d7cc4bedb2a4282293b8d267ff49bbd02c0d5672
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i::int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
408 #
409 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
411 #
412 # ptr_bit is the size of a pointer on the target
413 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
414 # addr_bit is the size of a target address as represented in gdb
415 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
416 # Number of bits in a BFD_VMA for the target object file format.
417 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v::int:char_signed:::1:-1:1
421 #
422 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
423 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 #
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 #
432 v::int:num_regs:::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v::int:num_pseudo_regs:::0:0::0
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:=:int:sp_regnum:::-1:-1::0
444 v:=:int:pc_regnum:::-1:-1::0
445 v:=:int:ps_regnum:::-1:-1::0
446 v:=:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
455 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
456 f:=:const char *:register_name:int regnr:regnr
457
458 # Return the type of a register specified by the architecture. Only
459 # the register cache should call this function directly; others should
460 # use "register_type".
461 M::struct type *:register_type:int reg_nr:reg_nr
462
463 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
464 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
465 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
466 # DEPRECATED_FP_REGNUM.
467 v:=:int:deprecated_fp_regnum:::-1:-1::0
468
469 # See gdbint.texinfo. See infcall.c.
470 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
471 # DEPRECATED_REGISTER_SIZE can be deleted.
472 v:=:int:deprecated_register_size
473 v::int:call_dummy_location::::AT_ENTRY_POINT::0
474 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
475
476 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
477 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
478 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
479 # MAP a GDB RAW register number onto a simulator register number. See
480 # also include/...-sim.h.
481 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
482 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
483 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
484 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
485 # setjmp/longjmp support.
486 F::int:get_longjmp_target:CORE_ADDR *pc:pc
487 #
488 v:=:int:believe_pcc_promotion:::::::
489 #
490 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
491 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
492 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
493 # Construct a value representing the contents of register REGNUM in
494 # frame FRAME, interpreted as type TYPE. The routine needs to
495 # allocate and return a struct value with all value attributes
496 # (but not the value contents) filled in.
497 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
498 #
499 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
500 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
501 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
502
503 # It has been suggested that this, well actually its predecessor,
504 # should take the type/value of the function to be called and not the
505 # return type. This is left as an exercise for the reader.
506
507 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
508 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
509 # (via legacy_return_value), when a small struct is involved.
510
511 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
512
513 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
514 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
515 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
516 # RETURN_VALUE.
517
518 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
519 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
520 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
521
522 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
523 # ABI suitable for the implementation of a robust extract
524 # struct-convention return-value address method (the sparc saves the
525 # address in the callers frame). All the other cases so far examined,
526 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
527 # erreneous - the code was incorrectly assuming that the return-value
528 # address, stored in a register, was preserved across the entire
529 # function call.
530
531 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
532 # the ABIs that are still to be analyzed - perhaps this should simply
533 # be deleted. The commented out extract_returned_value_address method
534 # is provided as a starting point for the 32-bit SPARC. It, or
535 # something like it, along with changes to both infcmd.c and stack.c
536 # will be needed for that case to work. NB: It is passed the callers
537 # frame since it is only after the callee has returned that this
538 # function is used.
539
540 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
541 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
542
543 #
544 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
545 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
546 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
547 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
548 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
549 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
550 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
551
552 # A function can be addressed by either it's "pointer" (possibly a
553 # descriptor address) or "entry point" (first executable instruction).
554 # The method "convert_from_func_ptr_addr" converting the former to the
555 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
556 # a simplified subset of that functionality - the function's address
557 # corresponds to the "function pointer" and the function's start
558 # corresponds to the "function entry point" - and hence is redundant.
559
560 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
561
562 # Return the remote protocol register number associated with this
563 # register. Normally the identity mapping.
564 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
565
566 # Fetch the target specific address used to represent a load module.
567 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
568 #
569 v:=:CORE_ADDR:frame_args_skip:::0:::0
570 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
571 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
572 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
573 # frame-base. Enable frame-base before frame-unwind.
574 F:=:int:frame_num_args:struct frame_info *frame:frame
575 #
576 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
577 # to frame_align and the requirement that methods such as
578 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
579 # alignment.
580 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
581 M::CORE_ADDR:frame_align:CORE_ADDR address:address
582 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
583 # stabs_argument_has_addr.
584 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
585 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
586 v:=:int:frame_red_zone_size
587 #
588 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
589 # On some machines there are bits in addresses which are not really
590 # part of the address, but are used by the kernel, the hardware, etc.
591 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
592 # we get a "real" address such as one would find in a symbol table.
593 # This is used only for addresses of instructions, and even then I'm
594 # not sure it's used in all contexts. It exists to deal with there
595 # being a few stray bits in the PC which would mislead us, not as some
596 # sort of generic thing to handle alignment or segmentation (it's
597 # possible it should be in TARGET_READ_PC instead).
598 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
599 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
600 # ADDR_BITS_REMOVE.
601 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
602
603 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
604 # indicates if the target needs software single step. An ISA method to
605 # implement it.
606 #
607 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
608 # breakpoints using the breakpoint system instead of blatting memory directly
609 # (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # A return value of 1 means that the software_single_step breakpoints
615 # were inserted; 0 means they were not.
616 F:=:int:software_single_step:struct regcache *regcache:regcache
617
618 # Return non-zero if the processor is executing a delay slot and a
619 # further single-step is needed before the instruction finishes.
620 M::int:single_step_through_delay:struct frame_info *frame:frame
621 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
622 # disassembler. Perhaps objdump can handle it?
623 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
624 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
625
626
627 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
628 # evaluates non-zero, this is the address where the debugger will place
629 # a step-resume breakpoint to get us past the dynamic linker.
630 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
631 # Some systems also have trampoline code for returning from shared libs.
632 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
633
634 # A target might have problems with watchpoints as soon as the stack
635 # frame of the current function has been destroyed. This mostly happens
636 # as the first action in a funtion's epilogue. in_function_epilogue_p()
637 # is defined to return a non-zero value if either the given addr is one
638 # instruction after the stack destroying instruction up to the trailing
639 # return instruction or if we can figure out that the stack frame has
640 # already been invalidated regardless of the value of addr. Targets
641 # which don't suffer from that problem could just let this functionality
642 # untouched.
643 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
644 # Given a vector of command-line arguments, return a newly allocated
645 # string which, when passed to the create_inferior function, will be
646 # parsed (on Unix systems, by the shell) to yield the same vector.
647 # This function should call error() if the argument vector is not
648 # representable for this target or if this target does not support
649 # command-line arguments.
650 # ARGC is the number of elements in the vector.
651 # ARGV is an array of strings, one per argument.
652 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
653 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
654 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
655 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
656 v:=:int:cannot_step_breakpoint:::0:0::0
657 v:=:int:have_nonsteppable_watchpoint:::0:0::0
658 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
659 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
660 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
661 # Is a register in a group
662 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
663 # Fetch the pointer to the ith function argument.
