3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-
${file}
30 echo "${file} unchanged" 1>&2
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
46 if test "${line}" = ""
49 elif test "${line}" = "#" -a "${comment}" = ""
52 elif expr "${line}" : "#" > /dev
/null
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line
="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
63 OFS
="${IFS}" ; IFS
="[:]"
64 eval read ${read} <<EOF
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
73 if eval test \"\
${${r}}\" = \"\
\"
79 test "${staticdefault}" || staticdefault
=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" ||
fmt="%ld"
84 test "${print}" || print
="(long) ${macro}"
85 case "${invalid_p}" in
88 if [ -n "${predefault}" ]
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p
="gdbarch->${function} != ${predefault}"
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p
="gdbarch->${function} != 0"
97 * ) valid_p
="!(${invalid_p})"
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
107 if [ -n "${postdefault}" ]
109 fallbackdefault
="${postdefault}"
110 elif [ -n "${predefault}" ]
112 fallbackdefault
="${predefault}"
117 #NOT YET: See gdbarch.log for basic verification of
132 fallback_default_p
()
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 ||
[ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
138 class_is_variable_p
()
146 class_is_function_p
()
149 *f
* |
*F
* |
*m
* |
*M
* ) true
;;
154 class_is_multiarch_p
()
162 class_is_predicate_p
()
165 *F
* |
*V
* |
*M
* ) true
;;
179 # dump out/verify the doco
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
210 # The name of the MACRO that this method is to be accessed by.
214 # For functions, the return type; for variables, the data type
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
247 # If STATICDEFAULT is empty, zero is used.
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
256 # If PREDEFAULT is empty, zero is used.
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
262 # A zero PREDEFAULT function will force the fallback to call
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
274 # If POSTDEFAULT is empty, no post update is performed.
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
305 # See also PREDEFAULT and POSTDEFAULT.
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
313 # If FMT is empty, ``%ld'' is used.
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
320 # If PRINT is empty, ``(long)'' is used.
324 # An optional indicator for any predicte to wrap around the
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
331 # If PRINT_P is empty, ``1'' is always used.
344 # See below (DOCO) for description of each field
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
476 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
477 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
478 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
479 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
480 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
481 f:2:POP_FRAME:void:pop_frame:void:-:::0
483 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
484 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
485 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
486 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
488 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
489 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
491 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
492 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
493 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
494 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
495 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
496 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
497 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
498 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
499 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
501 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
503 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
504 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
505 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
506 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
507 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
508 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
509 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
510 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
511 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
513 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
514 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
515 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
516 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
517 v:2:PARM_BOUNDARY:int:parm_boundary
519 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
520 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
521 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
522 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
533 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
534 # the target needs software single step. An ISA method to implement it.
536 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
537 # using the breakpoint system instead of blatting memory directly (as with rs6000).
539 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
540 # single step. If not, then implement single step using breakpoints.
541 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
542 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
543 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
550 exec > new-gdbarch.log
551 function_list |
while do_read
554 ${class} ${macro}(${actual})
555 ${returntype} ${function} ($formal)${attrib}
559 eval echo \"\ \ \ \
${r}=\
${${r}}\"
561 # #fallbackdefault=${fallbackdefault}
562 # #valid_p=${valid_p}
564 if class_is_predicate_p
&& fallback_default_p
566 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
570 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
572 echo "Error: postdefault is useless when invalid_p=0" 1>&2
580 compare_new gdbarch.log
586 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
588 /* Dynamic architecture support for GDB, the GNU debugger.
589 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
591 This file is part of GDB.
593 This program is free software; you can redistribute it and/or modify
594 it under the terms of the GNU General Public License as published by
595 the Free Software Foundation; either version 2 of the License, or
596 (at your option) any later version.
598 This program is distributed in the hope that it will be useful,
599 but WITHOUT ANY WARRANTY; without even the implied warranty of
600 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
601 GNU General Public License for more details.
603 You should have received a copy of the GNU General Public License
604 along with this program; if not, write to the Free Software
605 Foundation, Inc., 59 Temple Place - Suite 330,
606 Boston, MA 02111-1307, USA. */
608 /* This file was created with the aid of \`\`gdbarch.sh''.
