* config/alpha/tm-fbsd.h (FRAME_CHAIN_VALID): Remove.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25
26
27 compare_new ()
28 {
29 file=$1
30 if test ! -r ${file}
31 then
32 echo "${file} missing? cp new-${file} ${file}" 1>&2
33 elif diff -u ${file} new-${file}
34 then
35 echo "${file} unchanged" 1>&2
36 else
37 echo "${file} has changed? cp new-${file} ${file}" 1>&2
38 fi
39 }
40
41
42 # Format of the input table
43 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
44
45 do_read ()
46 {
47 comment=""
48 class=""
49 while read line
50 do
51 if test "${line}" = ""
52 then
53 continue
54 elif test "${line}" = "#" -a "${comment}" = ""
55 then
56 continue
57 elif expr "${line}" : "#" > /dev/null
58 then
59 comment="${comment}
60 ${line}"
61 else
62
63 # The semantics of IFS varies between different SH's. Some
64 # treat ``::' as three fields while some treat it as just too.
65 # Work around this by eliminating ``::'' ....
66 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
67
68 OFS="${IFS}" ; IFS="[:]"
69 eval read ${read} <<EOF
70 ${line}
71 EOF
72 IFS="${OFS}"
73
74 # .... and then going back through each field and strip out those
75 # that ended up with just that space character.
76 for r in ${read}
77 do
78 if eval test \"\${${r}}\" = \"\ \"
79 then
80 eval ${r}=""
81 fi
82 done
83
84 case "${level}" in
85 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
86 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
87 "" ) ;;
88 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
89 esac
90
91 case "${class}" in
92 m ) staticdefault="${predefault}" ;;
93 M ) staticdefault="0" ;;
94 * ) test "${staticdefault}" || staticdefault=0 ;;
95 esac
96 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
97 # multi-arch defaults.
98 # test "${predefault}" || predefault=0
99
100 # come up with a format, use a few guesses for variables
101 case ":${class}:${fmt}:${print}:" in
102 :[vV]::: )
103 if [ "${returntype}" = int ]
104 then
105 fmt="%d"
106 print="${macro}"
107 elif [ "${returntype}" = long ]
108 then
109 fmt="%ld"
110 print="${macro}"
111 fi
112 ;;
113 esac
114 test "${fmt}" || fmt="%ld"
115 test "${print}" || print="(long) ${macro}"
116
117 case "${invalid_p}" in
118 0 ) valid_p=1 ;;
119 "" )
120 if [ -n "${predefault}" ]
121 then
122 #invalid_p="gdbarch->${function} == ${predefault}"
123 valid_p="gdbarch->${function} != ${predefault}"
124 else
125 #invalid_p="gdbarch->${function} == 0"
126 valid_p="gdbarch->${function} != 0"
127 fi
128 ;;
129 * ) valid_p="!(${invalid_p})"
130 esac
131
132 # PREDEFAULT is a valid fallback definition of MEMBER when
133 # multi-arch is not enabled. This ensures that the
134 # default value, when multi-arch is the same as the
135 # default value when not multi-arch. POSTDEFAULT is
136 # always a valid definition of MEMBER as this again
137 # ensures consistency.
138
139 if [ -n "${postdefault}" ]
140 then
141 fallbackdefault="${postdefault}"
142 elif [ -n "${predefault}" ]
143 then
144 fallbackdefault="${predefault}"
145 else
146 fallbackdefault="0"
147 fi
148
149 #NOT YET: See gdbarch.log for basic verification of
150 # database
151
152 break
153 fi
154 done
155 if [ -n "${class}" ]
156 then
157 true
158 else
159 false
160 fi
161 }
162
163
164 fallback_default_p ()
165 {
166 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
167 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
168 }
169
170 class_is_variable_p ()
171 {
172 case "${class}" in
173 *v* | *V* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178 class_is_function_p ()
179 {
180 case "${class}" in
181 *f* | *F* | *m* | *M* ) true ;;
182 * ) false ;;
183 esac
184 }
185
186 class_is_multiarch_p ()
187 {
188 case "${class}" in
189 *m* | *M* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_predicate_p ()
195 {
196 case "${class}" in
197 *F* | *V* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_info_p ()
203 {
204 case "${class}" in
205 *i* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210
211 # dump out/verify the doco
212 for field in ${read}
213 do
214 case ${field} in
215
216 class ) : ;;
217
218 # # -> line disable
219 # f -> function
220 # hiding a function
221 # F -> function + predicate
222 # hiding a function + predicate to test function validity
223 # v -> variable
224 # hiding a variable
225 # V -> variable + predicate
226 # hiding a variable + predicate to test variables validity
227 # i -> set from info
228 # hiding something from the ``struct info'' object
229 # m -> multi-arch function
230 # hiding a multi-arch function (parameterised with the architecture)
231 # M -> multi-arch function + predicate
232 # hiding a multi-arch function + predicate to test function validity
233
234 level ) : ;;
235
236 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
237 # LEVEL is a predicate on checking that a given method is
238 # initialized (using INVALID_P).
239
240 macro ) : ;;
241
242 # The name of the MACRO that this method is to be accessed by.
243
244 returntype ) : ;;
245
246 # For functions, the return type; for variables, the data type
247
248 function ) : ;;
249
250 # For functions, the member function name; for variables, the
251 # variable name. Member function names are always prefixed with
252 # ``gdbarch_'' for name-space purity.
253
254 formal ) : ;;
255
256 # The formal argument list. It is assumed that the formal
257 # argument list includes the actual name of each list element.
258 # A function with no arguments shall have ``void'' as the
259 # formal argument list.
260
261 actual ) : ;;
262
263 # The list of actual arguments. The arguments specified shall
264 # match the FORMAL list given above. Functions with out
265 # arguments leave this blank.
266
267 attrib ) : ;;
268
269 # Any GCC attributes that should be attached to the function
270 # declaration. At present this field is unused.
271
272 staticdefault ) : ;;
273
274 # To help with the GDB startup a static gdbarch object is
275 # created. STATICDEFAULT is the value to insert into that
276 # static gdbarch object. Since this a static object only
277 # simple expressions can be used.
278
279 # If STATICDEFAULT is empty, zero is used.
280
281 predefault ) : ;;
282
283 # An initial value to assign to MEMBER of the freshly
284 # malloc()ed gdbarch object. After initialization, the
285 # freshly malloc()ed object is passed to the target
286 # architecture code for further updates.
287
288 # If PREDEFAULT is empty, zero is used.
289
290 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
291 # INVALID_P are specified, PREDEFAULT will be used as the
292 # default for the non- multi-arch target.
293
294 # A zero PREDEFAULT function will force the fallback to call
295 # internal_error().
296
297 # Variable declarations can refer to ``gdbarch'' which will
298 # contain the current architecture. Care should be taken.
299
300 postdefault ) : ;;
301
302 # A value to assign to MEMBER of the new gdbarch object should
303 # the target architecture code fail to change the PREDEFAULT
304 # value.
305
306 # If POSTDEFAULT is empty, no post update is performed.
307
308 # If both INVALID_P and POSTDEFAULT are non-empty then
309 # INVALID_P will be used to determine if MEMBER should be
310 # changed to POSTDEFAULT.
311
312 # If a non-empty POSTDEFAULT and a zero INVALID_P are
313 # specified, POSTDEFAULT will be used as the default for the
314 # non- multi-arch target (regardless of the value of
315 # PREDEFAULT).
316
317 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
318
319 # Variable declarations can refer to ``gdbarch'' which will
320 # contain the current architecture. Care should be taken.
321
322 invalid_p ) : ;;
323
324 # A predicate equation that validates MEMBER. Non-zero is
325 # returned if the code creating the new architecture failed to
326 # initialize MEMBER or the initialized the member is invalid.