664 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
665
666 # Return the appropriate register set for a core file section with
667 # name SECT_NAME and size SECT_SIZE.
668 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
669
670 # If the elements of C++ vtables are in-place function descriptors rather
671 # than normal function pointers (which may point to code or a descriptor),
672 # set this to one.
673 v::int:vtable_function_descriptors:::0:0::0
674
675 # Set if the least significant bit of the delta is used instead of the least
676 # significant bit of the pfn for pointers to virtual member functions.
677 v::int:vbit_in_delta:::0:0::0
678
679 # Advance PC to next instruction in order to skip a permanent breakpoint.
680 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
681
682 # Refresh overlay mapped state for section OSECT.
683 F::void:overlay_update:struct obj_section *osect:osect
684 EOF
685 }
686
687 #
688 # The .log file
689 #
690 exec > new-gdbarch.log
691 function_list | while do_read
692 do
693 cat <<EOF
694 ${class} ${returntype} ${function} ($formal)
695 EOF
696 for r in ${read}
697 do
698 eval echo \"\ \ \ \ ${r}=\${${r}}\"
699 done
700 if class_is_predicate_p && fallback_default_p
701 then
702 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
703 kill $$
704 exit 1
705 fi
706 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
707 then
708 echo "Error: postdefault is useless when invalid_p=0" 1>&2
709 kill $$
710 exit 1
711 fi
712 if class_is_multiarch_p
713 then
714 if class_is_predicate_p ; then :
715 elif test "x${predefault}" = "x"
716 then
717 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
718 kill $$
719 exit 1
720 fi
721 fi
722 echo ""
723 done
724
725 exec 1>&2
726 compare_new gdbarch.log
727
728
729 copyright ()
730 {
731 cat <<EOF
732 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
733
734 /* Dynamic architecture support for GDB, the GNU debugger.
735
736 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
737 Free Software Foundation, Inc.
738
739 This file is part of GDB.
740
741 This program is free software; you can redistribute it and/or modify
742 it under the terms of the GNU General Public License as published by
743 the Free Software Foundation; either version 2 of the License, or
744 (at your option) any later version.
745
746 This program is distributed in the hope that it will be useful,
747 but WITHOUT ANY WARRANTY; without even the implied warranty of
748 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
749 GNU General Public License for more details.
750
751 You should have received a copy of the GNU General Public License
752 along with this program; if not, write to the Free Software
753 Foundation, Inc., 51 Franklin Street, Fifth Floor,
754 Boston, MA 02110-1301, USA. */
755
756 /* This file was created with the aid of \`\`gdbarch.sh''.
757
758 The Bourne shell script \`\`gdbarch.sh'' creates the files
759 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
760 against the existing \`\`gdbarch.[hc]''. Any differences found
761 being reported.
762
763 If editing this file, please also run gdbarch.sh and merge any
764 changes into that script. Conversely, when making sweeping changes
765 to this file, modifying gdbarch.sh and using its output may prove
766 easier. */
767
768 EOF
769 }
770
771 #
772 # The .h file
773 #
774
775 exec > new-gdbarch.h
776 copyright
777 cat <<EOF
778 #ifndef GDBARCH_H
779 #define GDBARCH_H
780
781 struct floatformat;
782 struct ui_file;
783 struct frame_info;
784 struct value;
785 struct objfile;
786 struct obj_section;
787 struct minimal_symbol;
788 struct regcache;
789 struct reggroup;
790 struct regset;
791 struct disassemble_info;
792 struct target_ops;
793 struct obstack;
794 struct bp_target_info;
795 struct target_desc;
796
797 extern struct gdbarch *current_gdbarch;
798 EOF
799
800 # function typedef's
801 printf "\n"
802 printf "\n"
803 printf "/* The following are pre-initialized by GDBARCH. */\n"
804 function_list | while do_read
805 do
806 if class_is_info_p
807 then
808 printf "\n"
809 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
810 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
811 if test -n "${macro}"
812 then
813 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
814 printf "#error \"Non multi-arch definition of ${macro}\"\n"
815 printf "#endif\n"
816 printf "#if !defined (${macro})\n"
817 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
818 printf "#endif\n"
819 fi
820 fi
821 done
822
823 # function typedef's
824 printf "\n"
825 printf "\n"
826 printf "/* The following are initialized by the target dependent code. */\n"
827 function_list | while do_read
828 do
829 if [ -n "${comment}" ]
830 then
831 echo "${comment}" | sed \
832 -e '2 s,#,/*,' \
833 -e '3,$ s,#, ,' \
834 -e '$ s,$, */,'
835 fi
836
837 if class_is_predicate_p
838 then
839 if test -n "${macro}"
840 then
841 printf "\n"
842 printf "#if defined (${macro})\n"
843 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
844 printf "#if !defined (${macro}_P)\n"
845 printf "#define ${macro}_P() (1)\n"
846 printf "#endif\n"
847 printf "#endif\n"
848 fi
849 printf "\n"
850 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
851 if test -n "${macro}"
852 then
853 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
854 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#endif\n"
856 printf "#if !defined (${macro}_P)\n"
857 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
858 printf "#endif\n"
859 fi
860 fi
861 if class_is_variable_p
862 then
863 printf "\n"
864 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
865 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
866 if test -n "${macro}"
867 then
868 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
869 printf "#error \"Non multi-arch definition of ${macro}\"\n"
870 printf "#endif\n"
871 printf "#if !defined (${macro})\n"
872 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
873 printf "#endif\n"
874 fi
875 fi
876 if class_is_function_p
877 then
878 printf "\n"
879 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
880 then
881 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
882 elif class_is_multiarch_p
883 then
884 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
885 else
886 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
887 fi
888 if [ "x${formal}" = "xvoid" ]
889 then
890 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
891 else
892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
893 fi
894 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
895 if test -n "${macro}"
896 then
897 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
898 printf "#error \"Non multi-arch definition of ${macro}\"\n"
899 printf "#endif\n"
900 if [ "x${actual}" = "x" ]
901 then
902 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
903 elif [ "x${actual}" = "x-" ]
904 then
905 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
906 else
907 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
908 fi
909 printf "#if !defined (${macro})\n"
910 if [ "x${actual}" = "x" ]
911 then
912 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
913 elif [ "x${actual}" = "x-" ]
914 then
915 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
916 else
917 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
918 fi
919 printf "#endif\n"
920 fi
921 fi
922 done
923
924 # close it off
925 cat <<EOF
926
927 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
928
929
930 /* Mechanism for co-ordinating the selection of a specific
931 architecture.
932
933 GDB targets (*-tdep.c) can register an interest in a specific
934 architecture. Other GDB components can register a need to maintain
935 per-architecture data.
936
937 The mechanisms below ensures that there is only a loose connection
938 between the set-architecture command and the various GDB
939 components. Each component can independently register their need
940 to maintain architecture specific data with gdbarch.
