merge from gcc
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 fmt ) : ;;
348
349 # printf style format string that can be used to print out the
350 # MEMBER. Sometimes "%s" is useful. For functions, this is
351 # ignored and the function address is printed.
352
353 # If FMT is empty, ``%ld'' is used.
354
355 print ) : ;;
356
357 # An optional equation that casts MEMBER to a value suitable
358 # for formatting by FMT.
359
360 # If PRINT is empty, ``(long)'' is used.
361
362 print_p ) : ;;
363
364 # An optional indicator for any predicte to wrap around the
365 # print member code.
366
367 # () -> Call a custom function to do the dump.
368 # exp -> Wrap print up in ``if (${print_p}) ...
369 # ``'' -> No predicate
370
371 # If PRINT_P is empty, ``1'' is always used.
372
373 description ) : ;;
374
375 # Currently unused.
376
377 *)
378 echo "Bad field ${field}"
379 exit 1;;
380 esac
381 done
382
383
384 function_list ()
385 {
386 # See below (DOCO) for description of each field
387 cat <<EOF
388 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 #
390 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 #
392 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
393 # Number of bits in a char or unsigned char for the target machine.
394 # Just like CHAR_BIT in <limits.h> but describes the target machine.
395 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 #
397 # Number of bits in a short or unsigned short for the target machine.
398 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
399 # Number of bits in an int or unsigned int for the target machine.
400 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
401 # Number of bits in a long or unsigned long for the target machine.
402 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
403 # Number of bits in a long long or unsigned long long for the target
404 # machine.
405 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
406 # Number of bits in a float for the target machine.
407 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
408 # Number of bits in a double for the target machine.
409 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
410 # Number of bits in a long double for the target machine.
411 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
412 # For most targets, a pointer on the target and its representation as an
413 # address in GDB have the same size and "look the same". For such a
414 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
415 # / addr_bit will be set from it.
416 #
417 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
418 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 #
420 # ptr_bit is the size of a pointer on the target
421 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
422 # addr_bit is the size of a target address as represented in gdb
423 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
424 # Number of bits in a BFD_VMA for the target object file format.
425 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 #
427 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
428 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 #
430 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
431 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
432 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
433 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
453 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
458 # that updates PC, NPC and even NNPC.
459 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 #
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 #
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 #
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 #
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 #
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
604
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
606
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
609 # into RETURN_VALUE. For the moment do not try to fold in
610 # EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
611 # info, and the level of effort, it may well be possible to find the
612 # address of a structure being return on the stack. Someone else can
613 # make that change.
614
615 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
616 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
617 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
618 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
619 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
620 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
621
622 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
623 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
624 #
625 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
626 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
627 #
628 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
629 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
630 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
631 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
632 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
633 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
634 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
635 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
636 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
637 #
638 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
639 #
640 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
641 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
642 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
643 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
644 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
645 # note, per UNWIND_PC's doco, that while the two have similar
646 # interfaces they have very different underlying implementations.
647 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
648 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
649 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
650 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
651 # frame-base. Enable frame-base before frame-unwind.
652 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
653 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
654 # frame-base. Enable frame-base before frame-unwind.
655 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
656 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
657 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
658 #
659 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
660 # to frame_align and the requirement that methods such as
661 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
662 # alignment.
663 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
664 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
665 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
666 # stabs_argument_has_addr.
667 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
668 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
669 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
670 v:2:PARM_BOUNDARY:int:parm_boundary
671 #
672 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
673 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
674 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
675 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
676 # On some machines there are bits in addresses which are not really
677 # part of the address, but are used by the kernel, the hardware, etc.
678 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
679 # we get a "real" address such as one would find in a symbol table.
680 # This is used only for addresses of instructions, and even then I'm
681 # not sure it's used in all contexts. It exists to deal with there
682 # being a few stray bits in the PC which would mislead us, not as some
683 # sort of generic thing to handle alignment or segmentation (it's
684 # possible it should be in TARGET_READ_PC instead).
685 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
686 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
687 # ADDR_BITS_REMOVE.
688 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
689 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
690 # the target needs software single step. An ISA method to implement it.
691 #
692 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
693 # using the breakpoint system instead of blatting memory directly (as with rs6000).
694 #
695 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
696 # single step. If not, then implement single step using breakpoints.
697 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
698 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
699 # disassembler. Perhaphs objdump can handle it?
700 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
701 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
702
703
704 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
705 # evaluates non-zero, this is the address where the debugger will place
706 # a step-resume breakpoint to get us past the dynamic linker.
707 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
708 # For SVR4 shared libraries, each call goes through a small piece of
709 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
710 # to nonzero if we are currently stopped in one of these.
711 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
712
713 # Some systems also have trampoline code for returning from shared libs.
714 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
715
716 # Sigtramp is a routine that the kernel calls (which then calls the
717 # signal handler). On most machines it is a library routine that is
718 # linked into the executable.
719 #
720 # This macro, given a program counter value and the name of the
721 # function in which that PC resides (which can be null if the name is
722 # not known), returns nonzero if the PC and name show that we are in
723 # sigtramp.
724 #
725 # On most machines just see if the name is sigtramp (and if we have
726 # no name, assume we are not in sigtramp).
727 #
728 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
729 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
730 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
731 # own local NAME lookup.
732 #
733 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
734 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
735 # does not.
736 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
737 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
738 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
739 # A target might have problems with watchpoints as soon as the stack
740 # frame of the current function has been destroyed. This mostly happens
741 # as the first action in a funtion's epilogue. in_function_epilogue_p()
742 # is defined to return a non-zero value if either the given addr is one
743 # instruction after the stack destroying instruction up to the trailing
744 # return instruction or if we can figure out that the stack frame has
745 # already been invalidated regardless of the value of addr. Targets
746 # which don't suffer from that problem could just let this functionality
747 # untouched.
748 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
749 # Given a vector of command-line arguments, return a newly allocated
750 # string which, when passed to the create_inferior function, will be
751 # parsed (on Unix systems, by the shell) to yield the same vector.
752 # This function should call error() if the argument vector is not
753 # representable for this target or if this target does not support
754 # command-line arguments.
755 # ARGC is the number of elements in the vector.
756 # ARGV is an array of strings, one per argument.
757 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
758 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
759 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
760 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
761 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
762 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
763 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
764 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
765 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
766 # Is a register in a group
767 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
768 # Fetch the pointer to the ith function argument.
769 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
770
771 # Return the appropriate register set for a core file section with
772 # name SECT_NAME and size SECT_SIZE.
