GDBARCH interface for process record and replay.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # When creating core dumps, some systems encode the PID in addition
604 # to the LWP id in core file register section names. In those cases, the
605 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
606 # is set to true for such architectures; false if "XXX" represents an LWP
607 # or thread id with no special encoding.
608 v:int:core_reg_section_encodes_pid:::0:0::0
609
610 # Supported register notes in a core file.
611 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
612
613 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
614 # core file into buffer READBUF with length LEN.
615 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
616
617 # How the core_stratum layer converts a PTID from a core file to a
618 # string.
619 M:char *:core_pid_to_str:ptid_t ptid:ptid
620
621 # If the elements of C++ vtables are in-place function descriptors rather
622 # than normal function pointers (which may point to code or a descriptor),
623 # set this to one.
624 v:int:vtable_function_descriptors:::0:0::0
625
626 # Set if the least significant bit of the delta is used instead of the least
627 # significant bit of the pfn for pointers to virtual member functions.
628 v:int:vbit_in_delta:::0:0::0
629
630 # Advance PC to next instruction in order to skip a permanent breakpoint.
631 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
632
633 # The maximum length of an instruction on this architecture.
634 V:ULONGEST:max_insn_length:::0:0
635
636 # Copy the instruction at FROM to TO, and make any adjustments
637 # necessary to single-step it at that address.
638 #
639 # REGS holds the state the thread's registers will have before
640 # executing the copied instruction; the PC in REGS will refer to FROM,
641 # not the copy at TO. The caller should update it to point at TO later.
642 #
643 # Return a pointer to data of the architecture's choice to be passed
644 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
645 # the instruction's effects have been completely simulated, with the
646 # resulting state written back to REGS.
647 #
648 # For a general explanation of displaced stepping and how GDB uses it,
649 # see the comments in infrun.c.
650 #
651 # The TO area is only guaranteed to have space for
652 # gdbarch_max_insn_length (arch) bytes, so this function must not
653 # write more bytes than that to that area.
654 #
655 # If you do not provide this function, GDB assumes that the
656 # architecture does not support displaced stepping.
657 #
658 # If your architecture doesn't need to adjust instructions before
659 # single-stepping them, consider using simple_displaced_step_copy_insn
660 # here.
661 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
662
663 # Fix up the state resulting from successfully single-stepping a
664 # displaced instruction, to give the result we would have gotten from
665 # stepping the instruction in its original location.
666 #
667 # REGS is the register state resulting from single-stepping the
668 # displaced instruction.
669 #
670 # CLOSURE is the result from the matching call to
671 # gdbarch_displaced_step_copy_insn.
672 #
673 # If you provide gdbarch_displaced_step_copy_insn.but not this
674 # function, then GDB assumes that no fixup is needed after
675 # single-stepping the instruction.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
680
681 # Free a closure returned by gdbarch_displaced_step_copy_insn.
682 #
683 # If you provide gdbarch_displaced_step_copy_insn, you must provide
684 # this function as well.
685 #
686 # If your architecture uses closures that don't need to be freed, then
687 # you can use simple_displaced_step_free_closure here.
688 #
689 # For a general explanation of displaced stepping and how GDB uses it,
690 # see the comments in infrun.c.
691 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
692
693 # Return the address of an appropriate place to put displaced
694 # instructions while we step over them. There need only be one such
695 # place, since we're only stepping one thread over a breakpoint at a
696 # time.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
701
702 # Refresh overlay mapped state for section OSECT.
703 F:void:overlay_update:struct obj_section *osect:osect
704
705 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
706
707 # Handle special encoding of static variables in stabs debug info.
708 F:char *:static_transform_name:char *name:name
709 # Set if the address in N_SO or N_FUN stabs may be zero.
710 v:int:sofun_address_maybe_missing:::0:0::0
711
712 # Parse the instruction at ADDR storing in the record execution log
713 # the registers REGCACHE and memory ranges that will be affected when
714 # the instruction executes, along with their current values.
715 # Return -1 if something goes wrong, 0 otherwise.
716 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
717
718 # Signal translation: translate inferior's signal (host's) number into
719 # GDB's representation.
720 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
721 # Signal translation: translate GDB's signal number into inferior's host
722 # signal number.
723 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
724
725 # Extra signal info inspection.
726 #
727 # Return a type suitable to inspect extra signal information.
728 M:struct type *:get_siginfo_type:void:
729
730 # Record architecture-specific information from the symbol table.
731 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
732
733 # True if the list of shared libraries is one and only for all
734 # processes, as opposed to a list of shared libraries per inferior.
735 # When this property is true, GDB assumes that since shared libraries
736 # are shared across processes, so is all code. Hence, GDB further
737 # assumes an inserted breakpoint location is visible to all processes.
738 v:int:has_global_solist:::0:0::0
739 EOF
740 }
741
742 #
743 # The .log file
744 #
745 exec > new-gdbarch.log
746 function_list | while do_read
747 do
748 cat <<EOF
749 ${class} ${returntype} ${function} ($formal)
750 EOF
751 for r in ${read}
752 do
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
754 done
755 if class_is_predicate_p && fallback_default_p
756 then
757 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
758 kill $$
759 exit 1
760 fi
761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
762 then
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
764 kill $$
765 exit 1
766 fi
767 if class_is_multiarch_p
768 then
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
771 then
772 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
773 kill $$
774 exit 1
775 fi
776 fi
777 echo ""
778 done
779
780 exec 1>&2
781 compare_new gdbarch.log
782
783
784 copyright ()
785 {
786 cat <<EOF
787 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
789 /* Dynamic architecture support for GDB, the GNU debugger.
