* gdbarch.sh (regset_from_core_section): New method.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457 # that updates PC, NPC and even NNPC.
458 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
473 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
644 # to frame_align and the requirement that methods such as
645 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
646 # alignment.
647 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
648 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
649 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
650 # stabs_argument_has_addr.
651 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
652 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
653 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
654 v:2:PARM_BOUNDARY:int:parm_boundary
655 #
656 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
657 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
658 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
659 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
660 # On some machines there are bits in addresses which are not really
661 # part of the address, but are used by the kernel, the hardware, etc.
662 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
663 # we get a "real" address such as one would find in a symbol table.
664 # This is used only for addresses of instructions, and even then I'm
665 # not sure it's used in all contexts. It exists to deal with there
666 # being a few stray bits in the PC which would mislead us, not as some
667 # sort of generic thing to handle alignment or segmentation (it's
668 # possible it should be in TARGET_READ_PC instead).
669 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
670 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
671 # ADDR_BITS_REMOVE.
672 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
673 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
674 # the target needs software single step. An ISA method to implement it.
675 #
676 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
677 # using the breakpoint system instead of blatting memory directly (as with rs6000).
678 #
679 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
680 # single step. If not, then implement single step using breakpoints.
681 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
682 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
683 # disassembler. Perhaphs objdump can handle it?
684 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
685 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
686
687
688 # For SVR4 shared libraries, each call goes through a small piece of
689 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
690 # to nonzero if we are currently stopped in one of these.
691 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
692
693 # Some systems also have trampoline code for returning from shared libs.
694 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
695
696 # Sigtramp is a routine that the kernel calls (which then calls the
697 # signal handler). On most machines it is a library routine that is
698 # linked into the executable.
699 #
700 # This macro, given a program counter value and the name of the
701 # function in which that PC resides (which can be null if the name is
702 # not known), returns nonzero if the PC and name show that we are in
703 # sigtramp.
704 #
705 # On most machines just see if the name is sigtramp (and if we have
706 # no name, assume we are not in sigtramp).
707 #
708 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
709 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
710 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
711 # own local NAME lookup.
712 #
713 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
714 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
715 # does not.
716 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
717 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
718 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
719 # A target might have problems with watchpoints as soon as the stack
720 # frame of the current function has been destroyed. This mostly happens
721 # as the first action in a funtion's epilogue. in_function_epilogue_p()
722 # is defined to return a non-zero value if either the given addr is one
723 # instruction after the stack destroying instruction up to the trailing
724 # return instruction or if we can figure out that the stack frame has
725 # already been invalidated regardless of the value of addr. Targets
726 # which don't suffer from that problem could just let this functionality
727 # untouched.
728 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
729 # Given a vector of command-line arguments, return a newly allocated
730 # string which, when passed to the create_inferior function, will be
731 # parsed (on Unix systems, by the shell) to yield the same vector.
732 # This function should call error() if the argument vector is not
733 # representable for this target or if this target does not support
734 # command-line arguments.
735 # ARGC is the number of elements in the vector.
736 # ARGV is an array of strings, one per argument.
737 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
738 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
739 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
740 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
741 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
742 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
743 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
744 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
745 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
746 # Is a register in a group
747 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
748 # Fetch the pointer to the ith function argument.
749 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
750
751 # Return the appropriate register set for a core file section with
752 # name SECT_NAME and size SECT_SIZE.
753 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
754 EOF
755 }
756
757 #
758 # The .log file
759 #
760 exec > new-gdbarch.log
761 function_list | while do_read
762 do
763 cat <<EOF
764 ${class} ${macro}(${actual})
765 ${returntype} ${function} ($formal)${attrib}
766 EOF
767 for r in ${read}
768 do
769 eval echo \"\ \ \ \ ${r}=\${${r}}\"
770 done
771 if class_is_predicate_p && fallback_default_p
772 then
773 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
774 kill $$
775 exit 1
776 fi
777 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
778 then
779 echo "Error: postdefault is useless when invalid_p=0" 1>&2
780 kill $$
781 exit 1
782 fi
783 if class_is_multiarch_p
784 then
785 if class_is_predicate_p ; then :
786 elif test "x${predefault}" = "x"
787 then
788 echo "Error: pure multi-arch function must have a predefault" 1>&2
789 kill $$
790 exit 1
791 fi
792 fi
793 echo ""
794 done
795
796 exec 1>&2
797 compare_new gdbarch.log
798
799
800 copyright ()
801 {
802 cat <<EOF
803 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
804
805 /* Dynamic architecture support for GDB, the GNU debugger.
806 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
807
808 This file is part of GDB.
809
810 This program is free software; you can redistribute it and/or modify
811 it under the terms of the GNU General Public License as published by
812 the Free Software Foundation; either version 2 of the License, or
813 (at your option) any later version.
814
815 This program is distributed in the hope that it will be useful,
816 but WITHOUT ANY WARRANTY; without even the implied warranty of
817 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
818 GNU General Public License for more details.
819
820 You should have received a copy of the GNU General Public License
821 along with this program; if not, write to the Free Software
822 Foundation, Inc., 59 Temple Place - Suite 330,
823 Boston, MA 02111-1307, USA. */
824
825 /* This file was created with the aid of \`\`gdbarch.sh''.
826
827 The Bourne shell script \`\`gdbarch.sh'' creates the files
828 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
829 against the existing \`\`gdbarch.[hc]''. Any differences found
830 being reported.
