e297b1c56a09b4fb63874f34a4ad818ec010b629
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some targets/architectures can do extra processing/display of
418 # segmentation faults. E.g., Intel MPX boundary faults.
419 # Call the architecture dependent function to handle the fault.
420 # UIOUT is the output stream where the handler will place information.
421 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
422
423 # GDB's standard (or well known) register numbers. These can map onto
424 # a real register or a pseudo (computed) register or not be defined at
425 # all (-1).
426 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
427 v;int;sp_regnum;;;-1;-1;;0
428 v;int;pc_regnum;;;-1;-1;;0
429 v;int;ps_regnum;;;-1;-1;;0
430 v;int;fp0_regnum;;;0;-1;;0
431 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
432 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
433 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
434 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
435 # Convert from an sdb register number to an internal gdb register number.
436 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
437 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
438 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
439 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440 m;const char *;register_name;int regnr;regnr;;0
441
442 # Return the type of a register specified by the architecture. Only
443 # the register cache should call this function directly; others should
444 # use "register_type".
445 M;struct type *;register_type;int reg_nr;reg_nr
446
447 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448 # a dummy frame. A dummy frame is created before an inferior call,
449 # the frame_id returned here must match the frame_id that was built
450 # for the inferior call. Usually this means the returned frame_id's
451 # stack address should match the address returned by
452 # gdbarch_push_dummy_call, and the returned frame_id's code address
453 # should match the address at which the breakpoint was set in the dummy
454 # frame.
455 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
456 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
457 # deprecated_fp_regnum.
458 v;int;deprecated_fp_regnum;;;-1;-1;;0
459
460 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
461 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
463
464 # Return true if the code of FRAME is writable.
465 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
466
467 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
470 # MAP a GDB RAW register number onto a simulator register number. See
471 # also include/...-sim.h.
472 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
475
476 # Determine the address where a longjmp will land and save this address
477 # in PC. Return nonzero on success.
478 #
479 # FRAME corresponds to the longjmp frame.
480 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
481
482 #
483 v;int;believe_pcc_promotion;;;;;;;
484 #
485 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
488 # Construct a value representing the contents of register REGNUM in
489 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
490 # allocate and return a struct value with all value attributes
491 # (but not the value contents) filled in.
492 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
493 #
494 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
497
498 # Return the return-value convention that will be used by FUNCTION
499 # to return a value of type VALTYPE. FUNCTION may be NULL in which
500 # case the return convention is computed based only on VALTYPE.
501 #
502 # If READBUF is not NULL, extract the return value and save it in this buffer.
503 #
504 # If WRITEBUF is not NULL, it contains a return value which will be
505 # stored into the appropriate register. This can be used when we want
506 # to force the value returned by a function (see the "return" command
507 # for instance).
508 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
509
510 # Return true if the return value of function is stored in the first hidden
511 # parameter. In theory, this feature should be language-dependent, specified
512 # by language and its ABI, such as C++. Unfortunately, compiler may
513 # implement it to a target-dependent feature. So that we need such hook here
514 # to be aware of this in GDB.
515 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
516
517 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
519 # On some platforms, a single function may provide multiple entry points,
520 # e.g. one that is used for function-pointer calls and a different one
521 # that is used for direct function calls.
522 # In order to ensure that breakpoints set on the function will trigger
523 # no matter via which entry point the function is entered, a platform
524 # may provide the skip_entrypoint callback. It is called with IP set
525 # to the main entry point of a function (as determined by the symbol table),
526 # and should return the address of the innermost entry point, where the
527 # actual breakpoint needs to be set. Note that skip_entrypoint is used
528 # by GDB common code even when debugging optimized code, where skip_prologue
529 # is not used.
530 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
531
532 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
534
535 # Return the breakpoint kind for this target based on *PCPTR.
536 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
537
538 # Return the software breakpoint from KIND. KIND can have target
539 # specific meaning like the Z0 kind parameter.
540 # SIZE is set to the software breakpoint's length in memory.
541 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
542
543 # Return the breakpoint kind for this target based on the current
544 # processor state (e.g. the current instruction mode on ARM) and the
545 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
546 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
547
548 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
552
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. gdbarch_deprecated_function_start_offset is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
560
561 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
562
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
566
567 # Fetch the target specific address used to represent a load module.
568 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
569
570 # Return the thread-local address at OFFSET in the thread-local
571 # storage for the thread PTID and the shared library or executable
572 # file given by LM_ADDR. If that block of thread-local storage hasn't
573 # been allocated yet, this function may throw an error. LM_ADDR may
574 # be zero for statically linked multithreaded inferiors.
575
576 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
577 #
578 v;CORE_ADDR;frame_args_skip;;;0;;;0
579 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
581 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582 # frame-base. Enable frame-base before frame-unwind.
583 F;int;frame_num_args;struct frame_info *frame;frame
584 #
585 M;CORE_ADDR;frame_align;CORE_ADDR address;address
586 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587 v;int;frame_red_zone_size
588 #
589 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
600
601 # On some machines, not all bits of an address word are significant.
602 # For example, on AArch64, the top bits of an address known as the "tag"
603 # are ignored by the kernel, the hardware, etc. and can be regarded as
604 # additional data associated with the address.
605 v;int;significant_addr_bit;;;;;;0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # Return a vector of addresses on which the software single step
615 # breakpoints should be inserted. NULL means software single step is
616 # not used.
617 # Multiple breakpoints may be inserted for some instructions such as
618 # conditional branch. However, each implementation must always evaluate
619 # the condition and only put the breakpoint at the branch destination if
620 # the condition is true, so that we ensure forward progress when stepping
621 # past a conditional branch to self.
622 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
623
624 # Return non-zero if the processor is executing a delay slot and a
625 # further single-step is needed before the instruction finishes.
626 M;int;single_step_through_delay;struct frame_info *frame;frame
627 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
628 # disassembler. Perhaps objdump can handle it?
629 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
630 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
631
632
633 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
634 # evaluates non-zero, this is the address where the debugger will place
635 # a step-resume breakpoint to get us past the dynamic linker.
636 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
637 # Some systems also have trampoline code for returning from shared libs.
638 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
639
640 # Return true if PC lies inside an indirect branch thunk.
641 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
643 # A target might have problems with watchpoints as soon as the stack
644 # frame of the current function has been destroyed. This mostly happens
645 # as the first action in a function's epilogue. stack_frame_destroyed_p()
646 # is defined to return a non-zero value if either the given addr is one
647 # instruction after the stack destroying instruction up to the trailing
648 # return instruction or if we can figure out that the stack frame has
649 # already been invalidated regardless of the value of addr. Targets
650 # which don't suffer from that problem could just let this functionality
651 # untouched.
652 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
653 # Process an ELF symbol in the minimal symbol table in a backend-specific
654 # way. Normally this hook is supposed to do nothing, however if required,
655 # then this hook can be used to apply tranformations to symbols that are
656 # considered special in some way. For example the MIPS backend uses it
657 # to interpret \`st_other' information to mark compressed code symbols so
658 # that they can be treated in the appropriate manner in the processing of
659 # the main symbol table and DWARF-2 records.
660 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
662 # Process a symbol in the main symbol table in a backend-specific way.
663 # Normally this hook is supposed to do nothing, however if required,
664 # then this hook can be used to apply tranformations to symbols that
665 # are considered special in some way. This is currently used by the
666 # MIPS backend to make sure compressed code symbols have the ISA bit
667 # set. This in turn is needed for symbol values seen in GDB to match
668 # the values used at the runtime by the program itself, for function
669 # and label references.
670 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
671 # Adjust the address retrieved from a DWARF-2 record other than a line
672 # entry in a backend-specific way. Normally this hook is supposed to
673 # return the address passed unchanged, however if that is incorrect for
674 # any reason, then this hook can be used to fix the address up in the
675 # required manner. This is currently used by the MIPS backend to make
676 # sure addresses in FDE, range records, etc. referring to compressed
677 # code have the ISA bit set, matching line information and the symbol
678 # table.
679 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
680 # Adjust the address updated by a line entry in a backend-specific way.
681 # Normally this hook is supposed to return the address passed unchanged,
682 # however in the case of inconsistencies in these records, this hook can
683 # be used to fix them up in the required manner. This is currently used
684 # by the MIPS backend to make sure all line addresses in compressed code
685 # are presented with the ISA bit set, which is not always the case. This
686 # in turn ensures breakpoint addresses are correctly matched against the
687 # stop PC.