790
791 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
792 Free Software Foundation, Inc.
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 3 of the License, or
799 (at your option) any later version.
800
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
805
806 You should have received a copy of the GNU General Public License
807 along with this program. If not, see <http://www.gnu.org/licenses/>. */
808
809 /* This file was created with the aid of \`\`gdbarch.sh''.
810
811 The Bourne shell script \`\`gdbarch.sh'' creates the files
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
814 being reported.
815
816 If editing this file, please also run gdbarch.sh and merge any
817 changes into that script. Conversely, when making sweeping changes
818 to this file, modifying gdbarch.sh and using its output may prove
819 easier. */
820
821 EOF
822 }
823
824 #
825 # The .h file
826 #
827
828 exec > new-gdbarch.h
829 copyright
830 cat <<EOF
831 #ifndef GDBARCH_H
832 #define GDBARCH_H
833
834 struct floatformat;
835 struct ui_file;
836 struct frame_info;
837 struct value;
838 struct objfile;
839 struct obj_section;
840 struct minimal_symbol;
841 struct regcache;
842 struct reggroup;
843 struct regset;
844 struct disassemble_info;
845 struct target_ops;
846 struct obstack;
847 struct bp_target_info;
848 struct target_desc;
849 struct displaced_step_closure;
850 struct core_regset_section;
851
852 extern struct gdbarch *current_gdbarch;
853 extern struct gdbarch *target_gdbarch;
854 EOF
855
856 # function typedef's
857 printf "\n"
858 printf "\n"
859 printf "/* The following are pre-initialized by GDBARCH. */\n"
860 function_list | while do_read
861 do
862 if class_is_info_p
863 then
864 printf "\n"
865 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
866 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
867 fi
868 done
869
870 # function typedef's
871 printf "\n"
872 printf "\n"
873 printf "/* The following are initialized by the target dependent code. */\n"
874 function_list | while do_read
875 do
876 if [ -n "${comment}" ]
877 then
878 echo "${comment}" | sed \
879 -e '2 s,#,/*,' \
880 -e '3,$ s,#, ,' \
881 -e '$ s,$, */,'
882 fi
883
884 if class_is_predicate_p
885 then
886 printf "\n"
887 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
888 fi
889 if class_is_variable_p
890 then
891 printf "\n"
892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
893 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
894 fi
895 if class_is_function_p
896 then
897 printf "\n"
898 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
899 then
900 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
901 elif class_is_multiarch_p
902 then
903 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
904 else
905 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
906 fi
907 if [ "x${formal}" = "xvoid" ]
908 then
909 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
910 else
911 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
912 fi
913 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
914 fi
915 done
916
917 # close it off
918 cat <<EOF
919
920 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
921
922
923 /* Mechanism for co-ordinating the selection of a specific
924 architecture.
925
926 GDB targets (*-tdep.c) can register an interest in a specific
927 architecture. Other GDB components can register a need to maintain
928 per-architecture data.
929
930 The mechanisms below ensures that there is only a loose connection
931 between the set-architecture command and the various GDB
932 components. Each component can independently register their need
933 to maintain architecture specific data with gdbarch.
934
935 Pragmatics:
936
937 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
938 didn't scale.
939
940 The more traditional mega-struct containing architecture specific
941 data for all the various GDB components was also considered. Since
942 GDB is built from a variable number of (fairly independent)
943 components it was determined that the global aproach was not
944 applicable. */
945
946
947 /* Register a new architectural family with GDB.
948
949 Register support for the specified ARCHITECTURE with GDB. When
950 gdbarch determines that the specified architecture has been
951 selected, the corresponding INIT function is called.
952
953 --
954
955 The INIT function takes two parameters: INFO which contains the
956 information available to gdbarch about the (possibly new)
957 architecture; ARCHES which is a list of the previously created
958 \`\`struct gdbarch'' for this architecture.
959
960 The INFO parameter is, as far as possible, be pre-initialized with
961 information obtained from INFO.ABFD or the global defaults.
962
963 The ARCHES parameter is a linked list (sorted most recently used)
964 of all the previously created architures for this architecture
965 family. The (possibly NULL) ARCHES->gdbarch can used to access
966 values from the previously selected architecture for this
967 architecture family. The global \`\`current_gdbarch'' shall not be
968 used.
969
970 The INIT function shall return any of: NULL - indicating that it
971 doesn't recognize the selected architecture; an existing \`\`struct
972 gdbarch'' from the ARCHES list - indicating that the new
973 architecture is just a synonym for an earlier architecture (see
974 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
975 - that describes the selected architecture (see gdbarch_alloc()).