610 The Bourne shell script \`\`gdbarch.sh'' creates the files
611 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
612 against the existing \`\`gdbarch.[hc]''. Any differences found
615 If editing this file, please also run gdbarch.sh and merge any
616 changes into that script. Conversely, when making sweeping changes
617 to this file, modifying gdbarch.sh and using its output may prove
633 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
639 extern struct gdbarch *current_gdbarch;
642 /* If any of the following are defined, the target wasn't correctly
646 #if defined (EXTRA_FRAME_INFO)
647 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
652 #if defined (FRAME_FIND_SAVED_REGS)
653 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
657 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
658 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
665 printf "/* The following are pre-initialized by GDBARCH. */\n"
666 function_list |
while do_read
671 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
672 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
673 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
674 printf "#error \"Non multi-arch definition of ${macro}\"\n"
676 printf "#if GDB_MULTI_ARCH\n"
677 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
678 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
687 printf "/* The following are initialized by the target dependent code. */\n"
688 function_list |
while do_read
690 if [ -n "${comment}" ]
692 echo "${comment}" |
sed \
697 if class_is_multiarch_p
699 if class_is_predicate_p
702 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
705 if class_is_predicate_p
708 printf "#if defined (${macro})\n"
709 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
710 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
711 printf "#if !defined (${macro}_P)\n"
712 printf "#define ${macro}_P() (1)\n"
716 printf "/* Default predicate for non- multi-arch targets. */\n"
717 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
718 printf "#define ${macro}_P() (0)\n"
721 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
722 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
723 printf "#error \"Non multi-arch definition of ${macro}\"\n"
725 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
726 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
730 if class_is_variable_p
732 if fallback_default_p || class_is_predicate_p
735 printf "/* Default (value) for non- multi-arch platforms. */\n"
736 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
737 echo "#define ${macro} (${fallbackdefault})" \
738 |
sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
742 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
743 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
744 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
745 printf "#error \"Non multi-arch definition of ${macro}\"\n"
747 printf "#if GDB_MULTI_ARCH\n"
748 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
749 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
753 if class_is_function_p
755 if class_is_multiarch_p
; then :
756 elif fallback_default_p || class_is_predicate_p
759 printf "/* Default (function) for non- multi-arch platforms. */\n"
760 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
761 if [ "x${fallbackdefault}" = "x0" ]
763 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
765 # FIXME: Should be passing current_gdbarch through!
766 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
767 |
sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
772 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
774 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
775 elif class_is_multiarch_p
777 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
779 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
781 if [ "x${formal}" = "xvoid" ]
783 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
785 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
787 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
788 if class_is_multiarch_p
; then :
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
791 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#if GDB_MULTI_ARCH\n"
794 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
795 if [ "x${actual}" = "x" ]
797 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
798 elif [ "x${actual}" = "x-" ]
800 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
802 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
813 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
816 /* Mechanism for co-ordinating the selection of a specific
819 GDB targets (*-tdep.c) can register an interest in a specific
820 architecture. Other GDB components can register a need to maintain
821 per-architecture data.
823 The mechanisms below ensures that there is only a loose connection
824 between the set-architecture command and the various GDB
825 components. Each component can independently register their need
826 to maintain architecture specific data with gdbarch.
830 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
833 The more traditional mega-struct containing architecture specific
834 data for all the various GDB components was also considered. Since
835 GDB is built from a variable number of (fairly independent)
836 components it was determined that the global aproach was not
840 /* Register a new architectural family with GDB.
842 Register support for the specified ARCHITECTURE with GDB. When
843 gdbarch determines that the specified architecture has been
844 selected, the corresponding INIT function is called.
848 The INIT function takes two parameters: INFO which contains the
849 information available to gdbarch about the (possibly new)
850 architecture; ARCHES which is a list of the previously created
851 \`\`struct gdbarch'' for this architecture.
853 The INIT function parameter INFO shall, as far as possible, be
854 pre-initialized with information obtained from INFO.ABFD or
855 previously selected architecture (if similar). INIT shall ensure
856 that the INFO.BYTE_ORDER is non-zero.
858 The INIT function shall return any of: NULL - indicating that it
859 doesn't recognize the selected architecture; an existing \`\`struct
860 gdbarch'' from the ARCHES list - indicating that the new
861 architecture is just a synonym for an earlier architecture (see
862 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
863 - that describes the selected architecture (see gdbarch_alloc()).
865 The DUMP_TDEP function shall print out all target specific values.
866 Care should be taken to ensure that the function works in both the
867 multi-arch and non- multi-arch cases. */
871 struct gdbarch *gdbarch;
872 struct gdbarch_list *next;
877 /* Use default: NULL (ZERO). */
878 const struct bfd_arch_info *bfd_arch_info;
880 /* Use default: 0 (ZERO). */
883 /* Use default: NULL (ZERO). */
886 /* Use default: NULL (ZERO). */
887 struct gdbarch_tdep_info *tdep_info;
890 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
891 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
893 /* DEPRECATED - use gdbarch_register() */
894 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
896 extern void gdbarch_register (enum bfd_architecture architecture,
897 gdbarch_init_ftype *,
898 gdbarch_dump_tdep_ftype *);
901 /* Return a freshly allocated, NULL terminated, array of the valid
902 architecture names. Since architectures are registered during the
903 _initialize phase this function only returns useful information
904 once initialization has been completed. */
906 extern const char **gdbarch_printable_names (void);
909 /* Helper function. Search the list of ARCHES for a GDBARCH that
910 matches the information provided by INFO. */
912 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
915 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
916 basic initialization using values obtained from the INFO andTDEP
917 parameters. set_gdbarch_*() functions are called to complete the
918 initialization of the object. */
920 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
923 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
924 It is assumed that the caller freeds the \`\`struct
927 extern void gdbarch_free (struct gdbarch *);
930 /* Helper function. Force an update of the current architecture.