831
832 If editing this file, please also run gdbarch.sh and merge any
833 changes into that script. Conversely, when making sweeping changes
834 to this file, modifying gdbarch.sh and using its output may prove
835 easier. */
836
837 EOF
838 }
839
840 #
841 # The .h file
842 #
843
844 exec > new-gdbarch.h
845 copyright
846 cat <<EOF
847 #ifndef GDBARCH_H
848 #define GDBARCH_H
849
850 struct floatformat;
851 struct ui_file;
852 struct frame_info;
853 struct value;
854 struct objfile;
855 struct minimal_symbol;
856 struct regcache;
857 struct reggroup;
858 struct regset;
859 struct disassemble_info;
860
861 extern struct gdbarch *current_gdbarch;
862
863
864 /* If any of the following are defined, the target wasn't correctly
865 converted. */
866
867 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
868 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
869 #endif
870 EOF
871
872 # function typedef's
873 printf "\n"
874 printf "\n"
875 printf "/* The following are pre-initialized by GDBARCH. */\n"
876 function_list | while do_read
877 do
878 if class_is_info_p
879 then
880 printf "\n"
881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
882 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
883 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
884 printf "#error \"Non multi-arch definition of ${macro}\"\n"
885 printf "#endif\n"
886 printf "#if !defined (${macro})\n"
887 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
888 printf "#endif\n"
889 fi
890 done
891
892 # function typedef's
893 printf "\n"
894 printf "\n"
895 printf "/* The following are initialized by the target dependent code. */\n"
896 function_list | while do_read
897 do
898 if [ -n "${comment}" ]
899 then
900 echo "${comment}" | sed \
901 -e '2 s,#,/*,' \
902 -e '3,$ s,#, ,' \
903 -e '$ s,$, */,'
904 fi
905 if class_is_multiarch_p
906 then
907 if class_is_predicate_p
908 then
909 printf "\n"
910 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
911 fi
912 else
913 if class_is_predicate_p
914 then
915 printf "\n"
916 printf "#if defined (${macro})\n"
917 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
918 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
919 printf "#if !defined (${macro}_P)\n"
920 printf "#define ${macro}_P() (1)\n"
921 printf "#endif\n"
922 printf "#endif\n"
923 printf "\n"
924 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
926 printf "#error \"Non multi-arch definition of ${macro}\"\n"
927 printf "#endif\n"
928 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
929 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
930 printf "#endif\n"
931 fi
932 fi
933 if class_is_variable_p
934 then
935 printf "\n"
936 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
937 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
938 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
939 printf "#error \"Non multi-arch definition of ${macro}\"\n"
940 printf "#endif\n"
941 printf "#if !defined (${macro})\n"
942 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
943 printf "#endif\n"
944 fi
945 if class_is_function_p
946 then
947 printf "\n"
948 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
949 then
950 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
951 elif class_is_multiarch_p
952 then
953 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
954 else
955 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
956 fi
957 if [ "x${formal}" = "xvoid" ]
958 then
959 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
960 else
961 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
962 fi
963 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
964 if class_is_multiarch_p ; then :
965 else
966 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
967 printf "#error \"Non multi-arch definition of ${macro}\"\n"
968 printf "#endif\n"
969 if [ "x${actual}" = "x" ]
970 then
971 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
972 elif [ "x${actual}" = "x-" ]
973 then
974 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
975 else
976 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
977 fi
978 printf "#if !defined (${macro})\n"
979 if [ "x${actual}" = "x" ]
980 then
981 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
982 elif [ "x${actual}" = "x-" ]
983 then
984 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
985 else
986 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
987 fi
988 printf "#endif\n"
989 fi
990 fi
991 done
992
993 # close it off
994 cat <<EOF
995
996 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
997
998
999 /* Mechanism for co-ordinating the selection of a specific
1000 architecture.
1001
1002 GDB targets (*-tdep.c) can register an interest in a specific
1003 architecture. Other GDB components can register a need to maintain
1004 per-architecture data.
1005
1006 The mechanisms below ensures that there is only a loose connection
1007 between the set-architecture command and the various GDB
1008 components. Each component can independently register their need
1009 to maintain architecture specific data with gdbarch.
1010
1011 Pragmatics:
1012
1013 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1014 didn't scale.
1015
1016 The more traditional mega-struct containing architecture specific
1017 data for all the various GDB components was also considered. Since
1018 GDB is built from a variable number of (fairly independent)
1019 components it was determined that the global aproach was not
1020 applicable. */
1021
1022
1023 /* Register a new architectural family with GDB.
1024
1025 Register support for the specified ARCHITECTURE with GDB. When
1026 gdbarch determines that the specified architecture has been
1027 selected, the corresponding INIT function is called.
1028
1029 --
1030
1031 The INIT function takes two parameters: INFO which contains the
1032 information available to gdbarch about the (possibly new)
1033 architecture; ARCHES which is a list of the previously created
1034 \`\`struct gdbarch'' for this architecture.
1035
1036 The INFO parameter is, as far as possible, be pre-initialized with
1037 information obtained from INFO.ABFD or the previously selected
1038 architecture.
1039
1040 The ARCHES parameter is a linked list (sorted most recently used)
1041 of all the previously created architures for this architecture
1042 family. The (possibly NULL) ARCHES->gdbarch can used to access
1043 values from the previously selected architecture for this
1044 architecture family. The global \`\`current_gdbarch'' shall not be
1045 used.
1046
1047 The INIT function shall return any of: NULL - indicating that it
1048 doesn't recognize the selected architecture; an existing \`\`struct
1049 gdbarch'' from the ARCHES list - indicating that the new
1050 architecture is just a synonym for an earlier architecture (see
1051 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1052 - that describes the selected architecture (see gdbarch_alloc()).
1053
1054 The DUMP_TDEP function shall print out all target specific values.
1055 Care should be taken to ensure that the function works in both the
1056 multi-arch and non- multi-arch cases. */
1057
1058 struct gdbarch_list
1059 {
1060 struct gdbarch *gdbarch;
1061 struct gdbarch_list *next;
1062 };
1063
1064 struct gdbarch_info
1065 {
1066 /* Use default: NULL (ZERO). */
1067 const struct bfd_arch_info *bfd_arch_info;
1068
1069 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1070 int byte_order;
1071
1072 /* Use default: NULL (ZERO). */
1073 bfd *abfd;
1074
1075 /* Use default: NULL (ZERO). */
1076 struct gdbarch_tdep_info *tdep_info;
1077
1078 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1079 enum gdb_osabi osabi;
1080 };
1081
1082 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1083 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1084
1085 /* DEPRECATED - use gdbarch_register() */
1086 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1087
1088 extern void gdbarch_register (enum bfd_architecture architecture,
1089 gdbarch_init_ftype *,
1090 gdbarch_dump_tdep_ftype *);
1091
1092
1093 /* Return a freshly allocated, NULL terminated, array of the valid
1094 architecture names. Since architectures are registered during the
1095 _initialize phase this function only returns useful information
1096 once initialization has been completed. */
1097
1098 extern const char **gdbarch_printable_names (void);
1099
1100
1101 /* Helper function. Search the list of ARCHES for a GDBARCH that
1102 matches the information provided by INFO. */
1103
1104 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1105
1106
1107 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1108 basic initialization using values obtained from the INFO andTDEP
1109 parameters. set_gdbarch_*() functions are called to complete the
1110 initialization of the object. */
1111
1112 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1113
1114
1115 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1116 It is assumed that the caller freeds the \`\`struct
1117 gdbarch_tdep''. */
1118
1119 extern void gdbarch_free (struct gdbarch *);
1120
1121
1122 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1123 obstack. The memory is freed when the corresponding architecture
1124 is also freed. */
1125
1126 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1127 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1128 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1129
1130
1131 /* Helper function. Force an update of the current architecture.