941
942 Pragmatics:
943
944 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
945 didn't scale.
946
947 The more traditional mega-struct containing architecture specific
948 data for all the various GDB components was also considered. Since
949 GDB is built from a variable number of (fairly independent)
950 components it was determined that the global aproach was not
951 applicable. */
952
953
954 /* Register a new architectural family with GDB.
955
956 Register support for the specified ARCHITECTURE with GDB. When
957 gdbarch determines that the specified architecture has been
958 selected, the corresponding INIT function is called.
959
960 --
961
962 The INIT function takes two parameters: INFO which contains the
963 information available to gdbarch about the (possibly new)
964 architecture; ARCHES which is a list of the previously created
965 \`\`struct gdbarch'' for this architecture.
966
967 The INFO parameter is, as far as possible, be pre-initialized with
968 information obtained from INFO.ABFD or the global defaults.
969
970 The ARCHES parameter is a linked list (sorted most recently used)
971 of all the previously created architures for this architecture
972 family. The (possibly NULL) ARCHES->gdbarch can used to access
973 values from the previously selected architecture for this
974 architecture family. The global \`\`current_gdbarch'' shall not be
975 used.
976
977 The INIT function shall return any of: NULL - indicating that it
978 doesn't recognize the selected architecture; an existing \`\`struct
979 gdbarch'' from the ARCHES list - indicating that the new
980 architecture is just a synonym for an earlier architecture (see
981 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
982 - that describes the selected architecture (see gdbarch_alloc()).
983
984 The DUMP_TDEP function shall print out all target specific values.
985 Care should be taken to ensure that the function works in both the
986 multi-arch and non- multi-arch cases. */
987
988 struct gdbarch_list
989 {
990 struct gdbarch *gdbarch;
991 struct gdbarch_list *next;
992 };
993
994 struct gdbarch_info
995 {
996 /* Use default: NULL (ZERO). */
997 const struct bfd_arch_info *bfd_arch_info;
998
999 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1000 int byte_order;
1001
1002 /* Use default: NULL (ZERO). */
1003 bfd *abfd;
1004
1005 /* Use default: NULL (ZERO). */
1006 struct gdbarch_tdep_info *tdep_info;
1007
1008 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1009 enum gdb_osabi osabi;
1010
1011 /* Use default: NULL (ZERO). */
1012 const struct target_desc *target_desc;
1013 };
1014
1015 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1016 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1017
1018 /* DEPRECATED - use gdbarch_register() */
1019 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1020
1021 extern void gdbarch_register (enum bfd_architecture architecture,
1022 gdbarch_init_ftype *,
1023 gdbarch_dump_tdep_ftype *);
1024
1025
1026 /* Return a freshly allocated, NULL terminated, array of the valid
1027 architecture names. Since architectures are registered during the
1028 _initialize phase this function only returns useful information
1029 once initialization has been completed. */
1030
1031 extern const char **gdbarch_printable_names (void);
1032
1033
1034 /* Helper function. Search the list of ARCHES for a GDBARCH that
1035 matches the information provided by INFO. */
1036
1037 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1038
1039
1040 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1041 basic initialization using values obtained from the INFO and TDEP
1042 parameters. set_gdbarch_*() functions are called to complete the
1043 initialization of the object. */
1044
1045 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1046
1047
1048 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1049 It is assumed that the caller freeds the \`\`struct
1050 gdbarch_tdep''. */
1051
1052 extern void gdbarch_free (struct gdbarch *);
1053
1054
1055 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1056 obstack. The memory is freed when the corresponding architecture
1057 is also freed. */
1058
1059 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1060 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1061 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1062
1063
1064 /* Helper function. Force an update of the current architecture.
1065
1066 The actual architecture selected is determined by INFO, \`\`(gdb) set
1067 architecture'' et.al., the existing architecture and BFD's default
1068 architecture. INFO should be initialized to zero and then selected
1069 fields should be updated.
1070
1071 Returns non-zero if the update succeeds */
1072
1073 extern int gdbarch_update_p (struct gdbarch_info info);
1074
1075
1076 /* Helper function. Find an architecture matching info.
1077
1078 INFO should be initialized using gdbarch_info_init, relevant fields
1079 set, and then finished using gdbarch_info_fill.
1080
1081 Returns the corresponding architecture, or NULL if no matching
1082 architecture was found. "current_gdbarch" is not updated. */
1083
1084 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1085
1086
1087 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1088
1089 FIXME: kettenis/20031124: Of the functions that follow, only
1090 gdbarch_from_bfd is supposed to survive. The others will
1091 dissappear since in the future GDB will (hopefully) be truly
1092 multi-arch. However, for now we're still stuck with the concept of
1093 a single active architecture. */
1094
1095 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1096
1097
1098 /* Register per-architecture data-pointer.
1099
1100 Reserve space for a per-architecture data-pointer. An identifier
1101 for the reserved data-pointer is returned. That identifer should
1102 be saved in a local static variable.
1103
1104 Memory for the per-architecture data shall be allocated using
1105 gdbarch_obstack_zalloc. That memory will be deleted when the
1106 corresponding architecture object is deleted.
1107
1108 When a previously created architecture is re-selected, the
1109 per-architecture data-pointer for that previous architecture is
1110 restored. INIT() is not re-called.
1111
1112 Multiple registrarants for any architecture are allowed (and
1113 strongly encouraged). */
1114
1115 struct gdbarch_data;
1116
1117 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1118 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1119 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1120 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1121 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1122 struct gdbarch_data *data,
1123 void *pointer);
1124
1125 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1126
1127
1128
1129 /* Register per-architecture memory region.
1130
1131 Provide a memory-region swap mechanism. Per-architecture memory
1132 region are created. These memory regions are swapped whenever the
1133 architecture is changed. For a new architecture, the memory region
1134 is initialized with zero (0) and the INIT function is called.
1135
1136 Memory regions are swapped / initialized in the order that they are
1137 registered. NULL DATA and/or INIT values can be specified.