327 # If POSTDEFAULT is non-empty then MEMBER will be updated to
328 # that value. If POSTDEFAULT is empty then internal_error()
329 # is called.
330
331 # If INVALID_P is empty, a check that MEMBER is no longer
332 # equal to PREDEFAULT is used.
333
334 # The expression ``0'' disables the INVALID_P check making
335 # PREDEFAULT a legitimate value.
336
337 # See also PREDEFAULT and POSTDEFAULT.
338
339 fmt ) : ;;
340
341 # printf style format string that can be used to print out the
342 # MEMBER. Sometimes "%s" is useful. For functions, this is
343 # ignored and the function address is printed.
344
345 # If FMT is empty, ``%ld'' is used.
346
347 print ) : ;;
348
349 # An optional equation that casts MEMBER to a value suitable
350 # for formatting by FMT.
351
352 # If PRINT is empty, ``(long)'' is used.
353
354 print_p ) : ;;
355
356 # An optional indicator for any predicte to wrap around the
357 # print member code.
358
359 # () -> Call a custom function to do the dump.
360 # exp -> Wrap print up in ``if (${print_p}) ...
361 # ``'' -> No predicate
362
363 # If PRINT_P is empty, ``1'' is always used.
364
365 description ) : ;;
366
367 # Currently unused.
368
369 *)
370 echo "Bad field ${field}"
371 exit 1;;
372 esac
373 done
374
375
376 function_list ()
377 {
378 # See below (DOCO) for description of each field
379 cat <<EOF
380 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
381 #
382 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
383 # Number of bits in a char or unsigned char for the target machine.
384 # Just like CHAR_BIT in <limits.h> but describes the target machine.
385 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
386 #
387 # Number of bits in a short or unsigned short for the target machine.
388 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
389 # Number of bits in an int or unsigned int for the target machine.
390 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
391 # Number of bits in a long or unsigned long for the target machine.
392 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
393 # Number of bits in a long long or unsigned long long for the target
394 # machine.
395 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
396 # Number of bits in a float for the target machine.
397 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 # Number of bits in a double for the target machine.
399 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 # Number of bits in a long double for the target machine.
401 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
419 #
420 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
421 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
422 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
423 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
424 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
429 #
430 M:::void:register_read:int regnum, char *buf:regnum, buf:
431 M:::void:register_write:int regnum, char *buf:regnum, buf:
432 #
433 v:2:NUM_REGS:int:num_regs::::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
439
440 # GDB's standard (or well known) register numbers. These can map onto
441 # a real register or a pseudo (computed) register or not be defined at
442 # all (-1).
443 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
444 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
445 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
446 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
447 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
448 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
449 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
472 # MAP a GDB RAW register number onto a simulator register number. See
473 # also include/...-sim.h.
474 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
475 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
476 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
477 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
478 # setjmp/longjmp support.
479 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
480 #
481 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
482 # much better but at least they are vaguely consistent). The headers
483 # and body contain convoluted #if/#else sequences for determine how
484 # things should be compiled. Instead of trying to mimic that
485 # behaviour here (and hence entrench it further) gdbarch simply
486 # reqires that these methods be set up from the word go. This also
487 # avoids any potential problems with moving beyond multi-arch partial.
488 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
489 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
490 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
491 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
492 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
493 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
494 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
495 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
496 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
497 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
498 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
499 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
500 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
501 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
502 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
503 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
504 #
505 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
506 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
507 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
508 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
509 # old code has strange #ifdef interaction. So far no one has found
510 # that default_get_saved_register() is the default they are after.
511 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 # This function is called when the value of a pseudo-register needs to
517 # be updated. Typically it will be defined on a per-architecture
518 # basis.
519 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
520 # This function is called when the value of a pseudo-register needs to
521 # be set or stored. Typically it will be defined on a
522 # per-architecture basis.
523 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
524 #
525 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
526 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
527 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
528 #
529 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
530 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
531 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
532 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
533 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
534 f:2:POP_FRAME:void:pop_frame:void:-:::0
535 #
536 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
537 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
539 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
540 #
541 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
542 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
543 #
544 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
545 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
546 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
547 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
548 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
549 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
550 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
551 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
552 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
553 #
554 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
555 #
556 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
557 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
558 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
559 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
560 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
561 # given frame is the outermost one and has no caller.
562 #
563 # XXXX - both default and alternate frame_chain_valid functions are
564 # deprecated. New code should use dummy frames and one of the generic
565 # functions.
566 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
567 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
568 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
569 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
570 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
571 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
572 #
573 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
574 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
575 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
576 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
577 v:2:PARM_BOUNDARY:int:parm_boundary
578 #
579 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
580 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
581 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
582 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
583 # On some machines there are bits in addresses which are not really
584 # part of the address, but are used by the kernel, the hardware, etc.
585 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
586 # we get a "real" address such as one would find in a symbol table.
587 # This is used only for addresses of instructions, and even then I'm
588 # not sure it's used in all contexts. It exists to deal with there
589 # being a few stray bits in the PC which would mislead us, not as some
590 # sort of generic thing to handle alignment or segmentation (it's
591 # possible it should be in TARGET_READ_PC instead).
592 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
593 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
594 # ADDR_BITS_REMOVE.
595 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
596 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
597 # the target needs software single step. An ISA method to implement it.
598 #
599 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
600 # using the breakpoint system instead of blatting memory directly (as with rs6000).
601 #
602 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
603 # single step. If not, then implement single step using breakpoints.
604 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
605 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
606 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
607 # For SVR4 shared libraries, each call goes through a small piece of
608 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
609 # to nonzero if we are current stopped in one of these.
610 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
611 # A target might have problems with watchpoints as soon as the stack
612 # frame of the current function has been destroyed. This mostly happens
613 # as the first action in a funtion's epilogue. in_function_epilogue_p()
614 # is defined to return a non-zero value if either the given addr is one
615 # instruction after the stack destroying instruction up to the trailing
616 # return instruction or if we can figure out that the stack frame has
617 # already been invalidated regardless of the value of addr. Targets
618 # which don't suffer from that problem could just let this functionality
619 # untouched.
620 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
621 # Given a vector of command-line arguments, return a newly allocated
622 # string which, when passed to the create_inferior function, will be
623 # parsed (on Unix systems, by the shell) to yield the same vector.
624 # This function should call error() if the argument vector is not
625 # representable for this target or if this target does not support
626 # command-line arguments.
627 # ARGC is the number of elements in the vector.
628 # ARGV is an array of strings, one per argument.
629 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
630 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
631 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
632 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
633 EOF
634 }
635
636 #
637 # The .log file
638 #
639 exec > new-gdbarch.log
640 function_list | while do_read
641 do
642 cat <<EOF
643 ${class} ${macro}(${actual})
644 ${returntype} ${function} ($formal)${attrib}
645 EOF
646 for r in ${read}
647 do
648 eval echo \"\ \ \ \ ${r}=\${${r}}\"
649 done
650 # #fallbackdefault=${fallbackdefault}
651 # #valid_p=${valid_p}
652 #EOF
653 if class_is_predicate_p && fallback_default_p
654 then
655 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
656 kill $$
657 exit 1
658 fi
659 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
660 then
661 echo "Error: postdefault is useless when invalid_p=0" 1>&2
662 kill $$
663 exit 1
664 fi
665 if class_is_multiarch_p
666 then
667 if class_is_predicate_p ; then :
668 elif test "x${predefault}" = "x"
669 then
670 echo "Error: pure multi-arch function must have a predefault" 1>&2
671 kill $$
672 exit 1
673 fi
674 fi
675 echo ""
676 done
677
678 exec 1>&2
679 compare_new gdbarch.log
680
681
682 copyright ()
683 {
684 cat <<EOF
685 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
686
687 /* Dynamic architecture support for GDB, the GNU debugger.
