2011-02-26 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "half", "float", "double", and
367 # "long double". These bit/format pairs should eventually be combined
368 # into a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
374 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
376 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
378 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
380
381 # For most targets, a pointer on the target and its representation as an
382 # address in GDB have the same size and "look the same". For such a
383 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
384 # / addr_bit will be set from it.
385 #
386 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
387 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
388 # gdbarch_address_to_pointer as well.
389 #
390 # ptr_bit is the size of a pointer on the target
391 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
392 # addr_bit is the size of a target address as represented in gdb
393 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
394 #
395 # dwarf2_addr_size is the target address size as used in the Dwarf debug
396 # info. For .debug_frame FDEs, this is supposed to be the target address
397 # size from the associated CU header, and which is equivalent to the
398 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
399 # Unfortunately there is no good way to determine this value. Therefore
400 # dwarf2_addr_size simply defaults to the target pointer size.
401 #
402 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
403 # defined using the target's pointer size so far.
404 #
405 # Note that dwarf2_addr_size only needs to be redefined by a target if the
406 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
407 # and if Dwarf versions < 4 need to be supported.
408 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
409 #
410 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
411 v:int:char_signed:::1:-1:1
412 #
413 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
414 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
415 # Function for getting target's idea of a frame pointer. FIXME: GDB's
416 # whole scheme for dealing with "frames" and "frame pointers" needs a
417 # serious shakedown.
418 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
419 #
420 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
421 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
422 #
423 v:int:num_regs:::0:-1
424 # This macro gives the number of pseudo-registers that live in the
425 # register namespace but do not get fetched or stored on the target.
426 # These pseudo-registers may be aliases for other registers,
427 # combinations of other registers, or they may be computed by GDB.
428 v:int:num_pseudo_regs:::0:0::0
429
430 # Assemble agent expression bytecode to collect pseudo-register REG.
431 # Return -1 if something goes wrong, 0 otherwise.
432 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
433
434 # Assemble agent expression bytecode to push the value of pseudo-register
435 # REG on the interpreter stack.
436 # Return -1 if something goes wrong, 0 otherwise.
437 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
443 v:int:sp_regnum:::-1:-1::0
444 v:int:pc_regnum:::-1:-1::0
445 v:int:ps_regnum:::-1:-1::0
446 v:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
454 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
455 m:const char *:register_name:int regnr:regnr::0
456
457 # Return the type of a register specified by the architecture. Only
458 # the register cache should call this function directly; others should
459 # use "register_type".
460 M:struct type *:register_type:int reg_nr:reg_nr
461
462 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
463 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
464 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
465 # deprecated_fp_regnum.
466 v:int:deprecated_fp_regnum:::-1:-1::0
467
468 # See gdbint.texinfo. See infcall.c.
469 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
470 v:int:call_dummy_location::::AT_ENTRY_POINT::0
471 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
472
473 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
474 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
476 # MAP a GDB RAW register number onto a simulator register number. See
477 # also include/...-sim.h.
478 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
479 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
480 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
483 #
484 v:int:believe_pcc_promotion:::::::
485 #
486 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
487 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
488 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
494 #
495 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
496 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
497 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
498
499 # Return the return-value convention that will be used by FUNCTYPE
500 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
510
511 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
512 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
513 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
514 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
515 # Return the adjusted address and kind to use for Z0/Z1 packets.
516 # KIND is usually the memory length of the breakpoint, but may have a
517 # different target-specific meaning.
518 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
519 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
520 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
521 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
522 v:CORE_ADDR:decr_pc_after_break:::0:::0
523
524 # A function can be addressed by either it's "pointer" (possibly a
525 # descriptor address) or "entry point" (first executable instruction).
526 # The method "convert_from_func_ptr_addr" converting the former to the
527 # latter. gdbarch_deprecated_function_start_offset is being used to implement
528 # a simplified subset of that functionality - the function's address
529 # corresponds to the "function pointer" and the function's start
530 # corresponds to the "function entry point" - and hence is redundant.
531
532 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
533
534 # Return the remote protocol register number associated with this
535 # register. Normally the identity mapping.
536 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
537
538 # Fetch the target specific address used to represent a load module.
539 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
540 #
541 v:CORE_ADDR:frame_args_skip:::0:::0
542 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
543 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
544 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
545 # frame-base. Enable frame-base before frame-unwind.
546 F:int:frame_num_args:struct frame_info *frame:frame
547 #
548 M:CORE_ADDR:frame_align:CORE_ADDR address:address
549 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
550 v:int:frame_red_zone_size
551 #
552 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
553 # On some machines there are bits in addresses which are not really
554 # part of the address, but are used by the kernel, the hardware, etc.
555 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
556 # we get a "real" address such as one would find in a symbol table.
557 # This is used only for addresses of instructions, and even then I'm
558 # not sure it's used in all contexts. It exists to deal with there
559 # being a few stray bits in the PC which would mislead us, not as some
560 # sort of generic thing to handle alignment or segmentation (it's
561 # possible it should be in TARGET_READ_PC instead).
562 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
563 # It is not at all clear why gdbarch_smash_text_address is not folded into
564 # gdbarch_addr_bits_remove.
565 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
566
567 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
568 # indicates if the target needs software single step. An ISA method to
569 # implement it.
570 #
571 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
572 # breakpoints using the breakpoint system instead of blatting memory directly
573 # (as with rs6000).
574 #
575 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
576 # target can single step. If not, then implement single step using breakpoints.
577 #
578 # A return value of 1 means that the software_single_step breakpoints
579 # were inserted; 0 means they were not.
580 F:int:software_single_step:struct frame_info *frame:frame
581
582 # Return non-zero if the processor is executing a delay slot and a
583 # further single-step is needed before the instruction finishes.
584 M:int:single_step_through_delay:struct frame_info *frame:frame
585 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
586 # disassembler. Perhaps objdump can handle it?
587 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
588 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
589
590
591 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
592 # evaluates non-zero, this is the address where the debugger will place
593 # a step-resume breakpoint to get us past the dynamic linker.
594 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
595 # Some systems also have trampoline code for returning from shared libs.
596 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
597
598 # A target might have problems with watchpoints as soon as the stack
599 # frame of the current function has been destroyed. This mostly happens
600 # as the first action in a funtion's epilogue. in_function_epilogue_p()
601 # is defined to return a non-zero value if either the given addr is one
602 # instruction after the stack destroying instruction up to the trailing
603 # return instruction or if we can figure out that the stack frame has
604 # already been invalidated regardless of the value of addr. Targets
605 # which don't suffer from that problem could just let this functionality
606 # untouched.
