOSURE is the result from the matching call to
729 # gdbarch_displaced_step_copy_insn.
730 #
731 # If you provide gdbarch_displaced_step_copy_insn.but not this
732 # function, then GDB assumes that no fixup is needed after
733 # single-stepping the instruction.
734 #
735 # For a general explanation of displaced stepping and how GDB uses it,
736 # see the comments in infrun.c.
737 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
738
739 # Free a closure returned by gdbarch_displaced_step_copy_insn.
740 #
741 # If you provide gdbarch_displaced_step_copy_insn, you must provide
742 # this function as well.
743 #
744 # If your architecture uses closures that don't need to be freed, then
745 # you can use simple_displaced_step_free_closure here.
746 #
747 # For a general explanation of displaced stepping and how GDB uses it,
748 # see the comments in infrun.c.
749 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
750
751 # Return the address of an appropriate place to put displaced
752 # instructions while we step over them. There need only be one such
753 # place, since we're only stepping one thread over a breakpoint at a
754 # time.
755 #
756 # For a general explanation of displaced stepping and how GDB uses it,
757 # see the comments in infrun.c.
758 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
759
760 # Relocate an instruction to execute at a different address. OLDLOC
761 # is the address in the inferior memory where the instruction to
762 # relocate is currently at. On input, TO points to the destination
763 # where we want the instruction to be copied (and possibly adjusted)
764 # to. On output, it points to one past the end of the resulting
765 # instruction(s). The effect of executing the instruction at TO shall
766 # be the same as if executing it at FROM. For example, call
767 # instructions that implicitly push the return address on the stack
768 # should be adjusted to return to the instruction after OLDLOC;
769 # relative branches, and other PC-relative instructions need the
770 # offset adjusted; etc.
771 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
772
773 # Refresh overlay mapped state for section OSECT.
774 F:void:overlay_update:struct obj_section *osect:osect
775
776 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
777
778 # Handle special encoding of static variables in stabs debug info.
779 F:const char *:static_transform_name:const char *name:name
780 # Set if the address in N_SO or N_FUN stabs may be zero.
781 v:int:sofun_address_maybe_missing:::0:0::0
782
783 # Parse the instruction at ADDR storing in the record execution log
784 # the registers REGCACHE and memory ranges that will be affected when
785 # the instruction executes, along with their current values.
786 # Return -1 if something goes wrong, 0 otherwise.
787 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
788
789 # Save process state after a signal.
790 # Return -1 if something goes wrong, 0 otherwise.
791 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
792
793 # Signal translation: translate inferior's signal (target's) number
794 # into GDB's representation. The implementation of this method must
795 # be host independent. IOW, don't rely on symbols of the NAT_FILE
796 # header (the nm-*.h files), the host <signal.h> header, or similar
797 # headers. This is mainly used when cross-debugging core files ---
798 # "Live" targets hide the translation behind the target interface
799 # (target_wait, target_resume, etc.).
800 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
801
802 # Extra signal info inspection.
803 #
804 # Return a type suitable to inspect extra signal information.
805 M:struct type *:get_siginfo_type:void:
806
807 # Record architecture-specific information from the symbol table.
808 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
809
810 # Function for the 'catch syscall' feature.
811
812 # Get architecture-specific system calls information from registers.
813 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
814
815 # SystemTap related fields and functions.
816
817 # Prefix used to mark an integer constant on the architecture's assembly
818 # For example, on x86 integer constants are written as:
819 #
820 # \$10 ;; integer constant 10
821 #
822 # in this case, this prefix would be the character \`\$\'.
823 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
824
825 # Suffix used to mark an integer constant on the architecture's assembly.
826 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
827
828 # Prefix used to mark a register name on the architecture's assembly.
829 # For example, on x86 the register name is written as:
830 #
831 # \%eax ;; register eax
832 #
833 # in this case, this prefix would be the character \`\%\'.
834 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
835
836 # Suffix used to mark a register name on the architecture's assembly
837 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
838
839 # Prefix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\(\'.
845 #
846 # Please note that we use the indirection prefix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
849
850 # Suffix used to mark a register indirection on the architecture's assembly.
851 # For example, on x86 the register indirection is written as:
852 #
853 # \(\%eax\) ;; indirecting eax
854 #
855 # in this case, this prefix would be the charater \`\)\'.
856 #
857 # Please note that we use the indirection suffix also for register
858 # displacement, e.g., \`4\(\%eax\)\' on x86.
859 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
860
861 # Prefix used to name a register using GDB's nomenclature.
862 #
863 # For example, on PPC a register is represented by a number in the assembly
864 # language (e.g., \`10\' is the 10th general-purpose register). However,
865 # inside GDB this same register has an \`r\' appended to its name, so the 10th
866 # register would be represented as \`r10\' internally.
867 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
868
869 # Suffix used to name a register using GDB's nomenclature.
870 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
871
872 # Check if S is a single operand.
873 #
874 # Single operands can be:
875 # \- Literal integers, e.g. \`\$10\' on x86
876 # \- Register access, e.g. \`\%eax\' on x86
877 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
878 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
879 #
880 # This function should check for these patterns on the string
881 # and return 1 if some were found, or zero otherwise. Please try to match
882 # as much info as you can from the string, i.e., if you have to match
883 # something like \`\(\%\', do not match just the \`\(\'.
884 M:int:stap_is_single_operand:const char *s:s
885
886 # Function used to handle a "special case" in the parser.
887 #
888 # A "special case" is considered to be an unknown token, i.e., a token
889 # that the parser does not know how to parse. A good example of special
890 # case would be ARM's register displacement syntax:
891 #
892 # [R0, #4] ;; displacing R0 by 4
893 #
894 # Since the parser assumes that a register displacement is of the form:
895 #
896 # <number> <indirection_prefix> <register_name> <indirection_suffix>
897 #
898 # it means that it will not be able to recognize and parse this odd syntax.
899 # Therefore, we should add a special case function that will handle this token.
900 #
901 # This function should generate the proper expression form of the expression
902 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
903 # and so on). It should also return 1 if the parsing was successful, or zero
904 # if the token was not recognized as a special token (in this case, returning
905 # zero means that the special parser is deferring the parsing to the generic
906 # parser), and should advance the buffer pointer (p->arg).