1132
1133 The actual architecture selected is determined by INFO, \`\`(gdb) set
1134 architecture'' et.al., the existing architecture and BFD's default
1135 architecture. INFO should be initialized to zero and then selected
1136 fields should be updated.
1137
1138 Returns non-zero if the update succeeds */
1139
1140 extern int gdbarch_update_p (struct gdbarch_info info);
1141
1142
1143
1144 /* Register per-architecture data-pointer.
1145
1146 Reserve space for a per-architecture data-pointer. An identifier
1147 for the reserved data-pointer is returned. That identifer should
1148 be saved in a local static variable.
1149
1150 The per-architecture data-pointer is either initialized explicitly
1151 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1152 gdbarch_data()).
1153
1154 Memory for the per-architecture data shall be allocated using
1155 gdbarch_obstack_zalloc. That memory will be deleted when the
1156 corresponding architecture object is deleted.
1157
1158 When a previously created architecture is re-selected, the
1159 per-architecture data-pointer for that previous architecture is
1160 restored. INIT() is not re-called.
1161
1162 Multiple registrarants for any architecture are allowed (and
1163 strongly encouraged). */
1164
1165 struct gdbarch_data;
1166
1167 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1168 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1169 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1170 struct gdbarch_data *data,
1171 void *pointer);
1172
1173 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1174
1175
1176 /* Register per-architecture memory region.
1177
1178 Provide a memory-region swap mechanism. Per-architecture memory
1179 region are created. These memory regions are swapped whenever the
1180 architecture is changed. For a new architecture, the memory region
1181 is initialized with zero (0) and the INIT function is called.
1182
1183 Memory regions are swapped / initialized in the order that they are
1184 registered. NULL DATA and/or INIT values can be specified.
1185
1186 New code should use register_gdbarch_data(). */
1187
1188 typedef void (gdbarch_swap_ftype) (void);
1189 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1190 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1191
1192
1193
1194 /* The target-system-dependent byte order is dynamic */
1195
1196 extern int target_byte_order;
1197 #ifndef TARGET_BYTE_ORDER
1198 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1199 #endif
1200
1201 extern int target_byte_order_auto;
1202 #ifndef TARGET_BYTE_ORDER_AUTO
1203 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1204 #endif
1205
1206
1207
1208 /* The target-system-dependent BFD architecture is dynamic */
1209
1210 extern int target_architecture_auto;
1211 #ifndef TARGET_ARCHITECTURE_AUTO
1212 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1213 #endif
1214
1215 extern const struct bfd_arch_info *target_architecture;
1216 #ifndef TARGET_ARCHITECTURE
1217 #define TARGET_ARCHITECTURE (target_architecture + 0)
1218 #endif
1219
1220
1221 /* Set the dynamic target-system-dependent parameters (architecture,
1222 byte-order, ...) using information found in the BFD */
1223
1224 extern void set_gdbarch_from_file (bfd *);
1225
1226
1227 /* Initialize the current architecture to the "first" one we find on
1228 our list. */
1229
1230 extern void initialize_current_architecture (void);
1231
1232 /* For non-multiarched targets, do any initialization of the default
1233 gdbarch object necessary after the _initialize_MODULE functions
1234 have run. */
1235 extern void initialize_non_multiarch (void);
1236
1237 /* gdbarch trace variable */
1238 extern int gdbarch_debug;
1239
1240 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1241
1242 #endif
1243 EOF
1244 exec 1>&2
1245 #../move-if-change new-gdbarch.h gdbarch.h
1246 compare_new gdbarch.h
1247
1248
1249 #
1250 # C file
1251 #
1252
1253 exec > new-gdbarch.c
1254 copyright
1255 cat <<EOF
1256
1257 #include "defs.h"
1258 #include "arch-utils.h"
1259
1260 #include "gdbcmd.h"
1261 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1262 #include "symcat.h"
1263
1264 #include "floatformat.h"
1265
1266 #include "gdb_assert.h"
1267 #include "gdb_string.h"
1268 #include "gdb-events.h"
1269 #include "reggroups.h"
1270 #include "osabi.h"
1271 #include "symfile.h" /* For entry_point_address. */
1272 #include "gdb_obstack.h"
1273
1274 /* Static function declarations */
1275
1276 static void verify_gdbarch (struct gdbarch *gdbarch);
1277 static void alloc_gdbarch_data (struct gdbarch *);
1278 static void init_gdbarch_swap (struct gdbarch *);
1279 static void clear_gdbarch_swap (struct gdbarch *);
1280 static void swapout_gdbarch_swap (struct gdbarch *);
1281 static void swapin_gdbarch_swap (struct gdbarch *);
1282
1283 /* Non-zero if we want to trace architecture code. */
1284
1285 #ifndef GDBARCH_DEBUG
1286 #define GDBARCH_DEBUG 0
1287 #endif
1288 int gdbarch_debug = GDBARCH_DEBUG;
1289
1290 EOF
1291
1292 # gdbarch open the gdbarch object
1293 printf "\n"
1294 printf "/* Maintain the struct gdbarch object */\n"
1295 printf "\n"
1296 printf "struct gdbarch\n"
1297 printf "{\n"
1298 printf " /* Has this architecture been fully initialized? */\n"
1299 printf " int initialized_p;\n"
1300 printf "\n"
1301 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1302 printf " struct obstack *obstack;\n"
1303 printf "\n"
1304 printf " /* basic architectural information */\n"
1305 function_list | while do_read
1306 do
1307 if class_is_info_p
1308 then
1309 printf " ${returntype} ${function};\n"
1310 fi
1311 done
1312 printf "\n"
1313 printf " /* target specific vector. */\n"
1314 printf " struct gdbarch_tdep *tdep;\n"
1315 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1316 printf "\n"
1317 printf " /* per-architecture data-pointers */\n"
1318 printf " unsigned nr_data;\n"
1319 printf " void **data;\n"
1320 printf "\n"
1321 printf " /* per-architecture swap-regions */\n"
1322 printf " struct gdbarch_swap *swap;\n"
1323 printf "\n"
1324 cat <<EOF
1325 /* Multi-arch values.