688 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
689
690 This file is part of GDB.
691
692 This program is free software; you can redistribute it and/or modify
693 it under the terms of the GNU General Public License as published by
694 the Free Software Foundation; either version 2 of the License, or
695 (at your option) any later version.
696
697 This program is distributed in the hope that it will be useful,
698 but WITHOUT ANY WARRANTY; without even the implied warranty of
699 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
700 GNU General Public License for more details.
701
702 You should have received a copy of the GNU General Public License
703 along with this program; if not, write to the Free Software
704 Foundation, Inc., 59 Temple Place - Suite 330,
705 Boston, MA 02111-1307, USA. */
706
707 /* This file was created with the aid of \`\`gdbarch.sh''.
708
709 The Bourne shell script \`\`gdbarch.sh'' creates the files
710 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
711 against the existing \`\`gdbarch.[hc]''. Any differences found
712 being reported.
713
714 If editing this file, please also run gdbarch.sh and merge any
715 changes into that script. Conversely, when making sweeping changes
716 to this file, modifying gdbarch.sh and using its output may prove
717 easier. */
718
719 EOF
720 }
721
722 #
723 # The .h file
724 #
725
726 exec > new-gdbarch.h
727 copyright
728 cat <<EOF
729 #ifndef GDBARCH_H
730 #define GDBARCH_H
731
732 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
733 #if !GDB_MULTI_ARCH
734 /* Pull in function declarations refered to, indirectly, via macros. */
735 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
736 #include "inferior.h" /* For unsigned_address_to_pointer(). */
737 #endif
738
739 struct frame_info;
740 struct value;
741 struct objfile;
742 struct minimal_symbol;
743
744 extern struct gdbarch *current_gdbarch;
745
746
747 /* If any of the following are defined, the target wasn't correctly
748 converted. */
749
750 #if GDB_MULTI_ARCH
751 #if defined (EXTRA_FRAME_INFO)
752 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
753 #endif
754 #endif
755
756 #if GDB_MULTI_ARCH
757 #if defined (FRAME_FIND_SAVED_REGS)
758 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
759 #endif
760 #endif
761
762 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
763 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
764 #endif
765 EOF
766
767 # function typedef's
768 printf "\n"
769 printf "\n"
770 printf "/* The following are pre-initialized by GDBARCH. */\n"
771 function_list | while do_read
772 do
773 if class_is_info_p
774 then
775 printf "\n"
776 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
777 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
778 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
779 printf "#error \"Non multi-arch definition of ${macro}\"\n"
780 printf "#endif\n"
781 printf "#if GDB_MULTI_ARCH\n"
782 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
783 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
784 printf "#endif\n"
785 printf "#endif\n"
786 fi
787 done
788
789 # function typedef's
790 printf "\n"
791 printf "\n"
792 printf "/* The following are initialized by the target dependent code. */\n"
793 function_list | while do_read
794 do
795 if [ -n "${comment}" ]
796 then
797 echo "${comment}" | sed \
798 -e '2 s,#,/*,' \
799 -e '3,$ s,#, ,' \
800 -e '$ s,$, */,'
801 fi
802 if class_is_multiarch_p
803 then
804 if class_is_predicate_p
805 then
806 printf "\n"
807 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
808 fi
809 else
810 if class_is_predicate_p
811 then
812 printf "\n"
813 printf "#if defined (${macro})\n"
814 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
815 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
816 printf "#if !defined (${macro}_P)\n"
817 printf "#define ${macro}_P() (1)\n"
818 printf "#endif\n"
819 printf "#endif\n"
820 printf "\n"
821 printf "/* Default predicate for non- multi-arch targets. */\n"
822 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
823 printf "#define ${macro}_P() (0)\n"
824 printf "#endif\n"
825 printf "\n"
826 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
830 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
831 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
832 printf "#endif\n"
833 fi
834 fi
835 if class_is_variable_p
836 then
837 if fallback_default_p || class_is_predicate_p
838 then
839 printf "\n"
840 printf "/* Default (value) for non- multi-arch platforms. */\n"
841 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
842 echo "#define ${macro} (${fallbackdefault})" \
843 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
844 printf "#endif\n"
845 fi
846 printf "\n"
847 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
848 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if GDB_MULTI_ARCH\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
854 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
855 printf "#endif\n"
856 printf "#endif\n"
857 fi
858 if class_is_function_p
859 then
860 if class_is_multiarch_p ; then :
861 elif fallback_default_p || class_is_predicate_p
862 then
863 printf "\n"
864 printf "/* Default (function) for non- multi-arch platforms. */\n"
865 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
866 if [ "x${fallbackdefault}" = "x0" ]
867 then
868 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
869 else
870 # FIXME: Should be passing current_gdbarch through!
871 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
872 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
873 fi
874 printf "#endif\n"
875 fi
876 printf "\n"
877 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
878 then
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
880 elif class_is_multiarch_p
881 then
882 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
883 else
884 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
885 fi
886 if [ "x${formal}" = "xvoid" ]
887 then
888 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
889 else
890 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
891 fi
892 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
893 if class_is_multiarch_p ; then :
894 else
895 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
896 printf "#error \"Non multi-arch definition of ${macro}\"\n"
897 printf "#endif\n"
898 printf "#if GDB_MULTI_ARCH\n"
899 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
900 if [ "x${actual}" = "x" ]
901 then
902 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
903 elif [ "x${actual}" = "x-" ]
904 then
905 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
906 else
907 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
908 fi
909 printf "#endif\n"
910 printf "#endif\n"
911 fi
912 fi
913 done
914
915 # close it off
916 cat <<EOF
917
918 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
919
920
921 /* Mechanism for co-ordinating the selection of a specific
922 architecture.
923
924 GDB targets (*-tdep.c) can register an interest in a specific
925 architecture. Other GDB components can register a need to maintain
926 per-architecture data.
927
928 The mechanisms below ensures that there is only a loose connection
929 between the set-architecture command and the various GDB
930 components. Each component can independently register their need
931 to maintain architecture specific data with gdbarch.
932
933 Pragmatics:
934
935 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
936 didn't scale.
937
938 The more traditional mega-struct containing architecture specific
939 data for all the various GDB components was also considered. Since
940 GDB is built from a variable number of (fairly independent)
941 components it was determined that the global aproach was not
942 applicable. */
943
944
945 /* Register a new architectural family with GDB.
946
947 Register support for the specified ARCHITECTURE with GDB. When
948 gdbarch determines that the specified architecture has been
949 selected, the corresponding INIT function is called.
950
951 --
952
953 The INIT function takes two parameters: INFO which contains the
954 information available to gdbarch about the (possibly new)
955 architecture; ARCHES which is a list of the previously created
956 \`\`struct gdbarch'' for this architecture.
957
958 The INFO parameter is, as far as possible, be pre-initialized with
959 information obtained from INFO.ABFD or the previously selected
960 architecture.
961
962 The ARCHES parameter is a linked list (sorted most recently used)
963 of all the previously created architures for this architecture
964 family. The (possibly NULL) ARCHES->gdbarch can used to access
965 values from the previously selected architecture for this
966 architecture family. The global \`\`current_gdbarch'' shall not be
967 used.
968
969 The INIT function shall return any of: NULL - indicating that it
970 doesn't recognize the selected architecture; an existing \`\`struct
971 gdbarch'' from the ARCHES list - indicating that the new
972 architecture is just a synonym for an earlier architecture (see
973 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
974 - that describes the selected architecture (see gdbarch_alloc()).
