* blockframe.c (find_pc_partial_function_gnu_ifunc): Change type of
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTYPE
507 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
643
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
646
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
649
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
652 # set this to one.
653 v:int:vtable_function_descriptors:::0:0::0
654
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
658
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
661
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
664
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
667 #
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
671 #
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 #
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
683 #
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
686 #
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
689 # here.
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
698 #
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
706 #
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
709 #
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
712 #
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
716 #
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
722 #
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
725 #
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
728 #
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
736 # time.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
757
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
759
760 # Handle special encoding of static variables in stabs debug info.
761 F:char *:static_transform_name:char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
764
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
774
775 # Signal translation: translate inferior's signal (host's) number into
776 # GDB's representation.
777 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
778 # Signal translation: translate GDB's signal number into inferior's host
779 # signal number.
780 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
781
782 # Extra signal info inspection.
783 #
784 # Return a type suitable to inspect extra signal information.
785 M:struct type *:get_siginfo_type:void:
786
787 # Record architecture-specific information from the symbol table.
788 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
789
790 # Function for the 'catch syscall' feature.
791
792 # Get architecture-specific system calls information from registers.
793 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
794
795 # True if the list of shared libraries is one and only for all
796 # processes, as opposed to a list of shared libraries per inferior.
797 # This usually means that all processes, although may or may not share
798 # an address space, will see the same set of symbols at the same
799 # addresses.
800 v:int:has_global_solist:::0:0::0
801
802 # On some targets, even though each inferior has its own private
803 # address space, the debug interface takes care of making breakpoints
804 # visible to all address spaces automatically. For such cases,
805 # this property should be set to true.
806 v:int:has_global_breakpoints:::0:0::0
807
808 # True if inferiors share an address space (e.g., uClinux).
809 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
810
811 # True if a fast tracepoint can be set at an address.
812 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
813
814 # Return the "auto" target charset.
815 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
816 # Return the "auto" target wide charset.
817 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
818
819 # If non-empty, this is a file extension that will be opened in place
820 # of the file extension reported by the shared library list.
821 #
822 # This is most useful for toolchains that use a post-linker tool,
823 # where the names of the files run on the target differ in extension
824 # compared to the names of the files GDB should load for debug info.
825 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
826
827 # If true, the target OS has DOS-based file system semantics. That
828 # is, absolute paths include a drive name, and the backslash is
829 # considered a directory separator.
830 v:int:has_dos_based_file_system:::0:0::0
831
832 # Generate bytecodes to collect the return address in a frame.
833 # Since the bytecodes run on the target, possibly with GDB not even
834 # connected, the full unwinding machinery is not available, and
835 # typically this function will issue bytecodes for one or more likely
836 # places that the return address may be found.
837 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
838
839 # Implement the "info proc" command.
840 M:void:info_proc:char *args, enum info_proc_what what:args, what
841
842 EOF
843 }
844
845 #
846 # The .log file
847 #
848 exec > new-gdbarch.log
849 function_list | while do_read
850 do
851 cat <<EOF
852 ${class} ${returntype} ${function} ($formal)
853 EOF
854 for r in ${read}
855 do
856 eval echo \"\ \ \ \ ${r}=\${${r}}\"
857 done
858 if class_is_predicate_p && fallback_default_p
859 then
860 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
861 kill $$
862 exit 1
863 fi
864 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
865 then
866 echo "Error: postdefault is useless when invalid_p=0" 1>&2
867 kill $$
868 exit 1
869 fi
870 if class_is_multiarch_p
871 then
872 if class_is_predicate_p ; then :
873 elif test "x${predefault}" = "x"
874 then
875 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
876 kill $$
877 exit 1
878 fi
879 fi
880 echo ""
881 done
882
883 exec 1>&2
884 compare_new gdbarch.log
885
886
887 copyright ()
888 {
889 cat <<EOF
890 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
891
892 /* Dynamic architecture support for GDB, the GNU debugger.
893
894 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
895 2007, 2008, 2009 Free Software Foundation, Inc.
896
897 This file is part of GDB.
898
899 This program is free software; you can redistribute it and/or modify
900 it under the terms of the GNU General Public License as published by
901 the Free Software Foundation; either version 3 of the License, or
902 (at your option) any later version.
903
904 This program is distributed in the hope that it will be useful,
905 but WITHOUT ANY WARRANTY; without even the implied warranty of
906 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
907 GNU General Public License for more details.
908
909 You should have received a copy of the GNU General Public License
910 along with this program. If not, see <http://www.gnu.org/licenses/>. */
911
912 /* This file was created with the aid of \`\`gdbarch.sh''.
913
914 The Bourne shell script \`\`gdbarch.sh'' creates the files
915 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
916 against the existing \`\`gdbarch.[hc]''. Any differences found
917 being reported.