1326
1327 When extending this structure you must:
1328
1329 Add the field below.
1330
1331 Declare set/get functions and define the corresponding
1332 macro in gdbarch.h.
1333
1334 gdbarch_alloc(): If zero/NULL is not a suitable default,
1335 initialize the new field.
1336
1337 verify_gdbarch(): Confirm that the target updated the field
1338 correctly.
1339
1340 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1341 field is dumped out
1342
1343 \`\`startup_gdbarch()'': Append an initial value to the static
1344 variable (base values on the host's c-type system).
1345
1346 get_gdbarch(): Implement the set/get functions (probably using
1347 the macro's as shortcuts).
1348
1349 */
1350
1351 EOF
1352 function_list | while do_read
1353 do
1354 if class_is_variable_p
1355 then
1356 printf " ${returntype} ${function};\n"
1357 elif class_is_function_p
1358 then
1359 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1360 fi
1361 done
1362 printf "};\n"
1363
1364 # A pre-initialized vector
1365 printf "\n"
1366 printf "\n"
1367 cat <<EOF
1368 /* The default architecture uses host values (for want of a better
1369 choice). */
1370 EOF
1371 printf "\n"
1372 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1373 printf "\n"
1374 printf "struct gdbarch startup_gdbarch =\n"
1375 printf "{\n"
1376 printf " 1, /* Always initialized. */\n"
1377 printf " NULL, /* The obstack. */\n"
1378 printf " /* basic architecture information */\n"
1379 function_list | while do_read
1380 do
1381 if class_is_info_p
1382 then
1383 printf " ${staticdefault}, /* ${function} */\n"
1384 fi
1385 done
1386 cat <<EOF
1387 /* target specific vector and its dump routine */
1388 NULL, NULL,
1389 /*per-architecture data-pointers and swap regions */
1390 0, NULL, NULL,
1391 /* Multi-arch values */
1392 EOF
1393 function_list | while do_read
1394 do
1395 if class_is_function_p || class_is_variable_p
1396 then
1397 printf " ${staticdefault}, /* ${function} */\n"
1398 fi
1399 done
1400 cat <<EOF
1401 /* startup_gdbarch() */
1402 };
1403
1404 struct gdbarch *current_gdbarch = &startup_gdbarch;
1405
1406 /* Do any initialization needed for a non-multiarch configuration
1407 after the _initialize_MODULE functions have been run. */
1408 void
1409 initialize_non_multiarch (void)
1410 {
1411 alloc_gdbarch_data (&startup_gdbarch);
1412 /* Ensure that all swap areas are zeroed so that they again think
1413 they are starting from scratch. */
1414 clear_gdbarch_swap (&startup_gdbarch);
1415 init_gdbarch_swap (&startup_gdbarch);
1416 }
1417 EOF
1418
1419 # Create a new gdbarch struct
1420 printf "\n"
1421 printf "\n"
1422 cat <<EOF
1423 /* Create a new \`\`struct gdbarch'' based on information provided by
1424 \`\`struct gdbarch_info''. */
1425 EOF
1426 printf "\n"
1427 cat <<EOF
1428 struct gdbarch *
1429 gdbarch_alloc (const struct gdbarch_info *info,
1430 struct gdbarch_tdep *tdep)
1431 {
1432 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1433 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1434 the current local architecture and not the previous global
1435 architecture. This ensures that the new architectures initial
1436 values are not influenced by the previous architecture. Once
1437 everything is parameterised with gdbarch, this will go away. */
1438 struct gdbarch *current_gdbarch;
1439
1440 /* Create an obstack for allocating all the per-architecture memory,
1441 then use that to allocate the architecture vector. */
1442 struct obstack *obstack = XMALLOC (struct obstack);
1443 obstack_init (obstack);
1444 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1445 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1446 current_gdbarch->obstack = obstack;
1447
1448 alloc_gdbarch_data (current_gdbarch);
1449
1450 current_gdbarch->tdep = tdep;
1451 EOF
1452 printf "\n"
1453 function_list | while do_read
1454 do
1455 if class_is_info_p
1456 then
1457 printf " current_gdbarch->${function} = info->${function};\n"
1458 fi
1459 done
1460 printf "\n"
1461 printf " /* Force the explicit initialization of these. */\n"
1462 function_list | while do_read
1463 do
1464 if class_is_function_p || class_is_variable_p
1465 then
1466 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1467 then
1468 printf " current_gdbarch->${function} = ${predefault};\n"
1469 fi
1470 fi
1471 done
1472 cat <<EOF
1473 /* gdbarch_alloc() */
1474
1475 return current_gdbarch;
1476 }
1477 EOF
1478
1479 # Free a gdbarch struct.
1480 printf "\n"
1481 printf "\n"
1482 cat <<EOF
1483 /* Allocate extra space using the per-architecture obstack. */
1484
1485 void *
1486 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1487 {
1488 void *data = obstack_alloc (arch->obstack, size);
1489 memset (data, 0, size);
1490 return data;
1491 }
1492
1493
1494 /* Free a gdbarch struct. This should never happen in normal
1495 operation --- once you've created a gdbarch, you keep it around.
