Remove spurious gdb/ ...
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Return true if GDB should use hardware single-stepping to execute
658 # the displaced instruction identified by CLOSURE. If false,
659 # GDB will simply restart execution at the displaced instruction
660 # location, and it is up to the target to ensure GDB will receive
661 # control again (e.g. by placing a software breakpoint instruction
662 # into the displaced instruction buffer).
663 #
664 # The default implementation returns false on all targets that
665 # provide a gdbarch_software_single_step routine, and true otherwise.
666 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
668 # Fix up the state resulting from successfully single-stepping a
669 # displaced instruction, to give the result we would have gotten from
670 # stepping the instruction in its original location.
671 #
672 # REGS is the register state resulting from single-stepping the
673 # displaced instruction.
674 #
675 # CLOSURE is the result from the matching call to
676 # gdbarch_displaced_step_copy_insn.
677 #
678 # If you provide gdbarch_displaced_step_copy_insn.but not this
679 # function, then GDB assumes that no fixup is needed after
680 # single-stepping the instruction.
681 #
682 # For a general explanation of displaced stepping and how GDB uses it,
683 # see the comments in infrun.c.
684 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686 # Free a closure returned by gdbarch_displaced_step_copy_insn.
687 #
688 # If you provide gdbarch_displaced_step_copy_insn, you must provide
689 # this function as well.
690 #
691 # If your architecture uses closures that don't need to be freed, then
692 # you can use simple_displaced_step_free_closure here.
693 #
694 # For a general explanation of displaced stepping and how GDB uses it,
695 # see the comments in infrun.c.
696 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698 # Return the address of an appropriate place to put displaced
699 # instructions while we step over them. There need only be one such
700 # place, since we're only stepping one thread over a breakpoint at a
701 # time.
702 #
703 # For a general explanation of displaced stepping and how GDB uses it,
704 # see the comments in infrun.c.
705 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
707 # Refresh overlay mapped state for section OSECT.
708 F:void:overlay_update:struct obj_section *osect:osect
709
710 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
711
712 # Handle special encoding of static variables in stabs debug info.
713 F:char *:static_transform_name:char *name:name
714 # Set if the address in N_SO or N_FUN stabs may be zero.
715 v:int:sofun_address_maybe_missing:::0:0::0
716
717 # Parse the instruction at ADDR storing in the record execution log
718 # the registers REGCACHE and memory ranges that will be affected when
719 # the instruction executes, along with their current values.
720 # Return -1 if something goes wrong, 0 otherwise.
721 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
723 # Save process state after a signal.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
727 # Signal translation: translate inferior's signal (host's) number into
728 # GDB's representation.
729 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730 # Signal translation: translate GDB's signal number into inferior's host
731 # signal number.
732 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
733
734 # Extra signal info inspection.
735 #
736 # Return a type suitable to inspect extra signal information.
737 M:struct type *:get_siginfo_type:void:
738
739 # Record architecture-specific information from the symbol table.
740 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
741
742 # Function for the 'catch syscall' feature.
743
744 # Get architecture-specific system calls information from registers.
745 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
747 # True if the list of shared libraries is one and only for all
748 # processes, as opposed to a list of shared libraries per inferior.
749 # This usually means that all processes, although may or may not share
750 # an address space, will see the same set of symbols at the same
751 # addresses.
752 v:int:has_global_solist:::0:0::0
753
754 # On some targets, even though each inferior has its own private
755 # address space, the debug interface takes care of making breakpoints
756 # visible to all address spaces automatically. For such cases,
757 # this property should be set to true.
758 v:int:has_global_breakpoints:::0:0::0
759 EOF
760 }
761
762 #
763 # The .log file
764 #
765 exec > new-gdbarch.log
766 function_list | while do_read
767 do
768 cat <<EOF
769 ${class} ${returntype} ${function} ($formal)
770 EOF
771 for r in ${read}
772 do
773 eval echo \"\ \ \ \ ${r}=\${${r}}\"
774 done
775 if class_is_predicate_p && fallback_default_p
776 then
777 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
778 kill $$
779 exit 1
780 fi
781 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
782 then
783 echo "Error: postdefault is useless when invalid_p=0" 1>&2
784 kill $$
785 exit 1
786 fi
787 if class_is_multiarch_p
788 then
789 if class_is_predicate_p ; then :
790 elif test "x${predefault}" = "x"
791 then
792 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
793 kill $$
794 exit 1
795 fi
796 fi
797 echo ""
798 done
799
800 exec 1>&2
801 compare_new gdbarch.log
802
803
804 copyright ()
805 {
806 cat <<EOF
807 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
808
809 /* Dynamic architecture support for GDB, the GNU debugger.
810
811 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
812 Free Software Foundation, Inc.
813
814 This file is part of GDB.
815
816 This program is free software; you can redistribute it and/or modify
817 it under the terms of the GNU General Public License as published by
818 the Free Software Foundation; either version 3 of the License, or
819 (at your option) any later version.
820
821 This program is distributed in the hope that it will be useful,
822 but WITHOUT ANY WARRANTY; without even the implied warranty of
823 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
824 GNU General Public License for more details.
825
826 You should have received a copy of the GNU General Public License
827 along with this program. If not, see <http://www.gnu.org/licenses/>. */
828
829 /* This file was created with the aid of \`\`gdbarch.sh''.