1138
1139 New code should use gdbarch_data_register_*(). */
1140
1141 typedef void (gdbarch_swap_ftype) (void);
1142 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1143 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1144
1145
1146
1147 /* Set the dynamic target-system-dependent parameters (architecture,
1148 byte-order, ...) using information found in the BFD */
1149
1150 extern void set_gdbarch_from_file (bfd *);
1151
1152
1153 /* Initialize the current architecture to the "first" one we find on
1154 our list. */
1155
1156 extern void initialize_current_architecture (void);
1157
1158 /* gdbarch trace variable */
1159 extern int gdbarch_debug;
1160
1161 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1162
1163 #endif
1164 EOF
1165 exec 1>&2
1166 #../move-if-change new-gdbarch.h gdbarch.h
1167 compare_new gdbarch.h
1168
1169
1170 #
1171 # C file
1172 #
1173
1174 exec > new-gdbarch.c
1175 copyright
1176 cat <<EOF
1177
1178 #include "defs.h"
1179 #include "arch-utils.h"
1180
1181 #include "gdbcmd.h"
1182 #include "inferior.h"
1183 #include "symcat.h"
1184
1185 #include "floatformat.h"
1186
1187 #include "gdb_assert.h"
1188 #include "gdb_string.h"
1189 #include "gdb-events.h"
1190 #include "reggroups.h"
1191 #include "osabi.h"
1192 #include "gdb_obstack.h"
1193
1194 /* Static function declarations */
1195
1196 static void alloc_gdbarch_data (struct gdbarch *);
1197
1198 /* Non-zero if we want to trace architecture code. */
1199
1200 #ifndef GDBARCH_DEBUG
1201 #define GDBARCH_DEBUG 0
1202 #endif
1203 int gdbarch_debug = GDBARCH_DEBUG;
1204 static void
1205 show_gdbarch_debug (struct ui_file *file, int from_tty,
1206 struct cmd_list_element *c, const char *value)
1207 {
1208 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1209 }
1210
1211 static const char *
1212 pformat (const struct floatformat **format)
1213 {
1214 if (format == NULL)
1215 return "(null)";
1216 else
1217 /* Just print out one of them - this is only for diagnostics. */
1218 return format[0]->name;
1219 }
1220
1221 EOF
1222
1223 # gdbarch open the gdbarch object
1224 printf "\n"
1225 printf "/* Maintain the struct gdbarch object */\n"
1226 printf "\n"
1227 printf "struct gdbarch\n"
1228 printf "{\n"
1229 printf " /* Has this architecture been fully initialized? */\n"
1230 printf " int initialized_p;\n"
1231 printf "\n"
1232 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1233 printf " struct obstack *obstack;\n"
1234 printf "\n"
1235 printf " /* basic architectural information */\n"
1236 function_list | while do_read
1237 do
1238 if class_is_info_p
1239 then
1240 printf " ${returntype} ${function};\n"
1241 fi
1242 done
1243 printf "\n"
1244 printf " /* target specific vector. */\n"
1245 printf " struct gdbarch_tdep *tdep;\n"
1246 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1247 printf "\n"
1248 printf " /* per-architecture data-pointers */\n"
1249 printf " unsigned nr_data;\n"
1250 printf " void **data;\n"
1251 printf "\n"
1252 printf " /* per-architecture swap-regions */\n"
1253 printf " struct gdbarch_swap *swap;\n"
1254 printf "\n"
1255 cat <<EOF
1256 /* Multi-arch values.
1257
1258 When extending this structure you must:
1259
1260 Add the field below.
1261
1262 Declare set/get functions and define the corresponding
1263 macro in gdbarch.h.
1264
1265 gdbarch_alloc(): If zero/NULL is not a suitable default,
1266 initialize the new field.
1267
1268 verify_gdbarch(): Confirm that the target updated the field
1269 correctly.
1270
1271 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1272 field is dumped out
1273
1274 \`\`startup_gdbarch()'': Append an initial value to the static
1275 variable (base values on the host's c-type system).
1276
1277 get_gdbarch(): Implement the set/get functions (probably using
1278 the macro's as shortcuts).
1279
1280 */
1281
1282 EOF
1283 function_list | while do_read
1284 do
1285 if class_is_variable_p
1286 then
1287 printf " ${returntype} ${function};\n"
1288 elif class_is_function_p
1289 then
1290 printf " gdbarch_${function}_ftype *${function};\n"
1291 fi
1292 done
1293 printf "};\n"
1294
1295 # A pre-initialized vector
1296 printf "\n"
1297 printf "\n"
1298 cat <<EOF
1299 /* The default architecture uses host values (for want of a better
1300 choice). */
1301 EOF
1302 printf "\n"
1303 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1304 printf "\n"
1305 printf "struct gdbarch startup_gdbarch =\n"
1306 printf "{\n"
1307 printf " 1, /* Always initialized. */\n"
1308 printf " NULL, /* The obstack. */\n"
1309 printf " /* basic architecture information */\n"
1310 function_list | while do_read
1311 do
1312 if class_is_info_p
1313 then
1314 printf " ${staticdefault}, /* ${function} */\n"
1315 fi
1316 done
1317 cat <<EOF
1318 /* target specific vector and its dump routine */
1319 NULL, NULL,
1320 /*per-architecture data-pointers and swap regions */
1321 0, NULL, NULL,
1322 /* Multi-arch values */
1323 EOF
1324 function_list | while do_read
1325 do
1326 if class_is_function_p || class_is_variable_p
1327 then
1328 printf " ${staticdefault}, /* ${function} */\n"
1329 fi
1330 done
1331 cat <<EOF
1332 /* startup_gdbarch() */
1333 };
1334
1335 struct gdbarch *current_gdbarch = &startup_gdbarch;
1336 EOF
1337
1338 # Create a new gdbarch struct
1339 cat <<EOF
1340
1341 /* Create a new \`\`struct gdbarch'' based on information provided by
1342 \`\`struct gdbarch_info''. */
1343 EOF
1344 printf "\n"
1345 cat <<EOF
1346 struct gdbarch *
1347 gdbarch_alloc (const struct gdbarch_info *info,
1348 struct gdbarch_tdep *tdep)
1349 {
1350 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1351 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1352 the current local architecture and not the previous global
1353 architecture. This ensures that the new architectures initial
1354 values are not influenced by the previous architecture. Once
1355 everything is parameterised with gdbarch, this will go away. */
1356 struct gdbarch *current_gdbarch;
1357
1358 /* Create an obstack for allocating all the per-architecture memory,
1359 then use that to allocate the architecture vector. */
1360 struct obstack *obstack = XMALLOC (struct obstack);
1361 obstack_init (obstack);
1362 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1363 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1364 current_gdbarch->obstack = obstack;
1365
1366 alloc_gdbarch_data (current_gdbarch);
1367
1368 current_gdbarch->tdep = tdep;
1369 EOF
1370 printf "\n"
1371 function_list | while do_read
1372 do
1373 if class_is_info_p
1374 then
1375 printf " current_gdbarch->${function} = info->${function};\n"
1376 fi
1377 done
1378 printf "\n"
1379 printf " /* Force the explicit initialization of these. */\n"
1380 function_list | while do_read
1381 do
1382 if class_is_function_p || class_is_variable_p
1383 then
1384 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1385 then
1386 printf " current_gdbarch->${function} = ${predefault};\n"
1387 fi
1388 fi
1389 done
1390 cat <<EOF
1391 /* gdbarch_alloc() */
1392
1393 return current_gdbarch;
1394 }
1395 EOF
1396
1397 # Free a gdbarch struct.
1398 printf "\n"
1399 printf "\n"
1400 cat <<EOF
1401 /* Allocate extra space using the per-architecture obstack. */
1402
1403 void *
1404 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1405 {
1406 void *data = obstack_alloc (arch->obstack, size);
1407 memset (data, 0, size);
1408 return data;
1409 }
1410
1411
1412 /* Free a gdbarch struct. This should never happen in normal
1413 operation --- once you've created a gdbarch, you keep it around.