975
976 The DUMP_TDEP function shall print out all target specific values.
977 Care should be taken to ensure that the function works in both the
978 multi-arch and non- multi-arch cases. */
979
980 struct gdbarch_list
981 {
982 struct gdbarch *gdbarch;
983 struct gdbarch_list *next;
984 };
985
986 struct gdbarch_info
987 {
988 /* Use default: NULL (ZERO). */
989 const struct bfd_arch_info *bfd_arch_info;
990
991 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
992 int byte_order;
993
994 /* Use default: NULL (ZERO). */
995 bfd *abfd;
996
997 /* Use default: NULL (ZERO). */
998 struct gdbarch_tdep_info *tdep_info;
999 };
1000
1001 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1002 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1003
1004 /* DEPRECATED - use gdbarch_register() */
1005 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1006
1007 extern void gdbarch_register (enum bfd_architecture architecture,
1008 gdbarch_init_ftype *,
1009 gdbarch_dump_tdep_ftype *);
1010
1011
1012 /* Return a freshly allocated, NULL terminated, array of the valid
1013 architecture names. Since architectures are registered during the
1014 _initialize phase this function only returns useful information
1015 once initialization has been completed. */
1016
1017 extern const char **gdbarch_printable_names (void);
1018
1019
1020 /* Helper function. Search the list of ARCHES for a GDBARCH that
1021 matches the information provided by INFO. */
1022
1023 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1024
1025
1026 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1027 basic initialization using values obtained from the INFO andTDEP
1028 parameters. set_gdbarch_*() functions are called to complete the
1029 initialization of the object. */
1030
1031 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1032
1033
1034 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1035 It is assumed that the caller freeds the \`\`struct
1036 gdbarch_tdep''. */
1037
1038 extern void gdbarch_free (struct gdbarch *);
1039
1040
1041 /* Helper function. Force an update of the current architecture.
1042
1043 The actual architecture selected is determined by INFO, \`\`(gdb) set
1044 architecture'' et.al., the existing architecture and BFD's default
1045 architecture. INFO should be initialized to zero and then selected
1046 fields should be updated.
1047
1048 Returns non-zero if the update succeeds */
1049
1050 extern int gdbarch_update_p (struct gdbarch_info info);
1051
1052
1053
1054 /* Register per-architecture data-pointer.
1055
1056 Reserve space for a per-architecture data-pointer. An identifier
1057 for the reserved data-pointer is returned. That identifer should
1058 be saved in a local static variable.
1059
1060 The per-architecture data-pointer can be initialized in one of two
1061 ways: The value can be set explicitly using a call to
1062 set_gdbarch_data(); the value can be set implicitly using the value
1063 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1064 called after the basic architecture vector has been created.
1065
1066 When a previously created architecture is re-selected, the
1067 per-architecture data-pointer for that previous architecture is
1068 restored. INIT() is not called.
1069
1070 During initialization, multiple assignments of the data-pointer are
1071 allowed, non-NULL values are deleted by calling FREE(). If the
1072 architecture is deleted using gdbarch_free() all non-NULL data
1073 pointers are also deleted using FREE().
1074
1075 Multiple registrarants for any architecture are allowed (and
1076 strongly encouraged). */
1077
1078 struct gdbarch_data;
1079
1080 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1081 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1082 void *pointer);
1083 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1084 gdbarch_data_free_ftype *free);
1085 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1086 struct gdbarch_data *data,
1087 void *pointer);
1088
1089 extern void *gdbarch_data (struct gdbarch_data*);
1090
1091
1092 /* Register per-architecture memory region.
1093
1094 Provide a memory-region swap mechanism. Per-architecture memory
1095 region are created. These memory regions are swapped whenever the
1096 architecture is changed. For a new architecture, the memory region
1097 is initialized with zero (0) and the INIT function is called.
1098
1099 Memory regions are swapped / initialized in the order that they are
1100 registered. NULL DATA and/or INIT values can be specified.
1101
1102 New code should use register_gdbarch_data(). */
1103
1104 typedef void (gdbarch_swap_ftype) (void);
1105 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1106 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1107
1108
1109
1110 /* The target-system-dependent byte order is dynamic */
1111
1112 extern int target_byte_order;
1113 #ifndef TARGET_BYTE_ORDER
1114 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1115 #endif
1116
1117 extern int target_byte_order_auto;
1118 #ifndef TARGET_BYTE_ORDER_AUTO
1119 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1120 #endif
1121
1122
1123
1124 /* The target-system-dependent BFD architecture is dynamic */
1125
1126 extern int target_architecture_auto;
1127 #ifndef TARGET_ARCHITECTURE_AUTO
1128 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1129 #endif
1130
1131 extern const struct bfd_arch_info *target_architecture;
1132 #ifndef TARGET_ARCHITECTURE
1133 #define TARGET_ARCHITECTURE (target_architecture + 0)
1134 #endif
1135
1136
1137 /* The target-system-dependent disassembler is semi-dynamic */
1138
1139 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1140 unsigned int len, disassemble_info *info);
1141
1142 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1143 disassemble_info *info);
1144
1145 extern void dis_asm_print_address (bfd_vma addr,
1146 disassemble_info *info);
1147
1148 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1149 extern disassemble_info tm_print_insn_info;
1150 #ifndef TARGET_PRINT_INSN_INFO
1151 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1152 #endif
1153
1154
1155
1156 /* Set the dynamic target-system-dependent parameters (architecture,
1157 byte-order, ...) using information found in the BFD */
1158
1159 extern void set_gdbarch_from_file (bfd *);
1160
1161
1162 /* Initialize the current architecture to the "first" one we find on
1163 our list. */
1164
1165 extern void initialize_current_architecture (void);
1166
1167 /* For non-multiarched targets, do any initialization of the default
1168 gdbarch object necessary after the _initialize_MODULE functions
1169 have run. */
1170 extern void initialize_non_multiarch ();
1171
1172 /* gdbarch trace variable */
1173 extern int gdbarch_debug;
1174
1175 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1176
1177 #endif
1178 EOF
1179 exec 1>&2
1180 #../move-if-change new-gdbarch.h gdbarch.h
1181 compare_new gdbarch.h
1182
1183
1184 #
1185 # C file
1186 #
1187
1188 exec > new-gdbarch.c
1189 copyright
1190 cat <<EOF
1191
1192 #include "defs.h"
1193 #include "arch-utils.h"
1194
1195 #if GDB_MULTI_ARCH
1196 #include "gdbcmd.h"
1197 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1198 #else
1199 /* Just include everything in sight so that the every old definition
1200 of macro is visible. */
1201 #include "gdb_string.h"
1202 #include <ctype.h>
1203 #include "symtab.h"
1204 #include "frame.h"
1205 #include "inferior.h"
1206 #include "breakpoint.h"
1207 #include "gdb_wait.h"
1208 #include "gdbcore.h"
1209 #include "gdbcmd.h"
1210 #include "target.h"
1211 #include "gdbthread.h"
1212 #include "annotate.h"
1213 #include "symfile.h" /* for overlay functions */
1214 #include "value.h" /* For old tm.h/nm.h macros. */
1215 #endif
1216 #include "symcat.h"
1217
1218 #include "floatformat.h"
1219
1220 #include "gdb_assert.h"
1221 #include "gdb-events.h"
1222
1223 /* Static function declarations */
1224
1225 static void verify_gdbarch (struct gdbarch *gdbarch);
1226 static void alloc_gdbarch_data (struct gdbarch *);
1227 static void init_gdbarch_data (struct gdbarch *);
1228 static void free_gdbarch_data (struct gdbarch *);
1229 static void init_gdbarch_swap (struct gdbarch *);
1230 static void swapout_gdbarch_swap (struct gdbarch *);
1231 static void swapin_gdbarch_swap (struct gdbarch *);
1232
1233 /* Non-zero if we want to trace architecture code. */
1234
1235 #ifndef GDBARCH_DEBUG
1236 #define GDBARCH_DEBUG 0
1237 #endif
1238 int gdbarch_debug = GDBARCH_DEBUG;
1239
1240 EOF
1241
1242 # gdbarch open the gdbarch object
1243 printf "\n"
1244 printf "/* Maintain the struct gdbarch object */\n"
1245 printf "\n"
1246 printf "struct gdbarch\n"
1247 printf "{\n"
1248 printf " /* basic architectural information */\n"
1249 function_list | while do_read
1250 do
1251 if class_is_info_p
1252 then
1253 printf " ${returntype} ${function};\n"
1254 fi
1255 done
1256 printf "\n"
1257 printf " /* target specific vector. */\n"
1258 printf " struct gdbarch_tdep *tdep;\n"
1259 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1260 printf "\n"
1261 printf " /* per-architecture data-pointers */\n"
1262 printf " unsigned nr_data;\n"
1263 printf " void **data;\n"
1264 printf "\n"
1265 printf " /* per-architecture swap-regions */\n"
1266 printf " struct gdbarch_swap *swap;\n"
1267 printf "\n"
1268 cat <<EOF
1269 /* Multi-arch values.