976
977 The DUMP_TDEP function shall print out all target specific values.
978 Care should be taken to ensure that the function works in both the
979 multi-arch and non- multi-arch cases. */
980
981 struct gdbarch_list
982 {
983 struct gdbarch *gdbarch;
984 struct gdbarch_list *next;
985 };
986
987 struct gdbarch_info
988 {
989 /* Use default: NULL (ZERO). */
990 const struct bfd_arch_info *bfd_arch_info;
991
992 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
993 int byte_order;
994
995 int byte_order_for_code;
996
997 /* Use default: NULL (ZERO). */
998 bfd *abfd;
999
1000 /* Use default: NULL (ZERO). */
1001 struct gdbarch_tdep_info *tdep_info;
1002
1003 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1004 enum gdb_osabi osabi;
1005
1006 /* Use default: NULL (ZERO). */
1007 const struct target_desc *target_desc;
1008 };
1009
1010 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1011 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1012
1013 /* DEPRECATED - use gdbarch_register() */
1014 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1015
1016 extern void gdbarch_register (enum bfd_architecture architecture,
1017 gdbarch_init_ftype *,
1018 gdbarch_dump_tdep_ftype *);
1019
1020
1021 /* Return a freshly allocated, NULL terminated, array of the valid
1022 architecture names. Since architectures are registered during the
1023 _initialize phase this function only returns useful information
1024 once initialization has been completed. */
1025
1026 extern const char **gdbarch_printable_names (void);
1027
1028
1029 /* Helper function. Search the list of ARCHES for a GDBARCH that
1030 matches the information provided by INFO. */
1031
1032 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1033
1034
1035 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1036 basic initialization using values obtained from the INFO and TDEP
1037 parameters. set_gdbarch_*() functions are called to complete the
1038 initialization of the object. */
1039
1040 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1041
1042
1043 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1044 It is assumed that the caller freeds the \`\`struct
1045 gdbarch_tdep''. */
1046
1047 extern void gdbarch_free (struct gdbarch *);
1048
1049
1050 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1051 obstack. The memory is freed when the corresponding architecture
1052 is also freed. */
1053
1054 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1055 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1056 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1057
1058
1059 /* Helper function. Force an update of the current architecture.
1060
1061 The actual architecture selected is determined by INFO, \`\`(gdb) set
1062 architecture'' et.al., the existing architecture and BFD's default
1063 architecture. INFO should be initialized to zero and then selected
1064 fields should be updated.
1065
1066 Returns non-zero if the update succeeds */
1067
1068 extern int gdbarch_update_p (struct gdbarch_info info);
1069
1070
1071 /* Helper function. Find an architecture matching info.
1072
1073 INFO should be initialized using gdbarch_info_init, relevant fields
1074 set, and then finished using gdbarch_info_fill.
1075
1076 Returns the corresponding architecture, or NULL if no matching
1077 architecture was found. "current_gdbarch" is not updated. */
1078
1079 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1080
1081
1082 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1083
1084 FIXME: kettenis/20031124: Of the functions that follow, only
1085 gdbarch_from_bfd is supposed to survive. The others will
1086 dissappear since in the future GDB will (hopefully) be truly
1087 multi-arch. However, for now we're still stuck with the concept of
1088 a single active architecture. */
1089
1090 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1091
1092
1093 /* Register per-architecture data-pointer.
1094
1095 Reserve space for a per-architecture data-pointer. An identifier
1096 for the reserved data-pointer is returned. That identifer should
1097 be saved in a local static variable.
1098
1099 Memory for the per-architecture data shall be allocated using
1100 gdbarch_obstack_zalloc. That memory will be deleted when the
1101 corresponding architecture object is deleted.
1102
1103 When a previously created architecture is re-selected, the
1104 per-architecture data-pointer for that previous architecture is
1105 restored. INIT() is not re-called.
1106
1107 Multiple registrarants for any architecture are allowed (and
1108 strongly encouraged). */
1109
1110 struct gdbarch_data;
1111
1112 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1113 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1114 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1115 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1116 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1117 struct gdbarch_data *data,
1118 void *pointer);
1119
1120 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1121
1122
1123 /* Set the dynamic target-system-dependent parameters (architecture,
1124 byte-order, ...) using information found in the BFD */
1125
1126 extern void set_gdbarch_from_file (bfd *);
1127
1128
1129 /* Initialize the current architecture to the "first" one we find on
1130 our list. */
1131
1132 extern void initialize_current_architecture (void);
1133
1134 /* gdbarch trace variable */
1135 extern int gdbarch_debug;
1136
1137 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1138
1139 #endif
1140 EOF
1141 exec 1>&2
1142 #../move-if-change new-gdbarch.h gdbarch.h
1143 compare_new gdbarch.h
1144
1145
1146 #
1147 # C file
1148 #
1149
1150 exec > new-gdbarch.c
1151 copyright
1152 cat <<EOF
1153
1154 #include "defs.h"
1155 #include "arch-utils.h"
1156
1157 #include "gdbcmd.h"
1158 #include "inferior.h"
1159 #include "symcat.h"
1160
1161 #include "floatformat.h"
1162
1163 #include "gdb_assert.h"
1164 #include "gdb_string.h"
1165 #include "reggroups.h"
1166 #include "osabi.h"
1167 #include "gdb_obstack.h"
1168 #include "observer.h"
1169 #include "regcache.h"
1170
1171 /* Static function declarations */
1172
1173 static void alloc_gdbarch_data (struct gdbarch *);
1174
1175 /* Non-zero if we want to trace architecture code. */
1176
1177 #ifndef GDBARCH_DEBUG
1178 #define GDBARCH_DEBUG 0
1179 #endif
1180 int gdbarch_debug = GDBARCH_DEBUG;
1181 static void
1182 show_gdbarch_debug (struct ui_file *file, int from_tty,
1183 struct cmd_list_element *c, const char *value)
1184 {
1185 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1186 }
1187
1188 static const char *
1189 pformat (const struct floatformat **format)
1190 {
1191 if (format == NULL)
1192 return "(null)";
1193 else
1194 /* Just print out one of them - this is only for diagnostics. */
1195 return format[0]->name;
1196 }
1197
1198 EOF
1199
1200 # gdbarch open the gdbarch object
1201 printf "\n"
1202 printf "/* Maintain the struct gdbarch object */\n"
1203 printf "\n"
1204 printf "struct gdbarch\n"
1205 printf "{\n"
1206 printf " /* Has this architecture been fully initialized? */\n"
1207 printf " int initialized_p;\n"
1208 printf "\n"
1209 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1210 printf " struct obstack *obstack;\n"
1211 printf "\n"
1212 printf " /* basic architectural information */\n"
1213 function_list | while do_read
1214 do
1215 if class_is_info_p
1216 then
1217 printf " ${returntype} ${function};\n"
1218 fi
1219 done
1220 printf "\n"
1221 printf " /* target specific vector. */\n"
1222 printf " struct gdbarch_tdep *tdep;\n"
1223 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1224 printf "\n"
1225 printf " /* per-architecture data-pointers */\n"
1226 printf " unsigned nr_data;\n"
1227 printf " void **data;\n"
1228 printf "\n"
1229 printf " /* per-architecture swap-regions */\n"
1230 printf " struct gdbarch_swap *swap;\n"
1231 printf "\n"
1232 cat <<EOF
1233 /* Multi-arch values.