932 The actual architecture selected is determined by INFO, \`\`(gdb) set
933 architecture'' et.al., the existing architecture and BFD's default
934 architecture. INFO should be initialized to zero and then selected
935 fields should be updated.
937 Returns non-zero if the update succeeds */
939 extern int gdbarch_update_p (struct gdbarch_info info);
943 /* Register per-architecture data-pointer.
945 Reserve space for a per-architecture data-pointer. An identifier
946 for the reserved data-pointer is returned. That identifer should
947 be saved in a local static variable.
949 The per-architecture data-pointer can be initialized in one of two
950 ways: The value can be set explicitly using a call to
951 set_gdbarch_data(); the value can be set implicitly using the value
952 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
953 called after the basic architecture vector has been created.
955 When a previously created architecture is re-selected, the
956 per-architecture data-pointer for that previous architecture is
957 restored. INIT() is not called.
959 During initialization, multiple assignments of the data-pointer are
960 allowed, non-NULL values are deleted by calling FREE(). If the
961 architecture is deleted using gdbarch_free() all non-NULL data
962 pointers are also deleted using FREE().
964 Multiple registrarants for any architecture are allowed (and
965 strongly encouraged). */
969 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
970 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
972 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
973 gdbarch_data_free_ftype *free);
974 extern void set_gdbarch_data (struct gdbarch *gdbarch,
975 struct gdbarch_data *data,
978 extern void *gdbarch_data (struct gdbarch_data*);
981 /* Register per-architecture memory region.
983 Provide a memory-region swap mechanism. Per-architecture memory
984 region are created. These memory regions are swapped whenever the
985 architecture is changed. For a new architecture, the memory region
986 is initialized with zero (0) and the INIT function is called.
988 Memory regions are swapped / initialized in the order that they are
989 registered. NULL DATA and/or INIT values can be specified.
991 New code should use register_gdbarch_data(). */
993 typedef void (gdbarch_swap_ftype) (void);
994 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
995 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
999 /* The target-system-dependent byte order is dynamic */
1001 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1002 is selectable at runtime. The user can use the \`\`set endian''
1003 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1004 target_byte_order should be auto-detected (from the program image
1008 /* Multi-arch GDB is always bi-endian. */
1009 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1012 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1013 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1014 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1015 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1016 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1018 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1022 extern int target_byte_order;
1023 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1024 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1025 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1026 #undef TARGET_BYTE_ORDER
1028 #ifndef TARGET_BYTE_ORDER
1029 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1032 extern int target_byte_order_auto;
1033 #ifndef TARGET_BYTE_ORDER_AUTO
1034 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1039 /* The target-system-dependent BFD architecture is dynamic */
1041 extern int target_architecture_auto;
1042 #ifndef TARGET_ARCHITECTURE_AUTO
1043 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1046 extern const struct bfd_arch_info *target_architecture;
1047 #ifndef TARGET_ARCHITECTURE
1048 #define TARGET_ARCHITECTURE (target_architecture + 0)
1052 /* The target-system-dependent disassembler is semi-dynamic */
1054 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1055 unsigned int len, disassemble_info *info);
1057 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1058 disassemble_info *info);
1060 extern void dis_asm_print_address (bfd_vma addr,
1061 disassemble_info *info);
1063 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1064 extern disassemble_info tm_print_insn_info;
1065 #ifndef TARGET_PRINT_INSN_INFO
1066 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1071 /* Set the dynamic target-system-dependent parameters (architecture,
1072 byte-order, ...) using information found in the BFD */
1074 extern void set_gdbarch_from_file (bfd *);
1077 /* Initialize the current architecture to the "first" one we find on
1080 extern void initialize_current_architecture (void);
1082 /* For non-multiarched targets, do any initialization of the default
1083 gdbarch object necessary after the _initialize_MODULE functions
1085 extern void initialize_non_multiarch ();
1087 /* gdbarch trace variable */
1088 extern int gdbarch_debug;