1270
1271 When extending this structure you must:
1272
1273 Add the field below.
1274
1275 Declare set/get functions and define the corresponding
1276 macro in gdbarch.h.
1277
1278 gdbarch_alloc(): If zero/NULL is not a suitable default,
1279 initialize the new field.
1280
1281 verify_gdbarch(): Confirm that the target updated the field
1282 correctly.
1283
1284 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1285 field is dumped out
1286
1287 \`\`startup_gdbarch()'': Append an initial value to the static
1288 variable (base values on the host's c-type system).
1289
1290 get_gdbarch(): Implement the set/get functions (probably using
1291 the macro's as shortcuts).
1292
1293 */
1294
1295 EOF
1296 function_list | while do_read
1297 do
1298 if class_is_variable_p
1299 then
1300 printf " ${returntype} ${function};\n"
1301 elif class_is_function_p
1302 then
1303 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1304 fi
1305 done
1306 printf "};\n"
1307
1308 # A pre-initialized vector
1309 printf "\n"
1310 printf "\n"
1311 cat <<EOF
1312 /* The default architecture uses host values (for want of a better
1313 choice). */
1314 EOF
1315 printf "\n"
1316 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1317 printf "\n"
1318 printf "struct gdbarch startup_gdbarch =\n"
1319 printf "{\n"
1320 printf " /* basic architecture information */\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " ${staticdefault},\n"
1326 fi
1327 done
1328 cat <<EOF
1329 /* target specific vector and its dump routine */
1330 NULL, NULL,
1331 /*per-architecture data-pointers and swap regions */
1332 0, NULL, NULL,
1333 /* Multi-arch values */
1334 EOF
1335 function_list | while do_read
1336 do
1337 if class_is_function_p || class_is_variable_p
1338 then
1339 printf " ${staticdefault},\n"
1340 fi
1341 done
1342 cat <<EOF
1343 /* startup_gdbarch() */
1344 };
1345
1346 struct gdbarch *current_gdbarch = &startup_gdbarch;
1347
1348 /* Do any initialization needed for a non-multiarch configuration
1349 after the _initialize_MODULE functions have been run. */
1350 void
1351 initialize_non_multiarch ()
1352 {
1353 alloc_gdbarch_data (&startup_gdbarch);
1354 init_gdbarch_swap (&startup_gdbarch);
1355 init_gdbarch_data (&startup_gdbarch);
1356 }
1357 EOF
1358
1359 # Create a new gdbarch struct
1360 printf "\n"
1361 printf "\n"
1362 cat <<EOF
1363 /* Create a new \`\`struct gdbarch'' based on information provided by
1364 \`\`struct gdbarch_info''. */
1365 EOF
1366 printf "\n"
1367 cat <<EOF
1368 struct gdbarch *
1369 gdbarch_alloc (const struct gdbarch_info *info,
1370 struct gdbarch_tdep *tdep)
1371 {
1372 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1373 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1374 the current local architecture and not the previous global
1375 architecture. This ensures that the new architectures initial
1376 values are not influenced by the previous architecture. Once
1377 everything is parameterised with gdbarch, this will go away. */
1378 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1379 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1380
1381 alloc_gdbarch_data (current_gdbarch);
1382
1383 current_gdbarch->tdep = tdep;
1384 EOF
1385 printf "\n"
1386 function_list | while do_read
1387 do
1388 if class_is_info_p
1389 then
1390 printf " current_gdbarch->${function} = info->${function};\n"
1391 fi
1392 done
1393 printf "\n"
1394 printf " /* Force the explicit initialization of these. */\n"
1395 function_list | while do_read
1396 do
1397 if class_is_function_p || class_is_variable_p
1398 then
1399 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1400 then
1401 printf " current_gdbarch->${function} = ${predefault};\n"
1402 fi
1403 fi
1404 done
1405 cat <<EOF
1406 /* gdbarch_alloc() */
1407
1408 return current_gdbarch;
1409 }
1410 EOF
1411
1412 # Free a gdbarch struct.
1413 printf "\n"
1414 printf "\n"
1415 cat <<EOF
1416 /* Free a gdbarch struct. This should never happen in normal
1417 operation --- once you've created a gdbarch, you keep it around.
1418 However, if an architecture's init function encounters an error
1419 building the structure, it may need to clean up a partially
1420 constructed gdbarch. */
1421
1422 void
1423 gdbarch_free (struct gdbarch *arch)
1424 {
1425 gdb_assert (arch != NULL);
1426 free_gdbarch_data (arch);
1427 xfree (arch);
1428 }
1429 EOF
1430
1431 # verify a new architecture
1432 printf "\n"
1433 printf "\n"
1434 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1435 printf "\n"
1436 cat <<EOF
1437 static void
1438 verify_gdbarch (struct gdbarch *gdbarch)
1439 {
1440 struct ui_file *log;
1441 struct cleanup *cleanups;
1442 long dummy;
1443 char *buf;
1444 /* Only perform sanity checks on a multi-arch target. */
1445 if (!GDB_MULTI_ARCH)
1446 return;
1447 log = mem_fileopen ();
1448 cleanups = make_cleanup_ui_file_delete (log);
1449 /* fundamental */
1450 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1451 fprintf_unfiltered (log, "\n\tbyte-order");
1452 if (gdbarch->bfd_arch_info == NULL)
1453 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1454 /* Check those that need to be defined for the given multi-arch level. */
1455 EOF
1456 function_list | while do_read
1457 do
1458 if class_is_function_p || class_is_variable_p
1459 then
1460 if [ "x${invalid_p}" = "x0" ]
1461 then
1462 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1463 elif class_is_predicate_p
1464 then
1465 printf " /* Skip verify of ${function}, has predicate */\n"
1466 # FIXME: See do_read for potential simplification
1467 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1468 then
1469 printf " if (${invalid_p})\n"
1470 printf " gdbarch->${function} = ${postdefault};\n"
1471 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1472 then
1473 printf " if (gdbarch->${function} == ${predefault})\n"
1474 printf " gdbarch->${function} = ${postdefault};\n"
1475 elif [ -n "${postdefault}" ]
1476 then
1477 printf " if (gdbarch->${function} == 0)\n"
1478 printf " gdbarch->${function} = ${postdefault};\n"
1479 elif [ -n "${invalid_p}" ]
1480 then
1481 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1482 printf " && (${invalid_p}))\n"
1483 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1484 elif [ -n "${predefault}" ]
1485 then
1486 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1487 printf " && (gdbarch->${function} == ${predefault}))\n"
1488 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1489 fi
1490 fi
1491 done
1492 cat <<EOF
1493 buf = ui_file_xstrdup (log, &dummy);
1494 make_cleanup (xfree, buf);
1495 if (strlen (buf) > 0)
1496 internal_error (__FILE__, __LINE__,
1497 "verify_gdbarch: the following are invalid ...%s",
1498 buf);
1499 do_cleanups (cleanups);
1500 }
1501 EOF
1502
1503 # dump the structure
1504 printf "\n"
1505 printf "\n"
1506 cat <<EOF
1507 /* Print out the details of the current architecture. */
1508
1509 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1510 just happens to match the global variable \`\`current_gdbarch''. That
1511 way macros refering to that variable get the local and not the global
1512 version - ulgh. Once everything is parameterised with gdbarch, this
1513 will go away. */
1514
1515 void
1516 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1517 {
1518 fprintf_unfiltered (file,
1519 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1520 GDB_MULTI_ARCH);
1521 EOF
1522 function_list | sort -t: +2 | while do_read
1523 do
1524 # multiarch functions don't have macros.