907 M:int:stap_parse_special_token:struct stap_parse_info *p:p
908
909
910 # True if the list of shared libraries is one and only for all
911 # processes, as opposed to a list of shared libraries per inferior.
912 # This usually means that all processes, although may or may not share
913 # an address space, will see the same set of symbols at the same
914 # addresses.
915 v:int:has_global_solist:::0:0::0
916
917 # On some targets, even though each inferior has its own private
918 # address space, the debug interface takes care of making breakpoints
919 # visible to all address spaces automatically. For such cases,
920 # this property should be set to true.
921 v:int:has_global_breakpoints:::0:0::0
922
923 # True if inferiors share an address space (e.g., uClinux).
924 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
925
926 # True if a fast tracepoint can be set at an address.
927 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
928
929 # Return the "auto" target charset.
930 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
931 # Return the "auto" target wide charset.
932 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
933
934 # If non-empty, this is a file extension that will be opened in place
935 # of the file extension reported by the shared library list.
936 #
937 # This is most useful for toolchains that use a post-linker tool,
938 # where the names of the files run on the target differ in extension
939 # compared to the names of the files GDB should load for debug info.
940 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
941
942 # If true, the target OS has DOS-based file system semantics. That
943 # is, absolute paths include a drive name, and the backslash is
944 # considered a directory separator.
945 v:int:has_dos_based_file_system:::0:0::0
946
947 # Generate bytecodes to collect the return address in a frame.
948 # Since the bytecodes run on the target, possibly with GDB not even
949 # connected, the full unwinding machinery is not available, and
950 # typically this function will issue bytecodes for one or more likely
951 # places that the return address may be found.
952 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
953
954 # Implement the "info proc" command.
955 M:void:info_proc:char *args, enum info_proc_what what:args, what
956
957 # Implement the "info proc" command for core files. Noe that there
958 # are two "info_proc"-like methods on gdbarch -- one for core files,
959 # one for live targets.
960 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
961
962 # Iterate over all objfiles in the order that makes the most sense
963 # for the architecture to make global symbol searches.
964 #
965 # CB is a callback function where OBJFILE is the objfile to be searched,
966 # and CB_DATA a pointer to user-defined data (the same data that is passed
967 # when calling this gdbarch method). The iteration stops if this function
968 # returns nonzero.
969 #
970 # CB_DATA is a pointer to some user-defined data to be passed to
971 # the callback.
972 #
973 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
974 # inspected when the symbol search was requested.
975 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
976
977 # Ravenscar arch-dependent ops.
978 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
979 EOF
980 }
981
982 #
983 # The .log file
984 #
985 exec > new-gdbarch.log
986 function_list | while do_read
987 do
988 cat <<EOF
989 ${class} ${returntype} ${function} ($formal)
990 EOF
991 for r in ${read}
992 do
993 eval echo \"\ \ \ \ ${r}=\${${r}}\"
994 done
995 if class_is_predicate_p && fallback_default_p
996 then
997 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
998 kill $$
999 exit 1
1000 fi
1001 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1002 then
1003 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1004 kill $$
1005 exit 1
1006 fi
1007 if class_is_multiarch_p
1008 then
1009 if class_is_predicate_p ; then :
1010 elif test "x${predefault}" = "x"
1011 then
1012 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1013 kill $$
1014 exit 1
1015 fi
1016 fi
1017 echo ""
1018 done
1019
1020 exec 1>&2
1021 compare_new gdbarch.log
1022
1023
1024 copyright ()
1025 {
1026 cat <<EOF
1027 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1028 /* vi:set ro: */
1029
1030 /* Dynamic architecture support for GDB, the GNU debugger.
1031
1032 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1033
1034 This file is part of GDB.
1035
1036 This program is free software; you can redistribute it and/or modify
1037 it under the terms of the GNU General Public License as published by
1038 the Free Software Foundation; either version 3 of the License, or
1039 (at your option) any later version.
1040
1041 This program is distributed in the hope that it will be useful,
1042 but WITHOUT ANY WARRANTY; without even the implied warranty of
1043 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1044 GNU General Public License for more details.
1045
1046 You should have received a copy of the GNU General Public License
1047 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1048
1049 /* This file was created with the aid of \`\`gdbarch.sh''.
1050
1051 The Bourne shell script \`\`gdbarch.sh'' creates the files
1052 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1053 against the existing \`\`gdbarch.[hc]''. Any differences found
1054 being reported.
1055
1056 If editing this file, please also run gdbarch.sh and merge any
1057 changes into that script. Conversely, when making sweeping changes
1058 to this file, modifying gdbarch.sh and using its output may prove
1059 easier. */
1060
1061 EOF
1062 }
1063
1064 #
1065 # The .h file
1066 #
1067
1068 exec > new-gdbarch.h
1069 copyright
1070 cat <<EOF
1071 #ifndef GDBARCH_H
1072 #define GDBARCH_H
1073
1074 struct floatformat;
1075 struct ui_file;
1076 struct frame_info;
1077 struct value;
1078 struct objfile;
1079 struct obj_section;
1080 struct minimal_symbol;
1081 struct regcache;
1082 struct reggroup;
1083 struct regset;
1084 struct disassemble_info;
1085 struct target_ops;
1086 struct obstack;
1087 struct bp_target_info;
1088 struct target_desc;
1089 struct displaced_step_closure;
1090 struct core_regset_section;
1091 struct syscall;
1092 struct agent_expr;
1093 struct axs_value;
1094 struct stap_parse_info;
1095 struct ravenscar_arch_ops;
1096 struct elf_internal_linux_prpsinfo;
1097
1098 /* The architecture associated with the inferior through the
1099 connection to the target.