1414 However, if an architecture's init function encounters an error
1415 building the structure, it may need to clean up a partially
1416 constructed gdbarch. */
1417
1418 void
1419 gdbarch_free (struct gdbarch *arch)
1420 {
1421 struct obstack *obstack;
1422 gdb_assert (arch != NULL);
1423 gdb_assert (!arch->initialized_p);
1424 obstack = arch->obstack;
1425 obstack_free (obstack, 0); /* Includes the ARCH. */
1426 xfree (obstack);
1427 }
1428 EOF
1429
1430 # verify a new architecture
1431 cat <<EOF
1432
1433
1434 /* Ensure that all values in a GDBARCH are reasonable. */
1435
1436 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1437 just happens to match the global variable \`\`current_gdbarch''. That
1438 way macros refering to that variable get the local and not the global
1439 version - ulgh. Once everything is parameterised with gdbarch, this
1440 will go away. */
1441
1442 static void
1443 verify_gdbarch (struct gdbarch *current_gdbarch)
1444 {
1445 struct ui_file *log;
1446 struct cleanup *cleanups;
1447 long dummy;
1448 char *buf;
1449 log = mem_fileopen ();
1450 cleanups = make_cleanup_ui_file_delete (log);
1451 /* fundamental */
1452 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1453 fprintf_unfiltered (log, "\n\tbyte-order");
1454 if (current_gdbarch->bfd_arch_info == NULL)
1455 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1456 /* Check those that need to be defined for the given multi-arch level. */
1457 EOF
1458 function_list | while do_read
1459 do
1460 if class_is_function_p || class_is_variable_p
1461 then
1462 if [ "x${invalid_p}" = "x0" ]
1463 then
1464 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1465 elif class_is_predicate_p
1466 then
1467 printf " /* Skip verify of ${function}, has predicate */\n"
1468 # FIXME: See do_read for potential simplification
1469 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1470 then
1471 printf " if (${invalid_p})\n"
1472 printf " current_gdbarch->${function} = ${postdefault};\n"
1473 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1474 then
1475 printf " if (current_gdbarch->${function} == ${predefault})\n"
1476 printf " current_gdbarch->${function} = ${postdefault};\n"
1477 elif [ -n "${postdefault}" ]
1478 then
1479 printf " if (current_gdbarch->${function} == 0)\n"
1480 printf " current_gdbarch->${function} = ${postdefault};\n"
1481 elif [ -n "${invalid_p}" ]
1482 then
1483 printf " if (${invalid_p})\n"
1484 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1485 elif [ -n "${predefault}" ]
1486 then
1487 printf " if (current_gdbarch->${function} == ${predefault})\n"
1488 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1489 fi
1490 fi
1491 done
1492 cat <<EOF
1493 buf = ui_file_xstrdup (log, &dummy);
1494 make_cleanup (xfree, buf);
1495 if (strlen (buf) > 0)
1496 internal_error (__FILE__, __LINE__,
1497 _("verify_gdbarch: the following are invalid ...%s"),
1498 buf);
1499 do_cleanups (cleanups);
1500 }
1501 EOF
1502
1503 # dump the structure
1504 printf "\n"
1505 printf "\n"
1506 cat <<EOF
1507 /* Print out the details of the current architecture. */
1508
1509 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1510 just happens to match the global variable \`\`current_gdbarch''. That
1511 way macros refering to that variable get the local and not the global
1512 version - ulgh. Once everything is parameterised with gdbarch, this
1513 will go away. */
1514
1515 void
1516 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1517 {
1518 const char *gdb_xm_file = "<not-defined>";
1519 const char *gdb_nm_file = "<not-defined>";
1520 const char *gdb_tm_file = "<not-defined>";
1521 #if defined (GDB_XM_FILE)
1522 gdb_xm_file = GDB_XM_FILE;
1523 #endif
1524 fprintf_unfiltered (file,
1525 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1526 gdb_xm_file);
1527 #if defined (GDB_NM_FILE)
1528 gdb_nm_file = GDB_NM_FILE;
1529 #endif
1530 fprintf_unfiltered (file,
1531 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1532 gdb_nm_file);
1533 #if defined (GDB_TM_FILE)
1534 gdb_tm_file = GDB_TM_FILE;
1535 #endif
1536 fprintf_unfiltered (file,
1537 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1538 gdb_tm_file);
1539 EOF
1540 function_list | sort -t: -k 4 | while do_read
1541 do
1542 # First the predicate
1543 if class_is_predicate_p
1544 then
1545 if test -n "${macro}"
1546 then
1547 printf "#ifdef ${macro}_P\n"
1548 printf " fprintf_unfiltered (file,\n"
1549 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1550 printf " \"${macro}_P()\",\n"
1551 printf " XSTRING (${macro}_P ()));\n"
1552 printf "#endif\n"
1553 fi
1554 printf " fprintf_unfiltered (file,\n"
1555 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1556 printf " gdbarch_${function}_p (current_gdbarch));\n"
1557 fi
1558 # Print the macro definition.
1559 if test -n "${macro}"
1560 then
1561 printf "#ifdef ${macro}\n"
1562 if class_is_function_p
1563 then
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1566 printf " \"${macro}(${actual})\",\n"
1567 printf " XSTRING (${macro} (${actual})));\n"
1568 else
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1571 printf " XSTRING (${macro}));\n"
1572 fi
1573 printf "#endif\n"
1574 fi
1575 # Print the corresponding value.
1576 if class_is_function_p
1577 then
1578 printf " fprintf_unfiltered (file,\n"
1579 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1580 printf " (long) current_gdbarch->${function});\n"
1581 else
1582 # It is a variable
1583 case "${print}:${returntype}" in
1584 :CORE_ADDR )
1585 fmt="0x%s"
1586 print="paddr_nz (current_gdbarch->${function})"
1587 ;;
1588 :* )
1589 fmt="%s"
1590 print="paddr_d (current_gdbarch->${function})"
1591 ;;
1592 * )
1593 fmt="%s"
1594 ;;
1595 esac
1596 printf " fprintf_unfiltered (file,\n"
1597 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1598 printf " ${print});\n"
1599 fi
1600 done
1601 cat <<EOF
1602 if (current_gdbarch->dump_tdep != NULL)
1603 current_gdbarch->dump_tdep (current_gdbarch, file);
1604 }
1605 EOF
1606
1607
1608 # GET/SET
1609 printf "\n"
1610 cat <<EOF
1611 struct gdbarch_tdep *
1612 gdbarch_tdep (struct gdbarch *gdbarch)
1613 {
1614 if (gdbarch_debug >= 2)
1615 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1616 return gdbarch->tdep;
1617 }
1618 EOF
1619 printf "\n"
1620 function_list | while do_read
1621 do
1622 if class_is_predicate_p
1623 then
1624 printf "\n"
1625 printf "int\n"
1626 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1627 printf "{\n"
1628 printf " gdb_assert (gdbarch != NULL);\n"
1629 printf " return ${predicate};\n"
1630 printf "}\n"
1631 fi
1632 if class_is_function_p
1633 then
1634 printf "\n"
1635 printf "${returntype}\n"
1636 if [ "x${formal}" = "xvoid" ]
1637 then
1638 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1639 else
1640 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1641 fi
1642 printf "{\n"
1643 printf " gdb_assert (gdbarch != NULL);\n"
1644 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1645 if class_is_predicate_p && test -n "${predefault}"
1646 then
1647 # Allow a call to a function with a predicate.