773 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
774 EOF
775 }
776
777 #
778 # The .log file
779 #
780 exec > new-gdbarch.log
781 function_list | while do_read
782 do
783 cat <<EOF
784 ${class} ${macro}(${actual})
785 ${returntype} ${function} ($formal)${attrib}
786 EOF
787 for r in ${read}
788 do
789 eval echo \"\ \ \ \ ${r}=\${${r}}\"
790 done
791 if class_is_predicate_p && fallback_default_p
792 then
793 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
794 kill $$
795 exit 1
796 fi
797 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
798 then
799 echo "Error: postdefault is useless when invalid_p=0" 1>&2
800 kill $$
801 exit 1
802 fi
803 if class_is_multiarch_p
804 then
805 if class_is_predicate_p ; then :
806 elif test "x${predefault}" = "x"
807 then
808 echo "Error: pure multi-arch function must have a predefault" 1>&2
809 kill $$
810 exit 1
811 fi
812 fi
813 echo ""
814 done
815
816 exec 1>&2
817 compare_new gdbarch.log
818
819
820 copyright ()
821 {
822 cat <<EOF
823 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
824
825 /* Dynamic architecture support for GDB, the GNU debugger.
826 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
827
828 This file is part of GDB.
829
830 This program is free software; you can redistribute it and/or modify
831 it under the terms of the GNU General Public License as published by
832 the Free Software Foundation; either version 2 of the License, or
833 (at your option) any later version.
834
835 This program is distributed in the hope that it will be useful,
836 but WITHOUT ANY WARRANTY; without even the implied warranty of
837 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
838 GNU General Public License for more details.
839
840 You should have received a copy of the GNU General Public License
841 along with this program; if not, write to the Free Software
842 Foundation, Inc., 59 Temple Place - Suite 330,
843 Boston, MA 02111-1307, USA. */
844
845 /* This file was created with the aid of \`\`gdbarch.sh''.
846
847 The Bourne shell script \`\`gdbarch.sh'' creates the files
848 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
849 against the existing \`\`gdbarch.[hc]''. Any differences found
850 being reported.
851
852 If editing this file, please also run gdbarch.sh and merge any
853 changes into that script. Conversely, when making sweeping changes
854 to this file, modifying gdbarch.sh and using its output may prove
855 easier. */
856
857 EOF
858 }
859
860 #
861 # The .h file
862 #
863
864 exec > new-gdbarch.h
865 copyright
866 cat <<EOF
867 #ifndef GDBARCH_H
868 #define GDBARCH_H
869
870 struct floatformat;
871 struct ui_file;
872 struct frame_info;
873 struct value;
874 struct objfile;
875 struct minimal_symbol;
876 struct regcache;
877 struct reggroup;
878 struct regset;
879 struct disassemble_info;
880 struct target_ops;
881
882 extern struct gdbarch *current_gdbarch;
883
884
885 /* If any of the following are defined, the target wasn't correctly
886 converted. */
887
888 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
889 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
890 #endif
891 EOF
892
893 # function typedef's
894 printf "\n"
895 printf "\n"
896 printf "/* The following are pre-initialized by GDBARCH. */\n"
897 function_list | while do_read
898 do
899 if class_is_info_p
900 then
901 printf "\n"
902 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
903 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
904 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
905 printf "#error \"Non multi-arch definition of ${macro}\"\n"
906 printf "#endif\n"
907 printf "#if !defined (${macro})\n"
908 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
909 printf "#endif\n"
910 fi
911 done
912
913 # function typedef's
914 printf "\n"
915 printf "\n"
916 printf "/* The following are initialized by the target dependent code. */\n"
917 function_list | while do_read
918 do
919 if [ -n "${comment}" ]
920 then
921 echo "${comment}" | sed \
922 -e '2 s,#,/*,' \
923 -e '3,$ s,#, ,' \
924 -e '$ s,$, */,'
925 fi
926 if class_is_multiarch_p
927 then
928 if class_is_predicate_p
929 then
930 printf "\n"
931 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
932 fi
933 else
934 if class_is_predicate_p
935 then
936 printf "\n"
937 printf "#if defined (${macro})\n"
938 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
939 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940 printf "#if !defined (${macro}_P)\n"
941 printf "#define ${macro}_P() (1)\n"
942 printf "#endif\n"
943 printf "#endif\n"
944 printf "\n"
945 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
946 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
947 printf "#error \"Non multi-arch definition of ${macro}\"\n"
948 printf "#endif\n"
949 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
950 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
951 printf "#endif\n"
952 fi
953 fi
954 if class_is_variable_p
955 then
956 printf "\n"
957 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
958 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
959 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
960 printf "#error \"Non multi-arch definition of ${macro}\"\n"
961 printf "#endif\n"
962 printf "#if !defined (${macro})\n"
963 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
964 printf "#endif\n"
965 fi
966 if class_is_function_p
967 then
968 printf "\n"
969 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
970 then
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
972 elif class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
975 else
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
977 fi
978 if [ "x${formal}" = "xvoid" ]
979 then
980 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
981 else
982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
983 fi
984 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
985 if class_is_multiarch_p ; then :
986 else
987 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
988 printf "#error \"Non multi-arch definition of ${macro}\"\n"
989 printf "#endif\n"
990 if [ "x${actual}" = "x" ]
991 then
992 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
993 elif [ "x${actual}" = "x-" ]
994 then
995 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
996 else
997 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
998 fi
999 printf "#if !defined (${macro})\n"
1000 if [ "x${actual}" = "x" ]
1001 then
1002 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1003 elif [ "x${actual}" = "x-" ]
1004 then
1005 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1006 else
1007 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1008 fi
1009 printf "#endif\n"
1010 fi
1011 fi
1012 done
1013
1014 # close it off
1015 cat <<EOF
1016
1017 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1018
1019
1020 /* Mechanism for co-ordinating the selection of a specific
1021 architecture.
1022
1023 GDB targets (*-tdep.c) can register an interest in a specific
1024 architecture. Other GDB components can register a need to maintain
1025 per-architecture data.
1026
1027 The mechanisms below ensures that there is only a loose connection
1028 between the set-architecture command and the various GDB
1029 components. Each component can independently register their need
1030 to maintain architecture specific data with gdbarch.
1031
1032 Pragmatics:
1033
1034 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1035 didn't scale.
1036
1037 The more traditional mega-struct containing architecture specific
1038 data for all the various GDB components was also considered. Since
1039 GDB is built from a variable number of (fairly independent)
1040 components it was determined that the global aproach was not
1041 applicable. */
1042
1043
1044 /* Register a new architectural family with GDB.