688 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689 v;int;cannot_step_breakpoint;;;0;0;;0
690 # See comment in target.h about continuable, steppable and
691 # non-steppable watchpoints.
692 v;int;have_nonsteppable_watchpoint;;;0;0;;0
693 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
695 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696 # FS are passed from the generic execute_cfa_program function.
697 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
698
699 # Return the appropriate type_flags for the supplied address class.
700 # This function should return 1 if the address class was recognized and
701 # type_flags was set, zero otherwise.
702 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
703 # Is a register in a group
704 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
705 # Fetch the pointer to the ith function argument.
706 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
707
708 # Iterate over all supported register notes in a core file. For each
709 # supported register note section, the iterator must call CB and pass
710 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711 # the supported register note sections based on the current register
712 # values. Otherwise it should enumerate all supported register note
713 # sections.
714 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
715
716 # Create core file notes
717 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
718
719 # Find core file memory regions
720 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
721
722 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
723 # core file into buffer READBUF with length LEN. Return the number of bytes read
724 # (zero indicates failure).
725 # failed, otherwise, return the red length of READBUF.
726 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
727
728 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729 # libraries list from core file into buffer READBUF with length LEN.
730 # Return the number of bytes read (zero indicates failure).
731 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
732
733 # How the core target converts a PTID from a core file to a string.
734 M;std::string;core_pid_to_str;ptid_t ptid;ptid
735
736 # How the core target extracts the name of a thread from a core file.
737 M;const char *;core_thread_name;struct thread_info *thr;thr
738
739 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740 # from core file into buffer READBUF with length LEN. Return the number
741 # of bytes read (zero indicates EOF, a negative value indicates failure).
742 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
744 # BFD target to use when generating a core file.
745 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
746
747 # If the elements of C++ vtables are in-place function descriptors rather
748 # than normal function pointers (which may point to code or a descriptor),
749 # set this to one.
750 v;int;vtable_function_descriptors;;;0;0;;0
751
752 # Set if the least significant bit of the delta is used instead of the least
753 # significant bit of the pfn for pointers to virtual member functions.
754 v;int;vbit_in_delta;;;0;0;;0
755
756 # Advance PC to next instruction in order to skip a permanent breakpoint.
757 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
758
759 # The maximum length of an instruction on this architecture in bytes.
760 V;ULONGEST;max_insn_length;;;0;0
761
762 # Copy the instruction at FROM to TO, and make any adjustments
763 # necessary to single-step it at that address.
764 #
765 # REGS holds the state the thread's registers will have before
766 # executing the copied instruction; the PC in REGS will refer to FROM,
767 # not the copy at TO. The caller should update it to point at TO later.
768 #
769 # Return a pointer to data of the architecture's choice to be passed
770 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771 # the instruction's effects have been completely simulated, with the
772 # resulting state written back to REGS.
773 #
774 # For a general explanation of displaced stepping and how GDB uses it,
775 # see the comments in infrun.c.
776 #
777 # The TO area is only guaranteed to have space for
778 # gdbarch_max_insn_length (arch) bytes, so this function must not
779 # write more bytes than that to that area.
780 #
781 # If you do not provide this function, GDB assumes that the
782 # architecture does not support displaced stepping.
783 #
784 # If the instruction cannot execute out of line, return NULL. The
785 # core falls back to stepping past the instruction in-line instead in
786 # that case.
787 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
788
789 # Return true if GDB should use hardware single-stepping to execute
790 # the displaced instruction identified by CLOSURE. If false,
791 # GDB will simply restart execution at the displaced instruction
792 # location, and it is up to the target to ensure GDB will receive
793 # control again (e.g. by placing a software breakpoint instruction
794 # into the displaced instruction buffer).
795 #
796 # The default implementation returns false on all targets that
797 # provide a gdbarch_software_single_step routine, and true otherwise.
798 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
799
800 # Fix up the state resulting from successfully single-stepping a
801 # displaced instruction, to give the result we would have gotten from
802 # stepping the instruction in its original location.
803 #
804 # REGS is the register state resulting from single-stepping the
805 # displaced instruction.
806 #
807 # CLOSURE is the result from the matching call to
808 # gdbarch_displaced_step_copy_insn.
809 #
810 # If you provide gdbarch_displaced_step_copy_insn.but not this
811 # function, then GDB assumes that no fixup is needed after
812 # single-stepping the instruction.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
817
818 # Return the address of an appropriate place to put displaced
819 # instructions while we step over them. There need only be one such
820 # place, since we're only stepping one thread over a breakpoint at a
821 # time.
822 #
823 # For a general explanation of displaced stepping and how GDB uses it,
824 # see the comments in infrun.c.
825 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
826
827 # Relocate an instruction to execute at a different address. OLDLOC
828 # is the address in the inferior memory where the instruction to
829 # relocate is currently at. On input, TO points to the destination
830 # where we want the instruction to be copied (and possibly adjusted)
831 # to. On output, it points to one past the end of the resulting
832 # instruction(s). The effect of executing the instruction at TO shall
833 # be the same as if executing it at FROM. For example, call
834 # instructions that implicitly push the return address on the stack
835 # should be adjusted to return to the instruction after OLDLOC;
836 # relative branches, and other PC-relative instructions need the
837 # offset adjusted; etc.
838 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
839
840 # Refresh overlay mapped state for section OSECT.
841 F;void;overlay_update;struct obj_section *osect;osect
842
843 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
844
845 # Handle special encoding of static variables in stabs debug info.
846 F;const char *;static_transform_name;const char *name;name
847 # Set if the address in N_SO or N_FUN stabs may be zero.
848 v;int;sofun_address_maybe_missing;;;0;0;;0
849
850 # Parse the instruction at ADDR storing in the record execution log
851 # the registers REGCACHE and memory ranges that will be affected when
852 # the instruction executes, along with their current values.
853 # Return -1 if something goes wrong, 0 otherwise.
854 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
855
856 # Save process state after a signal.
857 # Return -1 if something goes wrong, 0 otherwise.
858 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
859
860 # Signal translation: translate inferior's signal (target's) number
861 # into GDB's representation. The implementation of this method must
862 # be host independent. IOW, don't rely on symbols of the NAT_FILE
863 # header (the nm-*.h files), the host <signal.h> header, or similar
864 # headers. This is mainly used when cross-debugging core files ---
865 # "Live" targets hide the translation behind the target interface
866 # (target_wait, target_resume, etc.).
867 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
868
869 # Signal translation: translate the GDB's internal signal number into
870 # the inferior's signal (target's) representation. The implementation
871 # of this method must be host independent. IOW, don't rely on symbols
872 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
873 # header, or similar headers.
874 # Return the target signal number if found, or -1 if the GDB internal
875 # signal number is invalid.
876 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
877
878 # Extra signal info inspection.
879 #
880 # Return a type suitable to inspect extra signal information.
881 M;struct type *;get_siginfo_type;void;
882
883 # Record architecture-specific information from the symbol table.
884 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
885
886 # Function for the 'catch syscall' feature.
887
888 # Get architecture-specific system calls information from registers.
889 M;LONGEST;get_syscall_number;thread_info *thread;thread
890
891 # The filename of the XML syscall for this architecture.
892 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
893
894 # Information about system calls from this architecture
895 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
896
897 # SystemTap related fields and functions.
898
899 # A NULL-terminated array of prefixes used to mark an integer constant
900 # on the architecture's assembly.
901 # For example, on x86 integer constants are written as:
902 #
903 # \$10 ;; integer constant 10
904 #
905 # in this case, this prefix would be the character \`\$\'.
906 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
907
908 # A NULL-terminated array of suffixes used to mark an integer constant
909 # on the architecture's assembly.
910 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
911
912 # A NULL-terminated array of prefixes used to mark a register name on
913 # the architecture's assembly.
914 # For example, on x86 the register name is written as:
915 #
916 # \%eax ;; register eax
917 #
918 # in this case, this prefix would be the character \`\%\'.
919 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
920
921 # A NULL-terminated array of suffixes used to mark a register name on
922 # the architecture's assembly.
923 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
924
925 # A NULL-terminated array of prefixes used to mark a register
926 # indirection on the architecture's assembly.