1234
1235 When extending this structure you must:
1236
1237 Add the field below.
1238
1239 Declare set/get functions and define the corresponding
1240 macro in gdbarch.h.
1241
1242 gdbarch_alloc(): If zero/NULL is not a suitable default,
1243 initialize the new field.
1244
1245 verify_gdbarch(): Confirm that the target updated the field
1246 correctly.
1247
1248 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1249 field is dumped out
1250
1251 \`\`startup_gdbarch()'': Append an initial value to the static
1252 variable (base values on the host's c-type system).
1253
1254 get_gdbarch(): Implement the set/get functions (probably using
1255 the macro's as shortcuts).
1256
1257 */
1258
1259 EOF
1260 function_list | while do_read
1261 do
1262 if class_is_variable_p
1263 then
1264 printf " ${returntype} ${function};\n"
1265 elif class_is_function_p
1266 then
1267 printf " gdbarch_${function}_ftype *${function};\n"
1268 fi
1269 done
1270 printf "};\n"
1271
1272 # A pre-initialized vector
1273 printf "\n"
1274 printf "\n"
1275 cat <<EOF
1276 /* The default architecture uses host values (for want of a better
1277 choice). */
1278 EOF
1279 printf "\n"
1280 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1281 printf "\n"
1282 printf "struct gdbarch startup_gdbarch =\n"
1283 printf "{\n"
1284 printf " 1, /* Always initialized. */\n"
1285 printf " NULL, /* The obstack. */\n"
1286 printf " /* basic architecture information */\n"
1287 function_list | while do_read
1288 do
1289 if class_is_info_p
1290 then
1291 printf " ${staticdefault}, /* ${function} */\n"
1292 fi
1293 done
1294 cat <<EOF
1295 /* target specific vector and its dump routine */
1296 NULL, NULL,
1297 /*per-architecture data-pointers and swap regions */
1298 0, NULL, NULL,
1299 /* Multi-arch values */
1300 EOF
1301 function_list | while do_read
1302 do
1303 if class_is_function_p || class_is_variable_p
1304 then
1305 printf " ${staticdefault}, /* ${function} */\n"
1306 fi
1307 done
1308 cat <<EOF
1309 /* startup_gdbarch() */
1310 };
1311
1312 struct gdbarch *current_gdbarch = &startup_gdbarch;
1313 struct gdbarch *target_gdbarch = &startup_gdbarch;
1314 EOF
1315
1316 # Create a new gdbarch struct
1317 cat <<EOF
1318
1319 /* Create a new \`\`struct gdbarch'' based on information provided by
1320 \`\`struct gdbarch_info''. */
1321 EOF
1322 printf "\n"
1323 cat <<EOF
1324 struct gdbarch *
1325 gdbarch_alloc (const struct gdbarch_info *info,
1326 struct gdbarch_tdep *tdep)
1327 {
1328 struct gdbarch *gdbarch;
1329
1330 /* Create an obstack for allocating all the per-architecture memory,
1331 then use that to allocate the architecture vector. */
1332 struct obstack *obstack = XMALLOC (struct obstack);
1333 obstack_init (obstack);
1334 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1335 memset (gdbarch, 0, sizeof (*gdbarch));
1336 gdbarch->obstack = obstack;
1337
1338 alloc_gdbarch_data (gdbarch);
1339
1340 gdbarch->tdep = tdep;
1341 EOF
1342 printf "\n"
1343 function_list | while do_read
1344 do
1345 if class_is_info_p
1346 then
1347 printf " gdbarch->${function} = info->${function};\n"
1348 fi
1349 done
1350 printf "\n"
1351 printf " /* Force the explicit initialization of these. */\n"
1352 function_list | while do_read
1353 do
1354 if class_is_function_p || class_is_variable_p
1355 then
1356 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1357 then
1358 printf " gdbarch->${function} = ${predefault};\n"
1359 fi
1360 fi
1361 done
1362 cat <<EOF
1363 /* gdbarch_alloc() */
1364
1365 return gdbarch;
1366 }
1367 EOF
1368
1369 # Free a gdbarch struct.
1370 printf "\n"
1371 printf "\n"
1372 cat <<EOF
1373 /* Allocate extra space using the per-architecture obstack. */
1374
1375 void *
1376 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1377 {
1378 void *data = obstack_alloc (arch->obstack, size);
1379 memset (data, 0, size);
1380 return data;
1381 }
1382
1383
1384 /* Free a gdbarch struct. This should never happen in normal
1385 operation --- once you've created a gdbarch, you keep it around.