1045
1046 Register support for the specified ARCHITECTURE with GDB. When
1047 gdbarch determines that the specified architecture has been
1048 selected, the corresponding INIT function is called.
1049
1050 --
1051
1052 The INIT function takes two parameters: INFO which contains the
1053 information available to gdbarch about the (possibly new)
1054 architecture; ARCHES which is a list of the previously created
1055 \`\`struct gdbarch'' for this architecture.
1056
1057 The INFO parameter is, as far as possible, be pre-initialized with
1058 information obtained from INFO.ABFD or the previously selected
1059 architecture.
1060
1061 The ARCHES parameter is a linked list (sorted most recently used)
1062 of all the previously created architures for this architecture
1063 family. The (possibly NULL) ARCHES->gdbarch can used to access
1064 values from the previously selected architecture for this
1065 architecture family. The global \`\`current_gdbarch'' shall not be
1066 used.
1067
1068 The INIT function shall return any of: NULL - indicating that it
1069 doesn't recognize the selected architecture; an existing \`\`struct
1070 gdbarch'' from the ARCHES list - indicating that the new
1071 architecture is just a synonym for an earlier architecture (see
1072 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1073 - that describes the selected architecture (see gdbarch_alloc()).
1074
1075 The DUMP_TDEP function shall print out all target specific values.
1076 Care should be taken to ensure that the function works in both the
1077 multi-arch and non- multi-arch cases. */
1078
1079 struct gdbarch_list
1080 {
1081 struct gdbarch *gdbarch;
1082 struct gdbarch_list *next;
1083 };
1084
1085 struct gdbarch_info
1086 {
1087 /* Use default: NULL (ZERO). */
1088 const struct bfd_arch_info *bfd_arch_info;
1089
1090 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1091 int byte_order;
1092
1093 /* Use default: NULL (ZERO). */
1094 bfd *abfd;
1095
1096 /* Use default: NULL (ZERO). */
1097 struct gdbarch_tdep_info *tdep_info;
1098
1099 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1100 enum gdb_osabi osabi;
1101 };
1102
1103 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1104 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1105
1106 /* DEPRECATED - use gdbarch_register() */
1107 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1108
1109 extern void gdbarch_register (enum bfd_architecture architecture,
1110 gdbarch_init_ftype *,
1111 gdbarch_dump_tdep_ftype *);
1112
1113
1114 /* Return a freshly allocated, NULL terminated, array of the valid
1115 architecture names. Since architectures are registered during the
1116 _initialize phase this function only returns useful information
1117 once initialization has been completed. */
1118
1119 extern const char **gdbarch_printable_names (void);
1120
1121
1122 /* Helper function. Search the list of ARCHES for a GDBARCH that
1123 matches the information provided by INFO. */
1124
1125 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1126
1127
1128 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1129 basic initialization using values obtained from the INFO andTDEP
1130 parameters. set_gdbarch_*() functions are called to complete the
1131 initialization of the object. */
1132
1133 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1134
1135
1136 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1137 It is assumed that the caller freeds the \`\`struct
1138 gdbarch_tdep''. */
1139
1140 extern void gdbarch_free (struct gdbarch *);
1141
1142
1143 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1144 obstack. The memory is freed when the corresponding architecture
1145 is also freed. */
1146
1147 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1148 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1149 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1150
1151
1152 /* Helper function. Force an update of the current architecture.
1153
1154 The actual architecture selected is determined by INFO, \`\`(gdb) set
1155 architecture'' et.al., the existing architecture and BFD's default
1156 architecture. INFO should be initialized to zero and then selected
1157 fields should be updated.
1158
1159 Returns non-zero if the update succeeds */
1160
1161 extern int gdbarch_update_p (struct gdbarch_info info);
1162
1163
1164 /* Helper function. Find an architecture matching info.
1165
1166 INFO should be initialized using gdbarch_info_init, relevant fields
1167 set, and then finished using gdbarch_info_fill.
1168
1169 Returns the corresponding architecture, or NULL if no matching
1170 architecture was found. "current_gdbarch" is not updated. */
1171
1172 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1173
1174
1175 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1176
1177 FIXME: kettenis/20031124: Of the functions that follow, only
1178 gdbarch_from_bfd is supposed to survive. The others will
1179 dissappear since in the future GDB will (hopefully) be truly
1180 multi-arch. However, for now we're still stuck with the concept of
1181 a single active architecture. */
1182
1183 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1184
1185
1186 /* Register per-architecture data-pointer.
1187
1188 Reserve space for a per-architecture data-pointer. An identifier
1189 for the reserved data-pointer is returned. That identifer should
1190 be saved in a local static variable.
1191
1192 The per-architecture data-pointer is either initialized explicitly
1193 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1194 gdbarch_data()).
1195
1196 Memory for the per-architecture data shall be allocated using
1197 gdbarch_obstack_zalloc. That memory will be deleted when the
1198 corresponding architecture object is deleted.
1199
1200 When a previously created architecture is re-selected, the
1201 per-architecture data-pointer for that previous architecture is
1202 restored. INIT() is not re-called.
1203
1204 Multiple registrarants for any architecture are allowed (and
1205 strongly encouraged). */
1206
1207 struct gdbarch_data;
1208
1209 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1210 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1211 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1212 struct gdbarch_data *data,
1213 void *pointer);
1214
1215 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1216
1217
1218
1219 /* Register per-architecture memory region.
1220
1221 Provide a memory-region swap mechanism. Per-architecture memory
1222 region are created. These memory regions are swapped whenever the
1223 architecture is changed. For a new architecture, the memory region
1224 is initialized with zero (0) and the INIT function is called.
1225
1226 Memory regions are swapped / initialized in the order that they are
1227 registered. NULL DATA and/or INIT values can be specified.