918
919 If editing this file, please also run gdbarch.sh and merge any
920 changes into that script. Conversely, when making sweeping changes
921 to this file, modifying gdbarch.sh and using its output may prove
922 easier. */
923
924 EOF
925 }
926
927 #
928 # The .h file
929 #
930
931 exec > new-gdbarch.h
932 copyright
933 cat <<EOF
934 #ifndef GDBARCH_H
935 #define GDBARCH_H
936
937 struct floatformat;
938 struct ui_file;
939 struct frame_info;
940 struct value;
941 struct objfile;
942 struct obj_section;
943 struct minimal_symbol;
944 struct regcache;
945 struct reggroup;
946 struct regset;
947 struct disassemble_info;
948 struct target_ops;
949 struct obstack;
950 struct bp_target_info;
951 struct target_desc;
952 struct displaced_step_closure;
953 struct core_regset_section;
954 struct syscall;
955 struct agent_expr;
956 struct axs_value;
957
958 /* The architecture associated with the connection to the target.
959
960 The architecture vector provides some information that is really
961 a property of the target: The layout of certain packets, for instance;
962 or the solib_ops vector. Etc. To differentiate architecture accesses
963 to per-target properties from per-thread/per-frame/per-objfile properties,
964 accesses to per-target properties should be made through target_gdbarch.
965
966 Eventually, when support for multiple targets is implemented in
967 GDB, this global should be made target-specific. */
968 extern struct gdbarch *target_gdbarch;
969 EOF
970
971 # function typedef's
972 printf "\n"
973 printf "\n"
974 printf "/* The following are pre-initialized by GDBARCH. */\n"
975 function_list | while do_read
976 do
977 if class_is_info_p
978 then
979 printf "\n"
980 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
981 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
982 fi
983 done
984
985 # function typedef's
986 printf "\n"
987 printf "\n"
988 printf "/* The following are initialized by the target dependent code. */\n"
989 function_list | while do_read
990 do
991 if [ -n "${comment}" ]
992 then
993 echo "${comment}" | sed \
994 -e '2 s,#,/*,' \
995 -e '3,$ s,#, ,' \
996 -e '$ s,$, */,'
997 fi
998
999 if class_is_predicate_p
1000 then
1001 printf "\n"
1002 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1003 fi
1004 if class_is_variable_p
1005 then
1006 printf "\n"
1007 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1008 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1009 fi
1010 if class_is_function_p
1011 then
1012 printf "\n"
1013 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1014 then
1015 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1016 elif class_is_multiarch_p
1017 then
1018 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1019 else
1020 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1021 fi
1022 if [ "x${formal}" = "xvoid" ]
1023 then
1024 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1025 else
1026 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1027 fi
1028 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1029 fi
1030 done
1031
1032 # close it off
1033 cat <<EOF
1034
1035 /* Definition for an unknown syscall, used basically in error-cases. */
1036 #define UNKNOWN_SYSCALL (-1)
1037
1038 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1039
1040
1041 /* Mechanism for co-ordinating the selection of a specific
1042 architecture.
1043
1044 GDB targets (*-tdep.c) can register an interest in a specific
1045 architecture. Other GDB components can register a need to maintain
1046 per-architecture data.
1047
1048 The mechanisms below ensures that there is only a loose connection
1049 between the set-architecture command and the various GDB
1050 components. Each component can independently register their need
1051 to maintain architecture specific data with gdbarch.
1052
1053 Pragmatics:
1054
1055 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1056 didn't scale.
1057
1058 The more traditional mega-struct containing architecture specific
1059 data for all the various GDB components was also considered. Since
1060 GDB is built from a variable number of (fairly independent)
1061 components it was determined that the global aproach was not
1062 applicable. */
1063
1064
1065 /* Register a new architectural family with GDB.
1066
1067 Register support for the specified ARCHITECTURE with GDB. When
1068 gdbarch determines that the specified architecture has been
1069 selected, the corresponding INIT function is called.
1070
1071 --
1072
1073 The INIT function takes two parameters: INFO which contains the
1074 information available to gdbarch about the (possibly new)
1075 architecture; ARCHES which is a list of the previously created
1076 \`\`struct gdbarch'' for this architecture.
1077
1078 The INFO parameter is, as far as possible, be pre-initialized with
1079 information obtained from INFO.ABFD or the global defaults.
1080
1081 The ARCHES parameter is a linked list (sorted most recently used)
1082 of all the previously created architures for this architecture
1083 family. The (possibly NULL) ARCHES->gdbarch can used to access
1084 values from the previously selected architecture for this
1085 architecture family.
1086
1087 The INIT function shall return any of: NULL - indicating that it
1088 doesn't recognize the selected architecture; an existing \`\`struct
1089 gdbarch'' from the ARCHES list - indicating that the new
1090 architecture is just a synonym for an earlier architecture (see
1091 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1092 - that describes the selected architecture (see gdbarch_alloc()).