1525 if class_is_multiarch_p
1526 then
1527 printf " if (GDB_MULTI_ARCH)\n"
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1530 printf " (long) current_gdbarch->${function});\n"
1531 continue
1532 fi
1533 # Print the macro definition.
1534 printf "#ifdef ${macro}\n"
1535 if [ "x${returntype}" = "xvoid" ]
1536 then
1537 printf "#if GDB_MULTI_ARCH\n"
1538 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1539 fi
1540 if class_is_function_p
1541 then
1542 printf " fprintf_unfiltered (file,\n"
1543 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1544 printf " \"${macro}(${actual})\",\n"
1545 printf " XSTRING (${macro} (${actual})));\n"
1546 else
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1549 printf " XSTRING (${macro}));\n"
1550 fi
1551 # Print the architecture vector value
1552 if [ "x${returntype}" = "xvoid" ]
1553 then
1554 printf "#endif\n"
1555 fi
1556 if [ "x${print_p}" = "x()" ]
1557 then
1558 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1559 elif [ "x${print_p}" = "x0" ]
1560 then
1561 printf " /* skip print of ${macro}, print_p == 0. */\n"
1562 elif [ -n "${print_p}" ]
1563 then
1564 printf " if (${print_p})\n"
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1567 printf " ${print});\n"
1568 elif class_is_function_p
1569 then
1570 printf " if (GDB_MULTI_ARCH)\n"
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1573 printf " (long) current_gdbarch->${function}\n"
1574 printf " /*${macro} ()*/);\n"
1575 else
1576 printf " fprintf_unfiltered (file,\n"
1577 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1578 printf " ${print});\n"
1579 fi
1580 printf "#endif\n"
1581 done
1582 cat <<EOF
1583 if (current_gdbarch->dump_tdep != NULL)
1584 current_gdbarch->dump_tdep (current_gdbarch, file);
1585 }
1586 EOF
1587
1588
1589 # GET/SET
1590 printf "\n"
1591 cat <<EOF
1592 struct gdbarch_tdep *
1593 gdbarch_tdep (struct gdbarch *gdbarch)
1594 {
1595 if (gdbarch_debug >= 2)
1596 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1597 return gdbarch->tdep;
1598 }
1599 EOF
1600 printf "\n"
1601 function_list | while do_read
1602 do
1603 if class_is_predicate_p
1604 then
1605 printf "\n"
1606 printf "int\n"
1607 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1608 printf "{\n"
1609 if [ -n "${valid_p}" ]
1610 then
1611 printf " return ${valid_p};\n"
1612 else
1613 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1614 fi
1615 printf "}\n"
1616 fi
1617 if class_is_function_p
1618 then
1619 printf "\n"
1620 printf "${returntype}\n"
1621 if [ "x${formal}" = "xvoid" ]
1622 then
1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1624 else
1625 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1626 fi
1627 printf "{\n"
1628 printf " if (gdbarch->${function} == 0)\n"
1629 printf " internal_error (__FILE__, __LINE__,\n"
1630 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1631 printf " if (gdbarch_debug >= 2)\n"
1632 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1633 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1634 then
1635 if class_is_multiarch_p
1636 then
1637 params="gdbarch"
1638 else
1639 params=""
1640 fi
1641 else
1642 if class_is_multiarch_p
1643 then
1644 params="gdbarch, ${actual}"
1645 else
1646 params="${actual}"
1647 fi
1648 fi
1649 if [ "x${returntype}" = "xvoid" ]
1650 then
1651 printf " gdbarch->${function} (${params});\n"
1652 else
1653 printf " return gdbarch->${function} (${params});\n"
1654 fi
1655 printf "}\n"
1656 printf "\n"
1657 printf "void\n"
1658 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1659 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1660 printf "{\n"
1661 printf " gdbarch->${function} = ${function};\n"
1662 printf "}\n"
1663 elif class_is_variable_p
1664 then
1665 printf "\n"
1666 printf "${returntype}\n"
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1668 printf "{\n"
1669 if [ "x${invalid_p}" = "x0" ]
1670 then
1671 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1672 elif [ -n "${invalid_p}" ]
1673 then
1674 printf " if (${invalid_p})\n"
1675 printf " internal_error (__FILE__, __LINE__,\n"
1676 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1677 elif [ -n "${predefault}" ]
1678 then
1679 printf " if (gdbarch->${function} == ${predefault})\n"
1680 printf " internal_error (__FILE__, __LINE__,\n"
1681 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1682 fi
1683 printf " if (gdbarch_debug >= 2)\n"
1684 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1685 printf " return gdbarch->${function};\n"
1686 printf "}\n"
1687 printf "\n"
1688 printf "void\n"
1689 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1690 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1691 printf "{\n"
1692 printf " gdbarch->${function} = ${function};\n"
1693 printf "}\n"
1694 elif class_is_info_p
1695 then
1696 printf "\n"
1697 printf "${returntype}\n"
1698 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1699 printf "{\n"
1700 printf " if (gdbarch_debug >= 2)\n"
1701 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1702 printf " return gdbarch->${function};\n"
1703 printf "}\n"
1704 fi
1705 done
1706
1707 # All the trailing guff
1708 cat <<EOF
1709
1710
1711 /* Keep a registry of per-architecture data-pointers required by GDB
1712 modules. */
1713
1714 struct gdbarch_data
1715 {
1716 unsigned index;
1717 gdbarch_data_init_ftype *init;
1718 gdbarch_data_free_ftype *free;
1719 };
1720
1721 struct gdbarch_data_registration
1722 {
1723 struct gdbarch_data *data;
1724 struct gdbarch_data_registration *next;
1725 };
1726
1727 struct gdbarch_data_registry
1728 {
1729 unsigned nr;
1730 struct gdbarch_data_registration *registrations;
1731 };
1732
1733 struct gdbarch_data_registry gdbarch_data_registry =
1734 {
1735 0, NULL,
1736 };
1737
1738 struct gdbarch_data *
1739 register_gdbarch_data (gdbarch_data_init_ftype *init,
1740 gdbarch_data_free_ftype *free)
1741 {
1742 struct gdbarch_data_registration **curr;
1743 for (curr = &gdbarch_data_registry.registrations;
1744 (*curr) != NULL;
1745 curr = &(*curr)->next);
1746 (*curr) = XMALLOC (struct gdbarch_data_registration);
1747 (*curr)->next = NULL;
1748 (*curr)->data = XMALLOC (struct gdbarch_data);
1749 (*curr)->data->index = gdbarch_data_registry.nr++;
1750 (*curr)->data->init = init;
1751 (*curr)->data->free = free;
1752 return (*curr)->data;
1753 }
1754
1755
1756 /* Walk through all the registered users initializing each in turn. */
1757
1758 static void
1759 init_gdbarch_data (struct gdbarch *gdbarch)
1760 {
1761 struct gdbarch_data_registration *rego;
1762 for (rego = gdbarch_data_registry.registrations;
1763 rego != NULL;
1764 rego = rego->next)
1765 {
1766 struct gdbarch_data *data = rego->data;
1767 gdb_assert (data->index < gdbarch->nr_data);
1768 if (data->init != NULL)
1769 {
1770 void *pointer = data->init (gdbarch);
1771 set_gdbarch_data (gdbarch, data, pointer);
1772 }
1773 }
1774 }
1775
1776 /* Create/delete the gdbarch data vector. */
1777
1778 static void
1779 alloc_gdbarch_data (struct gdbarch *gdbarch)
1780 {
1781 gdb_assert (gdbarch->data == NULL);
1782 gdbarch->nr_data = gdbarch_data_registry.nr;
1783 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1784 }