1648 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1649 fi
1650 printf " if (gdbarch_debug >= 2)\n"
1651 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1652 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1653 then
1654 if class_is_multiarch_p
1655 then
1656 params="gdbarch"
1657 else
1658 params=""
1659 fi
1660 else
1661 if class_is_multiarch_p
1662 then
1663 params="gdbarch, ${actual}"
1664 else
1665 params="${actual}"
1666 fi
1667 fi
1668 if [ "x${returntype}" = "xvoid" ]
1669 then
1670 printf " gdbarch->${function} (${params});\n"
1671 else
1672 printf " return gdbarch->${function} (${params});\n"
1673 fi
1674 printf "}\n"
1675 printf "\n"
1676 printf "void\n"
1677 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1678 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1679 printf "{\n"
1680 printf " gdbarch->${function} = ${function};\n"
1681 printf "}\n"
1682 elif class_is_variable_p
1683 then
1684 printf "\n"
1685 printf "${returntype}\n"
1686 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1687 printf "{\n"
1688 printf " gdb_assert (gdbarch != NULL);\n"
1689 if [ "x${invalid_p}" = "x0" ]
1690 then
1691 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1692 elif [ -n "${invalid_p}" ]
1693 then
1694 printf " /* Check variable is valid. */\n"
1695 printf " gdb_assert (!(${invalid_p}));\n"
1696 elif [ -n "${predefault}" ]
1697 then
1698 printf " /* Check variable changed from pre-default. */\n"
1699 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1700 fi
1701 printf " if (gdbarch_debug >= 2)\n"
1702 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1703 printf " return gdbarch->${function};\n"
1704 printf "}\n"
1705 printf "\n"
1706 printf "void\n"
1707 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1708 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1709 printf "{\n"
1710 printf " gdbarch->${function} = ${function};\n"
1711 printf "}\n"
1712 elif class_is_info_p
1713 then
1714 printf "\n"
1715 printf "${returntype}\n"
1716 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1717 printf "{\n"
1718 printf " gdb_assert (gdbarch != NULL);\n"
1719 printf " if (gdbarch_debug >= 2)\n"
1720 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1721 printf " return gdbarch->${function};\n"
1722 printf "}\n"
1723 fi
1724 done
1725
1726 # All the trailing guff
1727 cat <<EOF
1728
1729
1730 /* Keep a registry of per-architecture data-pointers required by GDB
1731 modules. */
1732
1733 struct gdbarch_data
1734 {
1735 unsigned index;
1736 int init_p;
1737 gdbarch_data_pre_init_ftype *pre_init;
1738 gdbarch_data_post_init_ftype *post_init;
1739 };
1740
1741 struct gdbarch_data_registration
1742 {
1743 struct gdbarch_data *data;
1744 struct gdbarch_data_registration *next;
1745 };
1746
1747 struct gdbarch_data_registry
1748 {
1749 unsigned nr;
1750 struct gdbarch_data_registration *registrations;
1751 };
1752
1753 struct gdbarch_data_registry gdbarch_data_registry =
1754 {
1755 0, NULL,
1756 };
1757
1758 static struct gdbarch_data *
1759 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1760 gdbarch_data_post_init_ftype *post_init)
1761 {
1762 struct gdbarch_data_registration **curr;
1763 /* Append the new registraration. */
1764 for (curr = &gdbarch_data_registry.registrations;
1765 (*curr) != NULL;
1766 curr = &(*curr)->next);
1767 (*curr) = XMALLOC (struct gdbarch_data_registration);
1768 (*curr)->next = NULL;
1769 (*curr)->data = XMALLOC (struct gdbarch_data);
1770 (*curr)->data->index = gdbarch_data_registry.nr++;
1771 (*curr)->data->pre_init = pre_init;
1772 (*curr)->data->post_init = post_init;
1773 (*curr)->data->init_p = 1;
1774 return (*curr)->data;
1775 }
1776
1777 struct gdbarch_data *
1778 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1779 {
1780 return gdbarch_data_register (pre_init, NULL);
1781 }
1782
1783 struct gdbarch_data *
1784 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1785 {
1786 return gdbarch_data_register (NULL, post_init);
1787 }
1788
1789 /* Create/delete the gdbarch data vector. */
1790
1791 static void
1792 alloc_gdbarch_data (struct gdbarch *gdbarch)
1793 {
1794 gdb_assert (gdbarch->data == NULL);
1795 gdbarch->nr_data = gdbarch_data_registry.nr;
1796 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1797 }
1798
1799 /* Initialize the current value of the specified per-architecture
1800 data-pointer. */
1801
1802 void
1803 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1804 struct gdbarch_data *data,
1805 void *pointer)
1806 {
1807 gdb_assert (data->index < gdbarch->nr_data);
1808 gdb_assert (gdbarch->data[data->index] == NULL);
1809 gdb_assert (data->pre_init == NULL);
1810 gdbarch->data[data->index] = pointer;
1811 }
1812
1813 /* Return the current value of the specified per-architecture
1814 data-pointer. */
1815
1816 void *
1817 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1818 {
1819 gdb_assert (data->index < gdbarch->nr_data);
1820 if (gdbarch->data[data->index] == NULL)
1821 {
1822 /* The data-pointer isn't initialized, call init() to get a
1823 value. */
1824 if (data->pre_init != NULL)
1825 /* Mid architecture creation: pass just the obstack, and not
1826 the entire architecture, as that way it isn't possible for
1827 pre-init code to refer to undefined architecture
1828 fields. */
1829 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1830 else if (gdbarch->initialized_p
1831 && data->post_init != NULL)
1832 /* Post architecture creation: pass the entire architecture
1833 (as all fields are valid), but be careful to also detect
1834 recursive references. */
1835 {
1836 gdb_assert (data->init_p);
1837 data->init_p = 0;
1838 gdbarch->data[data->index] = data->post_init (gdbarch);
1839 data->init_p = 1;
1840 }
1841 else
1842 /* The architecture initialization hasn't completed - punt -
1843 hope that the caller knows what they are doing. Once
1844 deprecated_set_gdbarch_data has been initialized, this can be
1845 changed to an internal error. */
1846 return NULL;
1847 gdb_assert (gdbarch->data[data->index] != NULL);
1848 }
1849 return gdbarch->data[data->index];
1850 }
1851
1852
1853
1854 /* Keep a registry of swapped data required by GDB modules. */
1855
1856 struct gdbarch_swap