1100
1101 The architecture vector provides some information that is really a
1102 property of the inferior, accessed through a particular target:
1103 ptrace operations; the layout of certain RSP packets; the solib_ops
1104 vector; etc. To differentiate architecture accesses to
1105 per-inferior/target properties from
1106 per-thread/per-frame/per-objfile properties, accesses to
1107 per-inferior/target properties should be made through this
1108 gdbarch. */
1109
1110 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1111 extern struct gdbarch *target_gdbarch (void);
1112
1113 /* The initial, default architecture. It uses host values (for want of a better
1114 choice). */
1115 extern struct gdbarch startup_gdbarch;
1116
1117
1118 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1119 gdbarch method. */
1120
1121 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1122 (struct objfile *objfile, void *cb_data);
1123 EOF
1124
1125 # function typedef's
1126 printf "\n"
1127 printf "\n"
1128 printf "/* The following are pre-initialized by GDBARCH. */\n"
1129 function_list | while do_read
1130 do
1131 if class_is_info_p
1132 then
1133 printf "\n"
1134 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1135 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1136 fi
1137 done
1138
1139 # function typedef's
1140 printf "\n"
1141 printf "\n"
1142 printf "/* The following are initialized by the target dependent code. */\n"
1143 function_list | while do_read
1144 do
1145 if [ -n "${comment}" ]
1146 then
1147 echo "${comment}" | sed \
1148 -e '2 s,#,/*,' \
1149 -e '3,$ s,#, ,' \
1150 -e '$ s,$, */,'
1151 fi
1152
1153 if class_is_predicate_p
1154 then
1155 printf "\n"
1156 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1157 fi
1158 if class_is_variable_p
1159 then
1160 printf "\n"
1161 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1162 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1163 fi
1164 if class_is_function_p
1165 then
1166 printf "\n"
1167 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1168 then
1169 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1170 elif class_is_multiarch_p
1171 then
1172 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1173 else
1174 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1175 fi
1176 if [ "x${formal}" = "xvoid" ]
1177 then
1178 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1179 else
1180 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1181 fi
1182 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1183 fi
1184 done
1185
1186 # close it off
1187 cat <<EOF
1188
1189 /* Definition for an unknown syscall, used basically in error-cases. */
1190 #define UNKNOWN_SYSCALL (-1)
1191
1192 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1193
1194
1195 /* Mechanism for co-ordinating the selection of a specific
1196 architecture.
1197
1198 GDB targets (*-tdep.c) can register an interest in a specific
1199 architecture. Other GDB components can register a need to maintain
1200 per-architecture data.
1201
1202 The mechanisms below ensures that there is only a loose connection
1203 between the set-architecture command and the various GDB
1204 components. Each component can independently register their need
1205 to maintain architecture specific data with gdbarch.
1206
1207 Pragmatics:
1208
1209 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1210 didn't scale.
1211
1212 The more traditional mega-struct containing architecture specific
1213 data for all the various GDB components was also considered. Since
1214 GDB is built from a variable number of (fairly independent)
1215 components it was determined that the global aproach was not
1216 applicable. */
1217
1218
1219 /* Register a new architectural family with GDB.
1220
1221 Register support for the specified ARCHITECTURE with GDB. When
1222 gdbarch determines that the specified architecture has been
1223 selected, the corresponding INIT function is called.
1224
1225 --
1226
1227 The INIT function takes two parameters: INFO which contains the
1228 information available to gdbarch about the (possibly new)
1229 architecture; ARCHES which is a list of the previously created
1230 \`\`struct gdbarch'' for this architecture.
1231
1232 The INFO parameter is, as far as possible, be pre-initialized with
1233 information obtained from INFO.ABFD or the global defaults.
1234
1235 The ARCHES parameter is a linked list (sorted most recently used)
1236 of all the previously created architures for this architecture
1237 family. The (possibly NULL) ARCHES->gdbarch can used to access
1238 values from the previously selected architecture for this
1239 architecture family.
1240
1241 The INIT function shall return any of: NULL - indicating that it
1242 doesn't recognize the selected architecture; an existing \`\`struct
1243 gdbarch'' from the ARCHES list - indicating that the new
1244 architecture is just a synonym for an earlier architecture (see
1245 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1246 - that describes the selected architecture (see gdbarch_alloc()).
1247
1248 The DUMP_TDEP function shall print out all target specific values.
1249 Care should be taken to ensure that the function works in both the
1250 multi-arch and non- multi-arch cases. */
1251
1252 struct gdbarch_list
1253 {
1254 struct gdbarch *gdbarch;
1255 struct gdbarch_list *next;
1256 };
1257
1258 struct gdbarch_info
1259 {
1260 /* Use default: NULL (ZERO). */
1261 const struct bfd_arch_info *bfd_arch_info;
1262
1263 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1264 int byte_order;
1265
1266 int byte_order_for_code;
1267
1268 /* Use default: NULL (ZERO). */
1269 bfd *abfd;
1270
1271 /* Use default: NULL (ZERO). */
1272 struct gdbarch_tdep_info *tdep_info;
1273
1274 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1275 enum gdb_osabi osabi;
1276
1277 /* Use default: NULL (ZERO). */
1278 const struct target_desc *target_desc;
1279 };
1280
1281 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1282 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1283
1284 /* DEPRECATED - use gdbarch_register() */
1285 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1286
1287 extern void gdbarch_register (enum bfd_architecture architecture,
1288 gdbarch_init_ftype *,
1289 gdbarch_dump_tdep_ftype *);
1290
1291
1292 /* Return a freshly allocated, NULL terminated, array of the valid
1293 architecture names. Since architectures are registered during the
1294 _initialize phase this function only returns useful information
1295 once initialization has been completed. */
1296
1297 extern const char **gdbarch_printable_names (void);
1298
1299
1300 /* Helper function. Search the list of ARCHES for a GDBARCH that
1301 matches the information provided by INFO. */
1302
1303 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1304
1305
1306 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1307 basic initialization using values obtained from the INFO and TDEP
1308 parameters. set_gdbarch_*() functions are called to complete the
1309 initialization of the object. */
1310
1311 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1312
1313
1314 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1315 It is assumed that the caller freeds the \`\`struct
1316 gdbarch_tdep''. */
1317
1318 extern void gdbarch_free (struct gdbarch *);
1319
1320
1321 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1322 obstack. The memory is freed when the corresponding architecture
1323 is also freed. */
1324
1325 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1326 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1327 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1328
1329
1330 /* Helper function. Force an update of the current architecture.