1496 However, if an architecture's init function encounters an error
1497 building the structure, it may need to clean up a partially
1498 constructed gdbarch. */
1499
1500 void
1501 gdbarch_free (struct gdbarch *arch)
1502 {
1503 struct obstack *obstack;
1504 gdb_assert (arch != NULL);
1505 gdb_assert (!arch->initialized_p);
1506 obstack = arch->obstack;
1507 obstack_free (obstack, 0); /* Includes the ARCH. */
1508 xfree (obstack);
1509 }
1510 EOF
1511
1512 # verify a new architecture
1513 printf "\n"
1514 printf "\n"
1515 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1516 printf "\n"
1517 cat <<EOF
1518 static void
1519 verify_gdbarch (struct gdbarch *gdbarch)
1520 {
1521 struct ui_file *log;
1522 struct cleanup *cleanups;
1523 long dummy;
1524 char *buf;
1525 log = mem_fileopen ();
1526 cleanups = make_cleanup_ui_file_delete (log);
1527 /* fundamental */
1528 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1529 fprintf_unfiltered (log, "\n\tbyte-order");
1530 if (gdbarch->bfd_arch_info == NULL)
1531 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1532 /* Check those that need to be defined for the given multi-arch level. */
1533 EOF
1534 function_list | while do_read
1535 do
1536 if class_is_function_p || class_is_variable_p
1537 then
1538 if [ "x${invalid_p}" = "x0" ]
1539 then
1540 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1541 elif class_is_predicate_p
1542 then
1543 printf " /* Skip verify of ${function}, has predicate */\n"
1544 # FIXME: See do_read for potential simplification
1545 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1546 then
1547 printf " if (${invalid_p})\n"
1548 printf " gdbarch->${function} = ${postdefault};\n"
1549 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1550 then
1551 printf " if (gdbarch->${function} == ${predefault})\n"
1552 printf " gdbarch->${function} = ${postdefault};\n"
1553 elif [ -n "${postdefault}" ]
1554 then
1555 printf " if (gdbarch->${function} == 0)\n"
1556 printf " gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${invalid_p}" ]
1558 then
1559 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1560 printf " && (${invalid_p}))\n"
1561 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1562 elif [ -n "${predefault}" ]
1563 then
1564 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1565 printf " && (gdbarch->${function} == ${predefault}))\n"
1566 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1567 fi
1568 fi
1569 done
1570 cat <<EOF
1571 buf = ui_file_xstrdup (log, &dummy);
1572 make_cleanup (xfree, buf);
1573 if (strlen (buf) > 0)
1574 internal_error (__FILE__, __LINE__,
1575 "verify_gdbarch: the following are invalid ...%s",
1576 buf);
1577 do_cleanups (cleanups);
1578 }
1579 EOF
1580
1581 # dump the structure
1582 printf "\n"
1583 printf "\n"
1584 cat <<EOF
1585 /* Print out the details of the current architecture. */
1586
1587 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1588 just happens to match the global variable \`\`current_gdbarch''. That
1589 way macros refering to that variable get the local and not the global
1590 version - ulgh. Once everything is parameterised with gdbarch, this
1591 will go away. */
1592
1593 void
1594 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1595 {
1596 fprintf_unfiltered (file,
1597 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1598 GDB_MULTI_ARCH);
1599 EOF
1600 function_list | sort -t: -k 3 | while do_read
1601 do
1602 # First the predicate
1603 if class_is_predicate_p
1604 then
1605 if class_is_multiarch_p
1606 then
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1609 printf " gdbarch_${function}_p (current_gdbarch));\n"
1610 else
1611 printf "#ifdef ${macro}_P\n"
1612 printf " fprintf_unfiltered (file,\n"
1613 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1614 printf " \"${macro}_P()\",\n"
1615 printf " XSTRING (${macro}_P ()));\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1618 printf " ${macro}_P ());\n"
1619 printf "#endif\n"
1620 fi
1621 fi
1622 # multiarch functions don't have macros.
1623 if class_is_multiarch_p
1624 then
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1627 printf " (long) current_gdbarch->${function});\n"
1628 continue
1629 fi
1630 # Print the macro definition.
1631 printf "#ifdef ${macro}\n"
1632 if class_is_function_p
1633 then
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1636 printf " \"${macro}(${actual})\",\n"
1637 printf " XSTRING (${macro} (${actual})));\n"
1638 else
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1641 printf " XSTRING (${macro}));\n"
1642 fi
1643 if [ "x${print_p}" = "x()" ]
1644 then
1645 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1646 elif [ "x${print_p}" = "x0" ]
1647 then
1648 printf " /* skip print of ${macro}, print_p == 0. */\n"
1649 elif [ -n "${print_p}" ]
1650 then
1651 printf " if (${print_p})\n"
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1654 printf " ${print});\n"
1655 elif class_is_function_p
1656 then
1657 printf " fprintf_unfiltered (file,\n"
1658 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1659 printf " (long) current_gdbarch->${function}\n"
1660 printf " /*${macro} ()*/);\n"
1661 else
1662 printf " fprintf_unfiltered (file,\n"
1663 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1664 printf " ${print});\n"
1665 fi
1666 printf "#endif\n"
1667 done
1668 cat <<EOF
1669 if (current_gdbarch->dump_tdep != NULL)
1670 current_gdbarch->dump_tdep (current_gdbarch, file);
1671 }
1672 EOF
1673
1674
1675 # GET/SET
1676 printf "\n"
1677 cat <<EOF
1678 struct gdbarch_tdep *
1679 gdbarch_tdep (struct gdbarch *gdbarch)
1680 {
1681 if (gdbarch_debug >= 2)
1682 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1683 return gdbarch->tdep;
1684 }
1685 EOF
1686 printf "\n"
1687 function_list | while do_read
1688 do
1689 if class_is_predicate_p
1690 then
1691 printf "\n"
1692 printf "int\n"
1693 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1694 printf "{\n"
1695 printf " gdb_assert (gdbarch != NULL);\n"
1696 printf " return ${predicate};\n"
1697 printf "}\n"
1698 fi
1699 if class_is_function_p
1700 then
1701 printf "\n"
1702 printf "${returntype}\n"
1703 if [ "x${formal}" = "xvoid" ]
1704 then
1705 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1706 else
1707 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1708 fi
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1712 if class_is_predicate_p && test -n "${predefault}"
1713 then
1714 # Allow a call to a function with a predicate.