607 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
608 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
609 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
610 v:int:cannot_step_breakpoint:::0:0::0
611 v:int:have_nonsteppable_watchpoint:::0:0::0
612 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
613 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
614 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
615 # Is a register in a group
616 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
617 # Fetch the pointer to the ith function argument.
618 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
619
620 # Return the appropriate register set for a core file section with
621 # name SECT_NAME and size SECT_SIZE.
622 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
623
624 # Supported register notes in a core file.
625 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
626
627 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
628 # core file into buffer READBUF with length LEN.
629 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
630
631 # How the core target converts a PTID from a core file to a string.
632 M:char *:core_pid_to_str:ptid_t ptid:ptid
633
634 # BFD target to use when generating a core file.
635 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
636
637 # If the elements of C++ vtables are in-place function descriptors rather
638 # than normal function pointers (which may point to code or a descriptor),
639 # set this to one.
640 v:int:vtable_function_descriptors:::0:0::0
641
642 # Set if the least significant bit of the delta is used instead of the least
643 # significant bit of the pfn for pointers to virtual member functions.
644 v:int:vbit_in_delta:::0:0::0
645
646 # Advance PC to next instruction in order to skip a permanent breakpoint.
647 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
648
649 # The maximum length of an instruction on this architecture.
650 V:ULONGEST:max_insn_length:::0:0
651
652 # Copy the instruction at FROM to TO, and make any adjustments
653 # necessary to single-step it at that address.
654 #
655 # REGS holds the state the thread's registers will have before
656 # executing the copied instruction; the PC in REGS will refer to FROM,
657 # not the copy at TO. The caller should update it to point at TO later.
658 #
659 # Return a pointer to data of the architecture's choice to be passed
660 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
661 # the instruction's effects have been completely simulated, with the
662 # resulting state written back to REGS.
663 #
664 # For a general explanation of displaced stepping and how GDB uses it,
665 # see the comments in infrun.c.
666 #
667 # The TO area is only guaranteed to have space for
668 # gdbarch_max_insn_length (arch) bytes, so this function must not
669 # write more bytes than that to that area.
670 #
671 # If you do not provide this function, GDB assumes that the
672 # architecture does not support displaced stepping.
673 #
674 # If your architecture doesn't need to adjust instructions before
675 # single-stepping them, consider using simple_displaced_step_copy_insn
676 # here.
677 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
678
679 # Return true if GDB should use hardware single-stepping to execute
680 # the displaced instruction identified by CLOSURE. If false,
681 # GDB will simply restart execution at the displaced instruction
682 # location, and it is up to the target to ensure GDB will receive
683 # control again (e.g. by placing a software breakpoint instruction
684 # into the displaced instruction buffer).
685 #
686 # The default implementation returns false on all targets that
687 # provide a gdbarch_software_single_step routine, and true otherwise.
688 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
689
690 # Fix up the state resulting from successfully single-stepping a
691 # displaced instruction, to give the result we would have gotten from
692 # stepping the instruction in its original location.
693 #
694 # REGS is the register state resulting from single-stepping the
695 # displaced instruction.
696 #
697 # CLOSURE is the result from the matching call to
698 # gdbarch_displaced_step_copy_insn.
699 #
700 # If you provide gdbarch_displaced_step_copy_insn.but not this
701 # function, then GDB assumes that no fixup is needed after
702 # single-stepping the instruction.
703 #
704 # For a general explanation of displaced stepping and how GDB uses it,
705 # see the comments in infrun.c.
706 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
707
708 # Free a closure returned by gdbarch_displaced_step_copy_insn.
709 #
710 # If you provide gdbarch_displaced_step_copy_insn, you must provide
711 # this function as well.
712 #
713 # If your architecture uses closures that don't need to be freed, then
714 # you can use simple_displaced_step_free_closure here.
715 #
716 # For a general explanation of displaced stepping and how GDB uses it,
717 # see the comments in infrun.c.
718 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
719
720 # Return the address of an appropriate place to put displaced
721 # instructions while we step over them. There need only be one such
722 # place, since we're only stepping one thread over a breakpoint at a
723 # time.
724 #
725 # For a general explanation of displaced stepping and how GDB uses it,
726 # see the comments in infrun.c.
727 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
728
729 # Relocate an instruction to execute at a different address. OLDLOC
730 # is the address in the inferior memory where the instruction to
731 # relocate is currently at. On input, TO points to the destination
732 # where we want the instruction to be copied (and possibly adjusted)
733 # to. On output, it points to one past the end of the resulting
734 # instruction(s). The effect of executing the instruction at TO shall
735 # be the same as if executing it at FROM. For example, call
736 # instructions that implicitly push the return address on the stack
737 # should be adjusted to return to the instruction after OLDLOC;
738 # relative branches, and other PC-relative instructions need the
739 # offset adjusted; etc.
740 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
741
742 # Refresh overlay mapped state for section OSECT.
743 F:void:overlay_update:struct obj_section *osect:osect
744
745 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
746
747 # Handle special encoding of static variables in stabs debug info.
748 F:char *:static_transform_name:char *name:name
749 # Set if the address in N_SO or N_FUN stabs may be zero.
750 v:int:sofun_address_maybe_missing:::0:0::0
751
752 # Parse the instruction at ADDR storing in the record execution log
753 # the registers REGCACHE and memory ranges that will be affected when
754 # the instruction executes, along with their current values.
755 # Return -1 if something goes wrong, 0 otherwise.
756 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
757
758 # Save process state after a signal.
759 # Return -1 if something goes wrong, 0 otherwise.
760 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
761
762 # Signal translation: translate inferior's signal (host's) number into
763 # GDB's representation.
764 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
765 # Signal translation: translate GDB's signal number into inferior's host
766 # signal number.
767 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
768
769 # Extra signal info inspection.
770 #
771 # Return a type suitable to inspect extra signal information.
772 M:struct type *:get_siginfo_type:void:
773
774 # Record architecture-specific information from the symbol table.
775 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
776
777 # Function for the 'catch syscall' feature.
778
779 # Get architecture-specific system calls information from registers.
780 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
781
782 # True if the list of shared libraries is one and only for all
783 # processes, as opposed to a list of shared libraries per inferior.
784 # This usually means that all processes, although may or may not share
785 # an address space, will see the same set of symbols at the same
786 # addresses.
787 v:int:has_global_solist:::0:0::0
788
789 # On some targets, even though each inferior has its own private
790 # address space, the debug interface takes care of making breakpoints
791 # visible to all address spaces automatically. For such cases,
792 # this property should be set to true.
793 v:int:has_global_breakpoints:::0:0::0
794
795 # True if inferiors share an address space (e.g., uClinux).
796 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
797
798 # True if a fast tracepoint can be set at an address.
799 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
800
801 # Return the "auto" target charset.