1093
1094 The DUMP_TDEP function shall print out all target specific values.
1095 Care should be taken to ensure that the function works in both the
1096 multi-arch and non- multi-arch cases. */
1097
1098 struct gdbarch_list
1099 {
1100 struct gdbarch *gdbarch;
1101 struct gdbarch_list *next;
1102 };
1103
1104 struct gdbarch_info
1105 {
1106 /* Use default: NULL (ZERO). */
1107 const struct bfd_arch_info *bfd_arch_info;
1108
1109 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1110 int byte_order;
1111
1112 int byte_order_for_code;
1113
1114 /* Use default: NULL (ZERO). */
1115 bfd *abfd;
1116
1117 /* Use default: NULL (ZERO). */
1118 struct gdbarch_tdep_info *tdep_info;
1119
1120 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1121 enum gdb_osabi osabi;
1122
1123 /* Use default: NULL (ZERO). */
1124 const struct target_desc *target_desc;
1125 };
1126
1127 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1128 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1129
1130 /* DEPRECATED - use gdbarch_register() */
1131 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1132
1133 extern void gdbarch_register (enum bfd_architecture architecture,
1134 gdbarch_init_ftype *,
1135 gdbarch_dump_tdep_ftype *);
1136
1137
1138 /* Return a freshly allocated, NULL terminated, array of the valid
1139 architecture names. Since architectures are registered during the
1140 _initialize phase this function only returns useful information
1141 once initialization has been completed. */
1142
1143 extern const char **gdbarch_printable_names (void);
1144
1145
1146 /* Helper function. Search the list of ARCHES for a GDBARCH that
1147 matches the information provided by INFO. */
1148
1149 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1150
1151
1152 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1153 basic initialization using values obtained from the INFO and TDEP
1154 parameters. set_gdbarch_*() functions are called to complete the
1155 initialization of the object. */
1156
1157 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1158
1159
1160 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1161 It is assumed that the caller freeds the \`\`struct
1162 gdbarch_tdep''. */
1163
1164 extern void gdbarch_free (struct gdbarch *);
1165
1166
1167 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1168 obstack. The memory is freed when the corresponding architecture
1169 is also freed. */
1170
1171 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1172 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1173 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1174
1175
1176 /* Helper function. Force an update of the current architecture.
1177
1178 The actual architecture selected is determined by INFO, \`\`(gdb) set
1179 architecture'' et.al., the existing architecture and BFD's default
1180 architecture. INFO should be initialized to zero and then selected
1181 fields should be updated.
1182
1183 Returns non-zero if the update succeeds. */
1184
1185 extern int gdbarch_update_p (struct gdbarch_info info);
1186
1187
1188 /* Helper function. Find an architecture matching info.
1189
1190 INFO should be initialized using gdbarch_info_init, relevant fields
1191 set, and then finished using gdbarch_info_fill.
1192
1193 Returns the corresponding architecture, or NULL if no matching
1194 architecture was found. */
1195
1196 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1197
1198
1199 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1200
1201 FIXME: kettenis/20031124: Of the functions that follow, only
1202 gdbarch_from_bfd is supposed to survive. The others will
1203 dissappear since in the future GDB will (hopefully) be truly
1204 multi-arch. However, for now we're still stuck with the concept of
1205 a single active architecture. */
1206
1207 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1208
1209
1210 /* Register per-architecture data-pointer.
1211
1212 Reserve space for a per-architecture data-pointer. An identifier
1213 for the reserved data-pointer is returned. That identifer should
1214 be saved in a local static variable.
1215
1216 Memory for the per-architecture data shall be allocated using
1217 gdbarch_obstack_zalloc. That memory will be deleted when the
1218 corresponding architecture object is deleted.
1219
1220 When a previously created architecture is re-selected, the
1221 per-architecture data-pointer for that previous architecture is
1222 restored. INIT() is not re-called.
1223
1224 Multiple registrarants for any architecture are allowed (and
1225 strongly encouraged). */
1226
1227 struct gdbarch_data;
1228
1229 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1230 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1231 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1232 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1233 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1234 struct gdbarch_data *data,
1235 void *pointer);
1236
1237 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1238
1239
1240 /* Set the dynamic target-system-dependent parameters (architecture,
1241 byte-order, ...) using information found in the BFD. */
1242
1243 extern void set_gdbarch_from_file (bfd *);
1244
1245
1246 /* Initialize the current architecture to the "first" one we find on
1247 our list. */
1248
1249 extern void initialize_current_architecture (void);
1250
1251 /* gdbarch trace variable */
1252 extern int gdbarch_debug;
1253
1254 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1255
1256 #endif
1257 EOF
1258 exec 1>&2
1259 #../move-if-change new-gdbarch.h gdbarch.h
1260 compare_new gdbarch.h
1261
1262
1263 #
1264 # C file
1265 #
1266
1267 exec > new-gdbarch.c
1268 copyright
1269 cat <<EOF
1270
1271 #include "defs.h"
1272 #include "arch-utils.h"
1273