1715 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1716 fi
1717 printf " if (gdbarch_debug >= 2)\n"
1718 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1719 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1720 then
1721 if class_is_multiarch_p
1722 then
1723 params="gdbarch"
1724 else
1725 params=""
1726 fi
1727 else
1728 if class_is_multiarch_p
1729 then
1730 params="gdbarch, ${actual}"
1731 else
1732 params="${actual}"
1733 fi
1734 fi
1735 if [ "x${returntype}" = "xvoid" ]
1736 then
1737 printf " gdbarch->${function} (${params});\n"
1738 else
1739 printf " return gdbarch->${function} (${params});\n"
1740 fi
1741 printf "}\n"
1742 printf "\n"
1743 printf "void\n"
1744 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1745 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1746 printf "{\n"
1747 printf " gdbarch->${function} = ${function};\n"
1748 printf "}\n"
1749 elif class_is_variable_p
1750 then
1751 printf "\n"
1752 printf "${returntype}\n"
1753 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1754 printf "{\n"
1755 printf " gdb_assert (gdbarch != NULL);\n"
1756 if [ "x${invalid_p}" = "x0" ]
1757 then
1758 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1759 elif [ -n "${invalid_p}" ]
1760 then
1761 printf " /* Check variable is valid. */\n"
1762 printf " gdb_assert (!(${invalid_p}));\n"
1763 elif [ -n "${predefault}" ]
1764 then
1765 printf " /* Check variable changed from pre-default. */\n"
1766 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1767 fi
1768 printf " if (gdbarch_debug >= 2)\n"
1769 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1770 printf " return gdbarch->${function};\n"
1771 printf "}\n"
1772 printf "\n"
1773 printf "void\n"
1774 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1775 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1776 printf "{\n"
1777 printf " gdbarch->${function} = ${function};\n"
1778 printf "}\n"
1779 elif class_is_info_p
1780 then
1781 printf "\n"
1782 printf "${returntype}\n"
1783 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1784 printf "{\n"
1785 printf " gdb_assert (gdbarch != NULL);\n"
1786 printf " if (gdbarch_debug >= 2)\n"
1787 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1788 printf " return gdbarch->${function};\n"
1789 printf "}\n"
1790 fi
1791 done
1792
1793 # All the trailing guff
1794 cat <<EOF
1795
1796
1797 /* Keep a registry of per-architecture data-pointers required by GDB
1798 modules. */
1799
1800 struct gdbarch_data
1801 {
1802 unsigned index;
1803 int init_p;
1804 gdbarch_data_init_ftype *init;
1805 };
1806
1807 struct gdbarch_data_registration
1808 {
1809 struct gdbarch_data *data;
1810 struct gdbarch_data_registration *next;
1811 };
1812
1813 struct gdbarch_data_registry
1814 {
1815 unsigned nr;
1816 struct gdbarch_data_registration *registrations;
1817 };
1818
1819 struct gdbarch_data_registry gdbarch_data_registry =
1820 {
1821 0, NULL,
1822 };
1823
1824 struct gdbarch_data *
1825 register_gdbarch_data (gdbarch_data_init_ftype *init)
1826 {
1827 struct gdbarch_data_registration **curr;
1828 /* Append the new registraration. */
1829 for (curr = &gdbarch_data_registry.registrations;
1830 (*curr) != NULL;
1831 curr = &(*curr)->next);
1832 (*curr) = XMALLOC (struct gdbarch_data_registration);
1833 (*curr)->next = NULL;
1834 (*curr)->data = XMALLOC (struct gdbarch_data);
1835 (*curr)->data->index = gdbarch_data_registry.nr++;
1836 (*curr)->data->init = init;
1837 (*curr)->data->init_p = 1;
1838 return (*curr)->data;
1839 }
1840
1841
1842 /* Create/delete the gdbarch data vector. */
1843
1844 static void
1845 alloc_gdbarch_data (struct gdbarch *gdbarch)
1846 {
1847 gdb_assert (gdbarch->data == NULL);
1848 gdbarch->nr_data = gdbarch_data_registry.nr;
1849 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1850 }
1851
1852 /* Initialize the current value of the specified per-architecture
1853 data-pointer. */
1854
1855 void
1856 set_gdbarch_data (struct gdbarch *gdbarch,
1857 struct gdbarch_data *data,
1858 void *pointer)
1859 {
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 gdb_assert (gdbarch->data[data->index] == NULL);
1862 gdbarch->data[data->index] = pointer;
1863 }
1864
1865 /* Return the current value of the specified per-architecture
1866 data-pointer. */
1867
1868 void *
1869 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1870 {
1871 gdb_assert (data->index < gdbarch->nr_data);
1872 /* The data-pointer isn't initialized, call init() to get a value but
1873 only if the architecture initializaiton has completed. Otherwise
1874 punt - hope that the caller knows what they are doing. */
1875 if (gdbarch->data[data->index] == NULL
1876 && gdbarch->initialized_p)
1877 {
1878 /* Be careful to detect an initialization cycle. */
1879 gdb_assert (data->init_p);
1880 data->init_p = 0;
1881 gdb_assert (data->init != NULL);
1882 gdbarch->data[data->index] = data->init (gdbarch);
1883 data->init_p = 1;
1884 gdb_assert (gdbarch->data[data->index] != NULL);
1885 }
1886 return gdbarch->data[data->index];
1887 }
1888
1889
1890
1891 /* Keep a registry of swapped data required by GDB modules. */
1892
1893 struct gdbarch_swap
1894 {
1895 void *swap;
1896 struct gdbarch_swap_registration *source;
1897 struct gdbarch_swap *next;
1898 };
1899
1900 struct gdbarch_swap_registration
1901 {
1902 void *data;
1903 unsigned long sizeof_data;
1904 gdbarch_swap_ftype *init;
1905 struct gdbarch_swap_registration *next;
1906 };
1907
1908 struct gdbarch_swap_registry
1909 {
1910 int nr;
1911 struct gdbarch_swap_registration *registrations;
1912 };
1913
1914 struct gdbarch_swap_registry gdbarch_swap_registry =
1915 {
1916 0, NULL,
1917 };
1918
1919 void
1920 register_gdbarch_swap (void *data,
1921 unsigned long sizeof_data,
1922 gdbarch_swap_ftype *init)
1923 {
1924 struct gdbarch_swap_registration **rego;
1925 for (rego = &gdbarch_swap_registry.registrations;
1926 (*rego) != NULL;
1927 rego = &(*rego)->next);
1928 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1929 (*rego)->next = NULL;
1930 (*rego)->init = init;
1931 (*rego)->data = data;
1932 (*rego)->sizeof_data = sizeof_data;
1933 }
1934
1935 static void
1936 clear_gdbarch_swap (struct gdbarch *gdbarch)