927 # For example, on x86 the register indirection is written as:
928 #
929 # \(\%eax\) ;; indirecting eax
930 #
931 # in this case, this prefix would be the charater \`\(\'.
932 #
933 # Please note that we use the indirection prefix also for register
934 # displacement, e.g., \`4\(\%eax\)\' on x86.
935 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
936
937 # A NULL-terminated array of suffixes used to mark a register
938 # indirection on the architecture's assembly.
939 # For example, on x86 the register indirection is written as:
940 #
941 # \(\%eax\) ;; indirecting eax
942 #
943 # in this case, this prefix would be the charater \`\)\'.
944 #
945 # Please note that we use the indirection suffix also for register
946 # displacement, e.g., \`4\(\%eax\)\' on x86.
947 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
948
949 # Prefix(es) used to name a register using GDB's nomenclature.
950 #
951 # For example, on PPC a register is represented by a number in the assembly
952 # language (e.g., \`10\' is the 10th general-purpose register). However,
953 # inside GDB this same register has an \`r\' appended to its name, so the 10th
954 # register would be represented as \`r10\' internally.
955 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
956
957 # Suffix used to name a register using GDB's nomenclature.
958 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
959
960 # Check if S is a single operand.
961 #
962 # Single operands can be:
963 # \- Literal integers, e.g. \`\$10\' on x86
964 # \- Register access, e.g. \`\%eax\' on x86
965 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
966 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
967 #
968 # This function should check for these patterns on the string
969 # and return 1 if some were found, or zero otherwise. Please try to match
970 # as much info as you can from the string, i.e., if you have to match
971 # something like \`\(\%\', do not match just the \`\(\'.
972 M;int;stap_is_single_operand;const char *s;s
973
974 # Function used to handle a "special case" in the parser.
975 #
976 # A "special case" is considered to be an unknown token, i.e., a token
977 # that the parser does not know how to parse. A good example of special
978 # case would be ARM's register displacement syntax:
979 #
980 # [R0, #4] ;; displacing R0 by 4
981 #
982 # Since the parser assumes that a register displacement is of the form:
983 #
984 # <number> <indirection_prefix> <register_name> <indirection_suffix>
985 #
986 # it means that it will not be able to recognize and parse this odd syntax.
987 # Therefore, we should add a special case function that will handle this token.
988 #
989 # This function should generate the proper expression form of the expression
990 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
991 # and so on). It should also return 1 if the parsing was successful, or zero
992 # if the token was not recognized as a special token (in this case, returning
993 # zero means that the special parser is deferring the parsing to the generic
994 # parser), and should advance the buffer pointer (p->arg).
995 M;int;stap_parse_special_token;struct stap_parse_info *p;p
996
997 # Perform arch-dependent adjustments to a register name.
998 #
999 # In very specific situations, it may be necessary for the register
1000 # name present in a SystemTap probe's argument to be handled in a
1001 # special way. For example, on i386, GCC may over-optimize the
1002 # register allocation and use smaller registers than necessary. In
1003 # such cases, the client that is reading and evaluating the SystemTap
1004 # probe (ourselves) will need to actually fetch values from the wider
1005 # version of the register in question.
1006 #
1007 # To illustrate the example, consider the following probe argument
1008 # (i386):
1009 #
1010 # 4@%ax
1011 #
1012 # This argument says that its value can be found at the %ax register,
1013 # which is a 16-bit register. However, the argument's prefix says
1014 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1015 # this case, GDB should actually fetch the probe's value from register
1016 # %eax, not %ax. In this scenario, this function would actually
1017 # replace the register name from %ax to %eax.
1018 #
1019 # The rationale for this can be found at PR breakpoints/24541.
1020 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1021
1022 # DTrace related functions.
1023
1024 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025 # NARG must be >= 0.
1026 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1027
1028 # True if the given ADDR does not contain the instruction sequence
1029 # corresponding to a disabled DTrace is-enabled probe.
1030 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1031
1032 # Enable a DTrace is-enabled probe at ADDR.
1033 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1034
1035 # Disable a DTrace is-enabled probe at ADDR.
1036 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1037
1038 # True if the list of shared libraries is one and only for all
1039 # processes, as opposed to a list of shared libraries per inferior.
1040 # This usually means that all processes, although may or may not share
1041 # an address space, will see the same set of symbols at the same
1042 # addresses.
1043 v;int;has_global_solist;;;0;0;;0
1044
1045 # On some targets, even though each inferior has its own private
1046 # address space, the debug interface takes care of making breakpoints
1047 # visible to all address spaces automatically. For such cases,
1048 # this property should be set to true.
1049 v;int;has_global_breakpoints;;;0;0;;0
1050
1051 # True if inferiors share an address space (e.g., uClinux).
1052 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1053
1054 # True if a fast tracepoint can be set at an address.
1055 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1056
1057 # Guess register state based on tracepoint location. Used for tracepoints
1058 # where no registers have been collected, but there's only one location,
1059 # allowing us to guess the PC value, and perhaps some other registers.
1060 # On entry, regcache has all registers marked as unavailable.
1061 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1062
1063 # Return the "auto" target charset.
1064 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1065 # Return the "auto" target wide charset.
1066 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1067
1068 # If non-empty, this is a file extension that will be opened in place
1069 # of the file extension reported by the shared library list.
1070 #
1071 # This is most useful for toolchains that use a post-linker tool,
1072 # where the names of the files run on the target differ in extension
1073 # compared to the names of the files GDB should load for debug info.
1074 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1075
1076 # If true, the target OS has DOS-based file system semantics. That
1077 # is, absolute paths include a drive name, and the backslash is
1078 # considered a directory separator.
1079 v;int;has_dos_based_file_system;;;0;0;;0
1080
1081 # Generate bytecodes to collect the return address in a frame.
1082 # Since the bytecodes run on the target, possibly with GDB not even
1083 # connected, the full unwinding machinery is not available, and
1084 # typically this function will issue bytecodes for one or more likely
1085 # places that the return address may be found.
1086 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1087
1088 # Implement the "info proc" command.
1089 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1090
1091 # Implement the "info proc" command for core files. Noe that there
1092 # are two "info_proc"-like methods on gdbarch -- one for core files,
1093 # one for live targets.
1094 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1095
1096 # Iterate over all objfiles in the order that makes the most sense
1097 # for the architecture to make global symbol searches.
1098 #
1099 # CB is a callback function where OBJFILE is the objfile to be searched,
1100 # and CB_DATA a pointer to user-defined data (the same data that is passed
1101 # when calling this gdbarch method). The iteration stops if this function
1102 # returns nonzero.
1103 #
1104 # CB_DATA is a pointer to some user-defined data to be passed to
1105 # the callback.
1106 #
1107 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108 # inspected when the symbol search was requested.
1109 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1110
1111 # Ravenscar arch-dependent ops.
1112 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1113
1114 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1115 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1116
1117 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1118 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1119
1120 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1121 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1122
1123 # Return true if there's a program/permanent breakpoint planted in
1124 # memory at ADDRESS, return false otherwise.
1125 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1126
1127 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1128 # Return 0 if *READPTR is already at the end of the buffer.
1129 # Return -1 if there is insufficient buffer for a whole entry.
1130 # Return 1 if an entry was read into *TYPEP and *VALP.
1131 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1132
1133 # Print the description of a single auxv entry described by TYPE and VAL
1134 # to FILE.
1135 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1136
1137 # Find the address range of the current inferior's vsyscall/vDSO, and
1138 # write it to *RANGE. If the vsyscall's length can't be determined, a
1139 # range with zero length is returned. Returns true if the vsyscall is
1140 # found, false otherwise.
1141 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1142
1143 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1144 # PROT has GDB_MMAP_PROT_* bitmask format.
1145 # Throw an error if it is not possible. Returned address is always valid.
1146 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1147
1148 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1149 # Print a warning if it is not possible.
1150 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1151
1152 # Return string (caller has to use xfree for it) with options for GCC
1153 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1154 # These options are put before CU's DW_AT_producer compilation options so that
1155 # they can override it.
1156 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1157
1158 # Return a regular expression that matches names used by this
1159 # architecture in GNU configury triplets. The result is statically
1160 # allocated and must not be freed. The default implementation simply
1161 # returns the BFD architecture name, which is correct in nearly every
1162 # case.