1386 However, if an architecture's init function encounters an error
1387 building the structure, it may need to clean up a partially
1388 constructed gdbarch. */
1389
1390 void
1391 gdbarch_free (struct gdbarch *arch)
1392 {
1393 struct obstack *obstack;
1394 gdb_assert (arch != NULL);
1395 gdb_assert (!arch->initialized_p);
1396 obstack = arch->obstack;
1397 obstack_free (obstack, 0); /* Includes the ARCH. */
1398 xfree (obstack);
1399 }
1400 EOF
1401
1402 # verify a new architecture
1403 cat <<EOF
1404
1405
1406 /* Ensure that all values in a GDBARCH are reasonable. */
1407
1408 static void
1409 verify_gdbarch (struct gdbarch *gdbarch)
1410 {
1411 struct ui_file *log;
1412 struct cleanup *cleanups;
1413 long dummy;
1414 char *buf;
1415 log = mem_fileopen ();
1416 cleanups = make_cleanup_ui_file_delete (log);
1417 /* fundamental */
1418 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1419 fprintf_unfiltered (log, "\n\tbyte-order");
1420 if (gdbarch->bfd_arch_info == NULL)
1421 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1422 /* Check those that need to be defined for the given multi-arch level. */
1423 EOF
1424 function_list | while do_read
1425 do
1426 if class_is_function_p || class_is_variable_p
1427 then
1428 if [ "x${invalid_p}" = "x0" ]
1429 then
1430 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1431 elif class_is_predicate_p
1432 then
1433 printf " /* Skip verify of ${function}, has predicate */\n"
1434 # FIXME: See do_read for potential simplification
1435 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1436 then
1437 printf " if (${invalid_p})\n"
1438 printf " gdbarch->${function} = ${postdefault};\n"
1439 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1440 then
1441 printf " if (gdbarch->${function} == ${predefault})\n"
1442 printf " gdbarch->${function} = ${postdefault};\n"
1443 elif [ -n "${postdefault}" ]
1444 then
1445 printf " if (gdbarch->${function} == 0)\n"
1446 printf " gdbarch->${function} = ${postdefault};\n"
1447 elif [ -n "${invalid_p}" ]
1448 then
1449 printf " if (${invalid_p})\n"
1450 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1451 elif [ -n "${predefault}" ]
1452 then
1453 printf " if (gdbarch->${function} == ${predefault})\n"
1454 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1455 fi
1456 fi
1457 done
1458 cat <<EOF
1459 buf = ui_file_xstrdup (log, &dummy);
1460 make_cleanup (xfree, buf);
1461 if (strlen (buf) > 0)
1462 internal_error (__FILE__, __LINE__,
1463 _("verify_gdbarch: the following are invalid ...%s"),
1464 buf);
1465 do_cleanups (cleanups);
1466 }
1467 EOF
1468
1469 # dump the structure
1470 printf "\n"
1471 printf "\n"
1472 cat <<EOF
1473 /* Print out the details of the current architecture. */
1474
1475 void
1476 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1477 {
1478 const char *gdb_nm_file = "<not-defined>";
1479 #if defined (GDB_NM_FILE)
1480 gdb_nm_file = GDB_NM_FILE;
1481 #endif
1482 fprintf_unfiltered (file,
1483 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1484 gdb_nm_file);
1485 EOF
1486 function_list | sort -t: -k 3 | while do_read
1487 do
1488 # First the predicate
1489 if class_is_predicate_p
1490 then
1491 printf " fprintf_unfiltered (file,\n"
1492 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1493 printf " gdbarch_${function}_p (gdbarch));\n"
1494 fi
1495 # Print the corresponding value.
1496 if class_is_function_p
1497 then
1498 printf " fprintf_unfiltered (file,\n"
1499 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1500 printf " host_address_to_string (gdbarch->${function}));\n"
1501 else
1502 # It is a variable
1503 case "${print}:${returntype}" in
1504 :CORE_ADDR )
1505 fmt="%s"
1506 print="core_addr_to_string_nz (gdbarch->${function})"
1507 ;;
1508 :* )
1509 fmt="%s"
1510 print="plongest (gdbarch->${function})"
1511 ;;
1512 * )
1513 fmt="%s"
1514 ;;
1515 esac
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1518 printf " ${print});\n"
1519 fi
1520 done
1521 cat <<EOF
1522 if (gdbarch->dump_tdep != NULL)
1523 gdbarch->dump_tdep (gdbarch, file);
1524 }
1525 EOF
1526
1527
1528 # GET/SET
1529 printf "\n"
1530 cat <<EOF
1531 struct gdbarch_tdep *
1532 gdbarch_tdep (struct gdbarch *gdbarch)
1533 {
1534 if (gdbarch_debug >= 2)
1535 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1536 return gdbarch->tdep;
1537 }
1538 EOF
1539 printf "\n"
1540 function_list | while do_read
1541 do
1542 if class_is_predicate_p
1543 then
1544 printf "\n"
1545 printf "int\n"
1546 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1547 printf "{\n"
1548 printf " gdb_assert (gdbarch != NULL);\n"
1549 printf " return ${predicate};\n"
1550 printf "}\n"
1551 fi
1552 if class_is_function_p
1553 then
1554 printf "\n"
1555 printf "${returntype}\n"
1556 if [ "x${formal}" = "xvoid" ]
1557 then
1558 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1559 else
1560 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1561 fi
1562 printf "{\n"
1563 printf " gdb_assert (gdbarch != NULL);\n"
1564 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1565 if class_is_predicate_p && test -n "${predefault}"
1566 then
1567 # Allow a call to a function with a predicate.