1090 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1095 #../move-if-change new-gdbarch.h gdbarch.h
1096 compare_new gdbarch.h
1103 exec > new-gdbarch.c
1108 #include "arch-utils.h"
1112 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1114 /* Just include everything in sight so that the every old definition
1115 of macro is visible. */
1116 #include "gdb_string.h"
1120 #include "inferior.h"
1121 #include "breakpoint.h"
1122 #include "gdb_wait.h"
1123 #include "gdbcore.h"
1126 #include "gdbthread.h"
1127 #include "annotate.h"
1128 #include "symfile.h" /* for overlay functions */
1132 #include "floatformat.h"
1134 #include "gdb_assert.h"
1135 #include "gdb-events.h"
1137 /* Static function declarations */
1139 static void verify_gdbarch (struct gdbarch *gdbarch);
1140 static void alloc_gdbarch_data (struct gdbarch *);
1141 static void init_gdbarch_data (struct gdbarch *);
1142 static void free_gdbarch_data (struct gdbarch *);
1143 static void init_gdbarch_swap (struct gdbarch *);
1144 static void swapout_gdbarch_swap (struct gdbarch *);
1145 static void swapin_gdbarch_swap (struct gdbarch *);
1147 /* Convenience macro for allocting typesafe memory. */
1150 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1154 /* Non-zero if we want to trace architecture code. */
1156 #ifndef GDBARCH_DEBUG
1157 #define GDBARCH_DEBUG 0
1159 int gdbarch_debug = GDBARCH_DEBUG;
1163 # gdbarch open the gdbarch object
1165 printf "/* Maintain the struct gdbarch object */\n"
1167 printf "struct gdbarch\n"
1169 printf " /* basic architectural information */\n"
1170 function_list |
while do_read
1174 printf " ${returntype} ${function};\n"
1178 printf " /* target specific vector. */\n"
1179 printf " struct gdbarch_tdep *tdep;\n"
1180 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1182 printf " /* per-architecture data-pointers */\n"
1183 printf " unsigned nr_data;\n"
1184 printf " void **data;\n"
1186 printf " /* per-architecture swap-regions */\n"
1187 printf " struct gdbarch_swap *swap;\n"
1190 /* Multi-arch values.
1192 When extending this structure you must:
1194 Add the field below.
1196 Declare set/get functions and define the corresponding
1199 gdbarch_alloc(): If zero/NULL is not a suitable default,
1200 initialize the new field.
1202 verify_gdbarch(): Confirm that the target updated the field
1205 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1208 \`\`startup_gdbarch()'': Append an initial value to the static
1209 variable (base values on the host's c-type system).
1211 get_gdbarch(): Implement the set/get functions (probably using
1212 the macro's as shortcuts).
1217 function_list |
while do_read
1219 if class_is_variable_p
1221 printf " ${returntype} ${function};\n"
1222 elif class_is_function_p
1224 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1229 # A pre-initialized vector
1233 /* The default architecture uses host values (for want of a better
1237 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1239 printf "struct gdbarch startup_gdbarch =\n"
1241 printf " /* basic architecture information */\n"
1242 function_list |
while do_read
1246 printf " ${staticdefault},\n"
1250 /* target specific vector and its dump routine */
1252 /*per-architecture data-pointers and swap regions */
1254 /* Multi-arch values */
1256 function_list |
while do_read
1258 if class_is_function_p || class_is_variable_p
1260 printf " ${staticdefault},\n"
1264 /* startup_gdbarch() */
1267 struct gdbarch *current_gdbarch = &startup_gdbarch;
1269 /* Do any initialization needed for a non-multiarch configuration
1270 after the _initialize_MODULE functions have been run. */
1272 initialize_non_multiarch ()
1274 alloc_gdbarch_data (&startup_gdbarch);
1275 init_gdbarch_data (&startup_gdbarch);
1279 # Create a new gdbarch struct
1283 /* Create a new \`\`struct gdbarch'' based on information provided by
1284 \`\`struct gdbarch_info''. */
1289 gdbarch_alloc (const struct gdbarch_info *info,
1290 struct gdbarch_tdep *tdep)
1292 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1293 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1294 the current local architecture and not the previous global
1295 architecture. This ensures that the new architectures initial
1296 values are not influenced by the previous architecture. Once
1297 everything is parameterised with gdbarch, this will go away. */
1298 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1299 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1301 alloc_gdbarch_data (current_gdbarch);
1303 current_gdbarch->tdep = tdep;
1306 function_list |
while do_read
1310 printf " current_gdbarch->${function} = info->${function};\n"
1314 printf " /* Force the explicit initialization of these. */\n"
1315 function_list |
while do_read
1317 if class_is_function_p || class_is_variable_p
1319 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1321 printf " current_gdbarch->${function} = ${predefault};\n"
1326 /* gdbarch_alloc() */
1328 return current_gdbarch;
1332 # Free a gdbarch struct.
1336 /* Free a gdbarch struct. This should never happen in normal
1337 operation --- once you've created a gdbarch, you keep it around.