1228
1229 New code should use register_gdbarch_data(). */
1230
1231 typedef void (gdbarch_swap_ftype) (void);
1232 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1233 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1234
1235
1236
1237 /* Set the dynamic target-system-dependent parameters (architecture,
1238 byte-order, ...) using information found in the BFD */
1239
1240 extern void set_gdbarch_from_file (bfd *);
1241
1242
1243 /* Initialize the current architecture to the "first" one we find on
1244 our list. */
1245
1246 extern void initialize_current_architecture (void);
1247
1248 /* gdbarch trace variable */
1249 extern int gdbarch_debug;
1250
1251 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1252
1253 #endif
1254 EOF
1255 exec 1>&2
1256 #../move-if-change new-gdbarch.h gdbarch.h
1257 compare_new gdbarch.h
1258
1259
1260 #
1261 # C file
1262 #
1263
1264 exec > new-gdbarch.c
1265 copyright
1266 cat <<EOF
1267
1268 #include "defs.h"
1269 #include "arch-utils.h"
1270
1271 #include "gdbcmd.h"
1272 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1273 #include "symcat.h"
1274
1275 #include "floatformat.h"
1276
1277 #include "gdb_assert.h"
1278 #include "gdb_string.h"
1279 #include "gdb-events.h"
1280 #include "reggroups.h"
1281 #include "osabi.h"
1282 #include "symfile.h" /* For entry_point_address. */
1283 #include "gdb_obstack.h"
1284
1285 /* Static function declarations */
1286
1287 static void alloc_gdbarch_data (struct gdbarch *);
1288
1289 /* Non-zero if we want to trace architecture code. */
1290
1291 #ifndef GDBARCH_DEBUG
1292 #define GDBARCH_DEBUG 0
1293 #endif
1294 int gdbarch_debug = GDBARCH_DEBUG;
1295
1296 EOF
1297
1298 # gdbarch open the gdbarch object
1299 printf "\n"
1300 printf "/* Maintain the struct gdbarch object */\n"
1301 printf "\n"
1302 printf "struct gdbarch\n"
1303 printf "{\n"
1304 printf " /* Has this architecture been fully initialized? */\n"
1305 printf " int initialized_p;\n"
1306 printf "\n"
1307 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1308 printf " struct obstack *obstack;\n"
1309 printf "\n"
1310 printf " /* basic architectural information */\n"
1311 function_list | while do_read
1312 do
1313 if class_is_info_p
1314 then
1315 printf " ${returntype} ${function};\n"
1316 fi
1317 done
1318 printf "\n"
1319 printf " /* target specific vector. */\n"
1320 printf " struct gdbarch_tdep *tdep;\n"
1321 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1322 printf "\n"
1323 printf " /* per-architecture data-pointers */\n"
1324 printf " unsigned nr_data;\n"
1325 printf " void **data;\n"
1326 printf "\n"
1327 printf " /* per-architecture swap-regions */\n"
1328 printf " struct gdbarch_swap *swap;\n"
1329 printf "\n"
1330 cat <<EOF
1331 /* Multi-arch values.
1332
1333 When extending this structure you must:
1334
1335 Add the field below.
1336
1337 Declare set/get functions and define the corresponding
1338 macro in gdbarch.h.
1339
1340 gdbarch_alloc(): If zero/NULL is not a suitable default,
1341 initialize the new field.
1342
1343 verify_gdbarch(): Confirm that the target updated the field
1344 correctly.
1345
1346 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1347 field is dumped out
1348
1349 \`\`startup_gdbarch()'': Append an initial value to the static
1350 variable (base values on the host's c-type system).
1351
1352 get_gdbarch(): Implement the set/get functions (probably using
1353 the macro's as shortcuts).
1354
1355 */
1356
1357 EOF
1358 function_list | while do_read
1359 do
1360 if class_is_variable_p
1361 then
1362 printf " ${returntype} ${function};\n"
1363 elif class_is_function_p
1364 then
1365 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1366 fi
1367 done
1368 printf "};\n"
1369
1370 # A pre-initialized vector
1371 printf "\n"
1372 printf "\n"
1373 cat <<EOF
1374 /* The default architecture uses host values (for want of a better
1375 choice). */
1376 EOF
1377 printf "\n"
1378 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1379 printf "\n"
1380 printf "struct gdbarch startup_gdbarch =\n"
1381 printf "{\n"
1382 printf " 1, /* Always initialized. */\n"
1383 printf " NULL, /* The obstack. */\n"
1384 printf " /* basic architecture information */\n"
1385 function_list | while do_read
1386 do
1387 if class_is_info_p
1388 then
1389 printf " ${staticdefault}, /* ${function} */\n"
1390 fi
1391 done
1392 cat <<EOF
1393 /* target specific vector and its dump routine */
1394 NULL, NULL,
1395 /*per-architecture data-pointers and swap regions */
1396 0, NULL, NULL,
1397 /* Multi-arch values */
1398 EOF
1399 function_list | while do_read
1400 do
1401 if class_is_function_p || class_is_variable_p
1402 then
1403 printf " ${staticdefault}, /* ${function} */\n"
1404 fi
1405 done
1406 cat <<EOF
1407 /* startup_gdbarch() */
1408 };
1409
1410 struct gdbarch *current_gdbarch = &startup_gdbarch;
1411 EOF
1412
1413 # Create a new gdbarch struct
1414 cat <<EOF
1415
1416 /* Create a new \`\`struct gdbarch'' based on information provided by
1417 \`\`struct gdbarch_info''. */
1418 EOF
1419 printf "\n"
1420 cat <<EOF
1421 struct gdbarch *
1422 gdbarch_alloc (const struct gdbarch_info *info,
1423 struct gdbarch_tdep *tdep)
1424 {
1425 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1426 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1427 the current local architecture and not the previous global
1428 architecture. This ensures that the new architectures initial
1429 values are not influenced by the previous architecture. Once
1430 everything is parameterised with gdbarch, this will go away. */
1431 struct gdbarch *current_gdbarch;
1432
1433 /* Create an obstack for allocating all the per-architecture memory,
1434 then use that to allocate the architecture vector. */
1435 struct obstack *obstack = XMALLOC (struct obstack);
1436 obstack_init (obstack);
1437 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1438 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1439 current_gdbarch->obstack = obstack;
1440
1441 alloc_gdbarch_data (current_gdbarch);
1442
1443 current_gdbarch->tdep = tdep;
1444 EOF
1445 printf "\n"
1446 function_list | while do_read
1447 do
1448 if class_is_info_p
1449 then
1450 printf " current_gdbarch->${function} = info->${function};\n"
1451 fi
1452 done
1453 printf "\n"
1454 printf " /* Force the explicit initialization of these. */\n"
1455 function_list | while do_read
1456 do
1457 if class_is_function_p || class_is_variable_p
1458 then
1459 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1460 then
1461 printf " current_gdbarch->${function} = ${predefault};\n"
1462 fi
1463 fi
1464 done
1465 cat <<EOF
1466 /* gdbarch_alloc() */
1467
1468 return current_gdbarch;
1469 }
1470 EOF
1471
1472 # Free a gdbarch struct.
1473 printf "\n"
1474 printf "\n"
1475 cat <<EOF
1476 /* Allocate extra space using the per-architecture obstack. */
1477
1478 void *
1479 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1480 {
1481 void *data = obstack_alloc (arch->obstack, size);
1482 memset (data, 0, size);
1483 return data;
1484 }
1485
1486
1487 /* Free a gdbarch struct. This should never happen in normal
1488 operation --- once you've created a gdbarch, you keep it around.