1331
1332 The actual architecture selected is determined by INFO, \`\`(gdb) set
1333 architecture'' et.al., the existing architecture and BFD's default
1334 architecture. INFO should be initialized to zero and then selected
1335 fields should be updated.
1336
1337 Returns non-zero if the update succeeds. */
1338
1339 extern int gdbarch_update_p (struct gdbarch_info info);
1340
1341
1342 /* Helper function. Find an architecture matching info.
1343
1344 INFO should be initialized using gdbarch_info_init, relevant fields
1345 set, and then finished using gdbarch_info_fill.
1346
1347 Returns the corresponding architecture, or NULL if no matching
1348 architecture was found. */
1349
1350 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1351
1352
1353 /* Helper function. Set the target gdbarch to "gdbarch". */
1354
1355 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1356
1357
1358 /* Register per-architecture data-pointer.
1359
1360 Reserve space for a per-architecture data-pointer. An identifier
1361 for the reserved data-pointer is returned. That identifer should
1362 be saved in a local static variable.
1363
1364 Memory for the per-architecture data shall be allocated using
1365 gdbarch_obstack_zalloc. That memory will be deleted when the
1366 corresponding architecture object is deleted.
1367
1368 When a previously created architecture is re-selected, the
1369 per-architecture data-pointer for that previous architecture is
1370 restored. INIT() is not re-called.
1371
1372 Multiple registrarants for any architecture are allowed (and
1373 strongly encouraged). */
1374
1375 struct gdbarch_data;
1376
1377 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1378 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1379 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1380 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1381 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1382 struct gdbarch_data *data,
1383 void *pointer);
1384
1385 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1386
1387
1388 /* Set the dynamic target-system-dependent parameters (architecture,
1389 byte-order, ...) using information found in the BFD. */
1390
1391 extern void set_gdbarch_from_file (bfd *);
1392
1393
1394 /* Initialize the current architecture to the "first" one we find on
1395 our list. */
1396
1397 extern void initialize_current_architecture (void);
1398
1399 /* gdbarch trace variable */
1400 extern unsigned int gdbarch_debug;
1401
1402 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1403
1404 #endif
1405 EOF
1406 exec 1>&2
1407 #../move-if-change new-gdbarch.h gdbarch.h
1408 compare_new gdbarch.h
1409
1410
1411 #
1412 # C file
1413 #
1414
1415 exec > new-gdbarch.c
1416 copyright
1417 cat <<EOF
1418
1419 #include "defs.h"
1420 #include "arch-utils.h"
1421
1422 #include "gdbcmd.h"
1423 #include "inferior.h"
1424 #include "symcat.h"
1425
1426 #include "floatformat.h"
1427
1428 #include "gdb_assert.h"
1429 #include "gdb_string.h"
1430 #include "reggroups.h"
1431 #include "osabi.h"
1432 #include "gdb_obstack.h"
1433 #include "observer.h"
1434 #include "regcache.h"
1435 #include "objfiles.h"
1436
1437 /* Static function declarations */
1438
1439 static void alloc_gdbarch_data (struct gdbarch *);
1440
1441 /* Non-zero if we want to trace architecture code. */
1442
1443 #ifndef GDBARCH_DEBUG
1444 #define GDBARCH_DEBUG 0
1445 #endif
1446 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1447 static void
1448 show_gdbarch_debug (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c, const char *value)
1450 {
1451 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1452 }
1453
1454 static const char *
1455 pformat (const struct floatformat **format)
1456 {
1457 if (format == NULL)
1458 return "(null)";
1459 else
1460 /* Just print out one of them - this is only for diagnostics. */
1461 return format[0]->name;
1462 }
1463
1464 static const char *
1465 pstring (const char *string)
1466 {
1467 if (string == NULL)
1468 return "(null)";
1469 return string;
1470 }
1471
1472 EOF
1473
1474 # gdbarch open the gdbarch object
1475 printf "\n"
1476 printf "/* Maintain the struct gdbarch object. */\n"
1477 printf "\n"
1478 printf "struct gdbarch\n"
1479 printf "{\n"
1480 printf " /* Has this architecture been fully initialized? */\n"
1481 printf " int initialized_p;\n"
1482 printf "\n"
1483 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1484 printf " struct obstack *obstack;\n"
1485 printf "\n"
1486 printf " /* basic architectural information. */\n"
1487 function_list | while do_read
1488 do
1489 if class_is_info_p
1490 then
1491 printf " ${returntype} ${function};\n"
1492 fi
1493 done
1494 printf "\n"
1495 printf " /* target specific vector. */\n"
1496 printf " struct gdbarch_tdep *tdep;\n"
1497 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1498 printf "\n"
1499 printf " /* per-architecture data-pointers. */\n"
1500 printf " unsigned nr_data;\n"
1501 printf " void **data;\n"
1502 printf "\n"
1503 cat <<EOF
1504 /* Multi-arch values.
1505
1506 When extending this structure you must:
1507
1508 Add the field below.
1509
1510 Declare set/get functions and define the corresponding
1511 macro in gdbarch.h.
1512
1513 gdbarch_alloc(): If zero/NULL is not a suitable default,
1514 initialize the new field.
1515
1516 verify_gdbarch(): Confirm that the target updated the field
1517 correctly.
1518
1519 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1520 field is dumped out
1521
1522 \`\`startup_gdbarch()'': Append an initial value to the static
1523 variable (base values on the host's c-type system).
1524
1525 get_gdbarch(): Implement the set/get functions (probably using
1526 the macro's as shortcuts).