1937 {
1938 struct gdbarch_swap *curr;
1939 for (curr = gdbarch->swap;
1940 curr != NULL;
1941 curr = curr->next)
1942 {
1943 memset (curr->source->data, 0, curr->source->sizeof_data);
1944 }
1945 }
1946
1947 static void
1948 init_gdbarch_swap (struct gdbarch *gdbarch)
1949 {
1950 struct gdbarch_swap_registration *rego;
1951 struct gdbarch_swap **curr = &gdbarch->swap;
1952 for (rego = gdbarch_swap_registry.registrations;
1953 rego != NULL;
1954 rego = rego->next)
1955 {
1956 if (rego->data != NULL)
1957 {
1958 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1959 (*curr)->source = rego;
1960 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1961 (*curr)->next = NULL;
1962 curr = &(*curr)->next;
1963 }
1964 if (rego->init != NULL)
1965 rego->init ();
1966 }
1967 }
1968
1969 static void
1970 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1971 {
1972 struct gdbarch_swap *curr;
1973 for (curr = gdbarch->swap;
1974 curr != NULL;
1975 curr = curr->next)
1976 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1977 }
1978
1979 static void
1980 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1981 {
1982 struct gdbarch_swap *curr;
1983 for (curr = gdbarch->swap;
1984 curr != NULL;
1985 curr = curr->next)
1986 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1987 }
1988
1989
1990 /* Keep a registry of the architectures known by GDB. */
1991
1992 struct gdbarch_registration
1993 {
1994 enum bfd_architecture bfd_architecture;
1995 gdbarch_init_ftype *init;
1996 gdbarch_dump_tdep_ftype *dump_tdep;
1997 struct gdbarch_list *arches;
1998 struct gdbarch_registration *next;
1999 };
2000
2001 static struct gdbarch_registration *gdbarch_registry = NULL;
2002
2003 static void
2004 append_name (const char ***buf, int *nr, const char *name)
2005 {
2006 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2007 (*buf)[*nr] = name;
2008 *nr += 1;
2009 }
2010
2011 const char **
2012 gdbarch_printable_names (void)
2013 {
2014 /* Accumulate a list of names based on the registed list of
2015 architectures. */
2016 enum bfd_architecture a;
2017 int nr_arches = 0;
2018 const char **arches = NULL;
2019 struct gdbarch_registration *rego;
2020 for (rego = gdbarch_registry;
2021 rego != NULL;
2022 rego = rego->next)
2023 {
2024 const struct bfd_arch_info *ap;
2025 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2026 if (ap == NULL)
2027 internal_error (__FILE__, __LINE__,
2028 "gdbarch_architecture_names: multi-arch unknown");
2029 do
2030 {
2031 append_name (&arches, &nr_arches, ap->printable_name);
2032 ap = ap->next;
2033 }
2034 while (ap != NULL);
2035 }
2036 append_name (&arches, &nr_arches, NULL);
2037 return arches;
2038 }
2039
2040
2041 void
2042 gdbarch_register (enum bfd_architecture bfd_architecture,
2043 gdbarch_init_ftype *init,
2044 gdbarch_dump_tdep_ftype *dump_tdep)
2045 {
2046 struct gdbarch_registration **curr;
2047 const struct bfd_arch_info *bfd_arch_info;
2048 /* Check that BFD recognizes this architecture */
2049 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2050 if (bfd_arch_info == NULL)
2051 {
2052 internal_error (__FILE__, __LINE__,
2053 "gdbarch: Attempt to register unknown architecture (%d)",
2054 bfd_architecture);
2055 }
2056 /* Check that we haven't seen this architecture before */
2057 for (curr = &gdbarch_registry;
2058 (*curr) != NULL;
2059 curr = &(*curr)->next)
2060 {
2061 if (bfd_architecture == (*curr)->bfd_architecture)
2062 internal_error (__FILE__, __LINE__,
2063 "gdbarch: Duplicate registraration of architecture (%s)",
2064 bfd_arch_info->printable_name);
2065 }
2066 /* log it */
2067 if (gdbarch_debug)
2068 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2069 bfd_arch_info->printable_name,
2070 (long) init);
2071 /* Append it */
2072 (*curr) = XMALLOC (struct gdbarch_registration);
2073 (*curr)->bfd_architecture = bfd_architecture;
2074 (*curr)->init = init;
2075 (*curr)->dump_tdep = dump_tdep;
2076 (*curr)->arches = NULL;
2077 (*curr)->next = NULL;
2078 }
2079
2080 void
2081 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2082 gdbarch_init_ftype *init)
2083 {
2084 gdbarch_register (bfd_architecture, init, NULL);
2085 }
2086
2087
2088 /* Look for an architecture using gdbarch_info. Base search on only
2089 BFD_ARCH_INFO and BYTE_ORDER. */
2090
2091 struct gdbarch_list *
2092 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2093 const struct gdbarch_info *info)
2094 {
2095 for (; arches != NULL; arches = arches->next)
2096 {
2097 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2098 continue;
2099 if (info->byte_order != arches->gdbarch->byte_order)
2100 continue;
2101 if (info->osabi != arches->gdbarch->osabi)
2102 continue;
2103 return arches;
2104 }
2105 return NULL;
2106 }
2107
2108
2109 /* Update the current architecture. Return ZERO if the update request
2110 failed. */
2111
2112 int
2113 gdbarch_update_p (struct gdbarch_info info)
2114 {
2115 struct gdbarch *new_gdbarch;
2116 struct gdbarch *old_gdbarch;
2117 struct gdbarch_registration *rego;
2118
2119 /* Fill in missing parts of the INFO struct using a number of
2120 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2121
2122 /* \`\`(gdb) set architecture ...'' */
2123 if (info.bfd_arch_info == NULL
2124 && !TARGET_ARCHITECTURE_AUTO)
2125 info.bfd_arch_info = TARGET_ARCHITECTURE;
2126 if (info.bfd_arch_info == NULL
2127 && info.abfd != NULL
2128 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2129 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2130 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2131 if (info.bfd_arch_info == NULL)
2132 info.bfd_arch_info = TARGET_ARCHITECTURE;
2133
2134 /* \`\`(gdb) set byte-order ...'' */
2135 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2136 && !TARGET_BYTE_ORDER_AUTO)
2137 info.byte_order = TARGET_BYTE_ORDER;
2138 /* From the INFO struct. */
2139 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2140 && info.abfd != NULL)
2141 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2142 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2143 : BFD_ENDIAN_UNKNOWN);
2144 /* From the current target. */
2145 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2146 info.byte_order = TARGET_BYTE_ORDER;