1489 However, if an architecture's init function encounters an error
1490 building the structure, it may need to clean up a partially
1491 constructed gdbarch. */
1492
1493 void
1494 gdbarch_free (struct gdbarch *arch)
1495 {
1496 struct obstack *obstack;
1497 gdb_assert (arch != NULL);
1498 gdb_assert (!arch->initialized_p);
1499 obstack = arch->obstack;
1500 obstack_free (obstack, 0); /* Includes the ARCH. */
1501 xfree (obstack);
1502 }
1503 EOF
1504
1505 # verify a new architecture
1506 cat <<EOF
1507
1508
1509 /* Ensure that all values in a GDBARCH are reasonable. */
1510
1511 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1512 just happens to match the global variable \`\`current_gdbarch''. That
1513 way macros refering to that variable get the local and not the global
1514 version - ulgh. Once everything is parameterised with gdbarch, this
1515 will go away. */
1516
1517 static void
1518 verify_gdbarch (struct gdbarch *current_gdbarch)
1519 {
1520 struct ui_file *log;
1521 struct cleanup *cleanups;
1522 long dummy;
1523 char *buf;
1524 log = mem_fileopen ();
1525 cleanups = make_cleanup_ui_file_delete (log);
1526 /* fundamental */
1527 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1528 fprintf_unfiltered (log, "\n\tbyte-order");
1529 if (current_gdbarch->bfd_arch_info == NULL)
1530 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1531 /* Check those that need to be defined for the given multi-arch level. */
1532 EOF
1533 function_list | while do_read
1534 do
1535 if class_is_function_p || class_is_variable_p
1536 then
1537 if [ "x${invalid_p}" = "x0" ]
1538 then
1539 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1540 elif class_is_predicate_p
1541 then
1542 printf " /* Skip verify of ${function}, has predicate */\n"
1543 # FIXME: See do_read for potential simplification
1544 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1545 then
1546 printf " if (${invalid_p})\n"
1547 printf " current_gdbarch->${function} = ${postdefault};\n"
1548 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1549 then
1550 printf " if (current_gdbarch->${function} == ${predefault})\n"
1551 printf " current_gdbarch->${function} = ${postdefault};\n"
1552 elif [ -n "${postdefault}" ]
1553 then
1554 printf " if (current_gdbarch->${function} == 0)\n"
1555 printf " current_gdbarch->${function} = ${postdefault};\n"
1556 elif [ -n "${invalid_p}" ]
1557 then
1558 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1559 printf " && (${invalid_p}))\n"
1560 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1561 elif [ -n "${predefault}" ]
1562 then
1563 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1564 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1565 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1566 fi
1567 fi
1568 done
1569 cat <<EOF
1570 buf = ui_file_xstrdup (log, &dummy);
1571 make_cleanup (xfree, buf);
1572 if (strlen (buf) > 0)
1573 internal_error (__FILE__, __LINE__,
1574 "verify_gdbarch: the following are invalid ...%s",
1575 buf);
1576 do_cleanups (cleanups);
1577 }
1578 EOF
1579
1580 # dump the structure
1581 printf "\n"
1582 printf "\n"
1583 cat <<EOF
1584 /* Print out the details of the current architecture. */
1585
1586 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1587 just happens to match the global variable \`\`current_gdbarch''. That
1588 way macros refering to that variable get the local and not the global
1589 version - ulgh. Once everything is parameterised with gdbarch, this
1590 will go away. */
1591
1592 void
1593 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1594 {
1595 fprintf_unfiltered (file,
1596 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1597 GDB_MULTI_ARCH);
1598 EOF
1599 function_list | sort -t: -k 3 | while do_read
1600 do
1601 # First the predicate
1602 if class_is_predicate_p
1603 then
1604 if class_is_multiarch_p
1605 then
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1608 printf " gdbarch_${function}_p (current_gdbarch));\n"
1609 else
1610 printf "#ifdef ${macro}_P\n"
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1613 printf " \"${macro}_P()\",\n"
1614 printf " XSTRING (${macro}_P ()));\n"
1615 printf " fprintf_unfiltered (file,\n"
1616 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1617 printf " ${macro}_P ());\n"
1618 printf "#endif\n"
1619 fi
1620 fi
1621 # multiarch functions don't have macros.
1622 if class_is_multiarch_p
1623 then
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1626 printf " (long) current_gdbarch->${function});\n"
1627 continue
1628 fi
1629 # Print the macro definition.
1630 printf "#ifdef ${macro}\n"
1631 if class_is_function_p
1632 then
1633 printf " fprintf_unfiltered (file,\n"
1634 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1635 printf " \"${macro}(${actual})\",\n"
1636 printf " XSTRING (${macro} (${actual})));\n"
1637 else
1638 printf " fprintf_unfiltered (file,\n"
1639 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1640 printf " XSTRING (${macro}));\n"
1641 fi
1642 if [ "x${print_p}" = "x()" ]
1643 then
1644 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1645 elif [ "x${print_p}" = "x0" ]
1646 then
1647 printf " /* skip print of ${macro}, print_p == 0. */\n"
1648 elif [ -n "${print_p}" ]
1649 then
1650 printf " if (${print_p})\n"
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1653 printf " ${print});\n"
1654 elif class_is_function_p
1655 then
1656 printf " fprintf_unfiltered (file,\n"
1657 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1658 printf " (long) current_gdbarch->${function}\n"
1659 printf " /*${macro} ()*/);\n"
1660 else
1661 printf " fprintf_unfiltered (file,\n"
1662 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1663 printf " ${print});\n"
1664 fi
1665 printf "#endif\n"
1666 done
1667 cat <<EOF
1668 if (current_gdbarch->dump_tdep != NULL)
1669 current_gdbarch->dump_tdep (current_gdbarch, file);
1670 }
1671 EOF
1672
1673
1674 # GET/SET
1675 printf "\n"
1676 cat <<EOF
1677 struct gdbarch_tdep *
1678 gdbarch_tdep (struct gdbarch *gdbarch)
1679 {
1680 if (gdbarch_debug >= 2)
1681 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1682 return gdbarch->tdep;
1683 }
1684 EOF
1685 printf "\n"
1686 function_list | while do_read
1687 do
1688 if class_is_predicate_p
1689 then
1690 printf "\n"
1691 printf "int\n"
1692 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1693 printf "{\n"
1694 printf " gdb_assert (gdbarch != NULL);\n"
1695 printf " return ${predicate};\n"
1696 printf "}\n"
1697 fi
1698 if class_is_function_p
1699 then
1700 printf "\n"
1701 printf "${returntype}\n"
1702 if [ "x${formal}" = "xvoid" ]
1703 then
1704 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1705 else
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1707 fi
1708 printf "{\n"
1709 printf " gdb_assert (gdbarch != NULL);\n"
1710 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1711 if class_is_predicate_p && test -n "${predefault}"
1712 then
1713 # Allow a call to a function with a predicate.