802 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
803 # Return the "auto" target wide charset.
804 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
805
806 # If non-empty, this is a file extension that will be opened in place
807 # of the file extension reported by the shared library list.
808 #
809 # This is most useful for toolchains that use a post-linker tool,
810 # where the names of the files run on the target differ in extension
811 # compared to the names of the files GDB should load for debug info.
812 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
813
814 # If true, the target OS has DOS-based file system semantics. That
815 # is, absolute paths include a drive name, and the backslash is
816 # considered a directory separator.
817 v:int:has_dos_based_file_system:::0:0::0
818 EOF
819 }
820
821 #
822 # The .log file
823 #
824 exec > new-gdbarch.log
825 function_list | while do_read
826 do
827 cat <<EOF
828 ${class} ${returntype} ${function} ($formal)
829 EOF
830 for r in ${read}
831 do
832 eval echo \"\ \ \ \ ${r}=\${${r}}\"
833 done
834 if class_is_predicate_p && fallback_default_p
835 then
836 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
837 kill $$
838 exit 1
839 fi
840 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
841 then
842 echo "Error: postdefault is useless when invalid_p=0" 1>&2
843 kill $$
844 exit 1
845 fi
846 if class_is_multiarch_p
847 then
848 if class_is_predicate_p ; then :
849 elif test "x${predefault}" = "x"
850 then
851 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
852 kill $$
853 exit 1
854 fi
855 fi
856 echo ""
857 done
858
859 exec 1>&2
860 compare_new gdbarch.log
861
862
863 copyright ()
864 {
865 cat <<EOF
866 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
867
868 /* Dynamic architecture support for GDB, the GNU debugger.
869
870 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
871 2007, 2008, 2009 Free Software Foundation, Inc.
872
873 This file is part of GDB.
874
875 This program is free software; you can redistribute it and/or modify
876 it under the terms of the GNU General Public License as published by
877 the Free Software Foundation; either version 3 of the License, or
878 (at your option) any later version.
879
880 This program is distributed in the hope that it will be useful,
881 but WITHOUT ANY WARRANTY; without even the implied warranty of
882 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
883 GNU General Public License for more details.
884
885 You should have received a copy of the GNU General Public License
886 along with this program. If not, see <http://www.gnu.org/licenses/>. */
887
888 /* This file was created with the aid of \`\`gdbarch.sh''.
889
890 The Bourne shell script \`\`gdbarch.sh'' creates the files
891 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
892 against the existing \`\`gdbarch.[hc]''. Any differences found
893 being reported.
894
895 If editing this file, please also run gdbarch.sh and merge any
896 changes into that script. Conversely, when making sweeping changes
897 to this file, modifying gdbarch.sh and using its output may prove
898 easier. */
899
900 EOF
901 }
902
903 #
904 # The .h file
905 #
906
907 exec > new-gdbarch.h
908 copyright
909 cat <<EOF
910 #ifndef GDBARCH_H
911 #define GDBARCH_H
912
913 struct floatformat;
914 struct ui_file;
915 struct frame_info;
916 struct value;
917 struct objfile;
918 struct obj_section;
919 struct minimal_symbol;
920 struct regcache;
921 struct reggroup;
922 struct regset;
923 struct disassemble_info;
924 struct target_ops;
925 struct obstack;
926 struct bp_target_info;
927 struct target_desc;
928 struct displaced_step_closure;
929 struct core_regset_section;
930 struct syscall;
931 struct agent_expr;
932
933 /* The architecture associated with the connection to the target.
934
935 The architecture vector provides some information that is really
936 a property of the target: The layout of certain packets, for instance;
937 or the solib_ops vector. Etc. To differentiate architecture accesses
938 to per-target properties from per-thread/per-frame/per-objfile properties,
939 accesses to per-target properties should be made through target_gdbarch.
940
941 Eventually, when support for multiple targets is implemented in
942 GDB, this global should be made target-specific. */
943 extern struct gdbarch *target_gdbarch;
944 EOF
945
946 # function typedef's
947 printf "\n"
948 printf "\n"
949 printf "/* The following are pre-initialized by GDBARCH. */\n"
950 function_list | while do_read
951 do
952 if class_is_info_p
953 then
954 printf "\n"
955 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
956 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
957 fi
958 done
959
960 # function typedef's
961 printf "\n"
962 printf "\n"
963 printf "/* The following are initialized by the target dependent code. */\n"
964 function_list | while do_read
965 do
966 if [ -n "${comment}" ]
967 then
968 echo "${comment}" | sed \
969 -e '2 s,#,/*,' \
970 -e '3,$ s,#, ,' \
971 -e '$ s,$, */,'
972 fi
973
974 if class_is_predicate_p
975 then
976 printf "\n"
977 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
978 fi
979 if class_is_variable_p
980 then
981 printf "\n"
982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
983 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
984 fi
985 if class_is_function_p
986 then
987 printf "\n"
988 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
989 then
990 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
991 elif class_is_multiarch_p
992 then
993 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
994 else
995 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
996 fi
997 if [ "x${formal}" = "xvoid" ]
998 then
999 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1000 else
1001 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1002 fi
1003 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1004 fi
1005 done
1006
1007 # close it off
1008 cat <<EOF
1009
1010 /* Definition for an unknown syscall, used basically in error-cases. */
1011 #define UNKNOWN_SYSCALL (-1)
1012
1013 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1014
1015
1016 /* Mechanism for co-ordinating the selection of a specific
1017 architecture.
1018
1019 GDB targets (*-tdep.c) can register an interest in a specific
1020 architecture. Other GDB components can register a need to maintain
1021 per-architecture data.
1022
1023 The mechanisms below ensures that there is only a loose connection
1024 between the set-architecture command and the various GDB
1025 components. Each component can independently register their need
1026 to maintain architecture specific data with gdbarch.
1027
1028 Pragmatics:
1029
1030 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1031 didn't scale.
1032
1033 The more traditional mega-struct containing architecture specific
1034 data for all the various GDB components was also considered. Since
1035 GDB is built from a variable number of (fairly independent)
1036 components it was determined that the global aproach was not
1037 applicable. */
1038
1039
1040 /* Register a new architectural family with GDB.
1041
1042 Register support for the specified ARCHITECTURE with GDB. When
1043 gdbarch determines that the specified architecture has been
1044 selected, the corresponding INIT function is called.
1045
1046 --
1047
1048 The INIT function takes two parameters: INFO which contains the
1049 information available to gdbarch about the (possibly new)
1050 architecture; ARCHES which is a list of the previously created
1051 \`\`struct gdbarch'' for this architecture.
1052
1053 The INFO parameter is, as far as possible, be pre-initialized with
1054 information obtained from INFO.ABFD or the global defaults.