1568 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1569 fi
1570 printf " if (gdbarch_debug >= 2)\n"
1571 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1572 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1573 then
1574 if class_is_multiarch_p
1575 then
1576 params="gdbarch"
1577 else
1578 params=""
1579 fi
1580 else
1581 if class_is_multiarch_p
1582 then
1583 params="gdbarch, ${actual}"
1584 else
1585 params="${actual}"
1586 fi
1587 fi
1588 if [ "x${returntype}" = "xvoid" ]
1589 then
1590 printf " gdbarch->${function} (${params});\n"
1591 else
1592 printf " return gdbarch->${function} (${params});\n"
1593 fi
1594 printf "}\n"
1595 printf "\n"
1596 printf "void\n"
1597 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1598 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1599 printf "{\n"
1600 printf " gdbarch->${function} = ${function};\n"
1601 printf "}\n"
1602 elif class_is_variable_p
1603 then
1604 printf "\n"
1605 printf "${returntype}\n"
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1607 printf "{\n"
1608 printf " gdb_assert (gdbarch != NULL);\n"
1609 if [ "x${invalid_p}" = "x0" ]
1610 then
1611 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1612 elif [ -n "${invalid_p}" ]
1613 then
1614 printf " /* Check variable is valid. */\n"
1615 printf " gdb_assert (!(${invalid_p}));\n"
1616 elif [ -n "${predefault}" ]
1617 then
1618 printf " /* Check variable changed from pre-default. */\n"
1619 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1620 fi
1621 printf " if (gdbarch_debug >= 2)\n"
1622 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1623 printf " return gdbarch->${function};\n"
1624 printf "}\n"
1625 printf "\n"
1626 printf "void\n"
1627 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1628 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1629 printf "{\n"
1630 printf " gdbarch->${function} = ${function};\n"
1631 printf "}\n"
1632 elif class_is_info_p
1633 then
1634 printf "\n"
1635 printf "${returntype}\n"
1636 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1637 printf "{\n"
1638 printf " gdb_assert (gdbarch != NULL);\n"
1639 printf " if (gdbarch_debug >= 2)\n"
1640 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1641 printf " return gdbarch->${function};\n"
1642 printf "}\n"
1643 fi
1644 done
1645
1646 # All the trailing guff
1647 cat <<EOF
1648
1649
1650 /* Keep a registry of per-architecture data-pointers required by GDB
1651 modules. */
1652
1653 struct gdbarch_data
1654 {
1655 unsigned index;
1656 int init_p;
1657 gdbarch_data_pre_init_ftype *pre_init;
1658 gdbarch_data_post_init_ftype *post_init;
1659 };
1660
1661 struct gdbarch_data_registration
1662 {
1663 struct gdbarch_data *data;
1664 struct gdbarch_data_registration *next;
1665 };
1666
1667 struct gdbarch_data_registry
1668 {
1669 unsigned nr;
1670 struct gdbarch_data_registration *registrations;
1671 };
1672
1673 struct gdbarch_data_registry gdbarch_data_registry =
1674 {
1675 0, NULL,
1676 };
1677
1678 static struct gdbarch_data *
1679 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1680 gdbarch_data_post_init_ftype *post_init)
1681 {
1682 struct gdbarch_data_registration **curr;
1683 /* Append the new registraration. */
1684 for (curr = &gdbarch_data_registry.registrations;
1685 (*curr) != NULL;
1686 curr = &(*curr)->next);
1687 (*curr) = XMALLOC (struct gdbarch_data_registration);
1688 (*curr)->next = NULL;
1689 (*curr)->data = XMALLOC (struct gdbarch_data);
1690 (*curr)->data->index = gdbarch_data_registry.nr++;
1691 (*curr)->data->pre_init = pre_init;
1692 (*curr)->data->post_init = post_init;
1693 (*curr)->data->init_p = 1;
1694 return (*curr)->data;
1695 }
1696
1697 struct gdbarch_data *
1698 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1699 {
1700 return gdbarch_data_register (pre_init, NULL);
1701 }
1702
1703 struct gdbarch_data *
1704 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1705 {
1706 return gdbarch_data_register (NULL, post_init);
1707 }
1708
1709 /* Create/delete the gdbarch data vector. */
1710
1711 static void
1712 alloc_gdbarch_data (struct gdbarch *gdbarch)
1713 {
1714 gdb_assert (gdbarch->data == NULL);
1715 gdbarch->nr_data = gdbarch_data_registry.nr;
1716 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1717 }
1718
1719 /* Initialize the current value of the specified per-architecture
1720 data-pointer. */
1721
1722 void
1723 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1724 struct gdbarch_data *data,
1725 void *pointer)
1726 {
1727 gdb_assert (data->index < gdbarch->nr_data);
1728 gdb_assert (gdbarch->data[data->index] == NULL);
1729 gdb_assert (data->pre_init == NULL);
1730 gdbarch->data[data->index] = pointer;
1731 }
1732
1733 /* Return the current value of the specified per-architecture
1734 data-pointer. */
1735
1736 void *
1737 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1738 {
1739 gdb_assert (data->index < gdbarch->nr_data);
1740 if (gdbarch->data[data->index] == NULL)
1741 {
1742 /* The data-pointer isn't initialized, call init() to get a
1743 value. */
1744 if (data->pre_init != NULL)
1745 /* Mid architecture creation: pass just the obstack, and not
1746 the entire architecture, as that way it isn't possible for
1747 pre-init code to refer to undefined architecture