1714 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1715 fi
1716 printf " if (gdbarch_debug >= 2)\n"
1717 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1718 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1719 then
1720 if class_is_multiarch_p
1721 then
1722 params="gdbarch"
1723 else
1724 params=""
1725 fi
1726 else
1727 if class_is_multiarch_p
1728 then
1729 params="gdbarch, ${actual}"
1730 else
1731 params="${actual}"
1732 fi
1733 fi
1734 if [ "x${returntype}" = "xvoid" ]
1735 then
1736 printf " gdbarch->${function} (${params});\n"
1737 else
1738 printf " return gdbarch->${function} (${params});\n"
1739 fi
1740 printf "}\n"
1741 printf "\n"
1742 printf "void\n"
1743 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1744 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1745 printf "{\n"
1746 printf " gdbarch->${function} = ${function};\n"
1747 printf "}\n"
1748 elif class_is_variable_p
1749 then
1750 printf "\n"
1751 printf "${returntype}\n"
1752 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1753 printf "{\n"
1754 printf " gdb_assert (gdbarch != NULL);\n"
1755 if [ "x${invalid_p}" = "x0" ]
1756 then
1757 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1758 elif [ -n "${invalid_p}" ]
1759 then
1760 printf " /* Check variable is valid. */\n"
1761 printf " gdb_assert (!(${invalid_p}));\n"
1762 elif [ -n "${predefault}" ]
1763 then
1764 printf " /* Check variable changed from pre-default. */\n"
1765 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1766 fi
1767 printf " if (gdbarch_debug >= 2)\n"
1768 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1769 printf " return gdbarch->${function};\n"
1770 printf "}\n"
1771 printf "\n"
1772 printf "void\n"
1773 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1774 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1775 printf "{\n"
1776 printf " gdbarch->${function} = ${function};\n"
1777 printf "}\n"
1778 elif class_is_info_p
1779 then
1780 printf "\n"
1781 printf "${returntype}\n"
1782 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1783 printf "{\n"
1784 printf " gdb_assert (gdbarch != NULL);\n"
1785 printf " if (gdbarch_debug >= 2)\n"
1786 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1787 printf " return gdbarch->${function};\n"
1788 printf "}\n"
1789 fi
1790 done
1791
1792 # All the trailing guff
1793 cat <<EOF
1794
1795
1796 /* Keep a registry of per-architecture data-pointers required by GDB
1797 modules. */
1798
1799 struct gdbarch_data
1800 {
1801 unsigned index;
1802 int init_p;
1803 gdbarch_data_init_ftype *init;
1804 };
1805
1806 struct gdbarch_data_registration
1807 {
1808 struct gdbarch_data *data;
1809 struct gdbarch_data_registration *next;
1810 };
1811
1812 struct gdbarch_data_registry
1813 {
1814 unsigned nr;
1815 struct gdbarch_data_registration *registrations;
1816 };
1817
1818 struct gdbarch_data_registry gdbarch_data_registry =
1819 {
1820 0, NULL,
1821 };
1822
1823 struct gdbarch_data *
1824 register_gdbarch_data (gdbarch_data_init_ftype *init)
1825 {
1826 struct gdbarch_data_registration **curr;
1827 /* Append the new registraration. */
1828 for (curr = &gdbarch_data_registry.registrations;
1829 (*curr) != NULL;
1830 curr = &(*curr)->next);
1831 (*curr) = XMALLOC (struct gdbarch_data_registration);
1832 (*curr)->next = NULL;
1833 (*curr)->data = XMALLOC (struct gdbarch_data);
1834 (*curr)->data->index = gdbarch_data_registry.nr++;
1835 (*curr)->data->init = init;
1836 (*curr)->data->init_p = 1;
1837 return (*curr)->data;
1838 }
1839
1840
1841 /* Create/delete the gdbarch data vector. */
1842
1843 static void
1844 alloc_gdbarch_data (struct gdbarch *gdbarch)
1845 {
1846 gdb_assert (gdbarch->data == NULL);
1847 gdbarch->nr_data = gdbarch_data_registry.nr;
1848 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1849 }
1850
1851 /* Initialize the current value of the specified per-architecture
1852 data-pointer. */
1853
1854 void
1855 set_gdbarch_data (struct gdbarch *gdbarch,
1856 struct gdbarch_data *data,
1857 void *pointer)
1858 {
1859 gdb_assert (data->index < gdbarch->nr_data);
1860 gdb_assert (gdbarch->data[data->index] == NULL);
1861 gdbarch->data[data->index] = pointer;
1862 }
1863
1864 /* Return the current value of the specified per-architecture
1865 data-pointer. */
1866
1867 void *
1868 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1869 {
1870 gdb_assert (data->index < gdbarch->nr_data);
1871 /* The data-pointer isn't initialized, call init() to get a value but
1872 only if the architecture initializaiton has completed. Otherwise
1873 punt - hope that the caller knows what they are doing. */
1874 if (gdbarch->data[data->index] == NULL
1875 && gdbarch->initialized_p)
1876 {
1877 /* Be careful to detect an initialization cycle. */
1878 gdb_assert (data->init_p);
1879 data->init_p = 0;
1880 gdb_assert (data->init != NULL);
1881 gdbarch->data[data->index] = data->init (gdbarch);
1882 data->init_p = 1;
1883 gdb_assert (gdbarch->data[data->index] != NULL);
1884 }
1885 return gdbarch->data[data->index];
1886 }
1887
1888
1889
1890 /* Keep a registry of swapped data required by GDB modules. */
1891
1892 struct gdbarch_swap
1893 {
1894 void *swap;
1895 struct gdbarch_swap_registration *source;
1896 struct gdbarch_swap *next;
1897 };
1898
1899 struct gdbarch_swap_registration
1900 {
1901 void *data;
1902 unsigned long sizeof_data;
1903 gdbarch_swap_ftype *init;
1904 struct gdbarch_swap_registration *next;
1905 };
1906
1907 struct gdbarch_swap_registry
1908 {
1909 int nr;
1910 struct gdbarch_swap_registration *registrations;
1911 };
1912
1913 struct gdbarch_swap_registry gdbarch_swap_registry =
1914 {
1915 0, NULL,
1916 };
1917
1918 void
1919 register_gdbarch_swap (void *data,
1920 unsigned long sizeof_data,
1921 gdbarch_swap_ftype *init)
1922 {
1923 struct gdbarch_swap_registration **rego;
1924 for (rego = &gdbarch_swap_registry.registrations;
1925 (*rego) != NULL;
1926 rego = &(*rego)->next);