830
831 The Bourne shell script \`\`gdbarch.sh'' creates the files
832 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
833 against the existing \`\`gdbarch.[hc]''. Any differences found
834 being reported.
835
836 If editing this file, please also run gdbarch.sh and merge any
837 changes into that script. Conversely, when making sweeping changes
838 to this file, modifying gdbarch.sh and using its output may prove
839 easier. */
840
841 EOF
842 }
843
844 #
845 # The .h file
846 #
847
848 exec > new-gdbarch.h
849 copyright
850 cat <<EOF
851 #ifndef GDBARCH_H
852 #define GDBARCH_H
853
854 struct floatformat;
855 struct ui_file;
856 struct frame_info;
857 struct value;
858 struct objfile;
859 struct obj_section;
860 struct minimal_symbol;
861 struct regcache;
862 struct reggroup;
863 struct regset;
864 struct disassemble_info;
865 struct target_ops;
866 struct obstack;
867 struct bp_target_info;
868 struct target_desc;
869 struct displaced_step_closure;
870 struct core_regset_section;
871 struct syscall;
872
873 /* The architecture associated with the connection to the target.
874
875 The architecture vector provides some information that is really
876 a property of the target: The layout of certain packets, for instance;
877 or the solib_ops vector. Etc. To differentiate architecture accesses
878 to per-target properties from per-thread/per-frame/per-objfile properties,
879 accesses to per-target properties should be made through target_gdbarch.
880
881 Eventually, when support for multiple targets is implemented in
882 GDB, this global should be made target-specific. */
883 extern struct gdbarch *target_gdbarch;
884 EOF
885
886 # function typedef's
887 printf "\n"
888 printf "\n"
889 printf "/* The following are pre-initialized by GDBARCH. */\n"
890 function_list | while do_read
891 do
892 if class_is_info_p
893 then
894 printf "\n"
895 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
896 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
897 fi
898 done
899
900 # function typedef's
901 printf "\n"
902 printf "\n"
903 printf "/* The following are initialized by the target dependent code. */\n"
904 function_list | while do_read
905 do
906 if [ -n "${comment}" ]
907 then
908 echo "${comment}" | sed \
909 -e '2 s,#,/*,' \
910 -e '3,$ s,#, ,' \
911 -e '$ s,$, */,'
912 fi
913
914 if class_is_predicate_p
915 then
916 printf "\n"
917 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
918 fi
919 if class_is_variable_p
920 then
921 printf "\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
924 fi
925 if class_is_function_p
926 then
927 printf "\n"
928 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
929 then
930 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
931 elif class_is_multiarch_p
932 then
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
934 else
935 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
936 fi
937 if [ "x${formal}" = "xvoid" ]
938 then
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
940 else
941 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
942 fi
943 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
944 fi
945 done
946
947 # close it off
948 cat <<EOF
949
950 /* Definition for an unknown syscall, used basically in error-cases. */
951 #define UNKNOWN_SYSCALL (-1)
952
953 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
954
955
956 /* Mechanism for co-ordinating the selection of a specific
957 architecture.
958
959 GDB targets (*-tdep.c) can register an interest in a specific
960 architecture. Other GDB components can register a need to maintain
961 per-architecture data.
962
963 The mechanisms below ensures that there is only a loose connection
964 between the set-architecture command and the various GDB
965 components. Each component can independently register their need
966 to maintain architecture specific data with gdbarch.
967
968 Pragmatics:
969
970 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
971 didn't scale.
972
973 The more traditional mega-struct containing architecture specific
974 data for all the various GDB components was also considered. Since
975 GDB is built from a variable number of (fairly independent)
976 components it was determined that the global aproach was not
977 applicable. */
978
979
980 /* Register a new architectural family with GDB.
981
982 Register support for the specified ARCHITECTURE with GDB. When
983 gdbarch determines that the specified architecture has been
984 selected, the corresponding INIT function is called.
985
986 --
987
988 The INIT function takes two parameters: INFO which contains the
989 information available to gdbarch about the (possibly new)
990 architecture; ARCHES which is a list of the previously created
991 \`\`struct gdbarch'' for this architecture.
992
993 The INFO parameter is, as far as possible, be pre-initialized with
994 information obtained from INFO.ABFD or the global defaults.
995
996 The ARCHES parameter is a linked list (sorted most recently used)
997 of all the previously created architures for this architecture
998 family. The (possibly NULL) ARCHES->gdbarch can used to access
999 values from the previously selected architecture for this
1000 architecture family.
1001
1002 The INIT function shall return any of: NULL - indicating that it
1003 doesn't recognize the selected architecture; an existing \`\`struct
1004 gdbarch'' from the ARCHES list - indicating that the new
1005 architecture is just a synonym for an earlier architecture (see
1006 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1007 - that describes the selected architecture (see gdbarch_alloc()).