1163 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1164
1165 # Return the size in 8-bit bytes of an addressable memory unit on this
1166 # architecture. This corresponds to the number of 8-bit bytes associated to
1167 # each address in memory.
1168 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1169
1170 # Functions for allowing a target to modify its disassembler options.
1171 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1172 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1173 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1174
1175 # Type alignment override method. Return the architecture specific
1176 # alignment required for TYPE. If there is no special handling
1177 # required for TYPE then return the value 0, GDB will then apply the
1178 # default rules as laid out in gdbtypes.c:type_align.
1179 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1180
1181 # Return a string containing any flags for the given PC in the given FRAME.
1182 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1183
1184 EOF
1185 }
1186
1187 #
1188 # The .log file
1189 #
1190 exec > gdbarch.log
1191 function_list | while do_read
1192 do
1193 cat <<EOF
1194 ${class} ${returntype:-} ${function} (${formal:-})
1195 EOF
1196 for r in ${read}
1197 do
1198 eval echo "\" ${r}=\${${r}}\""
1199 done
1200 if class_is_predicate_p && fallback_default_p
1201 then
1202 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1203 kill $$
1204 exit 1
1205 fi
1206 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1207 then
1208 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1209 kill $$
1210 exit 1
1211 fi
1212 if class_is_multiarch_p
1213 then
1214 if class_is_predicate_p ; then :
1215 elif test "x${predefault}" = "x"
1216 then
1217 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1218 kill $$
1219 exit 1
1220 fi
1221 fi
1222 echo ""
1223 done
1224
1225 exec 1>&2
1226
1227
1228 copyright ()
1229 {
1230 cat <<EOF
1231 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1232 /* vi:set ro: */
1233
1234 /* Dynamic architecture support for GDB, the GNU debugger.
1235
1236 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1237
1238 This file is part of GDB.
1239
1240 This program is free software; you can redistribute it and/or modify
1241 it under the terms of the GNU General Public License as published by
1242 the Free Software Foundation; either version 3 of the License, or
1243 (at your option) any later version.
1244
1245 This program is distributed in the hope that it will be useful,
1246 but WITHOUT ANY WARRANTY; without even the implied warranty of
1247 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1248 GNU General Public License for more details.
1249
1250 You should have received a copy of the GNU General Public License
1251 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1252
1253 /* This file was created with the aid of \`\`gdbarch.sh''. */
1254
1255 EOF
1256 }
1257
1258 #
1259 # The .h file
1260 #
1261
1262 exec > new-gdbarch.h
1263 copyright
1264 cat <<EOF
1265 #ifndef GDBARCH_H
1266 #define GDBARCH_H
1267
1268 #include <vector>
1269 #include "frame.h"
1270 #include "dis-asm.h"
1271 #include "gdb_obstack.h"
1272 #include "infrun.h"
1273 #include "osabi.h"
1274
1275 struct floatformat;
1276 struct ui_file;
1277 struct value;
1278 struct objfile;
1279 struct obj_section;
1280 struct minimal_symbol;
1281 struct regcache;
1282 struct reggroup;
1283 struct regset;
1284 struct disassemble_info;
1285 struct target_ops;
1286 struct obstack;
1287 struct bp_target_info;
1288 struct target_desc;
1289 struct symbol;
1290 struct syscall;
1291 struct agent_expr;
1292 struct axs_value;
1293 struct stap_parse_info;
1294 struct expr_builder;
1295 struct ravenscar_arch_ops;
1296 struct mem_range;
1297 struct syscalls_info;
1298 struct thread_info;
1299 struct ui_out;
1300
1301 #include "regcache.h"
1302
1303 /* The architecture associated with the inferior through the
1304 connection to the target.
1305
1306 The architecture vector provides some information that is really a
1307 property of the inferior, accessed through a particular target:
1308 ptrace operations; the layout of certain RSP packets; the solib_ops
1309 vector; etc. To differentiate architecture accesses to
1310 per-inferior/target properties from
1311 per-thread/per-frame/per-objfile properties, accesses to
1312 per-inferior/target properties should be made through this
1313 gdbarch. */
1314
1315 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1316 extern struct gdbarch *target_gdbarch (void);
1317
1318 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1319 gdbarch method. */
1320
1321 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1322 (struct objfile *objfile, void *cb_data);
1323
1324 /* Callback type for regset section iterators. The callback usually
1325 invokes the REGSET's supply or collect method, to which it must
1326 pass a buffer - for collects this buffer will need to be created using
1327 COLLECT_SIZE, for supply the existing buffer being read from should
1328 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1329 is used for diagnostic messages. CB_DATA should have been passed
1330 unchanged through the iterator. */
1331
1332 typedef void (iterate_over_regset_sections_cb)
1333 (const char *sect_name, int supply_size, int collect_size,
1334 const struct regset *regset, const char *human_name, void *cb_data);
1335
1336 /* For a function call, does the function return a value using a
1337 normal value return or a structure return - passing a hidden
1338 argument pointing to storage. For the latter, there are two
1339 cases: language-mandated structure return and target ABI
1340 structure return. */
1341
1342 enum function_call_return_method
1343 {
1344 /* Standard value return. */
1345 return_method_normal = 0,
1346
1347 /* Language ABI structure return. This is handled
1348 by passing the return location as the first parameter to
1349 the function, even preceding "this". */
1350 return_method_hidden_param,
1351
1352 /* Target ABI struct return. This is target-specific; for instance,
1353 on ia64 the first argument is passed in out0 but the hidden
1354 structure return pointer would normally be passed in r8. */
1355 return_method_struct,
1356 };
1357
1358 EOF
1359
1360 # function typedef's
1361 printf "\n"
1362 printf "\n"
1363 printf "/* The following are pre-initialized by GDBARCH. */\n"
1364 function_list | while do_read
1365 do
1366 if class_is_info_p
1367 then
1368 printf "\n"
1369 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1370 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1371 fi
1372 done
1373
1374 # function typedef's
1375 printf "\n"
1376 printf "\n"
1377 printf "/* The following are initialized by the target dependent code. */\n"
1378 function_list | while do_read
1379 do
1380 if [ -n "${comment}" ]
1381 then
1382 echo "${comment}" | sed \
1383 -e '2 s,#,/*,' \
1384 -e '3,$ s,#, ,' \
1385 -e '$ s,$, */,'
1386 fi
1387
1388 if class_is_predicate_p
1389 then
1390 printf "\n"
1391 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1392 fi
1393 if class_is_variable_p
1394 then
1395 printf "\n"
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1398 fi
1399 if class_is_function_p
1400 then
1401 printf "\n"
1402 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1403 then
1404 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1405 elif class_is_multiarch_p
1406 then
1407 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1408 else
1409 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1410 fi
1411 if [ "x${formal}" = "xvoid" ]
1412 then
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1414 else
1415 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1416 fi
1417 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1418 fi
1419 done
1420
1421 # close it off
1422 cat <<EOF
1423
1424 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1425
1426
1427 /* Mechanism for co-ordinating the selection of a specific
1428 architecture.
1429
1430 GDB targets (*-tdep.c) can register an interest in a specific
1431 architecture. Other GDB components can register a need to maintain
1432 per-architecture data.
1433
1434 The mechanisms below ensures that there is only a loose connection
1435 between the set-architecture command and the various GDB
1436 components. Each component can independently register their need
1437 to maintain architecture specific data with gdbarch.
1438
1439 Pragmatics:
1440
1441 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1442 didn't scale.
1443
1444 The more traditional mega-struct containing architecture specific
1445 data for all the various GDB components was also considered. Since
1446 GDB is built from a variable number of (fairly independent)
1447 components it was determined that the global aproach was not
1448 applicable. */
1449
1450
1451 /* Register a new architectural family with GDB.
1452
1453 Register support for the specified ARCHITECTURE with GDB. When
1454 gdbarch determines that the specified architecture has been
1455 selected, the corresponding INIT function is called.
1456
1457 --
1458
1459 The INIT function takes two parameters: INFO which contains the
1460 information available to gdbarch about the (possibly new)
1461 architecture; ARCHES which is a list of the previously created
1462 \`\`struct gdbarch'' for this architecture.
1463
1464 The INFO parameter is, as far as possible, be pre-initialized with
1465 information obtained from INFO.ABFD or the global defaults.