1274 #include "gdbcmd.h"
1275 #include "inferior.h"
1276 #include "symcat.h"
1277
1278 #include "floatformat.h"
1279
1280 #include "gdb_assert.h"
1281 #include "gdb_string.h"
1282 #include "reggroups.h"
1283 #include "osabi.h"
1284 #include "gdb_obstack.h"
1285 #include "observer.h"
1286 #include "regcache.h"
1287
1288 /* Static function declarations */
1289
1290 static void alloc_gdbarch_data (struct gdbarch *);
1291
1292 /* Non-zero if we want to trace architecture code. */
1293
1294 #ifndef GDBARCH_DEBUG
1295 #define GDBARCH_DEBUG 0
1296 #endif
1297 int gdbarch_debug = GDBARCH_DEBUG;
1298 static void
1299 show_gdbarch_debug (struct ui_file *file, int from_tty,
1300 struct cmd_list_element *c, const char *value)
1301 {
1302 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1303 }
1304
1305 static const char *
1306 pformat (const struct floatformat **format)
1307 {
1308 if (format == NULL)
1309 return "(null)";
1310 else
1311 /* Just print out one of them - this is only for diagnostics. */
1312 return format[0]->name;
1313 }
1314
1315 static const char *
1316 pstring (const char *string)
1317 {
1318 if (string == NULL)
1319 return "(null)";
1320 return string;
1321 }
1322
1323 EOF
1324
1325 # gdbarch open the gdbarch object
1326 printf "\n"
1327 printf "/* Maintain the struct gdbarch object. */\n"
1328 printf "\n"
1329 printf "struct gdbarch\n"
1330 printf "{\n"
1331 printf " /* Has this architecture been fully initialized? */\n"
1332 printf " int initialized_p;\n"
1333 printf "\n"
1334 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1335 printf " struct obstack *obstack;\n"
1336 printf "\n"
1337 printf " /* basic architectural information. */\n"
1338 function_list | while do_read
1339 do
1340 if class_is_info_p
1341 then
1342 printf " ${returntype} ${function};\n"
1343 fi
1344 done
1345 printf "\n"
1346 printf " /* target specific vector. */\n"
1347 printf " struct gdbarch_tdep *tdep;\n"
1348 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1349 printf "\n"
1350 printf " /* per-architecture data-pointers. */\n"
1351 printf " unsigned nr_data;\n"
1352 printf " void **data;\n"
1353 printf "\n"
1354 printf " /* per-architecture swap-regions. */\n"
1355 printf " struct gdbarch_swap *swap;\n"
1356 printf "\n"
1357 cat <<EOF
1358 /* Multi-arch values.
1359
1360 When extending this structure you must:
1361
1362 Add the field below.
1363
1364 Declare set/get functions and define the corresponding
1365 macro in gdbarch.h.
1366
1367 gdbarch_alloc(): If zero/NULL is not a suitable default,
1368 initialize the new field.
1369
1370 verify_gdbarch(): Confirm that the target updated the field
1371 correctly.
1372
1373 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1374 field is dumped out
1375
1376 \`\`startup_gdbarch()'': Append an initial value to the static
1377 variable (base values on the host's c-type system).
1378
1379 get_gdbarch(): Implement the set/get functions (probably using
1380 the macro's as shortcuts).
1381
1382 */
1383
1384 EOF
1385 function_list | while do_read
1386 do
1387 if class_is_variable_p
1388 then
1389 printf " ${returntype} ${function};\n"
1390 elif class_is_function_p
1391 then
1392 printf " gdbarch_${function}_ftype *${function};\n"
1393 fi
1394 done
1395 printf "};\n"
1396
1397 # A pre-initialized vector
1398 printf "\n"
1399 printf "\n"
1400 cat <<EOF
1401 /* The default architecture uses host values (for want of a better
1402 choice). */
1403 EOF
1404 printf "\n"
1405 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1406 printf "\n"
1407 printf "struct gdbarch startup_gdbarch =\n"
1408 printf "{\n"
1409 printf " 1, /* Always initialized. */\n"
1410 printf " NULL, /* The obstack. */\n"
1411 printf " /* basic architecture information. */\n"
1412 function_list | while do_read
1413 do
1414 if class_is_info_p
1415 then
1416 printf " ${staticdefault}, /* ${function} */\n"
1417 fi
1418 done
1419 cat <<EOF
1420 /* target specific vector and its dump routine. */
1421 NULL, NULL,
1422 /*per-architecture data-pointers and swap regions. */
1423 0, NULL, NULL,
1424 /* Multi-arch values */
1425 EOF
1426 function_list | while do_read
1427 do
1428 if class_is_function_p || class_is_variable_p
1429 then
1430 printf " ${staticdefault}, /* ${function} */\n"
1431 fi
1432 done
1433 cat <<EOF
1434 /* startup_gdbarch() */
1435 };
1436
1437 struct gdbarch *target_gdbarch = &startup_gdbarch;
1438 EOF
1439
1440 # Create a new gdbarch struct
1441 cat <<EOF
1442
1443 /* Create a new \`\`struct gdbarch'' based on information provided by
1444 \`\`struct gdbarch_info''. */
1445 EOF
1446 printf "\n"
1447 cat <<EOF
1448 struct gdbarch *
1449 gdbarch_alloc (const struct gdbarch_info *info,
1450 struct gdbarch_tdep *tdep)
1451 {
1452 struct gdbarch *gdbarch;
1453
1454 /* Create an obstack for allocating all the per-architecture memory,
1455 then use that to allocate the architecture vector. */
1456 struct obstack *obstack = XMALLOC (struct obstack);
1457 obstack_init (obstack);
1458 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1459 memset (gdbarch, 0, sizeof (*gdbarch));
1460 gdbarch->obstack = obstack;
1461
1462 alloc_gdbarch_data (gdbarch);
1463
1464 gdbarch->tdep = tdep;
1465 EOF
1466 printf "\n"
1467 function_list | while do_read
1468 do
1469 if class_is_info_p
1470 then
1471 printf " gdbarch->${function} = info->${function};\n"
1472 fi
1473 done
1474 printf "\n"
1475 printf " /* Force the explicit initialization of these. */\n"
1476 function_list | while do_read
1477 do
1478 if class_is_function_p || class_is_variable_p
1479 then
1480 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1481 then
1482 printf " gdbarch->${function} = ${predefault};\n"
1483 fi
1484 fi
1485 done
1486 cat <<EOF
1487 /* gdbarch_alloc() */
1488
1489 return gdbarch;
1490 }
1491 EOF
1492
1493 # Free a gdbarch struct.