1857 {
1858 void *swap;
1859 struct gdbarch_swap_registration *source;
1860 struct gdbarch_swap *next;
1861 };
1862
1863 struct gdbarch_swap_registration
1864 {
1865 void *data;
1866 unsigned long sizeof_data;
1867 gdbarch_swap_ftype *init;
1868 struct gdbarch_swap_registration *next;
1869 };
1870
1871 struct gdbarch_swap_registry
1872 {
1873 int nr;
1874 struct gdbarch_swap_registration *registrations;
1875 };
1876
1877 struct gdbarch_swap_registry gdbarch_swap_registry =
1878 {
1879 0, NULL,
1880 };
1881
1882 void
1883 deprecated_register_gdbarch_swap (void *data,
1884 unsigned long sizeof_data,
1885 gdbarch_swap_ftype *init)
1886 {
1887 struct gdbarch_swap_registration **rego;
1888 for (rego = &gdbarch_swap_registry.registrations;
1889 (*rego) != NULL;
1890 rego = &(*rego)->next);
1891 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1892 (*rego)->next = NULL;
1893 (*rego)->init = init;
1894 (*rego)->data = data;
1895 (*rego)->sizeof_data = sizeof_data;
1896 }
1897
1898 static void
1899 current_gdbarch_swap_init_hack (void)
1900 {
1901 struct gdbarch_swap_registration *rego;
1902 struct gdbarch_swap **curr = &current_gdbarch->swap;
1903 for (rego = gdbarch_swap_registry.registrations;
1904 rego != NULL;
1905 rego = rego->next)
1906 {
1907 if (rego->data != NULL)
1908 {
1909 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1910 struct gdbarch_swap);
1911 (*curr)->source = rego;
1912 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1913 rego->sizeof_data);
1914 (*curr)->next = NULL;
1915 curr = &(*curr)->next;
1916 }
1917 if (rego->init != NULL)
1918 rego->init ();
1919 }
1920 }
1921
1922 static struct gdbarch *
1923 current_gdbarch_swap_out_hack (void)
1924 {
1925 struct gdbarch *old_gdbarch = current_gdbarch;
1926 struct gdbarch_swap *curr;
1927
1928 gdb_assert (old_gdbarch != NULL);
1929 for (curr = old_gdbarch->swap;
1930 curr != NULL;
1931 curr = curr->next)
1932 {
1933 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1934 memset (curr->source->data, 0, curr->source->sizeof_data);
1935 }
1936 current_gdbarch = NULL;
1937 return old_gdbarch;
1938 }
1939
1940 static void
1941 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1942 {
1943 struct gdbarch_swap *curr;
1944
1945 gdb_assert (current_gdbarch == NULL);
1946 for (curr = new_gdbarch->swap;
1947 curr != NULL;
1948 curr = curr->next)
1949 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1950 current_gdbarch = new_gdbarch;
1951 }
1952
1953
1954 /* Keep a registry of the architectures known by GDB. */
1955
1956 struct gdbarch_registration
1957 {
1958 enum bfd_architecture bfd_architecture;
1959 gdbarch_init_ftype *init;
1960 gdbarch_dump_tdep_ftype *dump_tdep;
1961 struct gdbarch_list *arches;
1962 struct gdbarch_registration *next;
1963 };
1964
1965 static struct gdbarch_registration *gdbarch_registry = NULL;
1966
1967 static void
1968 append_name (const char ***buf, int *nr, const char *name)
1969 {
1970 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1971 (*buf)[*nr] = name;
1972 *nr += 1;
1973 }
1974
1975 const char **
1976 gdbarch_printable_names (void)
1977 {
1978 /* Accumulate a list of names based on the registed list of
1979 architectures. */
1980 enum bfd_architecture a;
1981 int nr_arches = 0;
1982 const char **arches = NULL;
1983 struct gdbarch_registration *rego;
1984 for (rego = gdbarch_registry;
1985 rego != NULL;
1986 rego = rego->next)
1987 {
1988 const struct bfd_arch_info *ap;
1989 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1990 if (ap == NULL)
1991 internal_error (__FILE__, __LINE__,
1992 _("gdbarch_architecture_names: multi-arch unknown"));
1993 do
1994 {
1995 append_name (&arches, &nr_arches, ap->printable_name);
1996 ap = ap->next;
1997 }
1998 while (ap != NULL);
1999 }
2000 append_name (&arches, &nr_arches, NULL);
2001 return arches;
2002 }
2003
2004
2005 void
2006 gdbarch_register (enum bfd_architecture bfd_architecture,
2007 gdbarch_init_ftype *init,
2008 gdbarch_dump_tdep_ftype *dump_tdep)
2009 {
2010 struct gdbarch_registration **curr;
2011 const struct bfd_arch_info *bfd_arch_info;
2012 /* Check that BFD recognizes this architecture */
2013 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2014 if (bfd_arch_info == NULL)
2015 {
2016 internal_error (__FILE__, __LINE__,
2017 _("gdbarch: Attempt to register unknown architecture (%d)"),
2018 bfd_architecture);
2019 }
2020 /* Check that we haven't seen this architecture before */
2021 for (curr = &gdbarch_registry;
2022 (*curr) != NULL;
2023 curr = &(*curr)->next)
2024 {
2025 if (bfd_architecture == (*curr)->bfd_architecture)
2026 internal_error (__FILE__, __LINE__,
2027 _("gdbarch: Duplicate registraration of architecture (%s)"),
2028 bfd_arch_info->printable_name);
2029 }
2030 /* log it */
2031 if (gdbarch_debug)
2032 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2033 bfd_arch_info->printable_name,
2034 (long) init);
2035 /* Append it */
2036 (*curr) = XMALLOC (struct gdbarch_registration);
2037 (*curr)->bfd_architecture = bfd_architecture;
2038 (*curr)->init = init;
2039 (*curr)->dump_tdep = dump_tdep;
2040 (*curr)->arches = NULL;
2041 (*curr)->next = NULL;
2042 }
2043
2044 void
2045 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2046 gdbarch_init_ftype *init)
2047 {
2048 gdbarch_register (bfd_architecture, init, NULL);
2049 }
2050
2051
2052 /* Look for an architecture using gdbarch_info. */
2053
2054 struct gdbarch_list *
2055 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2056 const struct gdbarch_info *info)
2057 {
2058 for (; arches != NULL; arches = arches->next)
2059 {
2060 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2061 continue;
2062 if (info->byte_order != arches->gdbarch->byte_order)
2063 continue;
2064 if (info->osabi != arches->gdbarch->osabi)
2065 continue;
2066 if (info->target_desc != arches->gdbarch->target_desc)
2067 continue;
2068 return arches;
2069 }
2070 return NULL;
2071 }
2072
2073
2074 /* Find an architecture that matches the specified INFO. Create a new
2075 architecture if needed. Return that new architecture. Assumes
2076 that there is no current architecture. */
2077
2078 static struct gdbarch *
2079 find_arch_by_info (struct gdbarch_info info)
2080 {