1466
1467 The ARCHES parameter is a linked list (sorted most recently used)
1468 of all the previously created architures for this architecture
1469 family. The (possibly NULL) ARCHES->gdbarch can used to access
1470 values from the previously selected architecture for this
1471 architecture family.
1472
1473 The INIT function shall return any of: NULL - indicating that it
1474 doesn't recognize the selected architecture; an existing \`\`struct
1475 gdbarch'' from the ARCHES list - indicating that the new
1476 architecture is just a synonym for an earlier architecture (see
1477 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1478 - that describes the selected architecture (see gdbarch_alloc()).
1479
1480 The DUMP_TDEP function shall print out all target specific values.
1481 Care should be taken to ensure that the function works in both the
1482 multi-arch and non- multi-arch cases. */
1483
1484 struct gdbarch_list
1485 {
1486 struct gdbarch *gdbarch;
1487 struct gdbarch_list *next;
1488 };
1489
1490 struct gdbarch_info
1491 {
1492 /* Use default: NULL (ZERO). */
1493 const struct bfd_arch_info *bfd_arch_info;
1494
1495 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1496 enum bfd_endian byte_order;
1497
1498 enum bfd_endian byte_order_for_code;
1499
1500 /* Use default: NULL (ZERO). */
1501 bfd *abfd;
1502
1503 /* Use default: NULL (ZERO). */
1504 union
1505 {
1506 /* Architecture-specific information. The generic form for targets
1507 that have extra requirements. */
1508 struct gdbarch_tdep_info *tdep_info;
1509
1510 /* Architecture-specific target description data. Numerous targets
1511 need only this, so give them an easy way to hold it. */
1512 struct tdesc_arch_data *tdesc_data;
1513
1514 /* SPU file system ID. This is a single integer, so using the
1515 generic form would only complicate code. Other targets may
1516 reuse this member if suitable. */
1517 int *id;
1518 };
1519
1520 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1521 enum gdb_osabi osabi;
1522
1523 /* Use default: NULL (ZERO). */
1524 const struct target_desc *target_desc;
1525 };
1526
1527 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1528 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1529
1530 /* DEPRECATED - use gdbarch_register() */
1531 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1532
1533 extern void gdbarch_register (enum bfd_architecture architecture,
1534 gdbarch_init_ftype *,
1535 gdbarch_dump_tdep_ftype *);
1536
1537
1538 /* Return a freshly allocated, NULL terminated, array of the valid
1539 architecture names. Since architectures are registered during the
1540 _initialize phase this function only returns useful information
1541 once initialization has been completed. */
1542
1543 extern const char **gdbarch_printable_names (void);
1544
1545
1546 /* Helper function. Search the list of ARCHES for a GDBARCH that
1547 matches the information provided by INFO. */
1548
1549 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1550
1551
1552 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1553 basic initialization using values obtained from the INFO and TDEP
1554 parameters. set_gdbarch_*() functions are called to complete the
1555 initialization of the object. */
1556
1557 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1558
1559
1560 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1561 It is assumed that the caller freeds the \`\`struct
1562 gdbarch_tdep''. */
1563
1564 extern void gdbarch_free (struct gdbarch *);
1565
1566 /* Get the obstack owned by ARCH. */
1567
1568 extern obstack *gdbarch_obstack (gdbarch *arch);
1569
1570 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1571 obstack. The memory is freed when the corresponding architecture
1572 is also freed. */
1573
1574 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1575 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1576
1577 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1578 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1579
1580 /* Duplicate STRING, returning an equivalent string that's allocated on the
1581 obstack associated with GDBARCH. The string is freed when the corresponding
1582 architecture is also freed. */
1583
1584 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1585
1586 /* Helper function. Force an update of the current architecture.
1587
1588 The actual architecture selected is determined by INFO, \`\`(gdb) set
1589 architecture'' et.al., the existing architecture and BFD's default
1590 architecture. INFO should be initialized to zero and then selected
1591 fields should be updated.
1592
1593 Returns non-zero if the update succeeds. */
1594
1595 extern int gdbarch_update_p (struct gdbarch_info info);
1596
1597
1598 /* Helper function. Find an architecture matching info.
1599
1600 INFO should be initialized using gdbarch_info_init, relevant fields
1601 set, and then finished using gdbarch_info_fill.
1602
1603 Returns the corresponding architecture, or NULL if no matching
1604 architecture was found. */
1605
1606 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1607
1608
1609 /* Helper function. Set the target gdbarch to "gdbarch". */
1610
1611 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1612
1613
1614 /* Register per-architecture data-pointer.
1615
1616 Reserve space for a per-architecture data-pointer. An identifier
1617 for the reserved data-pointer is returned. That identifer should
1618 be saved in a local static variable.
1619
1620 Memory for the per-architecture data shall be allocated using
1621 gdbarch_obstack_zalloc. That memory will be deleted when the
1622 corresponding architecture object is deleted.
1623
1624 When a previously created architecture is re-selected, the
1625 per-architecture data-pointer for that previous architecture is
1626 restored. INIT() is not re-called.
1627
1628 Multiple registrarants for any architecture are allowed (and
1629 strongly encouraged). */
1630
1631 struct gdbarch_data;
1632
1633 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1634 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1635 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1636 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1637 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1638 struct gdbarch_data *data,
1639 void *pointer);
1640
1641 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1642
1643
1644 /* Set the dynamic target-system-dependent parameters (architecture,
1645 byte-order, ...) using information found in the BFD. */
1646
1647 extern void set_gdbarch_from_file (bfd *);
1648
1649
1650 /* Initialize the current architecture to the "first" one we find on
1651 our list. */
1652
1653 extern void initialize_current_architecture (void);
1654
1655 /* gdbarch trace variable */
1656 extern unsigned int gdbarch_debug;
1657
1658 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1659
1660 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1661
1662 static inline int
1663 gdbarch_num_cooked_regs (gdbarch *arch)
1664 {
1665 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1666 }
1667
1668 #endif
1669 EOF
1670 exec 1>&2
1671 ../move-if-change new-gdbarch.h gdbarch.h
1672 rm -f new-gdbarch.h
1673
1674
1675 #
1676 # C file
1677 #
1678
1679 exec > new-gdbarch.c
1680 copyright
1681 cat <<EOF
1682
1683 #include "defs.h"
1684 #include "arch-utils.h"
1685
1686 #include "gdbcmd.h"
1687 #include "inferior.h"
1688 #include "symcat.h"
1689
1690 #include "floatformat.h"
1691 #include "reggroups.h"
1692 #include "osabi.h"
1693 #include "gdb_obstack.h"
1694 #include "observable.h"
1695 #include "regcache.h"
1696 #include "objfiles.h"
1697 #include "auxv.h"
1698 #include "frame-unwind.h"
1699 #include "dummy-frame.h"
1700
1701 /* Static function declarations */
1702
1703 static void alloc_gdbarch_data (struct gdbarch *);
1704
1705 /* Non-zero if we want to trace architecture code. */
1706
1707 #ifndef GDBARCH_DEBUG
1708 #define GDBARCH_DEBUG 0
1709 #endif
1710 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1711 static void
1712 show_gdbarch_debug (struct ui_file *file, int from_tty,
1713 struct cmd_list_element *c, const char *value)
1714 {
1715 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1716 }
1717
1718 static const char *
1719 pformat (const struct floatformat **format)
1720 {
1721 if (format == NULL)
1722 return "(null)";
1723 else
1724 /* Just print out one of them - this is only for diagnostics. */
1725 return format[0]->name;
1726 }
1727
1728 static const char *
1729 pstring (const char *string)
1730 {
1731 if (string == NULL)
1732 return "(null)";
1733 return string;
1734 }
1735
1736 static const char *
1737 pstring_ptr (char **string)
1738 {
1739 if (string == NULL || *string == NULL)
1740 return "(null)";
1741 return *string;
1742 }
1743
1744 /* Helper function to print a list of strings, represented as "const
1745 char *const *". The list is printed comma-separated. */
1746
1747 static const char *
1748 pstring_list (const char *const *list)
1749 {
1750 static char ret[100];
1751 const char *const *p;
1752 size_t offset = 0;
1753
1754 if (list == NULL)
1755 return "(null)";
1756
1757 ret[0] = '\0';
1758 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1759 {
1760 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1761 offset += 2 + s;
1762 }
1763
1764 if (offset > 0)
1765 {
1766 gdb_assert (offset - 2 < sizeof (ret));
1767 ret[offset - 2] = '\0';
1768 }
1769
1770 return ret;
1771 }
1772
1773 EOF
1774
1775 # gdbarch open the gdbarch object
1776 printf "\n"
1777 printf "/* Maintain the struct gdbarch object. */\n"
1778 printf "\n"
1779 printf "struct gdbarch\n"
1780 printf "{\n"
1781 printf " /* Has this architecture been fully initialized? */\n"
1782 printf " int initialized_p;\n"
1783 printf "\n"
1784 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1785 printf " struct obstack *obstack;\n"
1786 printf "\n"
1787 printf " /* basic architectural information. */\n"
1788 function_list | while do_read
1789 do
1790 if class_is_info_p
1791 then
1792 printf " %s %s;\n" "$returntype" "$function"
1793 fi
1794 done
1795 printf "\n"
1796 printf " /* target specific vector. */\n"
1797 printf " struct gdbarch_tdep *tdep;\n"
1798 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1799 printf "\n"
1800 printf " /* per-architecture data-pointers. */\n"
1801 printf " unsigned nr_data;\n"
1802 printf " void **data;\n"
1803 printf "\n"
1804 cat <<EOF
1805 /* Multi-arch values.