1927 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1928 (*rego)->next = NULL;
1929 (*rego)->init = init;
1930 (*rego)->data = data;
1931 (*rego)->sizeof_data = sizeof_data;
1932 }
1933
1934 static void
1935 current_gdbarch_swap_init_hack (void)
1936 {
1937 struct gdbarch_swap_registration *rego;
1938 struct gdbarch_swap **curr = &current_gdbarch->swap;
1939 for (rego = gdbarch_swap_registry.registrations;
1940 rego != NULL;
1941 rego = rego->next)
1942 {
1943 if (rego->data != NULL)
1944 {
1945 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1946 struct gdbarch_swap);
1947 (*curr)->source = rego;
1948 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1949 rego->sizeof_data);
1950 (*curr)->next = NULL;
1951 curr = &(*curr)->next;
1952 }
1953 if (rego->init != NULL)
1954 rego->init ();
1955 }
1956 }
1957
1958 static struct gdbarch *
1959 current_gdbarch_swap_out_hack (void)
1960 {
1961 struct gdbarch *old_gdbarch = current_gdbarch;
1962 struct gdbarch_swap *curr;
1963
1964 gdb_assert (old_gdbarch != NULL);
1965 for (curr = old_gdbarch->swap;
1966 curr != NULL;
1967 curr = curr->next)
1968 {
1969 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1970 memset (curr->source->data, 0, curr->source->sizeof_data);
1971 }
1972 current_gdbarch = NULL;
1973 return old_gdbarch;
1974 }
1975
1976 static void
1977 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1978 {
1979 struct gdbarch_swap *curr;
1980
1981 gdb_assert (current_gdbarch == NULL);
1982 for (curr = new_gdbarch->swap;
1983 curr != NULL;
1984 curr = curr->next)
1985 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1986 current_gdbarch = new_gdbarch;
1987 }
1988
1989
1990 /* Keep a registry of the architectures known by GDB. */
1991
1992 struct gdbarch_registration
1993 {
1994 enum bfd_architecture bfd_architecture;
1995 gdbarch_init_ftype *init;
1996 gdbarch_dump_tdep_ftype *dump_tdep;
1997 struct gdbarch_list *arches;
1998 struct gdbarch_registration *next;
1999 };
2000
2001 static struct gdbarch_registration *gdbarch_registry = NULL;
2002
2003 static void
2004 append_name (const char ***buf, int *nr, const char *name)
2005 {
2006 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2007 (*buf)[*nr] = name;
2008 *nr += 1;
2009 }
2010
2011 const char **
2012 gdbarch_printable_names (void)
2013 {
2014 /* Accumulate a list of names based on the registed list of
2015 architectures. */
2016 enum bfd_architecture a;
2017 int nr_arches = 0;
2018 const char **arches = NULL;
2019 struct gdbarch_registration *rego;
2020 for (rego = gdbarch_registry;
2021 rego != NULL;
2022 rego = rego->next)
2023 {
2024 const struct bfd_arch_info *ap;
2025 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2026 if (ap == NULL)
2027 internal_error (__FILE__, __LINE__,
2028 "gdbarch_architecture_names: multi-arch unknown");
2029 do
2030 {
2031 append_name (&arches, &nr_arches, ap->printable_name);
2032 ap = ap->next;
2033 }
2034 while (ap != NULL);
2035 }
2036 append_name (&arches, &nr_arches, NULL);
2037 return arches;
2038 }
2039
2040
2041 void
2042 gdbarch_register (enum bfd_architecture bfd_architecture,
2043 gdbarch_init_ftype *init,
2044 gdbarch_dump_tdep_ftype *dump_tdep)
2045 {
2046 struct gdbarch_registration **curr;
2047 const struct bfd_arch_info *bfd_arch_info;
2048 /* Check that BFD recognizes this architecture */
2049 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2050 if (bfd_arch_info == NULL)
2051 {
2052 internal_error (__FILE__, __LINE__,
2053 "gdbarch: Attempt to register unknown architecture (%d)",
2054 bfd_architecture);
2055 }
2056 /* Check that we haven't seen this architecture before */
2057 for (curr = &gdbarch_registry;
2058 (*curr) != NULL;
2059 curr = &(*curr)->next)
2060 {
2061 if (bfd_architecture == (*curr)->bfd_architecture)
2062 internal_error (__FILE__, __LINE__,
2063 "gdbarch: Duplicate registraration of architecture (%s)",
2064 bfd_arch_info->printable_name);
2065 }
2066 /* log it */
2067 if (gdbarch_debug)
2068 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2069 bfd_arch_info->printable_name,
2070 (long) init);
2071 /* Append it */
2072 (*curr) = XMALLOC (struct gdbarch_registration);
2073 (*curr)->bfd_architecture = bfd_architecture;
2074 (*curr)->init = init;
2075 (*curr)->dump_tdep = dump_tdep;
2076 (*curr)->arches = NULL;
2077 (*curr)->next = NULL;
2078 }
2079
2080 void
2081 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2082 gdbarch_init_ftype *init)
2083 {
2084 gdbarch_register (bfd_architecture, init, NULL);
2085 }
2086
2087
2088 /* Look for an architecture using gdbarch_info. Base search on only
2089 BFD_ARCH_INFO and BYTE_ORDER. */
2090
2091 struct gdbarch_list *
2092 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2093 const struct gdbarch_info *info)
2094 {
2095 for (; arches != NULL; arches = arches->next)
2096 {
2097 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2098 continue;
2099 if (info->byte_order != arches->gdbarch->byte_order)
2100 continue;
2101 if (info->osabi != arches->gdbarch->osabi)
2102 continue;
2103 return arches;
2104 }
2105 return NULL;
2106 }
2107
2108
2109 /* Find an architecture that matches the specified INFO. Create a new
2110 architecture if needed. Return that new architecture. Assumes
2111 that there is no current architecture. */
2112
2113 static struct gdbarch *
2114 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2115 {
2116 struct gdbarch *new_gdbarch;
2117 struct gdbarch_registration *rego;
2118
2119 /* The existing architecture has been swapped out - all this code
2120 works from a clean slate. */
2121 gdb_assert (current_gdbarch == NULL);
2122
2123 /* Fill in missing parts of the INFO struct using a number of
2124 sources: "set ..."; INFOabfd supplied; and the existing
2125 architecture. */
2126 gdbarch_info_fill (old_gdbarch, &info);
2127
2128 /* Must have found some sort of architecture. */
2129 gdb_assert (info.bfd_arch_info != NULL);
2130
2131 if (gdbarch_debug)
2132 {