1055
1056 The ARCHES parameter is a linked list (sorted most recently used)
1057 of all the previously created architures for this architecture
1058 family. The (possibly NULL) ARCHES->gdbarch can used to access
1059 values from the previously selected architecture for this
1060 architecture family.
1061
1062 The INIT function shall return any of: NULL - indicating that it
1063 doesn't recognize the selected architecture; an existing \`\`struct
1064 gdbarch'' from the ARCHES list - indicating that the new
1065 architecture is just a synonym for an earlier architecture (see
1066 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1067 - that describes the selected architecture (see gdbarch_alloc()).
1068
1069 The DUMP_TDEP function shall print out all target specific values.
1070 Care should be taken to ensure that the function works in both the
1071 multi-arch and non- multi-arch cases. */
1072
1073 struct gdbarch_list
1074 {
1075 struct gdbarch *gdbarch;
1076 struct gdbarch_list *next;
1077 };
1078
1079 struct gdbarch_info
1080 {
1081 /* Use default: NULL (ZERO). */
1082 const struct bfd_arch_info *bfd_arch_info;
1083
1084 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1085 int byte_order;
1086
1087 int byte_order_for_code;
1088
1089 /* Use default: NULL (ZERO). */
1090 bfd *abfd;
1091
1092 /* Use default: NULL (ZERO). */
1093 struct gdbarch_tdep_info *tdep_info;
1094
1095 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1096 enum gdb_osabi osabi;
1097
1098 /* Use default: NULL (ZERO). */
1099 const struct target_desc *target_desc;
1100 };
1101
1102 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1103 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1104
1105 /* DEPRECATED - use gdbarch_register() */
1106 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1107
1108 extern void gdbarch_register (enum bfd_architecture architecture,
1109 gdbarch_init_ftype *,
1110 gdbarch_dump_tdep_ftype *);
1111
1112
1113 /* Return a freshly allocated, NULL terminated, array of the valid
1114 architecture names. Since architectures are registered during the
1115 _initialize phase this function only returns useful information
1116 once initialization has been completed. */
1117
1118 extern const char **gdbarch_printable_names (void);
1119
1120
1121 /* Helper function. Search the list of ARCHES for a GDBARCH that
1122 matches the information provided by INFO. */
1123
1124 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1125
1126
1127 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1128 basic initialization using values obtained from the INFO and TDEP
1129 parameters. set_gdbarch_*() functions are called to complete the
1130 initialization of the object. */
1131
1132 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1133
1134
1135 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1136 It is assumed that the caller freeds the \`\`struct
1137 gdbarch_tdep''. */
1138
1139 extern void gdbarch_free (struct gdbarch *);
1140
1141
1142 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1143 obstack. The memory is freed when the corresponding architecture
1144 is also freed. */
1145
1146 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1147 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1148 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1149
1150
1151 /* Helper function. Force an update of the current architecture.
1152
1153 The actual architecture selected is determined by INFO, \`\`(gdb) set
1154 architecture'' et.al., the existing architecture and BFD's default
1155 architecture. INFO should be initialized to zero and then selected
1156 fields should be updated.
1157
1158 Returns non-zero if the update succeeds. */
1159
1160 extern int gdbarch_update_p (struct gdbarch_info info);
1161
1162
1163 /* Helper function. Find an architecture matching info.
1164
1165 INFO should be initialized using gdbarch_info_init, relevant fields
1166 set, and then finished using gdbarch_info_fill.
1167
1168 Returns the corresponding architecture, or NULL if no matching
1169 architecture was found. */
1170
1171 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1172
1173
1174 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1175
1176 FIXME: kettenis/20031124: Of the functions that follow, only
1177 gdbarch_from_bfd is supposed to survive. The others will
1178 dissappear since in the future GDB will (hopefully) be truly
1179 multi-arch. However, for now we're still stuck with the concept of
1180 a single active architecture. */
1181
1182 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1183
1184
1185 /* Register per-architecture data-pointer.
1186
1187 Reserve space for a per-architecture data-pointer. An identifier
1188 for the reserved data-pointer is returned. That identifer should
1189 be saved in a local static variable.
1190
1191 Memory for the per-architecture data shall be allocated using
1192 gdbarch_obstack_zalloc. That memory will be deleted when the
1193 corresponding architecture object is deleted.
1194
1195 When a previously created architecture is re-selected, the
1196 per-architecture data-pointer for that previous architecture is
1197 restored. INIT() is not re-called.
1198
1199 Multiple registrarants for any architecture are allowed (and
1200 strongly encouraged). */
1201
1202 struct gdbarch_data;
1203
1204 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1205 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1206 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1207 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1208 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1209 struct gdbarch_data *data,
1210 void *pointer);
1211
1212 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1213
1214
1215 /* Set the dynamic target-system-dependent parameters (architecture,
1216 byte-order, ...) using information found in the BFD. */
1217
1218 extern void set_gdbarch_from_file (bfd *);
1219
1220
1221 /* Initialize the current architecture to the "first" one we find on
1222 our list. */
1223
1224 extern void initialize_current_architecture (void);
1225
1226 /* gdbarch trace variable */
1227 extern int gdbarch_debug;
1228
1229 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1230
1231 #endif
1232 EOF
1233 exec 1>&2
1234 #../move-if-change new-gdbarch.h gdbarch.h
1235 compare_new gdbarch.h
1236
1237
1238 #
1239 # C file
1240 #
1241
1242 exec > new-gdbarch.c
1243 copyright
1244 cat <<EOF
1245
1246 #include "defs.h"
1247 #include "arch-utils.h"
1248
1249 #include "gdbcmd.h"
1250 #include "inferior.h"
1251 #include "symcat.h"
1252
1253 #include "floatformat.h"
1254
1255 #include "gdb_assert.h"
1256 #include "gdb_string.h"
1257 #include "reggroups.h"
1258 #include "osabi.h"
1259 #include "gdb_obstack.h"
1260 #include "observer.h"
1261 #include "regcache.h"
1262
1263 /* Static function declarations */
1264
1265 static void alloc_gdbarch_data (struct gdbarch *);
1266
1267 /* Non-zero if we want to trace architecture code. */
1268
1269 #ifndef GDBARCH_DEBUG
1270 #define GDBARCH_DEBUG 0
1271 #endif
1272 int gdbarch_debug = GDBARCH_DEBUG;
1273 static void
1274 show_gdbarch_debug (struct ui_file *file, int from_tty,
1275 struct cmd_list_element *c, const char *value)
1276 {
1277 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1278 }
1279
1280 static const char *
1281 pformat (const struct floatformat **format)
1282 {
1283 if (format == NULL)
1284 return "(null)";
1285 else
1286 /* Just print out one of them - this is only for diagnostics. */
1287 return format[0]->name;
1288 }
1289
1290 static const char *
1291 pstring (const char *string)
1292 {
1293 if (string == NULL)
1294 return "(null)";
1295 return string;
1296 }
1297
1298 EOF
1299
1300 # gdbarch open the gdbarch object
1301 printf "\n"
1302 printf "/* Maintain the struct gdbarch object. */\n"
1303 printf "\n"
1304 printf "struct gdbarch\n"
1305 printf "{\n"
1306 printf " /* Has this architecture been fully initialized? */\n"
1307 printf " int initialized_p;\n"
1308 printf "\n"
1309 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1310 printf " struct obstack *obstack;\n"
1311 printf "\n"
1312 printf " /* basic architectural information. */\n"
1313 function_list | while do_read
1314 do
1315 if class_is_info_p
1316 then
1317 printf " ${returntype} ${function};\n"
1318 fi
1319 done
1320 printf "\n"
1321 printf " /* target specific vector. */\n"
1322 printf " struct gdbarch_tdep *tdep;\n"
1323 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1324 printf "\n"
1325 printf " /* per-architecture data-pointers. */\n"
1326 printf " unsigned nr_data;\n"
1327 printf " void **data;\n"
1328 printf "\n"
1329 printf " /* per-architecture swap-regions. */\n"
1330 printf " struct gdbarch_swap *swap;\n"
1331 printf "\n"
1332 cat <<EOF
1333 /* Multi-arch values.