1494 printf "\n"
1495 printf "\n"
1496 cat <<EOF
1497 /* Allocate extra space using the per-architecture obstack. */
1498
1499 void *
1500 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1501 {
1502 void *data = obstack_alloc (arch->obstack, size);
1503
1504 memset (data, 0, size);
1505 return data;
1506 }
1507
1508
1509 /* Free a gdbarch struct. This should never happen in normal
1510 operation --- once you've created a gdbarch, you keep it around.
1511 However, if an architecture's init function encounters an error
1512 building the structure, it may need to clean up a partially
1513 constructed gdbarch. */
1514
1515 void
1516 gdbarch_free (struct gdbarch *arch)
1517 {
1518 struct obstack *obstack;
1519
1520 gdb_assert (arch != NULL);
1521 gdb_assert (!arch->initialized_p);
1522 obstack = arch->obstack;
1523 obstack_free (obstack, 0); /* Includes the ARCH. */
1524 xfree (obstack);
1525 }
1526 EOF
1527
1528 # verify a new architecture
1529 cat <<EOF
1530
1531
1532 /* Ensure that all values in a GDBARCH are reasonable. */
1533
1534 static void
1535 verify_gdbarch (struct gdbarch *gdbarch)
1536 {
1537 struct ui_file *log;
1538 struct cleanup *cleanups;
1539 long length;
1540 char *buf;
1541
1542 log = mem_fileopen ();
1543 cleanups = make_cleanup_ui_file_delete (log);
1544 /* fundamental */
1545 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1546 fprintf_unfiltered (log, "\n\tbyte-order");
1547 if (gdbarch->bfd_arch_info == NULL)
1548 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1549 /* Check those that need to be defined for the given multi-arch level. */
1550 EOF
1551 function_list | while do_read
1552 do
1553 if class_is_function_p || class_is_variable_p
1554 then
1555 if [ "x${invalid_p}" = "x0" ]
1556 then
1557 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1558 elif class_is_predicate_p
1559 then
1560 printf " /* Skip verify of ${function}, has predicate. */\n"
1561 # FIXME: See do_read for potential simplification
1562 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1563 then
1564 printf " if (${invalid_p})\n"
1565 printf " gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1567 then
1568 printf " if (gdbarch->${function} == ${predefault})\n"
1569 printf " gdbarch->${function} = ${postdefault};\n"
1570 elif [ -n "${postdefault}" ]
1571 then
1572 printf " if (gdbarch->${function} == 0)\n"
1573 printf " gdbarch->${function} = ${postdefault};\n"
1574 elif [ -n "${invalid_p}" ]
1575 then
1576 printf " if (${invalid_p})\n"
1577 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1578 elif [ -n "${predefault}" ]
1579 then
1580 printf " if (gdbarch->${function} == ${predefault})\n"
1581 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1582 fi
1583 fi
1584 done
1585 cat <<EOF
1586 buf = ui_file_xstrdup (log, &length);
1587 make_cleanup (xfree, buf);
1588 if (length > 0)
1589 internal_error (__FILE__, __LINE__,
1590 _("verify_gdbarch: the following are invalid ...%s"),
1591 buf);
1592 do_cleanups (cleanups);
1593 }
1594 EOF
1595
1596 # dump the structure
1597 printf "\n"
1598 printf "\n"
1599 cat <<EOF
1600 /* Print out the details of the current architecture. */
1601
1602 void
1603 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1604 {
1605 const char *gdb_nm_file = "<not-defined>";
1606
1607 #if defined (GDB_NM_FILE)
1608 gdb_nm_file = GDB_NM_FILE;
1609 #endif
1610 fprintf_unfiltered (file,
1611 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1612 gdb_nm_file);
1613 EOF
1614 function_list | sort -t: -k 3 | while do_read
1615 do
1616 # First the predicate
1617 if class_is_predicate_p
1618 then
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1621 printf " gdbarch_${function}_p (gdbarch));\n"
1622 fi
1623 # Print the corresponding value.