1527
1528 */
1529
1530 EOF
1531 function_list | while do_read
1532 do
1533 if class_is_variable_p
1534 then
1535 printf " ${returntype} ${function};\n"
1536 elif class_is_function_p
1537 then
1538 printf " gdbarch_${function}_ftype *${function};\n"
1539 fi
1540 done
1541 printf "};\n"
1542
1543 # A pre-initialized vector
1544 printf "\n"
1545 printf "\n"
1546 cat <<EOF
1547 /* The default architecture uses host values (for want of a better
1548 choice). */
1549 EOF
1550 printf "\n"
1551 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1552 printf "\n"
1553 printf "struct gdbarch startup_gdbarch =\n"
1554 printf "{\n"
1555 printf " 1, /* Always initialized. */\n"
1556 printf " NULL, /* The obstack. */\n"
1557 printf " /* basic architecture information. */\n"
1558 function_list | while do_read
1559 do
1560 if class_is_info_p
1561 then
1562 printf " ${staticdefault}, /* ${function} */\n"
1563 fi
1564 done
1565 cat <<EOF
1566 /* target specific vector and its dump routine. */
1567 NULL, NULL,
1568 /*per-architecture data-pointers. */
1569 0, NULL,
1570 /* Multi-arch values */
1571 EOF
1572 function_list | while do_read
1573 do
1574 if class_is_function_p || class_is_variable_p
1575 then
1576 printf " ${staticdefault}, /* ${function} */\n"
1577 fi
1578 done
1579 cat <<EOF
1580 /* startup_gdbarch() */
1581 };
1582
1583 EOF
1584
1585 # Create a new gdbarch struct
1586 cat <<EOF
1587
1588 /* Create a new \`\`struct gdbarch'' based on information provided by
1589 \`\`struct gdbarch_info''. */
1590 EOF
1591 printf "\n"
1592 cat <<EOF
1593 struct gdbarch *
1594 gdbarch_alloc (const struct gdbarch_info *info,
1595 struct gdbarch_tdep *tdep)
1596 {
1597 struct gdbarch *gdbarch;
1598
1599 /* Create an obstack for allocating all the per-architecture memory,
1600 then use that to allocate the architecture vector. */
1601 struct obstack *obstack = XMALLOC (struct obstack);
1602 obstack_init (obstack);
1603 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1604 memset (gdbarch, 0, sizeof (*gdbarch));
1605 gdbarch->obstack = obstack;
1606
1607 alloc_gdbarch_data (gdbarch);
1608
1609 gdbarch->tdep = tdep;
1610 EOF
1611 printf "\n"
1612 function_list | while do_read
1613 do
1614 if class_is_info_p
1615 then
1616 printf " gdbarch->${function} = info->${function};\n"
1617 fi
1618 done
1619 printf "\n"
1620 printf " /* Force the explicit initialization of these. */\n"
1621 function_list | while do_read
1622 do
1623 if class_is_function_p || class_is_variable_p
1624 then
1625 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1626 then
1627 printf " gdbarch->${function} = ${predefault};\n"
1628 fi
1629 fi
1630 done
1631 cat <<EOF
1632 /* gdbarch_alloc() */
1633
1634 return gdbarch;
1635 }
1636 EOF
1637
1638 # Free a gdbarch struct.
1639 printf "\n"
1640 printf "\n"
1641 cat <<EOF
1642 /* Allocate extra space using the per-architecture obstack. */
1643
1644 void *
1645 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1646 {
1647 void *data = obstack_alloc (arch->obstack, size);
1648
1649 memset (data, 0, size);
1650 return data;
1651 }
1652
1653
1654 /* Free a gdbarch struct. This should never happen in normal
1655 operation --- once you've created a gdbarch, you keep it around.
1656 However, if an architecture's init function encounters an error
1657 building the structure, it may need to clean up a partially
1658 constructed gdbarch. */
1659
1660 void
1661 gdbarch_free (struct gdbarch *arch)
1662 {
1663 struct obstack *obstack;
1664
1665 gdb_assert (arch != NULL);
1666 gdb_assert (!arch->initialized_p);
1667 obstack = arch->obstack;
1668 obstack_free (obstack, 0); /* Includes the ARCH. */
1669 xfree (obstack);
1670 }
1671 EOF
1672
1673 # verify a new architecture
1674 cat <<EOF
1675
1676
1677 /* Ensure that all values in a GDBARCH are reasonable. */
1678
1679 static void
1680 verify_gdbarch (struct gdbarch *gdbarch)
1681 {
1682 struct ui_file *log;
1683 struct cleanup *cleanups;
1684 long length;
1685 char *buf;
1686
1687 log = mem_fileopen ();
1688 cleanups = make_cleanup_ui_file_delete (log);
1689 /* fundamental */
1690 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1691 fprintf_unfiltered (log, "\n\tbyte-order");
1692 if (gdbarch->bfd_arch_info == NULL)
1693 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1694 /* Check those that need to be defined for the given multi-arch level. */
1695 EOF
1696 function_list | while do_read
1697 do
1698 if class_is_function_p || class_is_variable_p
1699 then
1700 if [ "x${invalid_p}" = "x0" ]
1701 then
1702 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1703 elif class_is_predicate_p
1704 then
1705 printf " /* Skip verify of ${function}, has predicate. */\n"
1706 # FIXME: See do_read for potential simplification
1707 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1708 then
1709 printf " if (${invalid_p})\n"
1710 printf " gdbarch->${function} = ${postdefault};\n"
1711 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1712 then
1713 printf " if (gdbarch->${function} == ${predefault})\n"
1714 printf " gdbarch->${function} = ${postdefault};\n"
1715 elif [ -n "${postdefault}" ]
1716 then
1717 printf " if (gdbarch->${function} == 0)\n"
1718 printf " gdbarch->${function} = ${postdefault};\n"
1719 elif [ -n "${invalid_p}" ]
1720 then
1721 printf " if (${invalid_p})\n"
1722 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1723 elif [ -n "${predefault}" ]
1724 then
1725 printf " if (gdbarch->${function} == ${predefault})\n"
1726 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1727 fi
1728 fi
1729 done
1730 cat <<EOF
1731 buf = ui_file_xstrdup (log, &length);
1732 make_cleanup (xfree, buf);
1733 if (length > 0)
1734 internal_error (__FILE__, __LINE__,
1735 _("verify_gdbarch: the following are invalid ...%s"),
1736 buf);
1737 do_cleanups (cleanups);
1738 }
1739 EOF
1740
1741 # dump the structure
1742 printf "\n"
1743 printf "\n"
1744 cat <<EOF
1745 /* Print out the details of the current architecture. */
1746
1747 void
1748 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1749 {
1750 const char *gdb_nm_file = "<not-defined>";
1751
1752 #if defined (GDB_NM_FILE)
1753 gdb_nm_file = GDB_NM_FILE;
1754 #endif
1755 fprintf_unfiltered (file,
1756 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1757 gdb_nm_file);
1758 EOF
1759 function_list | sort -t: -k 3 | while do_read
1760 do
1761 # First the predicate
1762 if class_is_predicate_p
1763 then
1764 printf " fprintf_unfiltered (file,\n"
1765 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1766 printf " gdbarch_${function}_p (gdbarch));\n"
1767 fi
1768 # Print the corresponding value.