1334
1335 When extending this structure you must:
1336
1337 Add the field below.
1338
1339 Declare set/get functions and define the corresponding
1340 macro in gdbarch.h.
1341
1342 gdbarch_alloc(): If zero/NULL is not a suitable default,
1343 initialize the new field.
1344
1345 verify_gdbarch(): Confirm that the target updated the field
1346 correctly.
1347
1348 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1349 field is dumped out
1350
1351 \`\`startup_gdbarch()'': Append an initial value to the static
1352 variable (base values on the host's c-type system).
1353
1354 get_gdbarch(): Implement the set/get functions (probably using
1355 the macro's as shortcuts).
1356
1357 */
1358
1359 EOF
1360 function_list | while do_read
1361 do
1362 if class_is_variable_p
1363 then
1364 printf " ${returntype} ${function};\n"
1365 elif class_is_function_p
1366 then
1367 printf " gdbarch_${function}_ftype *${function};\n"
1368 fi
1369 done
1370 printf "};\n"
1371
1372 # A pre-initialized vector
1373 printf "\n"
1374 printf "\n"
1375 cat <<EOF
1376 /* The default architecture uses host values (for want of a better
1377 choice). */
1378 EOF
1379 printf "\n"
1380 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1381 printf "\n"
1382 printf "struct gdbarch startup_gdbarch =\n"
1383 printf "{\n"
1384 printf " 1, /* Always initialized. */\n"
1385 printf " NULL, /* The obstack. */\n"
1386 printf " /* basic architecture information. */\n"
1387 function_list | while do_read
1388 do
1389 if class_is_info_p
1390 then
1391 printf " ${staticdefault}, /* ${function} */\n"
1392 fi
1393 done
1394 cat <<EOF
1395 /* target specific vector and its dump routine. */
1396 NULL, NULL,
1397 /*per-architecture data-pointers and swap regions. */
1398 0, NULL, NULL,
1399 /* Multi-arch values */
1400 EOF
1401 function_list | while do_read
1402 do
1403 if class_is_function_p || class_is_variable_p
1404 then
1405 printf " ${staticdefault}, /* ${function} */\n"
1406 fi
1407 done
1408 cat <<EOF
1409 /* startup_gdbarch() */
1410 };
1411
1412 struct gdbarch *target_gdbarch = &startup_gdbarch;
1413 EOF
1414
1415 # Create a new gdbarch struct
1416 cat <<EOF
1417
1418 /* Create a new \`\`struct gdbarch'' based on information provided by
1419 \`\`struct gdbarch_info''. */
1420 EOF
1421 printf "\n"
1422 cat <<EOF
1423 struct gdbarch *
1424 gdbarch_alloc (const struct gdbarch_info *info,
1425 struct gdbarch_tdep *tdep)
1426 {
1427 struct gdbarch *gdbarch;
1428
1429 /* Create an obstack for allocating all the per-architecture memory,
1430 then use that to allocate the architecture vector. */
1431 struct obstack *obstack = XMALLOC (struct obstack);
1432 obstack_init (obstack);
1433 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1434 memset (gdbarch, 0, sizeof (*gdbarch));
1435 gdbarch->obstack = obstack;
1436
1437 alloc_gdbarch_data (gdbarch);
1438
1439 gdbarch->tdep = tdep;
1440 EOF
1441 printf "\n"
1442 function_list | while do_read
1443 do
1444 if class_is_info_p
1445 then
1446 printf " gdbarch->${function} = info->${function};\n"
1447 fi
1448 done
1449 printf "\n"
1450 printf " /* Force the explicit initialization of these. */\n"
1451 function_list | while do_read
1452 do
1453 if class_is_function_p || class_is_variable_p
1454 then
1455 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1456 then
1457 printf " gdbarch->${function} = ${predefault};\n"
1458 fi
1459 fi
1460 done
1461 cat <<EOF
1462 /* gdbarch_alloc() */
1463
1464 return gdbarch;
1465 }
1466 EOF
1467
1468 # Free a gdbarch struct.
1469 printf "\n"
1470 printf "\n"
1471 cat <<EOF
1472 /* Allocate extra space using the per-architecture obstack. */
1473
1474 void *
1475 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1476 {
1477 void *data = obstack_alloc (arch->obstack, size);
1478
1479 memset (data, 0, size);
1480 return data;
1481 }
1482
1483
1484 /* Free a gdbarch struct. This should never happen in normal
1485 operation --- once you've created a gdbarch, you keep it around.