1624 if class_is_function_p
1625 then
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1628 printf " host_address_to_string (gdbarch->${function}));\n"
1629 else
1630 # It is a variable
1631 case "${print}:${returntype}" in
1632 :CORE_ADDR )
1633 fmt="%s"
1634 print="core_addr_to_string_nz (gdbarch->${function})"
1635 ;;
1636 :* )
1637 fmt="%s"
1638 print="plongest (gdbarch->${function})"
1639 ;;
1640 * )
1641 fmt="%s"
1642 ;;
1643 esac
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1646 printf " ${print});\n"
1647 fi
1648 done
1649 cat <<EOF
1650 if (gdbarch->dump_tdep != NULL)
1651 gdbarch->dump_tdep (gdbarch, file);
1652 }
1653 EOF
1654
1655
1656 # GET/SET
1657 printf "\n"
1658 cat <<EOF
1659 struct gdbarch_tdep *
1660 gdbarch_tdep (struct gdbarch *gdbarch)
1661 {
1662 if (gdbarch_debug >= 2)
1663 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1664 return gdbarch->tdep;
1665 }
1666 EOF
1667 printf "\n"
1668 function_list | while do_read
1669 do
1670 if class_is_predicate_p
1671 then
1672 printf "\n"
1673 printf "int\n"
1674 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1675 printf "{\n"
1676 printf " gdb_assert (gdbarch != NULL);\n"
1677 printf " return ${predicate};\n"
1678 printf "}\n"
1679 fi
1680 if class_is_function_p
1681 then
1682 printf "\n"
1683 printf "${returntype}\n"
1684 if [ "x${formal}" = "xvoid" ]
1685 then
1686 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1687 else
1688 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1689 fi
1690 printf "{\n"
1691 printf " gdb_assert (gdbarch != NULL);\n"
1692 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1693 if class_is_predicate_p && test -n "${predefault}"
1694 then
1695 # Allow a call to a function with a predicate.
1696 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1697 fi
1698 printf " if (gdbarch_debug >= 2)\n"
1699 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1700 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1701 then
1702 if class_is_multiarch_p
1703 then
1704 params="gdbarch"
1705 else
1706 params=""
1707 fi
1708 else
1709 if class_is_multiarch_p
1710 then
1711 params="gdbarch, ${actual}"
1712 else
1713 params="${actual}"
1714 fi
1715 fi
1716 if [ "x${returntype}" = "xvoid" ]
1717 then
1718 printf " gdbarch->${function} (${params});\n"
1719 else
1720 printf " return gdbarch->${function} (${params});\n"
1721 fi
1722 printf "}\n"
1723 printf "\n"
1724 printf "void\n"
1725 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1726 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1727 printf "{\n"
1728 printf " gdbarch->${function} = ${function};\n"
1729 printf "}\n"
1730 elif class_is_variable_p
1731 then
1732 printf "\n"
1733 printf "${returntype}\n"
1734 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1735 printf "{\n"
1736 printf " gdb_assert (gdbarch != NULL);\n"
1737 if [ "x${invalid_p}" = "x0" ]
1738 then
1739 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1740 elif [ -n "${invalid_p}" ]
1741 then
1742 printf " /* Check variable is valid. */\n"
1743 printf " gdb_assert (!(${invalid_p}));\n"
1744 elif [ -n "${predefault}" ]
1745 then
1746 printf " /* Check variable changed from pre-default. */\n"
1747 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1748 fi
1749 printf " if (gdbarch_debug >= 2)\n"
1750 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1751 printf " return gdbarch->${function};\n"
1752 printf "}\n"
1753 printf "\n"
1754 printf "void\n"
1755 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1756 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1757 printf "{\n"
1758 printf " gdbarch->${function} = ${function};\n"
1759 printf "}\n"
1760 elif class_is_info_p
1761 then
1762 printf "\n"
1763 printf "${returntype}\n"
1764 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1765 printf "{\n"
1766 printf " gdb_assert (gdbarch != NULL);\n"
1767 printf " if (gdbarch_debug >= 2)\n"
1768 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1769 printf " return gdbarch->${function};\n"
1770 printf "}\n"
1771 fi
1772 done
1773
1774 # All the trailing guff
1775 cat <<EOF
1776
1777
1778 /* Keep a registry of per-architecture data-pointers required by GDB
1779 modules. */
1780
1781 struct gdbarch_data
1782 {
1783 unsigned index;
1784 int init_p;
1785 gdbarch_data_pre_init_ftype *pre_init;
1786 gdbarch_data_post_init_ftype *post_init;
1787 };
1788
1789 struct gdbarch_data_registration
1790 {
1791 struct gdbarch_data *data;
1792 struct gdbarch_data_registration *next;
1793 };
1794
1795 struct gdbarch_data_registry
1796 {
1797 unsigned nr;
1798 struct gdbarch_data_registration *registrations;
1799 };
1800
1801 struct gdbarch_data_registry gdbarch_data_registry =
1802 {
1803 0, NULL,
1804 };
1805
1806 static struct gdbarch_data *
1807 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1808 gdbarch_data_post_init_ftype *post_init)
1809 {
1810 struct gdbarch_data_registration **curr;
1811
1812 /* Append the new registration. */
1813 for (curr = &gdbarch_data_registry.registrations;
1814 (*curr) != NULL;
1815 curr = &(*curr)->next);