1008
1009 The DUMP_TDEP function shall print out all target specific values.
1010 Care should be taken to ensure that the function works in both the
1011 multi-arch and non- multi-arch cases. */
1012
1013 struct gdbarch_list
1014 {
1015 struct gdbarch *gdbarch;
1016 struct gdbarch_list *next;
1017 };
1018
1019 struct gdbarch_info
1020 {
1021 /* Use default: NULL (ZERO). */
1022 const struct bfd_arch_info *bfd_arch_info;
1023
1024 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1025 int byte_order;
1026
1027 int byte_order_for_code;
1028
1029 /* Use default: NULL (ZERO). */
1030 bfd *abfd;
1031
1032 /* Use default: NULL (ZERO). */
1033 struct gdbarch_tdep_info *tdep_info;
1034
1035 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1036 enum gdb_osabi osabi;
1037
1038 /* Use default: NULL (ZERO). */
1039 const struct target_desc *target_desc;
1040 };
1041
1042 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1043 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1044
1045 /* DEPRECATED - use gdbarch_register() */
1046 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1047
1048 extern void gdbarch_register (enum bfd_architecture architecture,
1049 gdbarch_init_ftype *,
1050 gdbarch_dump_tdep_ftype *);
1051
1052
1053 /* Return a freshly allocated, NULL terminated, array of the valid
1054 architecture names. Since architectures are registered during the
1055 _initialize phase this function only returns useful information
1056 once initialization has been completed. */
1057
1058 extern const char **gdbarch_printable_names (void);
1059
1060
1061 /* Helper function. Search the list of ARCHES for a GDBARCH that
1062 matches the information provided by INFO. */
1063
1064 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1065
1066
1067 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1068 basic initialization using values obtained from the INFO and TDEP
1069 parameters. set_gdbarch_*() functions are called to complete the
1070 initialization of the object. */
1071
1072 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1073
1074
1075 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1076 It is assumed that the caller freeds the \`\`struct
1077 gdbarch_tdep''. */
1078
1079 extern void gdbarch_free (struct gdbarch *);
1080
1081
1082 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1083 obstack. The memory is freed when the corresponding architecture
1084 is also freed. */
1085
1086 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1087 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1088 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1089
1090
1091 /* Helper function. Force an update of the current architecture.
1092
1093 The actual architecture selected is determined by INFO, \`\`(gdb) set
1094 architecture'' et.al., the existing architecture and BFD's default
1095 architecture. INFO should be initialized to zero and then selected
1096 fields should be updated.
1097
1098 Returns non-zero if the update succeeds */
1099
1100 extern int gdbarch_update_p (struct gdbarch_info info);
1101
1102
1103 /* Helper function. Find an architecture matching info.
1104
1105 INFO should be initialized using gdbarch_info_init, relevant fields
1106 set, and then finished using gdbarch_info_fill.
1107
1108 Returns the corresponding architecture, or NULL if no matching
1109 architecture was found. */
1110
1111 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1112
1113
1114 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1115
1116 FIXME: kettenis/20031124: Of the functions that follow, only
1117 gdbarch_from_bfd is supposed to survive. The others will
1118 dissappear since in the future GDB will (hopefully) be truly
1119 multi-arch. However, for now we're still stuck with the concept of
1120 a single active architecture. */
1121
1122 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1123
1124
1125 /* Register per-architecture data-pointer.
1126
1127 Reserve space for a per-architecture data-pointer. An identifier
1128 for the reserved data-pointer is returned. That identifer should
1129 be saved in a local static variable.
1130
1131 Memory for the per-architecture data shall be allocated using
1132 gdbarch_obstack_zalloc. That memory will be deleted when the
1133 corresponding architecture object is deleted.
1134
1135 When a previously created architecture is re-selected, the
1136 per-architecture data-pointer for that previous architecture is
1137 restored. INIT() is not re-called.
1138
1139 Multiple registrarants for any architecture are allowed (and
1140 strongly encouraged). */
1141
1142 struct gdbarch_data;
1143
1144 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1145 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1146 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1147 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1148 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1149 struct gdbarch_data *data,
1150 void *pointer);
1151
1152 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1153
1154
1155 /* Set the dynamic target-system-dependent parameters (architecture,
1156 byte-order, ...) using information found in the BFD */
1157
1158 extern void set_gdbarch_from_file (bfd *);
1159
1160
1161 /* Initialize the current architecture to the "first" one we find on
1162 our list. */
1163
1164 extern void initialize_current_architecture (void);
1165
1166 /* gdbarch trace variable */
1167 extern int gdbarch_debug;
1168
1169 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1170
1171 #endif
1172 EOF
1173 exec 1>&2
1174 #../move-if-change new-gdbarch.h gdbarch.h
1175 compare_new gdbarch.h
1176
1177
1178 #
1179 # C file
1180 #
1181
1182 exec > new-gdbarch.c
1183 copyright
1184 cat <<EOF
1185
1186 #include "defs.h"
1187 #include "arch-utils.h"
1188
1189 #include "gdbcmd.h"
1190 #include "inferior.h"
1191 #include "symcat.h"
1192
1193 #include "floatformat.h"
1194
1195 #include "gdb_assert.h"
1196 #include "gdb_string.h"
1197 #include "reggroups.h"
1198 #include "osabi.h"
1199 #include "gdb_obstack.h"
1200 #include "observer.h"
1201 #include "regcache.h"
1202
1203 /* Static function declarations */
1204
1205 static void alloc_gdbarch_data (struct gdbarch *);
1206
1207 /* Non-zero if we want to trace architecture code. */
1208
1209 #ifndef GDBARCH_DEBUG
1210 #define GDBARCH_DEBUG 0
1211 #endif
1212 int gdbarch_debug = GDBARCH_DEBUG;
1213 static void
1214 show_gdbarch_debug (struct ui_file *file, int from_tty,
1215 struct cmd_list_element *c, const char *value)
1216 {
1217 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1218 }
1219
1220 static const char *
1221 pformat (const struct floatformat **format)
1222 {
1223 if (format == NULL)
1224 return "(null)";
1225 else
1226 /* Just print out one of them - this is only for diagnostics. */
1227 return format[0]->name;
1228 }
1229
1230 EOF
1231
1232 # gdbarch open the gdbarch object
1233 printf "\n"
1234 printf "/* Maintain the struct gdbarch object */\n"
1235 printf "\n"
1236 printf "struct gdbarch\n"
1237 printf "{\n"
1238 printf " /* Has this architecture been fully initialized? */\n"
1239 printf " int initialized_p;\n"
1240 printf "\n"
1241 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1242 printf " struct obstack *obstack;\n"
1243 printf "\n"
1244 printf " /* basic architectural information */\n"
1245 function_list | while do_read
1246 do
1247 if class_is_info_p
1248 then
1249 printf " ${returntype} ${function};\n"
1250 fi
1251 done
1252 printf "\n"
1253 printf " /* target specific vector. */\n"
1254 printf " struct gdbarch_tdep *tdep;\n"
1255 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1256 printf "\n"
1257 printf " /* per-architecture data-pointers */\n"
1258 printf " unsigned nr_data;\n"
1259 printf " void **data;\n"
1260 printf "\n"
1261 printf " /* per-architecture swap-regions */\n"
1262 printf " struct gdbarch_swap *swap;\n"
1263 printf "\n"
1264 cat <<EOF
1265 /* Multi-arch values.