2133 fprintf_unfiltered (gdb_stdlog,
2134 "find_arch_by_info: info.bfd_arch_info %s\n",
2135 (info.bfd_arch_info != NULL
2136 ? info.bfd_arch_info->printable_name
2137 : "(null)"));
2138 fprintf_unfiltered (gdb_stdlog,
2139 "find_arch_by_info: info.byte_order %d (%s)\n",
2140 info.byte_order,
2141 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2142 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2143 : "default"));
2144 fprintf_unfiltered (gdb_stdlog,
2145 "find_arch_by_info: info.osabi %d (%s)\n",
2146 info.osabi, gdbarch_osabi_name (info.osabi));
2147 fprintf_unfiltered (gdb_stdlog,
2148 "find_arch_by_info: info.abfd 0x%lx\n",
2149 (long) info.abfd);
2150 fprintf_unfiltered (gdb_stdlog,
2151 "find_arch_by_info: info.tdep_info 0x%lx\n",
2152 (long) info.tdep_info);
2153 }
2154
2155 /* Find the tdep code that knows about this architecture. */
2156 for (rego = gdbarch_registry;
2157 rego != NULL;
2158 rego = rego->next)
2159 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2160 break;
2161 if (rego == NULL)
2162 {
2163 if (gdbarch_debug)
2164 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2165 "No matching architecture\n");
2166 return 0;
2167 }
2168
2169 /* Ask the tdep code for an architecture that matches "info". */
2170 new_gdbarch = rego->init (info, rego->arches);
2171
2172 /* Did the tdep code like it? No. Reject the change and revert to
2173 the old architecture. */
2174 if (new_gdbarch == NULL)
2175 {
2176 if (gdbarch_debug)
2177 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2178 "Target rejected architecture\n");
2179 return NULL;
2180 }
2181
2182 /* Is this a pre-existing architecture (as determined by already
2183 being initialized)? Move it to the front of the architecture
2184 list (keeping the list sorted Most Recently Used). */
2185 if (new_gdbarch->initialized_p)
2186 {
2187 struct gdbarch_list **list;
2188 struct gdbarch_list *this;
2189 if (gdbarch_debug)
2190 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2191 "Previous architecture 0x%08lx (%s) selected\n",
2192 (long) new_gdbarch,
2193 new_gdbarch->bfd_arch_info->printable_name);
2194 /* Find the existing arch in the list. */
2195 for (list = &rego->arches;
2196 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2197 list = &(*list)->next);
2198 /* It had better be in the list of architectures. */
2199 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2200 /* Unlink THIS. */
2201 this = (*list);
2202 (*list) = this->next;
2203 /* Insert THIS at the front. */
2204 this->next = rego->arches;
2205 rego->arches = this;
2206 /* Return it. */
2207 return new_gdbarch;
2208 }
2209
2210 /* It's a new architecture. */
2211 if (gdbarch_debug)
2212 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2213 "New architecture 0x%08lx (%s) selected\n",
2214 (long) new_gdbarch,
2215 new_gdbarch->bfd_arch_info->printable_name);
2216
2217 /* Insert the new architecture into the front of the architecture
2218 list (keep the list sorted Most Recently Used). */
2219 {
2220 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2221 this->next = rego->arches;
2222 this->gdbarch = new_gdbarch;
2223 rego->arches = this;
2224 }
2225
2226 /* Check that the newly installed architecture is valid. Plug in
2227 any post init values. */
2228 new_gdbarch->dump_tdep = rego->dump_tdep;
2229 verify_gdbarch (new_gdbarch);
2230 new_gdbarch->initialized_p = 1;
2231
2232 /* Initialize any per-architecture swap areas. This phase requires
2233 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2234 swap the entire architecture out. */
2235 current_gdbarch = new_gdbarch;
2236 current_gdbarch_swap_init_hack ();
2237 current_gdbarch_swap_out_hack ();
2238
2239 if (gdbarch_debug)
2240 gdbarch_dump (new_gdbarch, gdb_stdlog);
2241
2242 return new_gdbarch;
2243 }
2244
2245 struct gdbarch *
2246 gdbarch_find_by_info (struct gdbarch_info info)
2247 {
2248 /* Save the previously selected architecture, setting the global to
2249 NULL. This stops things like gdbarch->init() trying to use the
2250 previous architecture's configuration. The previous architecture
2251 may not even be of the same architecture family. The most recent
2252 architecture of the same family is found at the head of the
2253 rego->arches list. */
2254 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2255
2256 /* Find the specified architecture. */
2257 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2258
2259 /* Restore the existing architecture. */
2260 gdb_assert (current_gdbarch == NULL);
2261 current_gdbarch_swap_in_hack (old_gdbarch);
2262
2263 return new_gdbarch;
2264 }
2265
2266 /* Make the specified architecture current, swapping the existing one
2267 out. */
2268
2269 void
2270 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2271 {
2272 gdb_assert (new_gdbarch != NULL);
2273 gdb_assert (current_gdbarch != NULL);
2274 gdb_assert (new_gdbarch->initialized_p);
2275 current_gdbarch_swap_out_hack ();
2276 current_gdbarch_swap_in_hack (new_gdbarch);
2277 architecture_changed_event ();
2278 }
2279
2280 extern void _initialize_gdbarch (void);
2281
2282 void
2283 _initialize_gdbarch (void)
2284 {
2285 struct cmd_list_element *c;
2286
2287 add_show_from_set (add_set_cmd ("arch",
2288 class_maintenance,
2289 var_zinteger,
2290 (char *)&gdbarch_debug,
2291 "Set architecture debugging.\\n\\
2292 When non-zero, architecture debugging is enabled.", &setdebuglist),
2293 &showdebuglist);
2294 c = add_set_cmd ("archdebug",
2295 class_maintenance,
2296 var_zinteger,
2297 (char *)&gdbarch_debug,
2298 "Set architecture debugging.\\n\\
2299 When non-zero, architecture debugging is enabled.", &setlist);
2300
2301 deprecate_cmd (c, "set debug arch");
2302 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2303 }
2304 EOF
2305
2306 # close things off
2307 exec 1>&2
2308 #../move-if-change new-gdbarch.c gdbarch.c
2309 compare_new gdbarch.c
This page took 0.172151 seconds and 4 git commands to generate.