1806
1807 When extending this structure you must:
1808
1809 Add the field below.
1810
1811 Declare set/get functions and define the corresponding
1812 macro in gdbarch.h.
1813
1814 gdbarch_alloc(): If zero/NULL is not a suitable default,
1815 initialize the new field.
1816
1817 verify_gdbarch(): Confirm that the target updated the field
1818 correctly.
1819
1820 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1821 field is dumped out
1822
1823 get_gdbarch(): Implement the set/get functions (probably using
1824 the macro's as shortcuts).
1825
1826 */
1827
1828 EOF
1829 function_list | while do_read
1830 do
1831 if class_is_variable_p
1832 then
1833 printf " %s %s;\n" "$returntype" "$function"
1834 elif class_is_function_p
1835 then
1836 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1837 fi
1838 done
1839 printf "};\n"
1840
1841 # Create a new gdbarch struct
1842 cat <<EOF
1843
1844 /* Create a new \`\`struct gdbarch'' based on information provided by
1845 \`\`struct gdbarch_info''. */
1846 EOF
1847 printf "\n"
1848 cat <<EOF
1849 struct gdbarch *
1850 gdbarch_alloc (const struct gdbarch_info *info,
1851 struct gdbarch_tdep *tdep)
1852 {
1853 struct gdbarch *gdbarch;
1854
1855 /* Create an obstack for allocating all the per-architecture memory,
1856 then use that to allocate the architecture vector. */
1857 struct obstack *obstack = XNEW (struct obstack);
1858 obstack_init (obstack);
1859 gdbarch = XOBNEW (obstack, struct gdbarch);
1860 memset (gdbarch, 0, sizeof (*gdbarch));
1861 gdbarch->obstack = obstack;
1862
1863 alloc_gdbarch_data (gdbarch);
1864
1865 gdbarch->tdep = tdep;
1866 EOF
1867 printf "\n"
1868 function_list | while do_read
1869 do
1870 if class_is_info_p
1871 then
1872 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1873 fi
1874 done
1875 printf "\n"
1876 printf " /* Force the explicit initialization of these. */\n"
1877 function_list | while do_read
1878 do
1879 if class_is_function_p || class_is_variable_p
1880 then
1881 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1882 then
1883 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1884 fi
1885 fi
1886 done
1887 cat <<EOF
1888 /* gdbarch_alloc() */
1889
1890 return gdbarch;
1891 }
1892 EOF
1893
1894 # Free a gdbarch struct.
1895 printf "\n"
1896 printf "\n"
1897 cat <<EOF
1898
1899 obstack *gdbarch_obstack (gdbarch *arch)
1900 {
1901 return arch->obstack;
1902 }
1903
1904 /* See gdbarch.h. */
1905
1906 char *
1907 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1908 {
1909 return obstack_strdup (arch->obstack, string);
1910 }
1911
1912
1913 /* Free a gdbarch struct. This should never happen in normal
1914 operation --- once you've created a gdbarch, you keep it around.
1915 However, if an architecture's init function encounters an error
1916 building the structure, it may need to clean up a partially
1917 constructed gdbarch. */
1918
1919 void
1920 gdbarch_free (struct gdbarch *arch)
1921 {
1922 struct obstack *obstack;
1923
1924 gdb_assert (arch != NULL);
1925 gdb_assert (!arch->initialized_p);
1926 obstack = arch->obstack;
1927 obstack_free (obstack, 0); /* Includes the ARCH. */
1928 xfree (obstack);
1929 }
1930 EOF
1931
1932 # verify a new architecture
1933 cat <<EOF
1934
1935
1936 /* Ensure that all values in a GDBARCH are reasonable. */
1937
1938 static void
1939 verify_gdbarch (struct gdbarch *gdbarch)
1940 {
1941 string_file log;
1942
1943 /* fundamental */
1944 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1945 log.puts ("\n\tbyte-order");
1946 if (gdbarch->bfd_arch_info == NULL)
1947 log.puts ("\n\tbfd_arch_info");
1948 /* Check those that need to be defined for the given multi-arch level. */
1949 EOF
1950 function_list | while do_read
1951 do
1952 if class_is_function_p || class_is_variable_p
1953 then
1954 if [ "x${invalid_p}" = "x0" ]
1955 then
1956 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1957 elif class_is_predicate_p
1958 then
1959 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1960 # FIXME: See do_read for potential simplification
1961 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1962 then
1963 printf " if (%s)\n" "$invalid_p"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1965 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1966 then
1967 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1969 elif [ -n "${postdefault}" ]
1970 then
1971 printf " if (gdbarch->%s == 0)\n" "$function"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1973 elif [ -n "${invalid_p}" ]
1974 then
1975 printf " if (%s)\n" "$invalid_p"
1976 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1977 elif [ -n "${predefault}" ]
1978 then
1979 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1981 fi
1982 fi
1983 done
1984 cat <<EOF
1985 if (!log.empty ())
1986 internal_error (__FILE__, __LINE__,
1987 _("verify_gdbarch: the following are invalid ...%s"),
1988 log.c_str ());
1989 }
1990 EOF
1991
1992 # dump the structure
1993 printf "\n"
1994 printf "\n"
1995 cat <<EOF
1996 /* Print out the details of the current architecture. */
1997
1998 void
1999 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2000 {
2001 const char *gdb_nm_file = "<not-defined>";
2002
2003 #if defined (GDB_NM_FILE)
2004 gdb_nm_file = GDB_NM_FILE;
2005 #endif
2006 fprintf_unfiltered (file,
2007 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2008 gdb_nm_file);
2009 EOF
2010 function_list | sort '-t;' -k 3 | while do_read
2011 do
2012 # First the predicate
2013 if class_is_predicate_p
2014 then
2015 printf " fprintf_unfiltered (file,\n"
2016 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2017 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2018 fi
2019 # Print the corresponding value.
2020 if class_is_function_p
2021 then
2022 printf " fprintf_unfiltered (file,\n"
2023 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2024 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2025 else
2026 # It is a variable
2027 case "${print}:${returntype}" in
2028 :CORE_ADDR )
2029 fmt="%s"
2030 print="core_addr_to_string_nz (gdbarch->${function})"
2031 ;;
2032 :* )
2033 fmt="%s"
2034 print="plongest (gdbarch->${function})"
2035 ;;
2036 * )
2037 fmt="%s"
2038 ;;
2039 esac
2040 printf " fprintf_unfiltered (file,\n"
2041 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2042 printf " %s);\n" "$print"
2043 fi
2044 done
2045 cat <<EOF
2046 if (gdbarch->dump_tdep != NULL)
2047 gdbarch->dump_tdep (gdbarch, file);
2048 }
2049 EOF
2050
2051
2052 # GET/SET
2053 printf "\n"
2054 cat <<EOF
2055 struct gdbarch_tdep *
2056 gdbarch_tdep (struct gdbarch *gdbarch)
2057 {
2058 if (gdbarch_debug >= 2)
2059 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2060 return gdbarch->tdep;
2061 }
2062 EOF
2063 printf "\n"
2064 function_list | while do_read
2065 do
2066 if class_is_predicate_p
2067 then
2068 printf "\n"
2069 printf "int\n"
2070 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2071 printf "{\n"
2072 printf " gdb_assert (gdbarch != NULL);\n"
2073 printf " return %s;\n" "$predicate"
2074 printf "}\n"
2075 fi
2076 if class_is_function_p
2077 then
2078 printf "\n"
2079 printf "%s\n" "$returntype"
2080 if [ "x${formal}" = "xvoid" ]
2081 then
2082 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2083 else
2084 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2085 fi
2086 printf "{\n"
2087 printf " gdb_assert (gdbarch != NULL);\n"
2088 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2089 if class_is_predicate_p && test -n "${predefault}"
2090 then
2091 # Allow a call to a function with a predicate.