2081 struct gdbarch *new_gdbarch;
2082 struct gdbarch_registration *rego;
2083
2084 /* The existing architecture has been swapped out - all this code
2085 works from a clean slate. */
2086 gdb_assert (current_gdbarch == NULL);
2087
2088 /* Fill in missing parts of the INFO struct using a number of
2089 sources: "set ..."; INFOabfd supplied; and the global
2090 defaults. */
2091 gdbarch_info_fill (&info);
2092
2093 /* Must have found some sort of architecture. */
2094 gdb_assert (info.bfd_arch_info != NULL);
2095
2096 if (gdbarch_debug)
2097 {
2098 fprintf_unfiltered (gdb_stdlog,
2099 "find_arch_by_info: info.bfd_arch_info %s\n",
2100 (info.bfd_arch_info != NULL
2101 ? info.bfd_arch_info->printable_name
2102 : "(null)"));
2103 fprintf_unfiltered (gdb_stdlog,
2104 "find_arch_by_info: info.byte_order %d (%s)\n",
2105 info.byte_order,
2106 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2107 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2108 : "default"));
2109 fprintf_unfiltered (gdb_stdlog,
2110 "find_arch_by_info: info.osabi %d (%s)\n",
2111 info.osabi, gdbarch_osabi_name (info.osabi));
2112 fprintf_unfiltered (gdb_stdlog,
2113 "find_arch_by_info: info.abfd 0x%lx\n",
2114 (long) info.abfd);
2115 fprintf_unfiltered (gdb_stdlog,
2116 "find_arch_by_info: info.tdep_info 0x%lx\n",
2117 (long) info.tdep_info);
2118 }
2119
2120 /* Find the tdep code that knows about this architecture. */
2121 for (rego = gdbarch_registry;
2122 rego != NULL;
2123 rego = rego->next)
2124 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2125 break;
2126 if (rego == NULL)
2127 {
2128 if (gdbarch_debug)
2129 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2130 "No matching architecture\n");
2131 return 0;
2132 }
2133
2134 /* Ask the tdep code for an architecture that matches "info". */
2135 new_gdbarch = rego->init (info, rego->arches);
2136
2137 /* Did the tdep code like it? No. Reject the change and revert to
2138 the old architecture. */
2139 if (new_gdbarch == NULL)
2140 {
2141 if (gdbarch_debug)
2142 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2143 "Target rejected architecture\n");
2144 return NULL;
2145 }
2146
2147 /* Is this a pre-existing architecture (as determined by already
2148 being initialized)? Move it to the front of the architecture
2149 list (keeping the list sorted Most Recently Used). */
2150 if (new_gdbarch->initialized_p)
2151 {
2152 struct gdbarch_list **list;
2153 struct gdbarch_list *this;
2154 if (gdbarch_debug)
2155 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2156 "Previous architecture 0x%08lx (%s) selected\n",
2157 (long) new_gdbarch,
2158 new_gdbarch->bfd_arch_info->printable_name);
2159 /* Find the existing arch in the list. */
2160 for (list = &rego->arches;
2161 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2162 list = &(*list)->next);
2163 /* It had better be in the list of architectures. */
2164 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2165 /* Unlink THIS. */
2166 this = (*list);
2167 (*list) = this->next;
2168 /* Insert THIS at the front. */
2169 this->next = rego->arches;
2170 rego->arches = this;
2171 /* Return it. */
2172 return new_gdbarch;
2173 }
2174
2175 /* It's a new architecture. */
2176 if (gdbarch_debug)
2177 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2178 "New architecture 0x%08lx (%s) selected\n",
2179 (long) new_gdbarch,
2180 new_gdbarch->bfd_arch_info->printable_name);
2181
2182 /* Insert the new architecture into the front of the architecture
2183 list (keep the list sorted Most Recently Used). */
2184 {
2185 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2186 this->next = rego->arches;
2187 this->gdbarch = new_gdbarch;
2188 rego->arches = this;
2189 }
2190
2191 /* Check that the newly installed architecture is valid. Plug in
2192 any post init values. */
2193 new_gdbarch->dump_tdep = rego->dump_tdep;
2194 verify_gdbarch (new_gdbarch);
2195 new_gdbarch->initialized_p = 1;
2196
2197 /* Initialize any per-architecture swap areas. This phase requires
2198 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2199 swap the entire architecture out. */
2200 current_gdbarch = new_gdbarch;
2201 current_gdbarch_swap_init_hack ();
2202 current_gdbarch_swap_out_hack ();
2203
2204 if (gdbarch_debug)
2205 gdbarch_dump (new_gdbarch, gdb_stdlog);
2206
2207 return new_gdbarch;
2208 }
2209
2210 struct gdbarch *
2211 gdbarch_find_by_info (struct gdbarch_info info)
2212 {
2213 /* Save the previously selected architecture, setting the global to
2214 NULL. This stops things like gdbarch->init() trying to use the
2215 previous architecture's configuration. The previous architecture
2216 may not even be of the same architecture family. The most recent
2217 architecture of the same family is found at the head of the
2218 rego->arches list. */
2219 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2220
2221 /* Find the specified architecture. */
2222 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2223
2224 /* Restore the existing architecture. */
2225 gdb_assert (current_gdbarch == NULL);
2226 current_gdbarch_swap_in_hack (old_gdbarch);
2227
2228 return new_gdbarch;
2229 }
2230
2231 /* Make the specified architecture current, swapping the existing one
2232 out. */
2233
2234 void
2235 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2236 {
2237 gdb_assert (new_gdbarch != NULL);
2238 gdb_assert (current_gdbarch != NULL);
2239 gdb_assert (new_gdbarch->initialized_p);
2240 current_gdbarch_swap_out_hack ();
2241 current_gdbarch_swap_in_hack (new_gdbarch);
2242 architecture_changed_event ();
2243 reinit_frame_cache ();
2244 }
2245
2246 extern void _initialize_gdbarch (void);
2247
2248 void
2249 _initialize_gdbarch (void)
2250 {
2251 struct cmd_list_element *c;
2252
2253 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2254 Set architecture debugging."), _("\\
2255 Show architecture debugging."), _("\\
2256 When non-zero, architecture debugging is enabled."),
2257 NULL,
2258 show_gdbarch_debug,
2259 &setdebuglist, &showdebuglist);
2260 }
2261 EOF
2262
2263 # close things off
2264 exec 1>&2
2265 #../move-if-change new-gdbarch.c gdbarch.c
2266 compare_new gdbarch.c
This page took 0.105022 seconds and 3 git commands to generate.