1266
1267 When extending this structure you must:
1268
1269 Add the field below.
1270
1271 Declare set/get functions and define the corresponding
1272 macro in gdbarch.h.
1273
1274 gdbarch_alloc(): If zero/NULL is not a suitable default,
1275 initialize the new field.
1276
1277 verify_gdbarch(): Confirm that the target updated the field
1278 correctly.
1279
1280 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1281 field is dumped out
1282
1283 \`\`startup_gdbarch()'': Append an initial value to the static
1284 variable (base values on the host's c-type system).
1285
1286 get_gdbarch(): Implement the set/get functions (probably using
1287 the macro's as shortcuts).
1288
1289 */
1290
1291 EOF
1292 function_list | while do_read
1293 do
1294 if class_is_variable_p
1295 then
1296 printf " ${returntype} ${function};\n"
1297 elif class_is_function_p
1298 then
1299 printf " gdbarch_${function}_ftype *${function};\n"
1300 fi
1301 done
1302 printf "};\n"
1303
1304 # A pre-initialized vector
1305 printf "\n"
1306 printf "\n"
1307 cat <<EOF
1308 /* The default architecture uses host values (for want of a better
1309 choice). */
1310 EOF
1311 printf "\n"
1312 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1313 printf "\n"
1314 printf "struct gdbarch startup_gdbarch =\n"
1315 printf "{\n"
1316 printf " 1, /* Always initialized. */\n"
1317 printf " NULL, /* The obstack. */\n"
1318 printf " /* basic architecture information */\n"
1319 function_list | while do_read
1320 do
1321 if class_is_info_p
1322 then
1323 printf " ${staticdefault}, /* ${function} */\n"
1324 fi
1325 done
1326 cat <<EOF
1327 /* target specific vector and its dump routine */
1328 NULL, NULL,
1329 /*per-architecture data-pointers and swap regions */
1330 0, NULL, NULL,
1331 /* Multi-arch values */
1332 EOF
1333 function_list | while do_read
1334 do
1335 if class_is_function_p || class_is_variable_p
1336 then
1337 printf " ${staticdefault}, /* ${function} */\n"
1338 fi
1339 done
1340 cat <<EOF
1341 /* startup_gdbarch() */
1342 };
1343
1344 struct gdbarch *target_gdbarch = &startup_gdbarch;
1345 EOF
1346
1347 # Create a new gdbarch struct
1348 cat <<EOF
1349
1350 /* Create a new \`\`struct gdbarch'' based on information provided by
1351 \`\`struct gdbarch_info''. */
1352 EOF
1353 printf "\n"
1354 cat <<EOF
1355 struct gdbarch *
1356 gdbarch_alloc (const struct gdbarch_info *info,
1357 struct gdbarch_tdep *tdep)
1358 {
1359 struct gdbarch *gdbarch;
1360
1361 /* Create an obstack for allocating all the per-architecture memory,
1362 then use that to allocate the architecture vector. */
1363 struct obstack *obstack = XMALLOC (struct obstack);
1364 obstack_init (obstack);
1365 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1366 memset (gdbarch, 0, sizeof (*gdbarch));
1367 gdbarch->obstack = obstack;
1368
1369 alloc_gdbarch_data (gdbarch);
1370
1371 gdbarch->tdep = tdep;
1372 EOF
1373 printf "\n"
1374 function_list | while do_read
1375 do
1376 if class_is_info_p
1377 then
1378 printf " gdbarch->${function} = info->${function};\n"
1379 fi
1380 done
1381 printf "\n"
1382 printf " /* Force the explicit initialization of these. */\n"
1383 function_list | while do_read
1384 do
1385 if class_is_function_p || class_is_variable_p
1386 then
1387 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1388 then
1389 printf " gdbarch->${function} = ${predefault};\n"
1390 fi
1391 fi
1392 done
1393 cat <<EOF
1394 /* gdbarch_alloc() */
1395
1396 return gdbarch;
1397 }
1398 EOF
1399
1400 # Free a gdbarch struct.