1748 fields. */
1749 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1750 else if (gdbarch->initialized_p
1751 && data->post_init != NULL)
1752 /* Post architecture creation: pass the entire architecture
1753 (as all fields are valid), but be careful to also detect
1754 recursive references. */
1755 {
1756 gdb_assert (data->init_p);
1757 data->init_p = 0;
1758 gdbarch->data[data->index] = data->post_init (gdbarch);
1759 data->init_p = 1;
1760 }
1761 else
1762 /* The architecture initialization hasn't completed - punt -
1763 hope that the caller knows what they are doing. Once
1764 deprecated_set_gdbarch_data has been initialized, this can be
1765 changed to an internal error. */
1766 return NULL;
1767 gdb_assert (gdbarch->data[data->index] != NULL);
1768 }
1769 return gdbarch->data[data->index];
1770 }
1771
1772
1773 /* Keep a registry of the architectures known by GDB. */
1774
1775 struct gdbarch_registration
1776 {
1777 enum bfd_architecture bfd_architecture;
1778 gdbarch_init_ftype *init;
1779 gdbarch_dump_tdep_ftype *dump_tdep;
1780 struct gdbarch_list *arches;
1781 struct gdbarch_registration *next;
1782 };
1783
1784 static struct gdbarch_registration *gdbarch_registry = NULL;
1785
1786 static void
1787 append_name (const char ***buf, int *nr, const char *name)
1788 {
1789 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1790 (*buf)[*nr] = name;
1791 *nr += 1;
1792 }
1793
1794 const char **
1795 gdbarch_printable_names (void)
1796 {
1797 /* Accumulate a list of names based on the registed list of
1798 architectures. */
1799 enum bfd_architecture a;
1800 int nr_arches = 0;
1801 const char **arches = NULL;
1802 struct gdbarch_registration *rego;
1803 for (rego = gdbarch_registry;
1804 rego != NULL;
1805 rego = rego->next)
1806 {
1807 const struct bfd_arch_info *ap;
1808 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1809 if (ap == NULL)
1810 internal_error (__FILE__, __LINE__,
1811 _("gdbarch_architecture_names: multi-arch unknown"));
1812 do
1813 {
1814 append_name (&arches, &nr_arches, ap->printable_name);
1815 ap = ap->next;
1816 }
1817 while (ap != NULL);
1818 }
1819 append_name (&arches, &nr_arches, NULL);
1820 return arches;
1821 }
1822
1823
1824 void
1825 gdbarch_register (enum bfd_architecture bfd_architecture,
1826 gdbarch_init_ftype *init,
1827 gdbarch_dump_tdep_ftype *dump_tdep)
1828 {
1829 struct gdbarch_registration **curr;
1830 const struct bfd_arch_info *bfd_arch_info;
1831 /* Check that BFD recognizes this architecture */
1832 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1833 if (bfd_arch_info == NULL)
1834 {
1835 internal_error (__FILE__, __LINE__,
1836 _("gdbarch: Attempt to register unknown architecture (%d)"),
1837 bfd_architecture);
1838 }
1839 /* Check that we haven't seen this architecture before */
1840 for (curr = &gdbarch_registry;
1841 (*curr) != NULL;
1842 curr = &(*curr)->next)
1843 {
1844 if (bfd_architecture == (*curr)->bfd_architecture)
1845 internal_error (__FILE__, __LINE__,
1846 _("gdbarch: Duplicate registraration of architecture (%s)"),
1847 bfd_arch_info->printable_name);
1848 }
1849 /* log it */
1850 if (gdbarch_debug)
1851 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1852 bfd_arch_info->printable_name,
1853 host_address_to_string (init));
1854 /* Append it */
1855 (*curr) = XMALLOC (struct gdbarch_registration);
1856 (*curr)->bfd_architecture = bfd_architecture;
1857 (*curr)->init = init;
1858 (*curr)->dump_tdep = dump_tdep;
1859 (*curr)->arches = NULL;
1860 (*curr)->next = NULL;
1861 }
1862
1863 void
1864 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1865 gdbarch_init_ftype *init)
1866 {
1867 gdbarch_register (bfd_architecture, init, NULL);
1868 }
1869
1870
1871 /* Look for an architecture using gdbarch_info. */
1872
1873 struct gdbarch_list *
1874 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1875 const struct gdbarch_info *info)
1876 {
1877 for (; arches != NULL; arches = arches->next)
1878 {
1879 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1880 continue;
1881 if (info->byte_order != arches->gdbarch->byte_order)
1882 continue;
1883 if (info->osabi != arches->gdbarch->osabi)
1884 continue;
1885 if (info->target_desc != arches->gdbarch->target_desc)
1886 continue;
1887 return arches;
1888 }
1889 return NULL;
1890 }
1891
1892
1893 /* Find an architecture that matches the specified INFO. Create a new
1894 architecture if needed. Return that new architecture. Assumes
1895 that there is no current architecture. */
1896
1897 static struct gdbarch *
1898 find_arch_by_info (struct gdbarch_info info)
1899 {
1900 struct gdbarch *new_gdbarch;
1901 struct gdbarch_registration *rego;
1902
1903 /* The existing architecture has been swapped out - all this code
1904 works from a clean slate. */
1905 gdb_assert (current_gdbarch == NULL);
1906
1907 /* Fill in missing parts of the INFO struct using a number of
1908 sources: "set ..."; INFOabfd supplied; and the global
1909 defaults. */
1910 gdbarch_info_fill (&info);
1911
1912 /* Must have found some sort of architecture. */
1913 gdb_assert (info.bfd_arch_info != NULL);
1914
1915 if (gdbarch_debug)
1916 {
1917 fprintf_unfiltered (gdb_stdlog,
1918 "find_arch_by_info: info.bfd_arch_info %s\n",
1919 (info.bfd_arch_info != NULL
1920 ? info.bfd_arch_info->printable_name