2092 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2093 fi
2094 printf " if (gdbarch_debug >= 2)\n"
2095 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2096 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2097 then
2098 if class_is_multiarch_p
2099 then
2100 params="gdbarch"
2101 else
2102 params=""
2103 fi
2104 else
2105 if class_is_multiarch_p
2106 then
2107 params="gdbarch, ${actual}"
2108 else
2109 params="${actual}"
2110 fi
2111 fi
2112 if [ "x${returntype}" = "xvoid" ]
2113 then
2114 printf " gdbarch->%s (%s);\n" "$function" "$params"
2115 else
2116 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2117 fi
2118 printf "}\n"
2119 printf "\n"
2120 printf "void\n"
2121 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2122 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2123 printf "{\n"
2124 printf " gdbarch->%s = %s;\n" "$function" "$function"
2125 printf "}\n"
2126 elif class_is_variable_p
2127 then
2128 printf "\n"
2129 printf "%s\n" "$returntype"
2130 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2131 printf "{\n"
2132 printf " gdb_assert (gdbarch != NULL);\n"
2133 if [ "x${invalid_p}" = "x0" ]
2134 then
2135 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2136 elif [ -n "${invalid_p}" ]
2137 then
2138 printf " /* Check variable is valid. */\n"
2139 printf " gdb_assert (!(%s));\n" "$invalid_p"
2140 elif [ -n "${predefault}" ]
2141 then
2142 printf " /* Check variable changed from pre-default. */\n"
2143 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2144 fi
2145 printf " if (gdbarch_debug >= 2)\n"
2146 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2147 printf " return gdbarch->%s;\n" "$function"
2148 printf "}\n"
2149 printf "\n"
2150 printf "void\n"
2151 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2152 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2153 printf "{\n"
2154 printf " gdbarch->%s = %s;\n" "$function" "$function"
2155 printf "}\n"
2156 elif class_is_info_p
2157 then
2158 printf "\n"
2159 printf "%s\n" "$returntype"
2160 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2161 printf "{\n"
2162 printf " gdb_assert (gdbarch != NULL);\n"
2163 printf " if (gdbarch_debug >= 2)\n"
2164 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2165 printf " return gdbarch->%s;\n" "$function"
2166 printf "}\n"
2167 fi
2168 done
2169
2170 # All the trailing guff
2171 cat <<EOF
2172
2173
2174 /* Keep a registry of per-architecture data-pointers required by GDB
2175 modules. */
2176
2177 struct gdbarch_data
2178 {
2179 unsigned index;
2180 int init_p;
2181 gdbarch_data_pre_init_ftype *pre_init;
2182 gdbarch_data_post_init_ftype *post_init;
2183 };
2184
2185 struct gdbarch_data_registration
2186 {
2187 struct gdbarch_data *data;
2188 struct gdbarch_data_registration *next;
2189 };
2190
2191 struct gdbarch_data_registry
2192 {
2193 unsigned nr;
2194 struct gdbarch_data_registration *registrations;
2195 };
2196
2197 struct gdbarch_data_registry gdbarch_data_registry =
2198 {
2199 0, NULL,
2200 };
2201
2202 static struct gdbarch_data *
2203 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2204 gdbarch_data_post_init_ftype *post_init)
2205 {
2206 struct gdbarch_data_registration **curr;
2207
2208 /* Append the new registration. */
2209 for (curr = &gdbarch_data_registry.registrations;
2210 (*curr) != NULL;
2211 curr = &(*curr)->next);
2212 (*curr) = XNEW (struct gdbarch_data_registration);
2213 (*curr)->next = NULL;
2214 (*curr)->data = XNEW (struct gdbarch_data);
2215 (*curr)->data->index = gdbarch_data_registry.nr++;
2216 (*curr)->data->pre_init = pre_init;
2217 (*curr)->data->post_init = post_init;
2218 (*curr)->data->init_p = 1;
2219 return (*curr)->data;
2220 }
2221
2222 struct gdbarch_data *
2223 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2224 {
2225 return gdbarch_data_register (pre_init, NULL);
2226 }
2227
2228 struct gdbarch_data *
2229 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2230 {
2231 return gdbarch_data_register (NULL, post_init);
2232 }
2233
2234 /* Create/delete the gdbarch data vector. */
2235
2236 static void
2237 alloc_gdbarch_data (struct gdbarch *gdbarch)
2238 {
2239 gdb_assert (gdbarch->data == NULL);
2240 gdbarch->nr_data = gdbarch_data_registry.nr;
2241 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2242 }
2243
2244 /* Initialize the current value of the specified per-architecture
2245 data-pointer. */
2246
2247 void
2248 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2249 struct gdbarch_data *data,
2250 void *pointer)
2251 {
2252 gdb_assert (data->index < gdbarch->nr_data);
2253 gdb_assert (gdbarch->data[data->index] == NULL);
2254 gdb_assert (data->pre_init == NULL);
2255 gdbarch->data[data->index] = pointer;
2256 }
2257
2258 /* Return the current value of the specified per-architecture
2259 data-pointer. */
2260
2261 void *
2262 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2263 {
2264 gdb_assert (data->index < gdbarch->nr_data);
2265 if (gdbarch->data[data->index] == NULL)
2266 {
2267 /* The data-pointer isn't initialized, call init() to get a
2268 value. */
2269 if (data->pre_init != NULL)
2270 /* Mid architecture creation: pass just the obstack, and not
2271 the entire architecture, as that way it isn't possible for
2272 pre-init code to refer to undefined architecture
2273 fields. */
2274 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2275 else if (gdbarch->initialized_p
2276 && data->post_init != NULL)
2277 /* Post architecture creation: pass the entire architecture
2278 (as all fields are valid), but be careful to also detect
2279 recursive references. */
2280 {
2281 gdb_assert (data->init_p);
2282 data->init_p = 0;
2283 gdbarch->data[data->index] = data->post_init (gdbarch);
2284 data->init_p = 1;
2285 }
2286 else
2287 /* The architecture initialization hasn't completed - punt -
2288 hope that the caller knows what they are doing. Once
2289 deprecated_set_gdbarch_data has been initialized, this can be
2290 changed to an internal error. */
2291 return NULL;
2292 gdb_assert (gdbarch->data[data->index] != NULL);
2293 }
2294 return gdbarch->data[data->index];
2295 }
2296
2297
2298 /* Keep a registry of the architectures known by GDB. */
2299
2300 struct gdbarch_registration
2301 {
2302 enum bfd_architecture bfd_architecture;
2303 gdbarch_init_ftype *init;
2304 gdbarch_dump_tdep_ftype *dump_tdep;
2305 struct gdbarch_list *arches;
2306 struct gdbarch_registration *next;
2307 };
2308
2309 static struct gdbarch_registration *gdbarch_registry = NULL;
2310
2311 static void
2312 append_name (const char ***buf, int *nr, const char *name)
2313 {
2314 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2315 (*buf)[*nr] = name;
2316 *nr += 1;
2317 }
2318
2319 const char **
2320 gdbarch_printable_names (void)
2321 {
2322 /* Accumulate a list of names based on the registed list of
2323 architectures. */
2324 int nr_arches = 0;
2325 const char **arches = NULL;
2326 struct gdbarch_registration *rego;
2327
2328 for (rego = gdbarch_registry;
2329 rego != NULL;
2330 rego = rego->next)
2331 {
2332 const struct bfd_arch_info *ap;
2333 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2334 if (ap == NULL)
2335 internal_error (__FILE__, __LINE__,
2336 _("gdbarch_architecture_names: multi-arch unknown"));
2337 do
2338 {
2339 append_name (&arches, &nr_arches, ap->printable_name);
2340 ap = ap->next;
2341 }
2342 while (ap != NULL);
2343 }
2344 append_name (&arches, &nr_arches, NULL);