1401 printf "\n"
1402 printf "\n"
1403 cat <<EOF
1404 /* Allocate extra space using the per-architecture obstack. */
1405
1406 void *
1407 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1408 {
1409 void *data = obstack_alloc (arch->obstack, size);
1410 memset (data, 0, size);
1411 return data;
1412 }
1413
1414
1415 /* Free a gdbarch struct. This should never happen in normal
1416 operation --- once you've created a gdbarch, you keep it around.
1417 However, if an architecture's init function encounters an error
1418 building the structure, it may need to clean up a partially
1419 constructed gdbarch. */
1420
1421 void
1422 gdbarch_free (struct gdbarch *arch)
1423 {
1424 struct obstack *obstack;
1425 gdb_assert (arch != NULL);
1426 gdb_assert (!arch->initialized_p);
1427 obstack = arch->obstack;
1428 obstack_free (obstack, 0); /* Includes the ARCH. */
1429 xfree (obstack);
1430 }
1431 EOF
1432
1433 # verify a new architecture
1434 cat <<EOF
1435
1436
1437 /* Ensure that all values in a GDBARCH are reasonable. */
1438
1439 static void
1440 verify_gdbarch (struct gdbarch *gdbarch)
1441 {
1442 struct ui_file *log;
1443 struct cleanup *cleanups;
1444 long length;
1445 char *buf;
1446 log = mem_fileopen ();
1447 cleanups = make_cleanup_ui_file_delete (log);
1448 /* fundamental */
1449 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1450 fprintf_unfiltered (log, "\n\tbyte-order");
1451 if (gdbarch->bfd_arch_info == NULL)
1452 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1453 /* Check those that need to be defined for the given multi-arch level. */
1454 EOF
1455 function_list | while do_read
1456 do
1457 if class_is_function_p || class_is_variable_p
1458 then
1459 if [ "x${invalid_p}" = "x0" ]
1460 then
1461 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1462 elif class_is_predicate_p
1463 then
1464 printf " /* Skip verify of ${function}, has predicate */\n"
1465 # FIXME: See do_read for potential simplification
1466 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1467 then
1468 printf " if (${invalid_p})\n"
1469 printf " gdbarch->${function} = ${postdefault};\n"
1470 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1471 then
1472 printf " if (gdbarch->${function} == ${predefault})\n"
1473 printf " gdbarch->${function} = ${postdefault};\n"
1474 elif [ -n "${postdefault}" ]
1475 then
1476 printf " if (gdbarch->${function} == 0)\n"
1477 printf " gdbarch->${function} = ${postdefault};\n"
1478 elif [ -n "${invalid_p}" ]
1479 then
1480 printf " if (${invalid_p})\n"
1481 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1482 elif [ -n "${predefault}" ]
1483 then
1484 printf " if (gdbarch->${function} == ${predefault})\n"
1485 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1486 fi
1487 fi
1488 done
1489 cat <<EOF
1490 buf = ui_file_xstrdup (log, &length);
1491 make_cleanup (xfree, buf);
1492 if (length > 0)
1493 internal_error (__FILE__, __LINE__,
1494 _("verify_gdbarch: the following are invalid ...%s"),
1495 buf);
1496 do_cleanups (cleanups);
1497 }
1498 EOF
1499
1500 # dump the structure
1501 printf "\n"
1502 printf "\n"
1503 cat <<EOF
1504 /* Print out the details of the current architecture. */
1505
1506 void
1507 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1508 {
1509 const char *gdb_nm_file = "<not-defined>";
1510 #if defined (GDB_NM_FILE)
1511 gdb_nm_file = GDB_NM_FILE;
1512 #endif
1513 fprintf_unfiltered (file,
1514 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1515 gdb_nm_file);
1516 EOF
1517 function_list | sort -t: -k 3 | while do_read
1518 do
1519 # First the predicate
1520 if class_is_predicate_p
1521 then
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1524 printf " gdbarch_${function}_p (gdbarch));\n"
1525 fi
1526 # Print the corresponding value.
1527 if class_is_function_p
1528 then
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1531 printf " host_address_to_string (gdbarch->${function}));\n"
1532 else
1533 # It is a variable
1534 case "${print}:${returntype}" in
1535 :CORE_ADDR )
1536 fmt="%s"
1537 print="core_addr_to_string_nz (gdbarch->${function})"
1538 ;;
1539 :* )
1540 fmt="%s"
1541 print="plongest (gdbarch->${function})"
1542 ;;
1543 * )
1544 fmt="%s"
1545 ;;
1546 esac
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1549 printf " ${print});\n"
1550 fi
1551 done
1552 cat <<EOF
1553 if (gdbarch->dump_tdep != NULL)
1554 gdbarch->dump_tdep (gdbarch, file);
1555 }
1556 EOF
1557
1558
1559 # GET/SET
1560 printf "\n"
1561 cat <<EOF
1562 struct gdbarch_tdep *
1563 gdbarch_tdep (struct gdbarch *gdbarch)
1564 {
1565 if (gdbarch_debug >= 2)
1566 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1567 return gdbarch->tdep;
1568 }
1569 EOF
1570 printf "\n"
1571 function_list | while do_read
1572 do
1573 if class_is_predicate_p
1574 then
1575 printf "\n"
1576 printf "int\n"
1577 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1578 printf "{\n"
1579 printf " gdb_assert (gdbarch != NULL);\n"
1580 printf " return ${predicate};\n"
1581 printf "}\n"
1582 fi
1583 if class_is_function_p
1584 then
1585 printf "\n"
1586 printf "${returntype}\n"
1587 if [ "x${formal}" = "xvoid" ]
1588 then
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1590 else
1591 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1592 fi
1593 printf "{\n"
1594 printf " gdb_assert (gdbarch != NULL);\n"
1595 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1596 if class_is_predicate_p && test -n "${predefault}"
1597 then
1598 # Allow a call to a function with a predicate.