1816 (*curr) = XMALLOC (struct gdbarch_data_registration);
1817 (*curr)->next = NULL;
1818 (*curr)->data = XMALLOC (struct gdbarch_data);
1819 (*curr)->data->index = gdbarch_data_registry.nr++;
1820 (*curr)->data->pre_init = pre_init;
1821 (*curr)->data->post_init = post_init;
1822 (*curr)->data->init_p = 1;
1823 return (*curr)->data;
1824 }
1825
1826 struct gdbarch_data *
1827 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1828 {
1829 return gdbarch_data_register (pre_init, NULL);
1830 }
1831
1832 struct gdbarch_data *
1833 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1834 {
1835 return gdbarch_data_register (NULL, post_init);
1836 }
1837
1838 /* Create/delete the gdbarch data vector. */
1839
1840 static void
1841 alloc_gdbarch_data (struct gdbarch *gdbarch)
1842 {
1843 gdb_assert (gdbarch->data == NULL);
1844 gdbarch->nr_data = gdbarch_data_registry.nr;
1845 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1846 }
1847
1848 /* Initialize the current value of the specified per-architecture
1849 data-pointer. */
1850
1851 void
1852 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1853 struct gdbarch_data *data,
1854 void *pointer)
1855 {
1856 gdb_assert (data->index < gdbarch->nr_data);
1857 gdb_assert (gdbarch->data[data->index] == NULL);
1858 gdb_assert (data->pre_init == NULL);
1859 gdbarch->data[data->index] = pointer;
1860 }
1861
1862 /* Return the current value of the specified per-architecture
1863 data-pointer. */
1864
1865 void *
1866 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1867 {
1868 gdb_assert (data->index < gdbarch->nr_data);
1869 if (gdbarch->data[data->index] == NULL)
1870 {
1871 /* The data-pointer isn't initialized, call init() to get a
1872 value. */
1873 if (data->pre_init != NULL)
1874 /* Mid architecture creation: pass just the obstack, and not
1875 the entire architecture, as that way it isn't possible for
1876 pre-init code to refer to undefined architecture
1877 fields. */
1878 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1879 else if (gdbarch->initialized_p
1880 && data->post_init != NULL)
1881 /* Post architecture creation: pass the entire architecture
1882 (as all fields are valid), but be careful to also detect
1883 recursive references. */
1884 {
1885 gdb_assert (data->init_p);
1886 data->init_p = 0;
1887 gdbarch->data[data->index] = data->post_init (gdbarch);
1888 data->init_p = 1;
1889 }
1890 else
1891 /* The architecture initialization hasn't completed - punt -
1892 hope that the caller knows what they are doing. Once
1893 deprecated_set_gdbarch_data has been initialized, this can be
1894 changed to an internal error. */
1895 return NULL;
1896 gdb_assert (gdbarch->data[data->index] != NULL);
1897 }
1898 return gdbarch->data[data->index];
1899 }
1900
1901
1902 /* Keep a registry of the architectures known by GDB. */
1903
1904 struct gdbarch_registration
1905 {
1906 enum bfd_architecture bfd_architecture;
1907 gdbarch_init_ftype *init;
1908 gdbarch_dump_tdep_ftype *dump_tdep;
1909 struct gdbarch_list *arches;
1910 struct gdbarch_registration *next;
1911 };
1912
1913 static struct gdbarch_registration *gdbarch_registry = NULL;
1914
1915 static void
1916 append_name (const char ***buf, int *nr, const char *name)
1917 {
1918 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1919 (*buf)[*nr] = name;
1920 *nr += 1;
1921 }
1922
1923 const char **
1924 gdbarch_printable_names (void)
1925 {
1926 /* Accumulate a list of names based on the registed list of
1927 architectures. */
1928 int nr_arches = 0;
1929 const char **arches = NULL;
1930 struct gdbarch_registration *rego;
1931
1932 for (rego = gdbarch_registry;
1933 rego != NULL;
1934 rego = rego->next)
1935 {
1936 const struct bfd_arch_info *ap;
1937 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1938 if (ap == NULL)
1939 internal_error (__FILE__, __LINE__,
1940 _("gdbarch_architecture_names: multi-arch unknown"));
1941 do
1942 {
1943 append_name (&arches, &nr_arches, ap->printable_name);
1944 ap = ap->next;
1945 }
1946 while (ap != NULL);
1947 }
1948 append_name (&arches, &nr_arches, NULL);
1949 return arches;
1950 }
1951
1952
1953 void
1954 gdbarch_register (enum bfd_architecture bfd_architecture,
1955 gdbarch_init_ftype *init,
1956 gdbarch_dump_tdep_ftype *dump_tdep)
1957 {
1958 struct gdbarch_registration **curr;
1959 const struct bfd_arch_info *bfd_arch_info;
1960
1961 /* Check that BFD recognizes this architecture */
1962 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1963 if (bfd_arch_info == NULL)
1964 {
1965 internal_error (__FILE__, __LINE__,
1966 _("gdbarch: Attempt to register "
1967 "unknown architecture (%d)"),
1968 bfd_architecture);
1969 }
1970 /* Check that we haven't seen this architecture before. */
1971 for (curr = &gdbarch_registry;
1972 (*curr) != NULL;
1973 curr = &(*curr)->next)
1974 {
1975 if (bfd_architecture == (*curr)->bfd_architecture)
1976 internal_error (__FILE__, __LINE__,
1977 _("gdbarch: Duplicate registration "
1978 "of architecture (%s)"),
1979 bfd_arch_info->printable_name);
1980 }
1981 /* log it */
1982 if (gdbarch_debug)
1983 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1984 bfd_arch_info->printable_name,