1769 if class_is_function_p
1770 then
1771 printf " fprintf_unfiltered (file,\n"
1772 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1773 printf " host_address_to_string (gdbarch->${function}));\n"
1774 else
1775 # It is a variable
1776 case "${print}:${returntype}" in
1777 :CORE_ADDR )
1778 fmt="%s"
1779 print="core_addr_to_string_nz (gdbarch->${function})"
1780 ;;
1781 :* )
1782 fmt="%s"
1783 print="plongest (gdbarch->${function})"
1784 ;;
1785 * )
1786 fmt="%s"
1787 ;;
1788 esac
1789 printf " fprintf_unfiltered (file,\n"
1790 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1791 printf " ${print});\n"
1792 fi
1793 done
1794 cat <<EOF
1795 if (gdbarch->dump_tdep != NULL)
1796 gdbarch->dump_tdep (gdbarch, file);
1797 }
1798 EOF
1799
1800
1801 # GET/SET
1802 printf "\n"
1803 cat <<EOF
1804 struct gdbarch_tdep *
1805 gdbarch_tdep (struct gdbarch *gdbarch)
1806 {
1807 if (gdbarch_debug >= 2)
1808 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1809 return gdbarch->tdep;
1810 }
1811 EOF
1812 printf "\n"
1813 function_list | while do_read
1814 do
1815 if class_is_predicate_p
1816 then
1817 printf "\n"
1818 printf "int\n"
1819 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1820 printf "{\n"
1821 printf " gdb_assert (gdbarch != NULL);\n"
1822 printf " return ${predicate};\n"
1823 printf "}\n"
1824 fi
1825 if class_is_function_p
1826 then
1827 printf "\n"
1828 printf "${returntype}\n"
1829 if [ "x${formal}" = "xvoid" ]
1830 then
1831 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1832 else
1833 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1834 fi
1835 printf "{\n"
1836 printf " gdb_assert (gdbarch != NULL);\n"
1837 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1838 if class_is_predicate_p && test -n "${predefault}"
1839 then
1840 # Allow a call to a function with a predicate.
1841 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1842 fi
1843 printf " if (gdbarch_debug >= 2)\n"
1844 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1845 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1846 then
1847 if class_is_multiarch_p
1848 then
1849 params="gdbarch"
1850 else
1851 params=""
1852 fi
1853 else
1854 if class_is_multiarch_p
1855 then
1856 params="gdbarch, ${actual}"
1857 else
1858 params="${actual}"
1859 fi
1860 fi
1861 if [ "x${returntype}" = "xvoid" ]
1862 then
1863 printf " gdbarch->${function} (${params});\n"
1864 else
1865 printf " return gdbarch->${function} (${params});\n"
1866 fi
1867 printf "}\n"
1868 printf "\n"
1869 printf "void\n"
1870 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1871 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1872 printf "{\n"
1873 printf " gdbarch->${function} = ${function};\n"
1874 printf "}\n"
1875 elif class_is_variable_p
1876 then
1877 printf "\n"
1878 printf "${returntype}\n"
1879 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1880 printf "{\n"
1881 printf " gdb_assert (gdbarch != NULL);\n"
1882 if [ "x${invalid_p}" = "x0" ]
1883 then
1884 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1885 elif [ -n "${invalid_p}" ]
1886 then
1887 printf " /* Check variable is valid. */\n"
1888 printf " gdb_assert (!(${invalid_p}));\n"
1889 elif [ -n "${predefault}" ]
1890 then
1891 printf " /* Check variable changed from pre-default. */\n"
1892 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1893 fi
1894 printf " if (gdbarch_debug >= 2)\n"
1895 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1896 printf " return gdbarch->${function};\n"
1897 printf "}\n"
1898 printf "\n"
1899 printf "void\n"
1900 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1901 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1902 printf "{\n"
1903 printf " gdbarch->${function} = ${function};\n"
1904 printf "}\n"
1905 elif class_is_info_p
1906 then
1907 printf "\n"
1908 printf "${returntype}\n"
1909 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1910 printf "{\n"
1911 printf " gdb_assert (gdbarch != NULL);\n"
1912 printf " if (gdbarch_debug >= 2)\n"
1913 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1914 printf " return gdbarch->${function};\n"
1915 printf "}\n"
1916 fi
1917 done
1918
1919 # All the trailing guff
1920 cat <<EOF
1921
1922
1923 /* Keep a registry of per-architecture data-pointers required by GDB
1924 modules. */
1925
1926 struct gdbarch_data
1927 {
1928 unsigned index;
1929 int init_p;
1930 gdbarch_data_pre_init_ftype *pre_init;
1931 gdbarch_data_post_init_ftype *post_init;
1932 };
1933
1934 struct gdbarch_data_registration
1935 {
1936 struct gdbarch_data *data;
1937 struct gdbarch_data_registration *next;
1938 };
1939
1940 struct gdbarch_data_registry
1941 {
1942 unsigned nr;
1943 struct gdbarch_data_registration *registrations;
1944 };
1945
1946 struct gdbarch_data_registry gdbarch_data_registry =
1947 {
1948 0, NULL,
1949 };
1950
1951 static struct gdbarch_data *
1952 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1953 gdbarch_data_post_init_ftype *post_init)
1954 {
1955 struct gdbarch_data_registration **curr;
1956
1957 /* Append the new registration. */
1958 for (curr = &gdbarch_data_registry.registrations;
1959 (*curr) != NULL;
1960 curr = &(*curr)->next);
1961 (*curr) = XMALLOC (struct gdbarch_data_registration);
1962 (*curr)->next = NULL;
1963 (*curr)->data = XMALLOC (struct gdbarch_data);
1964 (*curr)->data->index = gdbarch_data_registry.nr++;
1965 (*curr)->data->pre_init = pre_init;
1966 (*curr)->data->post_init = post_init;
1967 (*curr)->data->init_p = 1;
1968 return (*curr)->data;
1969 }
1970
1971 struct gdbarch_data *