1599 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1600 fi
1601 printf " if (gdbarch_debug >= 2)\n"
1602 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1603 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1604 then
1605 if class_is_multiarch_p
1606 then
1607 params="gdbarch"
1608 else
1609 params=""
1610 fi
1611 else
1612 if class_is_multiarch_p
1613 then
1614 params="gdbarch, ${actual}"
1615 else
1616 params="${actual}"
1617 fi
1618 fi
1619 if [ "x${returntype}" = "xvoid" ]
1620 then
1621 printf " gdbarch->${function} (${params});\n"
1622 else
1623 printf " return gdbarch->${function} (${params});\n"
1624 fi
1625 printf "}\n"
1626 printf "\n"
1627 printf "void\n"
1628 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1629 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1630 printf "{\n"
1631 printf " gdbarch->${function} = ${function};\n"
1632 printf "}\n"
1633 elif class_is_variable_p
1634 then
1635 printf "\n"
1636 printf "${returntype}\n"
1637 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1638 printf "{\n"
1639 printf " gdb_assert (gdbarch != NULL);\n"
1640 if [ "x${invalid_p}" = "x0" ]
1641 then
1642 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1643 elif [ -n "${invalid_p}" ]
1644 then
1645 printf " /* Check variable is valid. */\n"
1646 printf " gdb_assert (!(${invalid_p}));\n"
1647 elif [ -n "${predefault}" ]
1648 then
1649 printf " /* Check variable changed from pre-default. */\n"
1650 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1651 fi
1652 printf " if (gdbarch_debug >= 2)\n"
1653 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1654 printf " return gdbarch->${function};\n"
1655 printf "}\n"
1656 printf "\n"
1657 printf "void\n"
1658 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1659 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1660 printf "{\n"
1661 printf " gdbarch->${function} = ${function};\n"
1662 printf "}\n"
1663 elif class_is_info_p
1664 then
1665 printf "\n"
1666 printf "${returntype}\n"
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1668 printf "{\n"
1669 printf " gdb_assert (gdbarch != NULL);\n"
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 printf " return gdbarch->${function};\n"
1673 printf "}\n"
1674 fi
1675 done
1676
1677 # All the trailing guff
1678 cat <<EOF
1679
1680
1681 /* Keep a registry of per-architecture data-pointers required by GDB
1682 modules. */
1683
1684 struct gdbarch_data
1685 {
1686 unsigned index;
1687 int init_p;
1688 gdbarch_data_pre_init_ftype *pre_init;
1689 gdbarch_data_post_init_ftype *post_init;
1690 };
1691
1692 struct gdbarch_data_registration
1693 {
1694 struct gdbarch_data *data;
1695 struct gdbarch_data_registration *next;
1696 };
1697
1698 struct gdbarch_data_registry
1699 {
1700 unsigned nr;
1701 struct gdbarch_data_registration *registrations;
1702 };
1703
1704 struct gdbarch_data_registry gdbarch_data_registry =
1705 {
1706 0, NULL,
1707 };
1708
1709 static struct gdbarch_data *
1710 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1711 gdbarch_data_post_init_ftype *post_init)
1712 {
1713 struct gdbarch_data_registration **curr;
1714 /* Append the new registraration. */
1715 for (curr = &gdbarch_data_registry.registrations;
1716 (*curr) != NULL;
1717 curr = &(*curr)->next);
1718 (*curr) = XMALLOC (struct gdbarch_data_registration);
1719 (*curr)->next = NULL;
1720 (*curr)->data = XMALLOC (struct gdbarch_data);
1721 (*curr)->data->index = gdbarch_data_registry.nr++;
1722 (*curr)->data->pre_init = pre_init;
1723 (*curr)->data->post_init = post_init;
1724 (*curr)->data->init_p = 1;
1725 return (*curr)->data;
1726 }
1727
1728 struct gdbarch_data *
1729 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1730 {
1731 return gdbarch_data_register (pre_init, NULL);
1732 }
1733
1734 struct gdbarch_data *
1735 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1736 {
1737 return gdbarch_data_register (NULL, post_init);
1738 }
1739
1740 /* Create/delete the gdbarch data vector. */
1741
1742 static void
1743 alloc_gdbarch_data (struct gdbarch *gdbarch)
1744 {
1745 gdb_assert (gdbarch->data == NULL);
1746 gdbarch->nr_data = gdbarch_data_registry.nr;
1747 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1748 }
1749
1750 /* Initialize the current value of the specified per-architecture
1751 data-pointer. */
1752
1753 void
1754 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1755 struct gdbarch_data *data,
1756 void *pointer)
1757 {
1758 gdb_assert (data->index < gdbarch->nr_data);
1759 gdb_assert (gdbarch->data[data->index] == NULL);
1760 gdb_assert (data->pre_init == NULL);
1761 gdbarch->data[data->index] = pointer;
1762 }
1763
1764 /* Return the current value of the specified per-architecture
1765 data-pointer. */
1766
1767 void *
1768 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1769 {
1770 gdb_assert (data->index < gdbarch->nr_data);
1771 if (gdbarch->data[data->index] == NULL)