2345 return arches;
2346 }
2347
2348
2349 void
2350 gdbarch_register (enum bfd_architecture bfd_architecture,
2351 gdbarch_init_ftype *init,
2352 gdbarch_dump_tdep_ftype *dump_tdep)
2353 {
2354 struct gdbarch_registration **curr;
2355 const struct bfd_arch_info *bfd_arch_info;
2356
2357 /* Check that BFD recognizes this architecture */
2358 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2359 if (bfd_arch_info == NULL)
2360 {
2361 internal_error (__FILE__, __LINE__,
2362 _("gdbarch: Attempt to register "
2363 "unknown architecture (%d)"),
2364 bfd_architecture);
2365 }
2366 /* Check that we haven't seen this architecture before. */
2367 for (curr = &gdbarch_registry;
2368 (*curr) != NULL;
2369 curr = &(*curr)->next)
2370 {
2371 if (bfd_architecture == (*curr)->bfd_architecture)
2372 internal_error (__FILE__, __LINE__,
2373 _("gdbarch: Duplicate registration "
2374 "of architecture (%s)"),
2375 bfd_arch_info->printable_name);
2376 }
2377 /* log it */
2378 if (gdbarch_debug)
2379 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2380 bfd_arch_info->printable_name,
2381 host_address_to_string (init));
2382 /* Append it */
2383 (*curr) = XNEW (struct gdbarch_registration);
2384 (*curr)->bfd_architecture = bfd_architecture;
2385 (*curr)->init = init;
2386 (*curr)->dump_tdep = dump_tdep;
2387 (*curr)->arches = NULL;
2388 (*curr)->next = NULL;
2389 }
2390
2391 void
2392 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2393 gdbarch_init_ftype *init)
2394 {
2395 gdbarch_register (bfd_architecture, init, NULL);
2396 }
2397
2398
2399 /* Look for an architecture using gdbarch_info. */
2400
2401 struct gdbarch_list *
2402 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2403 const struct gdbarch_info *info)
2404 {
2405 for (; arches != NULL; arches = arches->next)
2406 {
2407 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2408 continue;
2409 if (info->byte_order != arches->gdbarch->byte_order)
2410 continue;
2411 if (info->osabi != arches->gdbarch->osabi)
2412 continue;
2413 if (info->target_desc != arches->gdbarch->target_desc)
2414 continue;
2415 return arches;
2416 }
2417 return NULL;
2418 }
2419
2420
2421 /* Find an architecture that matches the specified INFO. Create a new
2422 architecture if needed. Return that new architecture. */
2423
2424 struct gdbarch *
2425 gdbarch_find_by_info (struct gdbarch_info info)
2426 {
2427 struct gdbarch *new_gdbarch;
2428 struct gdbarch_registration *rego;
2429
2430 /* Fill in missing parts of the INFO struct using a number of
2431 sources: "set ..."; INFOabfd supplied; and the global
2432 defaults. */
2433 gdbarch_info_fill (&info);
2434
2435 /* Must have found some sort of architecture. */
2436 gdb_assert (info.bfd_arch_info != NULL);
2437
2438 if (gdbarch_debug)
2439 {
2440 fprintf_unfiltered (gdb_stdlog,
2441 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2442 (info.bfd_arch_info != NULL
2443 ? info.bfd_arch_info->printable_name
2444 : "(null)"));
2445 fprintf_unfiltered (gdb_stdlog,
2446 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2447 info.byte_order,
2448 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2449 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2450 : "default"));
2451 fprintf_unfiltered (gdb_stdlog,
2452 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2453 info.osabi, gdbarch_osabi_name (info.osabi));
2454 fprintf_unfiltered (gdb_stdlog,
2455 "gdbarch_find_by_info: info.abfd %s\n",
2456 host_address_to_string (info.abfd));
2457 fprintf_unfiltered (gdb_stdlog,
2458 "gdbarch_find_by_info: info.tdep_info %s\n",
2459 host_address_to_string (info.tdep_info));
2460 }
2461
2462 /* Find the tdep code that knows about this architecture. */
2463 for (rego = gdbarch_registry;
2464 rego != NULL;
2465 rego = rego->next)
2466 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2467 break;
2468 if (rego == NULL)
2469 {
2470 if (gdbarch_debug)
2471 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2472 "No matching architecture\n");
2473 return 0;
2474 }
2475
2476 /* Ask the tdep code for an architecture that matches "info". */
2477 new_gdbarch = rego->init (info, rego->arches);
2478
2479 /* Did the tdep code like it? No. Reject the change and revert to
2480 the old architecture. */
2481 if (new_gdbarch == NULL)
2482 {
2483 if (gdbarch_debug)
2484 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2485 "Target rejected architecture\n");
2486 return NULL;
2487 }
2488
2489 /* Is this a pre-existing architecture (as determined by already
2490 being initialized)? Move it to the front of the architecture
2491 list (keeping the list sorted Most Recently Used). */
2492 if (new_gdbarch->initialized_p)
2493 {
2494 struct gdbarch_list **list;
2495 struct gdbarch_list *self;
2496 if (gdbarch_debug)
2497 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2498 "Previous architecture %s (%s) selected\n",
2499 host_address_to_string (new_gdbarch),
2500 new_gdbarch->bfd_arch_info->printable_name);
2501 /* Find the existing arch in the list. */
2502 for (list = &rego->arches;
2503 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2504 list = &(*list)->next);
2505 /* It had better be in the list of architectures. */
2506 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2507 /* Unlink SELF. */
2508 self = (*list);
2509 (*list) = self->next;
2510 /* Insert SELF at the front. */
2511 self->next = rego->arches;
2512 rego->arches = self;
2513 /* Return it. */
2514 return new_gdbarch;
2515 }
2516
2517 /* It's a new architecture. */
2518 if (gdbarch_debug)
2519 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2520 "New architecture %s (%s) selected\n",
2521 host_address_to_string (new_gdbarch),
2522 new_gdbarch->bfd_arch_info->printable_name);
2523
2524 /* Insert the new architecture into the front of the architecture
2525 list (keep the list sorted Most Recently Used). */
2526 {
2527 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2528 self->next = rego->arches;
2529 self->gdbarch = new_gdbarch;
2530 rego->arches = self;
2531 }
2532
2533 /* Check that the newly installed architecture is valid. Plug in
2534 any post init values. */
2535 new_gdbarch->dump_tdep = rego->dump_tdep;
2536 verify_gdbarch (new_gdbarch);
2537 new_gdbarch->initialized_p = 1;
2538
2539 if (gdbarch_debug)
2540 gdbarch_dump (new_gdbarch, gdb_stdlog);
2541
2542 return new_gdbarch;
2543 }
2544
2545 /* Make the specified architecture current. */
2546
2547 void
2548 set_target_gdbarch (struct gdbarch *new_gdbarch)
2549 {
2550 gdb_assert (new_gdbarch != NULL);
2551 gdb_assert (new_gdbarch->initialized_p);
2552 current_inferior ()->gdbarch = new_gdbarch;
2553 gdb::observers::architecture_changed.notify (new_gdbarch);
2554 registers_changed ();
2555 }
2556
2557 /* Return the current inferior's arch. */
2558
2559 struct gdbarch *
2560 target_gdbarch (void)
2561 {
2562 return current_inferior ()->gdbarch;
2563 }
2564
2565 void _initialize_gdbarch ();
2566 void
2567 _initialize_gdbarch ()
2568 {
2569 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2570 Set architecture debugging."), _("\\
2571 Show architecture debugging."), _("\\
2572 When non-zero, architecture debugging is enabled."),
2573 NULL,
2574 show_gdbarch_debug,
2575 &setdebuglist, &showdebuglist);
2576 }
2577 EOF
2578
2579 # close things off
2580 exec 1>&2
2581 ../move-if-change new-gdbarch.c gdbarch.c
2582 rm -f new-gdbarch.c
This page took 0.107299 seconds and 3 git commands to generate.