1921 : "(null)"));
1922 fprintf_unfiltered (gdb_stdlog,
1923 "find_arch_by_info: info.byte_order %d (%s)\n",
1924 info.byte_order,
1925 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1926 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1927 : "default"));
1928 fprintf_unfiltered (gdb_stdlog,
1929 "find_arch_by_info: info.osabi %d (%s)\n",
1930 info.osabi, gdbarch_osabi_name (info.osabi));
1931 fprintf_unfiltered (gdb_stdlog,
1932 "find_arch_by_info: info.abfd %s\n",
1933 host_address_to_string (info.abfd));
1934 fprintf_unfiltered (gdb_stdlog,
1935 "find_arch_by_info: info.tdep_info %s\n",
1936 host_address_to_string (info.tdep_info));
1937 }
1938
1939 /* Find the tdep code that knows about this architecture. */
1940 for (rego = gdbarch_registry;
1941 rego != NULL;
1942 rego = rego->next)
1943 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1944 break;
1945 if (rego == NULL)
1946 {
1947 if (gdbarch_debug)
1948 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1949 "No matching architecture\n");
1950 return 0;
1951 }
1952
1953 /* Ask the tdep code for an architecture that matches "info". */
1954 new_gdbarch = rego->init (info, rego->arches);
1955
1956 /* Did the tdep code like it? No. Reject the change and revert to
1957 the old architecture. */
1958 if (new_gdbarch == NULL)
1959 {
1960 if (gdbarch_debug)
1961 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1962 "Target rejected architecture\n");
1963 return NULL;
1964 }
1965
1966 /* Is this a pre-existing architecture (as determined by already
1967 being initialized)? Move it to the front of the architecture
1968 list (keeping the list sorted Most Recently Used). */
1969 if (new_gdbarch->initialized_p)
1970 {
1971 struct gdbarch_list **list;
1972 struct gdbarch_list *this;
1973 if (gdbarch_debug)
1974 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1975 "Previous architecture %s (%s) selected\n",
1976 host_address_to_string (new_gdbarch),
1977 new_gdbarch->bfd_arch_info->printable_name);
1978 /* Find the existing arch in the list. */
1979 for (list = &rego->arches;
1980 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1981 list = &(*list)->next);
1982 /* It had better be in the list of architectures. */
1983 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1984 /* Unlink THIS. */
1985 this = (*list);
1986 (*list) = this->next;
1987 /* Insert THIS at the front. */
1988 this->next = rego->arches;
1989 rego->arches = this;
1990 /* Return it. */
1991 return new_gdbarch;
1992 }
1993
1994 /* It's a new architecture. */
1995 if (gdbarch_debug)
1996 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1997 "New architecture %s (%s) selected\n",
1998 host_address_to_string (new_gdbarch),
1999 new_gdbarch->bfd_arch_info->printable_name);
2000
2001 /* Insert the new architecture into the front of the architecture
2002 list (keep the list sorted Most Recently Used). */
2003 {
2004 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2005 this->next = rego->arches;
2006 this->gdbarch = new_gdbarch;
2007 rego->arches = this;
2008 }
2009
2010 /* Check that the newly installed architecture is valid. Plug in
2011 any post init values. */
2012 new_gdbarch->dump_tdep = rego->dump_tdep;
2013 verify_gdbarch (new_gdbarch);
2014 new_gdbarch->initialized_p = 1;
2015
2016 if (gdbarch_debug)
2017 gdbarch_dump (new_gdbarch, gdb_stdlog);
2018
2019 return new_gdbarch;
2020 }
2021
2022 struct gdbarch *
2023 gdbarch_find_by_info (struct gdbarch_info info)
2024 {
2025 struct gdbarch *new_gdbarch;
2026
2027 /* Save the previously selected architecture, setting the global to
2028 NULL. This stops things like gdbarch->init() trying to use the
2029 previous architecture's configuration. The previous architecture
2030 may not even be of the same architecture family. The most recent
2031 architecture of the same family is found at the head of the
2032 rego->arches list. */
2033 struct gdbarch *old_gdbarch = current_gdbarch;
2034 current_gdbarch = NULL;
2035
2036 /* Find the specified architecture. */
2037 new_gdbarch = find_arch_by_info (info);
2038
2039 /* Restore the existing architecture. */
2040 gdb_assert (current_gdbarch == NULL);
2041 current_gdbarch = old_gdbarch;
2042
2043 return new_gdbarch;
2044 }
2045
2046 /* Make the specified architecture current. */
2047
2048 void
2049 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2050 {
2051 gdb_assert (new_gdbarch != NULL);
2052 gdb_assert (current_gdbarch != NULL);
2053 gdb_assert (new_gdbarch->initialized_p);
2054 current_gdbarch = new_gdbarch;
2055 target_gdbarch = new_gdbarch;
2056 observer_notify_architecture_changed (new_gdbarch);
2057 registers_changed ();
2058 }
2059
2060 extern void _initialize_gdbarch (void);
2061
2062 void
2063 _initialize_gdbarch (void)
2064 {
2065 struct cmd_list_element *c;
2066
2067 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2068 Set architecture debugging."), _("\\
2069 Show architecture debugging."), _("\\
2070 When non-zero, architecture debugging is enabled."),
2071 NULL,
2072 show_gdbarch_debug,
2073 &setdebuglist, &showdebuglist);
2074 }
2075 EOF
2076
2077 # close things off
2078 exec 1>&2
2079 #../move-if-change new-gdbarch.c gdbarch.c
2080 compare_new gdbarch.c
This page took 0.103161 seconds and 4 git commands to generate.