1772 {
1773 /* The data-pointer isn't initialized, call init() to get a
1774 value. */
1775 if (data->pre_init != NULL)
1776 /* Mid architecture creation: pass just the obstack, and not
1777 the entire architecture, as that way it isn't possible for
1778 pre-init code to refer to undefined architecture
1779 fields. */
1780 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1781 else if (gdbarch->initialized_p
1782 && data->post_init != NULL)
1783 /* Post architecture creation: pass the entire architecture
1784 (as all fields are valid), but be careful to also detect
1785 recursive references. */
1786 {
1787 gdb_assert (data->init_p);
1788 data->init_p = 0;
1789 gdbarch->data[data->index] = data->post_init (gdbarch);
1790 data->init_p = 1;
1791 }
1792 else
1793 /* The architecture initialization hasn't completed - punt -
1794 hope that the caller knows what they are doing. Once
1795 deprecated_set_gdbarch_data has been initialized, this can be
1796 changed to an internal error. */
1797 return NULL;
1798 gdb_assert (gdbarch->data[data->index] != NULL);
1799 }
1800 return gdbarch->data[data->index];
1801 }
1802
1803
1804 /* Keep a registry of the architectures known by GDB. */
1805
1806 struct gdbarch_registration
1807 {
1808 enum bfd_architecture bfd_architecture;
1809 gdbarch_init_ftype *init;
1810 gdbarch_dump_tdep_ftype *dump_tdep;
1811 struct gdbarch_list *arches;
1812 struct gdbarch_registration *next;
1813 };
1814
1815 static struct gdbarch_registration *gdbarch_registry = NULL;
1816
1817 static void
1818 append_name (const char ***buf, int *nr, const char *name)
1819 {
1820 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1821 (*buf)[*nr] = name;
1822 *nr += 1;
1823 }
1824
1825 const char **
1826 gdbarch_printable_names (void)
1827 {
1828 /* Accumulate a list of names based on the registed list of
1829 architectures. */
1830 enum bfd_architecture a;
1831 int nr_arches = 0;
1832 const char **arches = NULL;
1833 struct gdbarch_registration *rego;
1834 for (rego = gdbarch_registry;
1835 rego != NULL;
1836 rego = rego->next)
1837 {
1838 const struct bfd_arch_info *ap;
1839 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1840 if (ap == NULL)
1841 internal_error (__FILE__, __LINE__,
1842 _("gdbarch_architecture_names: multi-arch unknown"));
1843 do
1844 {
1845 append_name (&arches, &nr_arches, ap->printable_name);
1846 ap = ap->next;
1847 }
1848 while (ap != NULL);
1849 }
1850 append_name (&arches, &nr_arches, NULL);
1851 return arches;
1852 }
1853
1854
1855 void
1856 gdbarch_register (enum bfd_architecture bfd_architecture,
1857 gdbarch_init_ftype *init,
1858 gdbarch_dump_tdep_ftype *dump_tdep)
1859 {
1860 struct gdbarch_registration **curr;
1861 const struct bfd_arch_info *bfd_arch_info;
1862 /* Check that BFD recognizes this architecture */
1863 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1864 if (bfd_arch_info == NULL)
1865 {
1866 internal_error (__FILE__, __LINE__,
1867 _("gdbarch: Attempt to register unknown architecture (%d)"),
1868 bfd_architecture);
1869 }
1870 /* Check that we haven't seen this architecture before */
1871 for (curr = &gdbarch_registry;
1872 (*curr) != NULL;
1873 curr = &(*curr)->next)
1874 {
1875 if (bfd_architecture == (*curr)->bfd_architecture)
1876 internal_error (__FILE__, __LINE__,
1877 _("gdbarch: Duplicate registraration of architecture (%s)"),
1878 bfd_arch_info->printable_name);
1879 }
1880 /* log it */
1881 if (gdbarch_debug)
1882 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1883 bfd_arch_info->printable_name,
1884 host_address_to_string (init));
1885 /* Append it */
1886 (*curr) = XMALLOC (struct gdbarch_registration);
1887 (*curr)->bfd_architecture = bfd_architecture;
1888 (*curr)->init = init;
1889 (*curr)->dump_tdep = dump_tdep;
1890 (*curr)->arches = NULL;
1891 (*curr)->next = NULL;
1892 }
1893
1894 void
1895 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1896 gdbarch_init_ftype *init)
1897 {
1898 gdbarch_register (bfd_architecture, init, NULL);
1899 }
1900
1901
1902 /* Look for an architecture using gdbarch_info. */
1903
1904 struct gdbarch_list *
1905 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1906 const struct gdbarch_info *info)
1907 {
1908 for (; arches != NULL; arches = arches->next)
1909 {
1910 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1911 continue;
1912 if (info->byte_order != arches->gdbarch->byte_order)
1913 continue;
1914 if (info->osabi != arches->gdbarch->osabi)
1915 continue;
1916 if (info->target_desc != arches->gdbarch->target_desc)
1917 continue;
1918 return arches;
1919 }
1920 return NULL;
1921 }
1922
1923
1924 /* Find an architecture that matches the specified INFO. Create a new
1925 architecture if needed. Return that new architecture. */
1926
1927 struct gdbarch *
1928 gdbarch_find_by_info (struct gdbarch_info info)
1929 {
1930 struct gdbarch *new_gdbarch;