1785
1786 static void
1787 free_gdbarch_data (struct gdbarch *gdbarch)
1788 {
1789 struct gdbarch_data_registration *rego;
1790 gdb_assert (gdbarch->data != NULL);
1791 for (rego = gdbarch_data_registry.registrations;
1792 rego != NULL;
1793 rego = rego->next)
1794 {
1795 struct gdbarch_data *data = rego->data;
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1798 {
1799 data->free (gdbarch, gdbarch->data[data->index]);
1800 gdbarch->data[data->index] = NULL;
1801 }
1802 }
1803 xfree (gdbarch->data);
1804 gdbarch->data = NULL;
1805 }
1806
1807
1808 /* Initialize the current value of thee specified per-architecture
1809 data-pointer. */
1810
1811 void
1812 set_gdbarch_data (struct gdbarch *gdbarch,
1813 struct gdbarch_data *data,
1814 void *pointer)
1815 {
1816 gdb_assert (data->index < gdbarch->nr_data);
1817 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1818 data->free (gdbarch, gdbarch->data[data->index]);
1819 gdbarch->data[data->index] = pointer;
1820 }
1821
1822 /* Return the current value of the specified per-architecture
1823 data-pointer. */
1824
1825 void *
1826 gdbarch_data (struct gdbarch_data *data)
1827 {
1828 gdb_assert (data->index < current_gdbarch->nr_data);
1829 return current_gdbarch->data[data->index];
1830 }
1831
1832
1833
1834 /* Keep a registry of swapped data required by GDB modules. */
1835
1836 struct gdbarch_swap
1837 {
1838 void *swap;
1839 struct gdbarch_swap_registration *source;
1840 struct gdbarch_swap *next;
1841 };
1842
1843 struct gdbarch_swap_registration
1844 {
1845 void *data;
1846 unsigned long sizeof_data;
1847 gdbarch_swap_ftype *init;
1848 struct gdbarch_swap_registration *next;
1849 };
1850
1851 struct gdbarch_swap_registry
1852 {
1853 int nr;
1854 struct gdbarch_swap_registration *registrations;
1855 };
1856
1857 struct gdbarch_swap_registry gdbarch_swap_registry =
1858 {
1859 0, NULL,
1860 };
1861
1862 void
1863 register_gdbarch_swap (void *data,
1864 unsigned long sizeof_data,
1865 gdbarch_swap_ftype *init)
1866 {
1867 struct gdbarch_swap_registration **rego;
1868 for (rego = &gdbarch_swap_registry.registrations;
1869 (*rego) != NULL;
1870 rego = &(*rego)->next);
1871 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1872 (*rego)->next = NULL;
1873 (*rego)->init = init;
1874 (*rego)->data = data;
1875 (*rego)->sizeof_data = sizeof_data;
1876 }
1877
1878
1879 static void
1880 init_gdbarch_swap (struct gdbarch *gdbarch)
1881 {
1882 struct gdbarch_swap_registration *rego;
1883 struct gdbarch_swap **curr = &gdbarch->swap;
1884 for (rego = gdbarch_swap_registry.registrations;
1885 rego != NULL;
1886 rego = rego->next)
1887 {
1888 if (rego->data != NULL)
1889 {
1890 (*curr) = XMALLOC (struct gdbarch_swap);
1891 (*curr)->source = rego;
1892 (*curr)->swap = xmalloc (rego->sizeof_data);
1893 (*curr)->next = NULL;
1894 memset (rego->data, 0, rego->sizeof_data);
1895 curr = &(*curr)->next;
1896 }
1897 if (rego->init != NULL)
1898 rego->init ();
1899 }
1900 }
1901
1902 static void
1903 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1904 {
1905 struct gdbarch_swap *curr;
1906 for (curr = gdbarch->swap;
1907 curr != NULL;
1908 curr = curr->next)
1909 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1910 }
1911
1912 static void
1913 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1914 {
1915 struct gdbarch_swap *curr;
1916 for (curr = gdbarch->swap;
1917 curr != NULL;
1918 curr = curr->next)
1919 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1920 }
1921
1922
1923 /* Keep a registry of the architectures known by GDB. */
1924
1925 struct gdbarch_registration
1926 {
1927 enum bfd_architecture bfd_architecture;
1928 gdbarch_init_ftype *init;
1929 gdbarch_dump_tdep_ftype *dump_tdep;
1930 struct gdbarch_list *arches;
1931 struct gdbarch_registration *next;
1932 };
1933
1934 static struct gdbarch_registration *gdbarch_registry = NULL;
1935
1936 static void
1937 append_name (const char ***buf, int *nr, const char *name)
1938 {
1939 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1940 (*buf)[*nr] = name;
1941 *nr += 1;
1942 }
1943
1944 const char **
1945 gdbarch_printable_names (void)
1946 {
1947 if (GDB_MULTI_ARCH)
1948 {
1949 /* Accumulate a list of names based on the registed list of
1950 architectures. */
1951 enum bfd_architecture a;
1952 int nr_arches = 0;
1953 const char **arches = NULL;
1954 struct gdbarch_registration *rego;
1955 for (rego = gdbarch_registry;
1956 rego != NULL;
1957 rego = rego->next)
1958 {
1959 const struct bfd_arch_info *ap;
1960 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1961 if (ap == NULL)
1962 internal_error (__FILE__, __LINE__,
1963 "gdbarch_architecture_names: multi-arch unknown");
1964 do
1965 {
1966 append_name (&arches, &nr_arches, ap->printable_name);
1967 ap = ap->next;
1968 }
1969 while (ap != NULL);
1970 }
1971 append_name (&arches, &nr_arches, NULL);
1972 return arches;
1973 }
1974 else
1975 /* Just return all the architectures that BFD knows. Assume that
1976 the legacy architecture framework supports them. */
1977 return bfd_arch_list ();
1978 }
1979
1980
1981 void
1982 gdbarch_register (enum bfd_architecture bfd_architecture,
1983 gdbarch_init_ftype *init,
1984 gdbarch_dump_tdep_ftype *dump_tdep)
1985 {
1986 struct gdbarch_registration **curr;
1987 const struct bfd_arch_info *bfd_arch_info;
1988 /* Check that BFD recognizes this architecture */
1989 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1990 if (bfd_arch_info == NULL)
1991 {
1992 internal_error (__FILE__, __LINE__,
1993 "gdbarch: Attempt to register unknown architecture (%d)",
1994 bfd_architecture);
1995 }
1996 /* Check that we haven't seen this architecture before */
1997 for (curr = &gdbarch_registry;
1998 (*curr) != NULL;
1999 curr = &(*curr)->next)
2000 {
2001 if (bfd_architecture == (*curr)->bfd_architecture)
2002 internal_error (__FILE__, __LINE__,
2003 "gdbarch: Duplicate registraration of architecture (%s)",
2004 bfd_arch_info->printable_name);
2005 }
2006 /* log it */
2007 if (gdbarch_debug)
2008 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2009 bfd_arch_info->printable_name,
2010 (long) init);
2011 /* Append it */
2012 (*curr) = XMALLOC (struct gdbarch_registration);
2013 (*curr)->bfd_architecture = bfd_architecture;
2014 (*curr)->init = init;
2015 (*curr)->dump_tdep = dump_tdep;
2016 (*curr)->arches = NULL;
2017 (*curr)->next = NULL;
2018 /* When non- multi-arch, install whatever target dump routine we've
2019 been provided - hopefully that routine has been written correctly
2020 and works regardless of multi-arch. */
2021 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2022 && startup_gdbarch.dump_tdep == NULL)
2023 startup_gdbarch.dump_tdep = dump_tdep;
2024 }
2025
2026 void
2027 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2028 gdbarch_init_ftype *init)
2029 {
2030 gdbarch_register (bfd_architecture, init, NULL);
2031 }
2032
2033
2034 /* Look for an architecture using gdbarch_info. Base search on only
2035 BFD_ARCH_INFO and BYTE_ORDER. */
2036
2037 struct gdbarch_list *
2038 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2039 const struct gdbarch_info *info)
2040 {