1486 However, if an architecture's init function encounters an error
1487 building the structure, it may need to clean up a partially
1488 constructed gdbarch. */
1489
1490 void
1491 gdbarch_free (struct gdbarch *arch)
1492 {
1493 struct obstack *obstack;
1494
1495 gdb_assert (arch != NULL);
1496 gdb_assert (!arch->initialized_p);
1497 obstack = arch->obstack;
1498 obstack_free (obstack, 0); /* Includes the ARCH. */
1499 xfree (obstack);
1500 }
1501 EOF
1502
1503 # verify a new architecture
1504 cat <<EOF
1505
1506
1507 /* Ensure that all values in a GDBARCH are reasonable. */
1508
1509 static void
1510 verify_gdbarch (struct gdbarch *gdbarch)
1511 {
1512 struct ui_file *log;
1513 struct cleanup *cleanups;
1514 long length;
1515 char *buf;
1516
1517 log = mem_fileopen ();
1518 cleanups = make_cleanup_ui_file_delete (log);
1519 /* fundamental */
1520 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1521 fprintf_unfiltered (log, "\n\tbyte-order");
1522 if (gdbarch->bfd_arch_info == NULL)
1523 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1524 /* Check those that need to be defined for the given multi-arch level. */
1525 EOF
1526 function_list | while do_read
1527 do
1528 if class_is_function_p || class_is_variable_p
1529 then
1530 if [ "x${invalid_p}" = "x0" ]
1531 then
1532 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1533 elif class_is_predicate_p
1534 then
1535 printf " /* Skip verify of ${function}, has predicate. */\n"
1536 # FIXME: See do_read for potential simplification
1537 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1538 then
1539 printf " if (${invalid_p})\n"
1540 printf " gdbarch->${function} = ${postdefault};\n"
1541 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1542 then
1543 printf " if (gdbarch->${function} == ${predefault})\n"
1544 printf " gdbarch->${function} = ${postdefault};\n"
1545 elif [ -n "${postdefault}" ]
1546 then
1547 printf " if (gdbarch->${function} == 0)\n"
1548 printf " gdbarch->${function} = ${postdefault};\n"
1549 elif [ -n "${invalid_p}" ]
1550 then
1551 printf " if (${invalid_p})\n"
1552 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1553 elif [ -n "${predefault}" ]
1554 then
1555 printf " if (gdbarch->${function} == ${predefault})\n"
1556 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1557 fi
1558 fi
1559 done
1560 cat <<EOF
1561 buf = ui_file_xstrdup (log, &length);
1562 make_cleanup (xfree, buf);
1563 if (length > 0)
1564 internal_error (__FILE__, __LINE__,
1565 _("verify_gdbarch: the following are invalid ...%s"),
1566 buf);
1567 do_cleanups (cleanups);
1568 }
1569 EOF
1570
1571 # dump the structure
1572 printf "\n"
1573 printf "\n"
1574 cat <<EOF
1575 /* Print out the details of the current architecture. */
1576
1577 void
1578 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1579 {
1580 const char *gdb_nm_file = "<not-defined>";
1581
1582 #if defined (GDB_NM_FILE)
1583 gdb_nm_file = GDB_NM_FILE;
1584 #endif
1585 fprintf_unfiltered (file,
1586 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1587 gdb_nm_file);
1588 EOF
1589 function_list | sort -t: -k 3 | while do_read
1590 do
1591 # First the predicate
1592 if class_is_predicate_p
1593 then
1594 printf " fprintf_unfiltered (file,\n"
1595 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1596 printf " gdbarch_${function}_p (gdbarch));\n"
1597 fi
1598 # Print the corresponding value.
1599 if class_is_function_p
1600 then
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1603 printf " host_address_to_string (gdbarch->${function}));\n"
1604 else
1605 # It is a variable
1606 case "${print}:${returntype}" in
1607 :CORE_ADDR )
1608 fmt="%s"
1609 print="core_addr_to_string_nz (gdbarch->${function})"
1610 ;;
1611 :* )
1612 fmt="%s"
1613 print="plongest (gdbarch->${function})"
1614 ;;
1615 * )
1616 fmt="%s"
1617 ;;
1618 esac
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1621 printf " ${print});\n"
1622 fi
1623 done
1624 cat <<EOF
1625 if (gdbarch->dump_tdep != NULL)
1626 gdbarch->dump_tdep (gdbarch, file);
1627 }
1628 EOF
1629
1630
1631 # GET/SET
1632 printf "\n"
1633 cat <<EOF
1634 struct gdbarch_tdep *
1635 gdbarch_tdep (struct gdbarch *gdbarch)
1636 {
1637 if (gdbarch_debug >= 2)
1638 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1639 return gdbarch->tdep;
1640 }
1641 EOF
1642 printf "\n"
1643 function_list | while do_read
1644 do
1645 if class_is_predicate_p
1646 then
1647 printf "\n"
1648 printf "int\n"
1649 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1650 printf "{\n"
1651 printf " gdb_assert (gdbarch != NULL);\n"
1652 printf " return ${predicate};\n"
1653 printf "}\n"
1654 fi
1655 if class_is_function_p
1656 then
1657 printf "\n"
1658 printf "${returntype}\n"
1659 if [ "x${formal}" = "xvoid" ]
1660 then
1661 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1662 else
1663 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1664 fi
1665 printf "{\n"
1666 printf " gdb_assert (gdbarch != NULL);\n"
1667 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1668 if class_is_predicate_p && test -n "${predefault}"
1669 then
1670 # Allow a call to a function with a predicate.