1931 struct gdbarch_registration *rego;
1932
1933 /* Fill in missing parts of the INFO struct using a number of
1934 sources: "set ..."; INFOabfd supplied; and the global
1935 defaults. */
1936 gdbarch_info_fill (&info);
1937
1938 /* Must have found some sort of architecture. */
1939 gdb_assert (info.bfd_arch_info != NULL);
1940
1941 if (gdbarch_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog,
1944 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1945 (info.bfd_arch_info != NULL
1946 ? info.bfd_arch_info->printable_name
1947 : "(null)"));
1948 fprintf_unfiltered (gdb_stdlog,
1949 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1950 info.byte_order,
1951 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1952 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1953 : "default"));
1954 fprintf_unfiltered (gdb_stdlog,
1955 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1956 info.osabi, gdbarch_osabi_name (info.osabi));
1957 fprintf_unfiltered (gdb_stdlog,
1958 "gdbarch_find_by_info: info.abfd %s\n",
1959 host_address_to_string (info.abfd));
1960 fprintf_unfiltered (gdb_stdlog,
1961 "gdbarch_find_by_info: info.tdep_info %s\n",
1962 host_address_to_string (info.tdep_info));
1963 }
1964
1965 /* Find the tdep code that knows about this architecture. */
1966 for (rego = gdbarch_registry;
1967 rego != NULL;
1968 rego = rego->next)
1969 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1970 break;
1971 if (rego == NULL)
1972 {
1973 if (gdbarch_debug)
1974 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1975 "No matching architecture\n");
1976 return 0;
1977 }
1978
1979 /* Ask the tdep code for an architecture that matches "info". */
1980 new_gdbarch = rego->init (info, rego->arches);
1981
1982 /* Did the tdep code like it? No. Reject the change and revert to
1983 the old architecture. */
1984 if (new_gdbarch == NULL)
1985 {
1986 if (gdbarch_debug)
1987 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1988 "Target rejected architecture\n");
1989 return NULL;
1990 }
1991
1992 /* Is this a pre-existing architecture (as determined by already
1993 being initialized)? Move it to the front of the architecture
1994 list (keeping the list sorted Most Recently Used). */
1995 if (new_gdbarch->initialized_p)
1996 {
1997 struct gdbarch_list **list;
1998 struct gdbarch_list *this;
1999 if (gdbarch_debug)
2000 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2001 "Previous architecture %s (%s) selected\n",
2002 host_address_to_string (new_gdbarch),
2003 new_gdbarch->bfd_arch_info->printable_name);
2004 /* Find the existing arch in the list. */
2005 for (list = &rego->arches;
2006 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2007 list = &(*list)->next);
2008 /* It had better be in the list of architectures. */
2009 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2010 /* Unlink THIS. */
2011 this = (*list);
2012 (*list) = this->next;
2013 /* Insert THIS at the front. */
2014 this->next = rego->arches;
2015 rego->arches = this;
2016 /* Return it. */
2017 return new_gdbarch;
2018 }
2019
2020 /* It's a new architecture. */
2021 if (gdbarch_debug)
2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2023 "New architecture %s (%s) selected\n",
2024 host_address_to_string (new_gdbarch),
2025 new_gdbarch->bfd_arch_info->printable_name);
2026
2027 /* Insert the new architecture into the front of the architecture
2028 list (keep the list sorted Most Recently Used). */
2029 {
2030 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2031 this->next = rego->arches;
2032 this->gdbarch = new_gdbarch;
2033 rego->arches = this;
2034 }
2035
2036 /* Check that the newly installed architecture is valid. Plug in
2037 any post init values. */
2038 new_gdbarch->dump_tdep = rego->dump_tdep;
2039 verify_gdbarch (new_gdbarch);
2040 new_gdbarch->initialized_p = 1;
2041
2042 if (gdbarch_debug)
2043 gdbarch_dump (new_gdbarch, gdb_stdlog);
2044
2045 return new_gdbarch;
2046 }
2047
2048 /* Make the specified architecture current. */
2049
2050 void
2051 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2052 {
2053 gdb_assert (new_gdbarch != NULL);
2054 gdb_assert (new_gdbarch->initialized_p);
2055 target_gdbarch = new_gdbarch;
2056 observer_notify_architecture_changed (new_gdbarch);
2057 registers_changed ();
2058 }
2059
2060 extern void _initialize_gdbarch (void);
2061
2062 void
2063 _initialize_gdbarch (void)
2064 {
2065 struct cmd_list_element *c;
2066
2067 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2068 Set architecture debugging."), _("\\
2069 Show architecture debugging."), _("\\
2070 When non-zero, architecture debugging is enabled."),
2071 NULL,
2072 show_gdbarch_debug,
2073 &setdebuglist, &showdebuglist);
2074 }
2075 EOF
2076
2077 # close things off
2078 exec 1>&2
2079 #../move-if-change new-gdbarch.c gdbarch.c
2080 compare_new gdbarch.c
This page took 0.076088 seconds and 4 git commands to generate.