1338 However, if an architecture's init function encounters an error
1339 building the structure, it may need to clean up a partially
1340 constructed gdbarch. */
1343 gdbarch_free (struct gdbarch *arch)
1345 gdb_assert (arch != NULL);
1346 free_gdbarch_data (arch);
1351 # verify a new architecture
1354 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1358 verify_gdbarch (struct gdbarch *gdbarch)
1360 /* Only perform sanity checks on a multi-arch target. */
1361 if (!GDB_MULTI_ARCH)
1364 if (gdbarch->byte_order == 0)
1365 internal_error (__FILE__, __LINE__,
1366 "verify_gdbarch: byte-order unset");
1367 if (gdbarch->bfd_arch_info == NULL)
1368 internal_error (__FILE__, __LINE__,
1369 "verify_gdbarch: bfd_arch_info unset");
1370 /* Check those that need to be defined for the given multi-arch level. */
1372 function_list |
while do_read
1374 if class_is_function_p || class_is_variable_p
1376 if [ "x${invalid_p}" = "x0" ]
1378 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1379 elif class_is_predicate_p
1381 printf " /* Skip verify of ${function}, has predicate */\n"
1382 # FIXME: See do_read for potential simplification
1383 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1385 printf " if (${invalid_p})\n"
1386 printf " gdbarch->${function} = ${postdefault};\n"
1387 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1389 printf " if (gdbarch->${function} == ${predefault})\n"
1390 printf " gdbarch->${function} = ${postdefault};\n"
1391 elif [ -n "${postdefault}" ]
1393 printf " if (gdbarch->${function} == 0)\n"
1394 printf " gdbarch->${function} = ${postdefault};\n"
1395 elif [ -n "${invalid_p}" ]
1397 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1398 printf " && (${invalid_p}))\n"
1399 printf " internal_error (__FILE__, __LINE__,\n"
1400 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1401 elif [ -n "${predefault}" ]
1403 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1404 printf " && (gdbarch->${function} == ${predefault}))\n"
1405 printf " internal_error (__FILE__, __LINE__,\n"
1406 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1414 # dump the structure
1418 /* Print out the details of the current architecture. */
1420 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1421 just happens to match the global variable \`\`current_gdbarch''. That
1422 way macros refering to that variable get the local and not the global
1423 version - ulgh. Once everything is parameterised with gdbarch, this
1427 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1429 fprintf_unfiltered (file,
1430 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1433 function_list |
sort -t: +2 |
while do_read
1435 # multiarch functions don't have macros.
1436 if class_is_multiarch_p
1438 printf " if (GDB_MULTI_ARCH)\n"
1439 printf " fprintf_unfiltered (file,\n"
1440 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1441 printf " (long) current_gdbarch->${function});\n"
1444 printf "#ifdef ${macro}\n"
1445 if [ "x${returntype}" = "xvoid" ]
1447 printf "#if GDB_MULTI_ARCH\n"
1448 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1450 if class_is_function_p
1452 printf " fprintf_unfiltered (file,\n"
1453 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1454 printf " \"${macro}(${actual})\",\n"
1455 printf " XSTRING (${macro} (${actual})));\n"
1457 printf " fprintf_unfiltered (file,\n"
1458 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1459 printf " XSTRING (${macro}));\n"
1461 if [ "x${returntype}" = "xvoid" ]
1465 if [ "x${print_p}" = "x()" ]
1467 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1468 elif [ "x${print_p}" = "x0" ]
1470 printf " /* skip print of ${macro}, print_p == 0. */\n"
1471 elif [ -n "${print_p}" ]
1473 printf " if (${print_p})\n"
1474 printf " fprintf_unfiltered (file,\n"
1475 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1476 printf " ${print});\n"
1477 elif class_is_function_p
1479 printf " if (GDB_MULTI_ARCH)\n"
1480 printf " fprintf_unfiltered (file,\n"
1481 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1482 printf " (long) current_gdbarch->${function}\n"
1483 printf " /*${macro} ()*/);\n"
1485 printf " fprintf_unfiltered (file,\n"
1486 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1487 printf " ${print});\n"
1492 if (current_gdbarch->dump_tdep != NULL)
1493 current_gdbarch->dump_tdep (current_gdbarch, file);
1501 struct gdbarch_tdep *
1502 gdbarch_tdep (struct gdbarch *gdbarch)
1504 if (gdbarch_debug >= 2)
1505 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1506 return gdbarch->tdep;
1510 function_list |
while do_read
1512 if class_is_predicate_p
1516 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1518 if [ -n "${valid_p}" ]
1520 printf " return ${valid_p};\n"
1522 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1526 if class_is_function_p
1529 printf "${returntype}\n"
1530 if [ "x${formal}" = "xvoid" ]