2147
2148 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2149 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2150 info.osabi = gdbarch_lookup_osabi (info.abfd);
2151 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2152 info.osabi = current_gdbarch->osabi;
2153
2154 /* Must have found some sort of architecture. */
2155 gdb_assert (info.bfd_arch_info != NULL);
2156
2157 if (gdbarch_debug)
2158 {
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_update: info.bfd_arch_info %s\n",
2161 (info.bfd_arch_info != NULL
2162 ? info.bfd_arch_info->printable_name
2163 : "(null)"));
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_update: info.byte_order %d (%s)\n",
2166 info.byte_order,
2167 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2168 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2169 : "default"));
2170 fprintf_unfiltered (gdb_stdlog,
2171 "gdbarch_update: info.osabi %d (%s)\n",
2172 info.osabi, gdbarch_osabi_name (info.osabi));
2173 fprintf_unfiltered (gdb_stdlog,
2174 "gdbarch_update: info.abfd 0x%lx\n",
2175 (long) info.abfd);
2176 fprintf_unfiltered (gdb_stdlog,
2177 "gdbarch_update: info.tdep_info 0x%lx\n",
2178 (long) info.tdep_info);
2179 }
2180
2181 /* Find the target that knows about this architecture. */
2182 for (rego = gdbarch_registry;
2183 rego != NULL;
2184 rego = rego->next)
2185 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2186 break;
2187 if (rego == NULL)
2188 {
2189 if (gdbarch_debug)
2190 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2191 return 0;
2192 }
2193
2194 /* Swap the data belonging to the old target out setting the
2195 installed data to zero. This stops the ->init() function trying
2196 to refer to the previous architecture's global data structures. */
2197 swapout_gdbarch_swap (current_gdbarch);
2198 clear_gdbarch_swap (current_gdbarch);
2199
2200 /* Save the previously selected architecture, setting the global to
2201 NULL. This stops ->init() trying to use the previous
2202 architecture's configuration. The previous architecture may not
2203 even be of the same architecture family. The most recent
2204 architecture of the same family is found at the head of the
2205 rego->arches list. */
2206 old_gdbarch = current_gdbarch;
2207 current_gdbarch = NULL;
2208
2209 /* Ask the target for a replacement architecture. */
2210 new_gdbarch = rego->init (info, rego->arches);
2211
2212 /* Did the target like it? No. Reject the change and revert to the
2213 old architecture. */
2214 if (new_gdbarch == NULL)
2215 {
2216 if (gdbarch_debug)
2217 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2218 swapin_gdbarch_swap (old_gdbarch);
2219 current_gdbarch = old_gdbarch;
2220 return 0;
2221 }
2222
2223 /* Did the architecture change? No. Oops, put the old architecture
2224 back. */
2225 if (old_gdbarch == new_gdbarch)
2226 {
2227 if (gdbarch_debug)
2228 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2229 (long) new_gdbarch,
2230 new_gdbarch->bfd_arch_info->printable_name);
2231 swapin_gdbarch_swap (old_gdbarch);
2232 current_gdbarch = old_gdbarch;
2233 return 1;
2234 }
2235
2236 /* Is this a pre-existing architecture? Yes. Move it to the front
2237 of the list of architectures (keeping the list sorted Most
2238 Recently Used) and then copy it in. */
2239 {
2240 struct gdbarch_list **list;
2241 for (list = &rego->arches;
2242 (*list) != NULL;
2243 list = &(*list)->next)
2244 {
2245 if ((*list)->gdbarch == new_gdbarch)
2246 {
2247 struct gdbarch_list *this;
2248 if (gdbarch_debug)
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2251 (long) new_gdbarch,
2252 new_gdbarch->bfd_arch_info->printable_name);
2253 /* Unlink this. */
2254 this = (*list);
2255 (*list) = this->next;
2256 /* Insert in the front. */
2257 this->next = rego->arches;
2258 rego->arches = this;
2259 /* Copy the new architecture in. */
2260 current_gdbarch = new_gdbarch;
2261 swapin_gdbarch_swap (new_gdbarch);
2262 architecture_changed_event ();
2263 return 1;
2264 }
2265 }
2266 }
2267
2268 /* Prepend this new architecture to the architecture list (keep the
2269 list sorted Most Recently Used). */
2270 {
2271 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2272 this->next = rego->arches;
2273 this->gdbarch = new_gdbarch;
2274 rego->arches = this;
2275 }
2276
2277 /* Switch to this new architecture marking it initialized. */
2278 current_gdbarch = new_gdbarch;
2279 current_gdbarch->initialized_p = 1;
2280 if (gdbarch_debug)
2281 {
2282 fprintf_unfiltered (gdb_stdlog,
2283 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2284 (long) new_gdbarch,
2285 new_gdbarch->bfd_arch_info->printable_name);
2286 }
2287
2288 /* Check that the newly installed architecture is valid. Plug in
2289 any post init values. */
2290 new_gdbarch->dump_tdep = rego->dump_tdep;
2291 verify_gdbarch (new_gdbarch);
2292
2293 /* Initialize the per-architecture memory (swap) areas.
2294 CURRENT_GDBARCH must be update before these modules are
2295 called. */
2296 init_gdbarch_swap (new_gdbarch);
2297
2298 /* Initialize the per-architecture data. CURRENT_GDBARCH
2299 must be updated before these modules are called. */
2300 architecture_changed_event ();
2301
2302 if (gdbarch_debug)
2303 gdbarch_dump (current_gdbarch, gdb_stdlog);
2304
2305 return 1;
2306 }
2307
2308
2309 extern void _initialize_gdbarch (void);
2310
2311 void
2312 _initialize_gdbarch (void)
2313 {
2314 struct cmd_list_element *c;
2315
2316 add_show_from_set (add_set_cmd ("arch",
2317 class_maintenance,
2318 var_zinteger,
2319 (char *)&gdbarch_debug,
2320 "Set architecture debugging.\\n\\
2321 When non-zero, architecture debugging is enabled.", &setdebuglist),
2322 &showdebuglist);
2323 c = add_set_cmd ("archdebug",
2324 class_maintenance,
2325 var_zinteger,
2326 (char *)&gdbarch_debug,
2327 "Set architecture debugging.\\n\\
2328 When non-zero, architecture debugging is enabled.", &setlist);
2329
2330 deprecate_cmd (c, "set debug arch");
2331 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2332 }
2333 EOF
2334
2335 # close things off
2336 exec 1>&2
2337 #../move-if-change new-gdbarch.c gdbarch.c
2338 compare_new gdbarch.c
This page took 0.120482 seconds and 4 git commands to generate.