1972 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1973 {
1974 return gdbarch_data_register (pre_init, NULL);
1975 }
1976
1977 struct gdbarch_data *
1978 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1979 {
1980 return gdbarch_data_register (NULL, post_init);
1981 }
1982
1983 /* Create/delete the gdbarch data vector. */
1984
1985 static void
1986 alloc_gdbarch_data (struct gdbarch *gdbarch)
1987 {
1988 gdb_assert (gdbarch->data == NULL);
1989 gdbarch->nr_data = gdbarch_data_registry.nr;
1990 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1991 }
1992
1993 /* Initialize the current value of the specified per-architecture
1994 data-pointer. */
1995
1996 void
1997 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1998 struct gdbarch_data *data,
1999 void *pointer)
2000 {
2001 gdb_assert (data->index < gdbarch->nr_data);
2002 gdb_assert (gdbarch->data[data->index] == NULL);
2003 gdb_assert (data->pre_init == NULL);
2004 gdbarch->data[data->index] = pointer;
2005 }
2006
2007 /* Return the current value of the specified per-architecture
2008 data-pointer. */
2009
2010 void *
2011 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2012 {
2013 gdb_assert (data->index < gdbarch->nr_data);
2014 if (gdbarch->data[data->index] == NULL)
2015 {
2016 /* The data-pointer isn't initialized, call init() to get a
2017 value. */
2018 if (data->pre_init != NULL)
2019 /* Mid architecture creation: pass just the obstack, and not
2020 the entire architecture, as that way it isn't possible for
2021 pre-init code to refer to undefined architecture
2022 fields. */
2023 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2024 else if (gdbarch->initialized_p
2025 && data->post_init != NULL)
2026 /* Post architecture creation: pass the entire architecture
2027 (as all fields are valid), but be careful to also detect
2028 recursive references. */
2029 {
2030 gdb_assert (data->init_p);
2031 data->init_p = 0;
2032 gdbarch->data[data->index] = data->post_init (gdbarch);
2033 data->init_p = 1;
2034 }
2035 else
2036 /* The architecture initialization hasn't completed - punt -
2037 hope that the caller knows what they are doing. Once
2038 deprecated_set_gdbarch_data has been initialized, this can be
2039 changed to an internal error. */
2040 return NULL;
2041 gdb_assert (gdbarch->data[data->index] != NULL);
2042 }
2043 return gdbarch->data[data->index];
2044 }
2045
2046
2047 /* Keep a registry of the architectures known by GDB. */
2048
2049 struct gdbarch_registration
2050 {
2051 enum bfd_architecture bfd_architecture;
2052 gdbarch_init_ftype *init;
2053 gdbarch_dump_tdep_ftype *dump_tdep;
2054 struct gdbarch_list *arches;
2055 struct gdbarch_registration *next;
2056 };
2057
2058 static struct gdbarch_registration *gdbarch_registry = NULL;
2059
2060 static void
2061 append_name (const char ***buf, int *nr, const char *name)
2062 {
2063 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2064 (*buf)[*nr] = name;
2065 *nr += 1;
2066 }
2067
2068 const char **
2069 gdbarch_printable_names (void)
2070 {
2071 /* Accumulate a list of names based on the registed list of
2072 architectures. */
2073 int nr_arches = 0;
2074 const char **arches = NULL;
2075 struct gdbarch_registration *rego;
2076
2077 for (rego = gdbarch_registry;
2078 rego != NULL;
2079 rego = rego->next)
2080 {
2081 const struct bfd_arch_info *ap;
2082 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2083 if (ap == NULL)
2084 internal_error (__FILE__, __LINE__,
2085 _("gdbarch_architecture_names: multi-arch unknown"));
2086 do
2087 {
2088 append_name (&arches, &nr_arches, ap->printable_name);
2089 ap = ap->next;
2090 }
2091 while (ap != NULL);
2092 }
2093 append_name (&arches, &nr_arches, NULL);
2094 return arches;
2095 }
2096
2097
2098 void
2099 gdbarch_register (enum bfd_architecture bfd_architecture,
2100 gdbarch_init_ftype *init,
2101 gdbarch_dump_tdep_ftype *dump_tdep)
2102 {
2103 struct gdbarch_registration **curr;
2104 const struct bfd_arch_info *bfd_arch_info;
2105
2106 /* Check that BFD recognizes this architecture */
2107 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2108 if (bfd_arch_info == NULL)
2109 {
2110 internal_error (__FILE__, __LINE__,
2111 _("gdbarch: Attempt to register "
2112 "unknown architecture (%d)"),
2113 bfd_architecture);
2114 }
2115 /* Check that we haven't seen this architecture before. */
2116 for (curr = &gdbarch_registry;
2117 (*curr) != NULL;
2118 curr = &(*curr)->next)
2119 {
2120 if (bfd_architecture == (*curr)->bfd_architecture)
2121 internal_error (__FILE__, __LINE__,
2122 _("gdbarch: Duplicate registration "
2123 "of architecture (%s)"),
2124 bfd_arch_info->printable_name);
2125 }
2126 /* log it */
2127 if (gdbarch_debug)
2128 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2129 bfd_arch_info->printable_name,
2130 host_address_to_string (init));
2131 /* Append it */
2132 (*curr) = XMALLOC (struct gdbarch_registration);
2133 (*curr)->bfd_architecture = bfd_architecture;
2134 (*curr)->init = init;
2135 (*curr)->dump_tdep = dump_tdep;
2136 (*curr)->arches = NULL;
2137 (*curr)->next = NULL;
2138 }
2139
2140 void
2141 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2142 gdbarch_init_ftype *init)
2143 {
2144 gdbarch_register (bfd_architecture, init, NULL);
2145 }
2146
2147
2148 /* Look for an architecture using gdbarch_info. */
2149
2150 struct gdbarch_list *
2151 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2152 const struct gdbarch_info *info)
2153 {
2154 for (; arches != NULL; arches = arches->next)
2155 {
2156 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2157 continue;