1532 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1534 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1537 printf " if (gdbarch->${function} == 0)\n"
1538 printf " internal_error (__FILE__, __LINE__,\n"
1539 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1540 printf " if (gdbarch_debug >= 2)\n"
1541 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1542 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1544 if class_is_multiarch_p
1551 if class_is_multiarch_p
1553 params
="gdbarch, ${actual}"
1558 if [ "x${returntype}" = "xvoid" ]
1560 printf " gdbarch->${function} (${params});\n"
1562 printf " return gdbarch->${function} (${params});\n"
1567 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1568 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1570 printf " gdbarch->${function} = ${function};\n"
1572 elif class_is_variable_p
1575 printf "${returntype}\n"
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1578 if [ "x${invalid_p}" = "x0" ]
1580 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1581 elif [ -n "${invalid_p}" ]
1583 printf " if (${invalid_p})\n"
1584 printf " internal_error (__FILE__, __LINE__,\n"
1585 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1586 elif [ -n "${predefault}" ]
1588 printf " if (gdbarch->${function} == ${predefault})\n"
1589 printf " internal_error (__FILE__, __LINE__,\n"
1590 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1592 printf " if (gdbarch_debug >= 2)\n"
1593 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1594 printf " return gdbarch->${function};\n"
1598 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1599 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1601 printf " gdbarch->${function} = ${function};\n"
1603 elif class_is_info_p
1606 printf "${returntype}\n"
1607 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1609 printf " if (gdbarch_debug >= 2)\n"
1610 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1611 printf " return gdbarch->${function};\n"
1616 # All the trailing guff
1620 /* Keep a registry of per-architecture data-pointers required by GDB
1626 gdbarch_data_init_ftype *init;
1627 gdbarch_data_free_ftype *free;
1630 struct gdbarch_data_registration
1632 struct gdbarch_data *data;
1633 struct gdbarch_data_registration *next;
1636 struct gdbarch_data_registry
1639 struct gdbarch_data_registration *registrations;
1642 struct gdbarch_data_registry gdbarch_data_registry =
1647 struct gdbarch_data *
1648 register_gdbarch_data (gdbarch_data_init_ftype *init,
1649 gdbarch_data_free_ftype *free)
1651 struct gdbarch_data_registration **curr;
1652 for (curr = &gdbarch_data_registry.registrations;
1654 curr = &(*curr)->next);
1655 (*curr) = XMALLOC (struct gdbarch_data_registration);
1656 (*curr)->next = NULL;
1657 (*curr)->data = XMALLOC (struct gdbarch_data);
1658 (*curr)->data->index = gdbarch_data_registry.nr++;
1659 (*curr)->data->init = init;
1660 (*curr)->data->free = free;
1661 return (*curr)->data;
1665 /* Walk through all the registered users initializing each in turn. */
1668 init_gdbarch_data (struct gdbarch *gdbarch)
1670 struct gdbarch_data_registration *rego;
1671 for (rego = gdbarch_data_registry.registrations;
1675 struct gdbarch_data *data = rego->data;
1676 gdb_assert (data->index < gdbarch->nr_data);
1677 if (data->init != NULL)
1679 void *pointer = data->init (gdbarch);
1680 set_gdbarch_data (gdbarch, data, pointer);
1685 /* Create/delete the gdbarch data vector. */
1688 alloc_gdbarch_data (struct gdbarch *gdbarch)
1690 gdb_assert (gdbarch->data == NULL);
1691 gdbarch->nr_data = gdbarch_data_registry.nr;
1692 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1696 free_gdbarch_data (struct gdbarch *gdbarch)
1698 struct gdbarch_data_registration *rego;
1699 gdb_assert (gdbarch->data != NULL);
1700 for (rego = gdbarch_data_registry.registrations;
1704 struct gdbarch_data *data = rego->data;
1705 gdb_assert (data->index < gdbarch->nr_data);
1706 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1708 data->free (gdbarch, gdbarch->data[data->index]);
1709 gdbarch->data[data->index] = NULL;
1712 xfree (gdbarch->data);
1713 gdbarch->data = NULL;
1717 /* Initialize the current value of thee specified per-architecture
1721 set_gdbarch_data (struct gdbarch *gdbarch,
1722 struct gdbarch_data *data,
1725 gdb_assert (data->index < gdbarch->nr_data);
1726 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1727 data->free (gdbarch, gdbarch->data[data->index]);
1728 gdbarch->data[data->index] = pointer;
1731 /* Return the current value of the specified per-architecture
1735 gdbarch_data (struct gdbarch_data *data)
1737 gdb_assert (data->index < current_gdbarch->nr_data);
1738 return current_gdbarch->data[data->index];
1743 /* Keep a registry of swapped data required by GDB modules. */
1748 struct gdbarch_swap_registration *source;
1749 struct gdbarch_swap *next;
1752 struct gdbarch_swap_registration
1755 unsigned long sizeof_data;
1756 gdbarch_swap_ftype *init;