1671 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1672 fi
1673 printf " if (gdbarch_debug >= 2)\n"
1674 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1675 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1676 then
1677 if class_is_multiarch_p
1678 then
1679 params="gdbarch"
1680 else
1681 params=""
1682 fi
1683 else
1684 if class_is_multiarch_p
1685 then
1686 params="gdbarch, ${actual}"
1687 else
1688 params="${actual}"
1689 fi
1690 fi
1691 if [ "x${returntype}" = "xvoid" ]
1692 then
1693 printf " gdbarch->${function} (${params});\n"
1694 else
1695 printf " return gdbarch->${function} (${params});\n"
1696 fi
1697 printf "}\n"
1698 printf "\n"
1699 printf "void\n"
1700 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1701 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1702 printf "{\n"
1703 printf " gdbarch->${function} = ${function};\n"
1704 printf "}\n"
1705 elif class_is_variable_p
1706 then
1707 printf "\n"
1708 printf "${returntype}\n"
1709 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 if [ "x${invalid_p}" = "x0" ]
1713 then
1714 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1715 elif [ -n "${invalid_p}" ]
1716 then
1717 printf " /* Check variable is valid. */\n"
1718 printf " gdb_assert (!(${invalid_p}));\n"
1719 elif [ -n "${predefault}" ]
1720 then
1721 printf " /* Check variable changed from pre-default. */\n"
1722 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1723 fi
1724 printf " if (gdbarch_debug >= 2)\n"
1725 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1726 printf " return gdbarch->${function};\n"
1727 printf "}\n"
1728 printf "\n"
1729 printf "void\n"
1730 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1731 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1732 printf "{\n"
1733 printf " gdbarch->${function} = ${function};\n"
1734 printf "}\n"
1735 elif class_is_info_p
1736 then
1737 printf "\n"
1738 printf "${returntype}\n"
1739 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1740 printf "{\n"
1741 printf " gdb_assert (gdbarch != NULL);\n"
1742 printf " if (gdbarch_debug >= 2)\n"
1743 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1744 printf " return gdbarch->${function};\n"
1745 printf "}\n"
1746 fi
1747 done
1748
1749 # All the trailing guff
1750 cat <<EOF
1751
1752
1753 /* Keep a registry of per-architecture data-pointers required by GDB
1754 modules. */
1755
1756 struct gdbarch_data
1757 {
1758 unsigned index;
1759 int init_p;
1760 gdbarch_data_pre_init_ftype *pre_init;
1761 gdbarch_data_post_init_ftype *post_init;
1762 };
1763
1764 struct gdbarch_data_registration
1765 {
1766 struct gdbarch_data *data;
1767 struct gdbarch_data_registration *next;
1768 };
1769
1770 struct gdbarch_data_registry
1771 {
1772 unsigned nr;
1773 struct gdbarch_data_registration *registrations;
1774 };
1775
1776 struct gdbarch_data_registry gdbarch_data_registry =
1777 {
1778 0, NULL,
1779 };
1780
1781 static struct gdbarch_data *
1782 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1783 gdbarch_data_post_init_ftype *post_init)
1784 {
1785 struct gdbarch_data_registration **curr;
1786
1787 /* Append the new registration. */
1788 for (curr = &gdbarch_data_registry.registrations;
1789 (*curr) != NULL;
1790 curr = &(*curr)->next);
1791 (*curr) = XMALLOC (struct gdbarch_data_registration);
1792 (*curr)->next = NULL;
1793 (*curr)->data = XMALLOC (struct gdbarch_data);
1794 (*curr)->data->index = gdbarch_data_registry.nr++;
1795 (*curr)->data->pre_init = pre_init;
1796 (*curr)->data->post_init = post_init;
1797 (*curr)->data->init_p = 1;
1798 return (*curr)->data;
1799 }
1800
1801 struct gdbarch_data *
1802 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1803 {
1804 return gdbarch_data_register (pre_init, NULL);
1805 }
1806
1807 struct gdbarch_data *
1808 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1809 {
1810 return gdbarch_data_register (NULL, post_init);
1811 }
1812
1813 /* Create/delete the gdbarch data vector. */
1814
1815 static void
1816 alloc_gdbarch_data (struct gdbarch *gdbarch)
1817 {
1818 gdb_assert (gdbarch->data == NULL);
1819 gdbarch->nr_data = gdbarch_data_registry.nr;
1820 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1821 }
1822
1823 /* Initialize the current value of the specified per-architecture
1824 data-pointer. */
1825
1826 void
1827 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1828 struct gdbarch_data *data,
1829 void *pointer)
1830 {
1831 gdb_assert (data->index < gdbarch->nr_data);
1832 gdb_assert (gdbarch->data[data->index] == NULL);
1833 gdb_assert (data->pre_init == NULL);
1834 gdbarch->data[data->index] = pointer;
1835 }
1836
1837 /* Return the current value of the specified per-architecture
1838 data-pointer. */
1839
1840 void *
1841 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1842 {
1843 gdb_assert (data->index < gdbarch->nr_data);
1844 if (gdbarch->data[data->index] == NULL)
1845 {
1846 /* The data-pointer isn't initialized, call init() to get a
1847 value. */
1848 if (data->pre_init != NULL)
1849 /* Mid architecture creation: pass just the obstack, and not
1850 the entire architecture, as that way it isn't possible for
1851 pre-init code to refer to undefined architecture
1852 fields. */
1853 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1854 else if (gdbarch->initialized_p
1855 && data->post_init != NULL)
1856 /* Post architecture creation: pass the entire architecture
1857 (as all fields are valid), but be careful to also detect
1858 recursive references. */
1859 {
1860 gdb_assert (data->init_p);
1861 data->init_p = 0;
1862 gdbarch->data[data->index] = data->post_init (gdbarch);
1863 data->init_p = 1;
1864 }
1865 else
1866 /* The architecture initialization hasn't completed - punt -
1867 hope that the caller knows what they are doing. Once
1868 deprecated_set_gdbarch_data has been initialized, this can be
1869 changed to an internal error. */
1870 return NULL;
1871 gdb_assert (gdbarch->data[data->index] != NULL);
1872 }
1873 return gdbarch->data[data->index];
1874 }
1875
1876
1877 /* Keep a registry of the architectures known by GDB. */
1878
1879 struct gdbarch_registration
1880 {
1881 enum bfd_architecture bfd_architecture;
1882 gdbarch_init_ftype *init;
1883 gdbarch_dump_tdep_ftype *dump_tdep;
1884 struct gdbarch_list *arches;
1885 struct gdbarch_registration *next;
1886 };
1887
1888 static struct gdbarch_registration *gdbarch_registry = NULL;
1889
1890 static void
1891 append_name (const char ***buf, int *nr, const char *name)
1892 {
1893 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1894 (*buf)[*nr] = name;
1895 *nr += 1;
1896 }
1897
1898 const char **
1899 gdbarch_printable_names (void)
1900 {
1901 /* Accumulate a list of names based on the registed list of
1902 architectures. */
1903 int nr_arches = 0;
1904 const char **arches = NULL;
1905 struct gdbarch_registration *rego;
1906
1907 for (rego = gdbarch_registry;
1908 rego != NULL;
1909 rego = rego->next)
1910 {
1911 const struct bfd_arch_info *ap;
1912 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1913 if (ap == NULL)
1914 internal_error (__FILE__, __LINE__,
1915 _("gdbarch_architecture_names: multi-arch unknown"));
1916 do
1917 {
1918 append_name (&arches, &nr_arches, ap->printable_name);
1919 ap = ap->next;
1920 }
1921 while (ap != NULL);
1922 }