2158 if (info->byte_order != arches->gdbarch->byte_order)
2159 continue;
2160 if (info->osabi != arches->gdbarch->osabi)
2161 continue;
2162 if (info->target_desc != arches->gdbarch->target_desc)
2163 continue;
2164 return arches;
2165 }
2166 return NULL;
2167 }
2168
2169
2170 /* Find an architecture that matches the specified INFO. Create a new
2171 architecture if needed. Return that new architecture. */
2172
2173 struct gdbarch *
2174 gdbarch_find_by_info (struct gdbarch_info info)
2175 {
2176 struct gdbarch *new_gdbarch;
2177 struct gdbarch_registration *rego;
2178
2179 /* Fill in missing parts of the INFO struct using a number of
2180 sources: "set ..."; INFOabfd supplied; and the global
2181 defaults. */
2182 gdbarch_info_fill (&info);
2183
2184 /* Must have found some sort of architecture. */
2185 gdb_assert (info.bfd_arch_info != NULL);
2186
2187 if (gdbarch_debug)
2188 {
2189 fprintf_unfiltered (gdb_stdlog,
2190 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2191 (info.bfd_arch_info != NULL
2192 ? info.bfd_arch_info->printable_name
2193 : "(null)"));
2194 fprintf_unfiltered (gdb_stdlog,
2195 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2196 info.byte_order,
2197 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2198 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2199 : "default"));
2200 fprintf_unfiltered (gdb_stdlog,
2201 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2202 info.osabi, gdbarch_osabi_name (info.osabi));
2203 fprintf_unfiltered (gdb_stdlog,
2204 "gdbarch_find_by_info: info.abfd %s\n",
2205 host_address_to_string (info.abfd));
2206 fprintf_unfiltered (gdb_stdlog,
2207 "gdbarch_find_by_info: info.tdep_info %s\n",
2208 host_address_to_string (info.tdep_info));
2209 }
2210
2211 /* Find the tdep code that knows about this architecture. */
2212 for (rego = gdbarch_registry;
2213 rego != NULL;
2214 rego = rego->next)
2215 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2216 break;
2217 if (rego == NULL)
2218 {
2219 if (gdbarch_debug)
2220 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2221 "No matching architecture\n");
2222 return 0;
2223 }
2224
2225 /* Ask the tdep code for an architecture that matches "info". */
2226 new_gdbarch = rego->init (info, rego->arches);
2227
2228 /* Did the tdep code like it? No. Reject the change and revert to
2229 the old architecture. */
2230 if (new_gdbarch == NULL)
2231 {
2232 if (gdbarch_debug)
2233 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2234 "Target rejected architecture\n");
2235 return NULL;
2236 }
2237
2238 /* Is this a pre-existing architecture (as determined by already
2239 being initialized)? Move it to the front of the architecture
2240 list (keeping the list sorted Most Recently Used). */
2241 if (new_gdbarch->initialized_p)
2242 {
2243 struct gdbarch_list **list;
2244 struct gdbarch_list *this;
2245 if (gdbarch_debug)
2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2247 "Previous architecture %s (%s) selected\n",
2248 host_address_to_string (new_gdbarch),
2249 new_gdbarch->bfd_arch_info->printable_name);
2250 /* Find the existing arch in the list. */
2251 for (list = &rego->arches;
2252 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2253 list = &(*list)->next);
2254 /* It had better be in the list of architectures. */
2255 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2256 /* Unlink THIS. */
2257 this = (*list);
2258 (*list) = this->next;
2259 /* Insert THIS at the front. */
2260 this->next = rego->arches;
2261 rego->arches = this;
2262 /* Return it. */
2263 return new_gdbarch;
2264 }
2265
2266 /* It's a new architecture. */
2267 if (gdbarch_debug)
2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2269 "New architecture %s (%s) selected\n",
2270 host_address_to_string (new_gdbarch),
2271 new_gdbarch->bfd_arch_info->printable_name);
2272
2273 /* Insert the new architecture into the front of the architecture
2274 list (keep the list sorted Most Recently Used). */
2275 {
2276 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2277 this->next = rego->arches;
2278 this->gdbarch = new_gdbarch;
2279 rego->arches = this;
2280 }
2281
2282 /* Check that the newly installed architecture is valid. Plug in
2283 any post init values. */
2284 new_gdbarch->dump_tdep = rego->dump_tdep;
2285 verify_gdbarch (new_gdbarch);
2286 new_gdbarch->initialized_p = 1;
2287
2288 if (gdbarch_debug)
2289 gdbarch_dump (new_gdbarch, gdb_stdlog);
2290
2291 return new_gdbarch;
2292 }
2293
2294 /* Make the specified architecture current. */
2295
2296 void
2297 set_target_gdbarch (struct gdbarch *new_gdbarch)
2298 {
2299 gdb_assert (new_gdbarch != NULL);
2300 gdb_assert (new_gdbarch->initialized_p);
2301 current_inferior ()->gdbarch = new_gdbarch;
2302 observer_notify_architecture_changed (new_gdbarch);
2303 registers_changed ();
2304 }
2305
2306 /* Return the current inferior's arch. */
2307
2308 struct gdbarch *
2309 target_gdbarch (void)
2310 {
2311 return current_inferior ()->gdbarch;
2312 }
2313
2314 extern void _initialize_gdbarch (void);
2315
2316 void
2317 _initialize_gdbarch (void)
2318 {
2319 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2320 Set architecture debugging."), _("\\
2321 Show architecture debugging."), _("\\
2322 When non-zero, architecture debugging is enabled."),
2323 NULL,
2324 show_gdbarch_debug,
2325 &setdebuglist, &showdebuglist);
2326 }
2327 EOF
2328
2329 # close things off
2330 exec 1>&2
2331 #../move-if-change new-gdbarch.c gdbarch.c
2332 compare_new gdbarch.c
This page took 0.20375 seconds and 4 git commands to generate.