1757 struct gdbarch_swap_registration *next;
1760 struct gdbarch_swap_registry
1763 struct gdbarch_swap_registration *registrations;
1766 struct gdbarch_swap_registry gdbarch_swap_registry =
1772 register_gdbarch_swap (void *data,
1773 unsigned long sizeof_data,
1774 gdbarch_swap_ftype *init)
1776 struct gdbarch_swap_registration **rego;
1777 for (rego = &gdbarch_swap_registry.registrations;
1779 rego = &(*rego)->next);
1780 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1781 (*rego)->next = NULL;
1782 (*rego)->init = init;
1783 (*rego)->data = data;
1784 (*rego)->sizeof_data = sizeof_data;
1789 init_gdbarch_swap (struct gdbarch *gdbarch)
1791 struct gdbarch_swap_registration *rego;
1792 struct gdbarch_swap **curr = &gdbarch->swap;
1793 for (rego = gdbarch_swap_registry.registrations;
1797 if (rego->data != NULL)
1799 (*curr) = XMALLOC (struct gdbarch_swap);
1800 (*curr)->source = rego;
1801 (*curr)->swap = xmalloc (rego->sizeof_data);
1802 (*curr)->next = NULL;
1803 memset (rego->data, 0, rego->sizeof_data);
1804 curr = &(*curr)->next;
1806 if (rego->init != NULL)
1812 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1814 struct gdbarch_swap *curr;
1815 for (curr = gdbarch->swap;
1818 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1822 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1824 struct gdbarch_swap *curr;
1825 for (curr = gdbarch->swap;
1828 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1832 /* Keep a registry of the architectures known by GDB. */
1834 struct gdbarch_registration
1836 enum bfd_architecture bfd_architecture;
1837 gdbarch_init_ftype *init;
1838 gdbarch_dump_tdep_ftype *dump_tdep;
1839 struct gdbarch_list *arches;
1840 struct gdbarch_registration *next;
1843 static struct gdbarch_registration *gdbarch_registry = NULL;
1846 append_name (const char ***buf, int *nr, const char *name)
1848 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1854 gdbarch_printable_names (void)
1858 /* Accumulate a list of names based on the registed list of
1860 enum bfd_architecture a;
1862 const char **arches = NULL;
1863 struct gdbarch_registration *rego;
1864 for (rego = gdbarch_registry;
1868 const struct bfd_arch_info *ap;
1869 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1871 internal_error (__FILE__, __LINE__,
1872 "gdbarch_architecture_names: multi-arch unknown");
1875 append_name (&arches, &nr_arches, ap->printable_name);
1880 append_name (&arches, &nr_arches, NULL);
1884 /* Just return all the architectures that BFD knows. Assume that
1885 the legacy architecture framework supports them. */
1886 return bfd_arch_list ();
1891 gdbarch_register (enum bfd_architecture bfd_architecture,
1892 gdbarch_init_ftype *init,
1893 gdbarch_dump_tdep_ftype *dump_tdep)
1895 struct gdbarch_registration **curr;
1896 const struct bfd_arch_info *bfd_arch_info;
1897 /* Check that BFD recognizes this architecture */
1898 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1899 if (bfd_arch_info == NULL)
1901 internal_error (__FILE__, __LINE__,
1902 "gdbarch: Attempt to register unknown architecture (%d)",
1905 /* Check that we haven't seen this architecture before */
1906 for (curr = &gdbarch_registry;
1908 curr = &(*curr)->next)
1910 if (bfd_architecture == (*curr)->bfd_architecture)
1911 internal_error (__FILE__, __LINE__,
1912 "gdbarch: Duplicate registraration of architecture (%s)",
1913 bfd_arch_info->printable_name);
1917 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1918 bfd_arch_info->printable_name,
1921 (*curr) = XMALLOC (struct gdbarch_registration);
1922 (*curr)->bfd_architecture = bfd_architecture;
1923 (*curr)->init = init;
1924 (*curr)->dump_tdep = dump_tdep;
1925 (*curr)->arches = NULL;
1926 (*curr)->next = NULL;
1927 /* When non- multi-arch, install whatever target dump routine we've
1928 been provided - hopefully that routine has been written correctly
1929 and works regardless of multi-arch. */
1930 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1931 && startup_gdbarch.dump_tdep == NULL)
1932 startup_gdbarch.dump_tdep = dump_tdep;
1936 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1937 gdbarch_init_ftype *init)
1939 gdbarch_register (bfd_architecture, init, NULL);
1943 /* Look for an architecture using gdbarch_info. Base search on only
1944 BFD_ARCH_INFO and BYTE_ORDER. */
1946 struct gdbarch_list *
1947 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1948 const struct gdbarch_info *info)
1950 for (; arches != NULL; arches = arches->next)
1952 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1954 if (info->byte_order != arches->gdbarch->byte_order)
1962 /* Update the current architecture. Return ZERO if the update request
1966 gdbarch_update_p (struct gdbarch_info info)
1968 struct gdbarch *new_gdbarch;
1969 struct gdbarch_list **list;
1970 struct gdbarch_registration *rego;
1972 /* Fill in missing parts of the INFO struct using a number of