1923 append_name (&arches, &nr_arches, NULL);
1924 return arches;
1925 }
1926
1927
1928 void
1929 gdbarch_register (enum bfd_architecture bfd_architecture,
1930 gdbarch_init_ftype *init,
1931 gdbarch_dump_tdep_ftype *dump_tdep)
1932 {
1933 struct gdbarch_registration **curr;
1934 const struct bfd_arch_info *bfd_arch_info;
1935
1936 /* Check that BFD recognizes this architecture */
1937 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1938 if (bfd_arch_info == NULL)
1939 {
1940 internal_error (__FILE__, __LINE__,
1941 _("gdbarch: Attempt to register "
1942 "unknown architecture (%d)"),
1943 bfd_architecture);
1944 }
1945 /* Check that we haven't seen this architecture before. */
1946 for (curr = &gdbarch_registry;
1947 (*curr) != NULL;
1948 curr = &(*curr)->next)
1949 {
1950 if (bfd_architecture == (*curr)->bfd_architecture)
1951 internal_error (__FILE__, __LINE__,
1952 _("gdbarch: Duplicate registraration "
1953 "of architecture (%s)"),
1954 bfd_arch_info->printable_name);
1955 }
1956 /* log it */
1957 if (gdbarch_debug)
1958 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1959 bfd_arch_info->printable_name,
1960 host_address_to_string (init));
1961 /* Append it */
1962 (*curr) = XMALLOC (struct gdbarch_registration);
1963 (*curr)->bfd_architecture = bfd_architecture;
1964 (*curr)->init = init;
1965 (*curr)->dump_tdep = dump_tdep;
1966 (*curr)->arches = NULL;
1967 (*curr)->next = NULL;
1968 }
1969
1970 void
1971 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1972 gdbarch_init_ftype *init)
1973 {
1974 gdbarch_register (bfd_architecture, init, NULL);
1975 }
1976
1977
1978 /* Look for an architecture using gdbarch_info. */
1979
1980 struct gdbarch_list *
1981 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1982 const struct gdbarch_info *info)
1983 {
1984 for (; arches != NULL; arches = arches->next)
1985 {
1986 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1987 continue;
1988 if (info->byte_order != arches->gdbarch->byte_order)
1989 continue;
1990 if (info->osabi != arches->gdbarch->osabi)
1991 continue;
1992 if (info->target_desc != arches->gdbarch->target_desc)
1993 continue;
1994 return arches;
1995 }
1996 return NULL;
1997 }
1998
1999
2000 /* Find an architecture that matches the specified INFO. Create a new
2001 architecture if needed. Return that new architecture. */
2002
2003 struct gdbarch *
2004 gdbarch_find_by_info (struct gdbarch_info info)
2005 {
2006 struct gdbarch *new_gdbarch;
2007 struct gdbarch_registration *rego;
2008
2009 /* Fill in missing parts of the INFO struct using a number of
2010 sources: "set ..."; INFOabfd supplied; and the global
2011 defaults. */
2012 gdbarch_info_fill (&info);
2013
2014 /* Must have found some sort of architecture. */
2015 gdb_assert (info.bfd_arch_info != NULL);
2016
2017 if (gdbarch_debug)
2018 {
2019 fprintf_unfiltered (gdb_stdlog,
2020 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2021 (info.bfd_arch_info != NULL
2022 ? info.bfd_arch_info->printable_name
2023 : "(null)"));
2024 fprintf_unfiltered (gdb_stdlog,
2025 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2026 info.byte_order,
2027 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2028 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2029 : "default"));
2030 fprintf_unfiltered (gdb_stdlog,
2031 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2032 info.osabi, gdbarch_osabi_name (info.osabi));
2033 fprintf_unfiltered (gdb_stdlog,
2034 "gdbarch_find_by_info: info.abfd %s\n",
2035 host_address_to_string (info.abfd));
2036 fprintf_unfiltered (gdb_stdlog,
2037 "gdbarch_find_by_info: info.tdep_info %s\n",
2038 host_address_to_string (info.tdep_info));
2039 }
2040
2041 /* Find the tdep code that knows about this architecture. */
2042 for (rego = gdbarch_registry;
2043 rego != NULL;
2044 rego = rego->next)
2045 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2046 break;
2047 if (rego == NULL)
2048 {
2049 if (gdbarch_debug)
2050 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2051 "No matching architecture\n");
2052 return 0;
2053 }
2054
2055 /* Ask the tdep code for an architecture that matches "info". */
2056 new_gdbarch = rego->init (info, rego->arches);
2057
2058 /* Did the tdep code like it? No. Reject the change and revert to
2059 the old architecture. */
2060 if (new_gdbarch == NULL)
2061 {
2062 if (gdbarch_debug)
2063 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2064 "Target rejected architecture\n");
2065 return NULL;
2066 }
2067
2068 /* Is this a pre-existing architecture (as determined by already
2069 being initialized)? Move it to the front of the architecture
2070 list (keeping the list sorted Most Recently Used). */
2071 if (new_gdbarch->initialized_p)
2072 {
2073 struct gdbarch_list **list;
2074 struct gdbarch_list *this;
2075 if (gdbarch_debug)
2076 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2077 "Previous architecture %s (%s) selected\n",
2078 host_address_to_string (new_gdbarch),
2079 new_gdbarch->bfd_arch_info->printable_name);
2080 /* Find the existing arch in the list. */
2081 for (list = &rego->arches;
2082 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2083 list = &(*list)->next);
2084 /* It had better be in the list of architectures. */
2085 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2086 /* Unlink THIS. */
2087 this = (*list);
2088 (*list) = this->next;
2089 /* Insert THIS at the front. */
2090 this->next = rego->arches;
2091 rego->arches = this;
2092 /* Return it. */
2093 return new_gdbarch;
2094 }
2095
2096 /* It's a new architecture. */
2097 if (gdbarch_debug)
2098 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2099 "New architecture %s (%s) selected\n",
2100 host_address_to_string (new_gdbarch),
2101 new_gdbarch->bfd_arch_info->printable_name);
2102
2103 /* Insert the new architecture into the front of the architecture
2104 list (keep the list sorted Most Recently Used). */
2105 {
2106 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2107 this->next = rego->arches;
2108 this->gdbarch = new_gdbarch;
2109 rego->arches = this;
2110 }
2111
2112 /* Check that the newly installed architecture is valid. Plug in
2113 any post init values. */
2114 new_gdbarch->dump_tdep = rego->dump_tdep;
2115 verify_gdbarch (new_gdbarch);
2116 new_gdbarch->initialized_p = 1;
2117
2118 if (gdbarch_debug)
2119 gdbarch_dump (new_gdbarch, gdb_stdlog);
2120
2121 return new_gdbarch;
2122 }
2123
2124 /* Make the specified architecture current. */
2125
2126 void
2127 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2128 {
2129 gdb_assert (new_gdbarch != NULL);
2130 gdb_assert (new_gdbarch->initialized_p);
2131 target_gdbarch = new_gdbarch;
2132 observer_notify_architecture_changed (new_gdbarch);
2133 registers_changed ();
2134 }
2135
2136 extern void _initialize_gdbarch (void);
2137
2138 void
2139 _initialize_gdbarch (void)
2140 {
2141 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2142 Set architecture debugging."), _("\\
2143 Show architecture debugging."), _("\\
2144 When non-zero, architecture debugging is enabled."),
2145 NULL,
2146 show_gdbarch_debug,
2147 &setdebuglist, &showdebuglist);
2148 }
2149 EOF
2150
2151 # close things off
2152 exec 1>&2
2153 #../move-if-change new-gdbarch.c gdbarch.c
2154 compare_new gdbarch.c
This page took 0.081576 seconds and 4 git commands to generate.