2041 for (; arches != NULL; arches = arches->next)
2042 {
2043 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2044 continue;
2045 if (info->byte_order != arches->gdbarch->byte_order)
2046 continue;
2047 return arches;
2048 }
2049 return NULL;
2050 }
2051
2052
2053 /* Update the current architecture. Return ZERO if the update request
2054 failed. */
2055
2056 int
2057 gdbarch_update_p (struct gdbarch_info info)
2058 {
2059 struct gdbarch *new_gdbarch;
2060 struct gdbarch_registration *rego;
2061
2062 /* Fill in missing parts of the INFO struct using a number of
2063 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2064
2065 /* \`\`(gdb) set architecture ...'' */
2066 if (info.bfd_arch_info == NULL
2067 && !TARGET_ARCHITECTURE_AUTO)
2068 info.bfd_arch_info = TARGET_ARCHITECTURE;
2069 if (info.bfd_arch_info == NULL
2070 && info.abfd != NULL
2071 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2072 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2073 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2074 if (info.bfd_arch_info == NULL)
2075 info.bfd_arch_info = TARGET_ARCHITECTURE;
2076
2077 /* \`\`(gdb) set byte-order ...'' */
2078 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2079 && !TARGET_BYTE_ORDER_AUTO)
2080 info.byte_order = TARGET_BYTE_ORDER;
2081 /* From the INFO struct. */
2082 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2083 && info.abfd != NULL)
2084 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2085 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2086 : BFD_ENDIAN_UNKNOWN);
2087 /* From the current target. */
2088 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2089 info.byte_order = TARGET_BYTE_ORDER;
2090
2091 /* Must have found some sort of architecture. */
2092 gdb_assert (info.bfd_arch_info != NULL);
2093
2094 if (gdbarch_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog,
2097 "gdbarch_update: info.bfd_arch_info %s\n",
2098 (info.bfd_arch_info != NULL
2099 ? info.bfd_arch_info->printable_name
2100 : "(null)"));
2101 fprintf_unfiltered (gdb_stdlog,
2102 "gdbarch_update: info.byte_order %d (%s)\n",
2103 info.byte_order,
2104 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2105 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2106 : "default"));
2107 fprintf_unfiltered (gdb_stdlog,
2108 "gdbarch_update: info.abfd 0x%lx\n",
2109 (long) info.abfd);
2110 fprintf_unfiltered (gdb_stdlog,
2111 "gdbarch_update: info.tdep_info 0x%lx\n",
2112 (long) info.tdep_info);
2113 }
2114
2115 /* Find the target that knows about this architecture. */
2116 for (rego = gdbarch_registry;
2117 rego != NULL;
2118 rego = rego->next)
2119 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2120 break;
2121 if (rego == NULL)
2122 {
2123 if (gdbarch_debug)
2124 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2125 return 0;
2126 }
2127
2128 /* Ask the target for a replacement architecture. */
2129 new_gdbarch = rego->init (info, rego->arches);
2130
2131 /* Did the target like it? No. Reject the change. */
2132 if (new_gdbarch == NULL)
2133 {
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2136 return 0;
2137 }
2138
2139 /* Did the architecture change? No. Do nothing. */
2140 if (current_gdbarch == new_gdbarch)
2141 {
2142 if (gdbarch_debug)
2143 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2144 (long) new_gdbarch,
2145 new_gdbarch->bfd_arch_info->printable_name);
2146 return 1;
2147 }
2148
2149 /* Swap all data belonging to the old target out */
2150 swapout_gdbarch_swap (current_gdbarch);
2151
2152 /* Is this a pre-existing architecture? Yes. Move it to the front
2153 of the list of architectures (keeping the list sorted Most
2154 Recently Used) and then copy it in. */
2155 {
2156 struct gdbarch_list **list;
2157 for (list = &rego->arches;
2158 (*list) != NULL;
2159 list = &(*list)->next)
2160 {
2161 if ((*list)->gdbarch == new_gdbarch)
2162 {
2163 struct gdbarch_list *this;
2164 if (gdbarch_debug)
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2167 (long) new_gdbarch,
2168 new_gdbarch->bfd_arch_info->printable_name);
2169 /* Unlink this. */
2170 this = (*list);
2171 (*list) = this->next;
2172 /* Insert in the front. */
2173 this->next = rego->arches;
2174 rego->arches = this;
2175 /* Copy the new architecture in. */
2176 current_gdbarch = new_gdbarch;
2177 swapin_gdbarch_swap (new_gdbarch);
2178 architecture_changed_event ();
2179 return 1;
2180 }
2181 }
2182 }
2183
2184 /* Prepend this new architecture to the architecture list (keep the
2185 list sorted Most Recently Used). */
2186 {
2187 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2188 this->next = rego->arches;
2189 this->gdbarch = new_gdbarch;
2190 rego->arches = this;
2191 }
2192
2193 /* Switch to this new architecture. Dump it out. */
2194 current_gdbarch = new_gdbarch;
2195 if (gdbarch_debug)
2196 {
2197 fprintf_unfiltered (gdb_stdlog,
2198 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2199 (long) new_gdbarch,
2200 new_gdbarch->bfd_arch_info->printable_name);
2201 }
2202
2203 /* Check that the newly installed architecture is valid. Plug in
2204 any post init values. */
2205 new_gdbarch->dump_tdep = rego->dump_tdep;
2206 verify_gdbarch (new_gdbarch);
2207
2208 /* Initialize the per-architecture memory (swap) areas.
2209 CURRENT_GDBARCH must be update before these modules are
2210 called. */
2211 init_gdbarch_swap (new_gdbarch);
2212
2213 /* Initialize the per-architecture data-pointer of all parties that
2214 registered an interest in this architecture. CURRENT_GDBARCH
2215 must be updated before these modules are called. */
2216 init_gdbarch_data (new_gdbarch);
2217 architecture_changed_event ();
2218
2219 if (gdbarch_debug)
2220 gdbarch_dump (current_gdbarch, gdb_stdlog);
2221
2222 return 1;
2223 }
2224
2225
2226 /* Disassembler */
2227
2228 /* Pointer to the target-dependent disassembly function. */
2229 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2230 disassemble_info tm_print_insn_info;
2231
2232
2233 extern void _initialize_gdbarch (void);
2234
2235 void
2236 _initialize_gdbarch (void)
2237 {
2238 struct cmd_list_element *c;
2239
2240 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2241 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2242 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2243 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2244 tm_print_insn_info.print_address_func = dis_asm_print_address;
2245
2246 add_show_from_set (add_set_cmd ("arch",
2247 class_maintenance,
2248 var_zinteger,
2249 (char *)&gdbarch_debug,
2250 "Set architecture debugging.\\n\\
2251 When non-zero, architecture debugging is enabled.", &setdebuglist),
2252 &showdebuglist);
2253 c = add_set_cmd ("archdebug",
2254 class_maintenance,
2255 var_zinteger,
2256 (char *)&gdbarch_debug,
2257 "Set architecture debugging.\\n\\
2258 When non-zero, architecture debugging is enabled.", &setlist);
2259
2260 deprecate_cmd (c, "set debug arch");
2261 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2262 }
2263 EOF
2264
2265 # close things off
2266 exec 1>&2
2267 #../move-if-change new-gdbarch.c gdbarch.c
2268 compare_new gdbarch.c
This page took 0.079174 seconds and 4 git commands to generate.