1973 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1975 /* \`\`(gdb) set architecture ...'' */
1976 if (info.bfd_arch_info == NULL
1977 && !TARGET_ARCHITECTURE_AUTO)
1978 info.bfd_arch_info = TARGET_ARCHITECTURE;
1979 if (info.bfd_arch_info == NULL
1980 && info.abfd != NULL
1981 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1982 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1983 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1984 if (info.bfd_arch_info == NULL)
1985 info.bfd_arch_info = TARGET_ARCHITECTURE;
1987 /* \`\`(gdb) set byte-order ...'' */
1988 if (info.byte_order == 0
1989 && !TARGET_BYTE_ORDER_AUTO)
1990 info.byte_order = TARGET_BYTE_ORDER;
1991 /* From the INFO struct. */
1992 if (info.byte_order == 0
1993 && info.abfd != NULL)
1994 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1995 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1997 /* From the current target. */
1998 if (info.byte_order == 0)
1999 info.byte_order = TARGET_BYTE_ORDER;
2001 /* Must have found some sort of architecture. */
2002 gdb_assert (info.bfd_arch_info != NULL);
2006 fprintf_unfiltered (gdb_stdlog,
2007 "gdbarch_update: info.bfd_arch_info %s\n",
2008 (info.bfd_arch_info != NULL
2009 ? info.bfd_arch_info->printable_name
2011 fprintf_unfiltered (gdb_stdlog,
2012 "gdbarch_update: info.byte_order %d (%s)\n",
2014 (info.byte_order == BIG_ENDIAN ? "big"
2015 : info.byte_order == LITTLE_ENDIAN ? "little"
2017 fprintf_unfiltered (gdb_stdlog,
2018 "gdbarch_update: info.abfd 0x%lx\n",
2020 fprintf_unfiltered (gdb_stdlog,
2021 "gdbarch_update: info.tdep_info 0x%lx\n",
2022 (long) info.tdep_info);
2025 /* Find the target that knows about this architecture. */
2026 for (rego = gdbarch_registry;
2029 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2034 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2038 /* Ask the target for a replacement architecture. */
2039 new_gdbarch = rego->init (info, rego->arches);
2041 /* Did the target like it? No. Reject the change. */
2042 if (new_gdbarch == NULL)
2045 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2049 /* Did the architecture change? No. Do nothing. */
2050 if (current_gdbarch == new_gdbarch)
2053 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2055 new_gdbarch->bfd_arch_info->printable_name);
2059 /* Swap all data belonging to the old target out */
2060 swapout_gdbarch_swap (current_gdbarch);
2062 /* Is this a pre-existing architecture? Yes. Swap it in. */
2063 for (list = ®o->arches;
2065 list = &(*list)->next)
2067 if ((*list)->gdbarch == new_gdbarch)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2073 new_gdbarch->bfd_arch_info->printable_name);
2074 current_gdbarch = new_gdbarch;
2075 swapin_gdbarch_swap (new_gdbarch);
2076 architecture_changed_event ();
2081 /* Append this new architecture to this targets list. */
2082 (*list) = XMALLOC (struct gdbarch_list);
2083 (*list)->next = NULL;
2084 (*list)->gdbarch = new_gdbarch;
2086 /* Switch to this new architecture. Dump it out. */
2087 current_gdbarch = new_gdbarch;
2090 fprintf_unfiltered (gdb_stdlog,
2091 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2093 new_gdbarch->bfd_arch_info->printable_name);
2096 /* Check that the newly installed architecture is valid. Plug in
2097 any post init values. */
2098 new_gdbarch->dump_tdep = rego->dump_tdep;
2099 verify_gdbarch (new_gdbarch);
2101 /* Initialize the per-architecture memory (swap) areas.
2102 CURRENT_GDBARCH must be update before these modules are
2104 init_gdbarch_swap (new_gdbarch);
2106 /* Initialize the per-architecture data-pointer of all parties that
2107 registered an interest in this architecture. CURRENT_GDBARCH
2108 must be updated before these modules are called. */
2109 init_gdbarch_data (new_gdbarch);
2110 architecture_changed_event ();
2113 gdbarch_dump (current_gdbarch, gdb_stdlog);
2121 /* Pointer to the target-dependent disassembly function. */
2122 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2123 disassemble_info tm_print_insn_info;
2126 extern void _initialize_gdbarch (void);
2129 _initialize_gdbarch (void)
2131 struct cmd_list_element *c;
2133 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2134 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2135 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2136 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2137 tm_print_insn_info.print_address_func = dis_asm_print_address;
2139 add_show_from_set (add_set_cmd ("arch",
2142 (char *)&gdbarch_debug,
2143 "Set architecture debugging.\\n\\
2144 When non-zero, architecture debugging is enabled.", &setdebuglist),
2146 c = add_set_cmd ("archdebug",
2149 (char *)&gdbarch_debug,
2150 "Set architecture debugging.\\n\\
2151 When non-zero, architecture debugging is enabled.", &setlist);
2153 deprecate_cmd (c, "set debug arch");
2154 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2160 #../move-if-change new-gdbarch.c gdbarch.c
2161 compare_new gdbarch.c