1985 host_address_to_string (init));
1986 /* Append it */
1987 (*curr) = XMALLOC (struct gdbarch_registration);
1988 (*curr)->bfd_architecture = bfd_architecture;
1989 (*curr)->init = init;
1990 (*curr)->dump_tdep = dump_tdep;
1991 (*curr)->arches = NULL;
1992 (*curr)->next = NULL;
1993 }
1994
1995 void
1996 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1997 gdbarch_init_ftype *init)
1998 {
1999 gdbarch_register (bfd_architecture, init, NULL);
2000 }
2001
2002
2003 /* Look for an architecture using gdbarch_info. */
2004
2005 struct gdbarch_list *
2006 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2007 const struct gdbarch_info *info)
2008 {
2009 for (; arches != NULL; arches = arches->next)
2010 {
2011 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2012 continue;
2013 if (info->byte_order != arches->gdbarch->byte_order)
2014 continue;
2015 if (info->osabi != arches->gdbarch->osabi)
2016 continue;
2017 if (info->target_desc != arches->gdbarch->target_desc)
2018 continue;
2019 return arches;
2020 }
2021 return NULL;
2022 }
2023
2024
2025 /* Find an architecture that matches the specified INFO. Create a new
2026 architecture if needed. Return that new architecture. */
2027
2028 struct gdbarch *
2029 gdbarch_find_by_info (struct gdbarch_info info)
2030 {
2031 struct gdbarch *new_gdbarch;
2032 struct gdbarch_registration *rego;
2033
2034 /* Fill in missing parts of the INFO struct using a number of
2035 sources: "set ..."; INFOabfd supplied; and the global
2036 defaults. */
2037 gdbarch_info_fill (&info);
2038
2039 /* Must have found some sort of architecture. */
2040 gdb_assert (info.bfd_arch_info != NULL);
2041
2042 if (gdbarch_debug)
2043 {
2044 fprintf_unfiltered (gdb_stdlog,
2045 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2046 (info.bfd_arch_info != NULL
2047 ? info.bfd_arch_info->printable_name
2048 : "(null)"));
2049 fprintf_unfiltered (gdb_stdlog,
2050 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2051 info.byte_order,
2052 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2053 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2054 : "default"));
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2057 info.osabi, gdbarch_osabi_name (info.osabi));
2058 fprintf_unfiltered (gdb_stdlog,
2059 "gdbarch_find_by_info: info.abfd %s\n",
2060 host_address_to_string (info.abfd));
2061 fprintf_unfiltered (gdb_stdlog,
2062 "gdbarch_find_by_info: info.tdep_info %s\n",
2063 host_address_to_string (info.tdep_info));
2064 }
2065
2066 /* Find the tdep code that knows about this architecture. */
2067 for (rego = gdbarch_registry;
2068 rego != NULL;
2069 rego = rego->next)
2070 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2071 break;
2072 if (rego == NULL)
2073 {
2074 if (gdbarch_debug)
2075 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2076 "No matching architecture\n");
2077 return 0;
2078 }
2079
2080 /* Ask the tdep code for an architecture that matches "info". */
2081 new_gdbarch = rego->init (info, rego->arches);
2082
2083 /* Did the tdep code like it? No. Reject the change and revert to
2084 the old architecture. */
2085 if (new_gdbarch == NULL)
2086 {
2087 if (gdbarch_debug)
2088 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2089 "Target rejected architecture\n");
2090 return NULL;
2091 }
2092
2093 /* Is this a pre-existing architecture (as determined by already
2094 being initialized)? Move it to the front of the architecture
2095 list (keeping the list sorted Most Recently Used). */
2096 if (new_gdbarch->initialized_p)
2097 {
2098 struct gdbarch_list **list;
2099 struct gdbarch_list *this;
2100 if (gdbarch_debug)
2101 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2102 "Previous architecture %s (%s) selected\n",
2103 host_address_to_string (new_gdbarch),
2104 new_gdbarch->bfd_arch_info->printable_name);
2105 /* Find the existing arch in the list. */
2106 for (list = &rego->arches;
2107 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2108 list = &(*list)->next);
2109 /* It had better be in the list of architectures. */
2110 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2111 /* Unlink THIS. */
2112 this = (*list);
2113 (*list) = this->next;
2114 /* Insert THIS at the front. */
2115 this->next = rego->arches;
2116 rego->arches = this;
2117 /* Return it. */
2118 return new_gdbarch;
2119 }
2120
2121 /* It's a new architecture. */
2122 if (gdbarch_debug)
2123 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2124 "New architecture %s (%s) selected\n",
2125 host_address_to_string (new_gdbarch),
2126 new_gdbarch->bfd_arch_info->printable_name);
2127
2128 /* Insert the new architecture into the front of the architecture
2129 list (keep the list sorted Most Recently Used). */
2130 {
2131 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2132 this->next = rego->arches;
2133 this->gdbarch = new_gdbarch;
2134 rego->arches = this;
2135 }
2136
2137 /* Check that the newly installed architecture is valid. Plug in
2138 any post init values. */
2139 new_gdbarch->dump_tdep = rego->dump_tdep;
2140 verify_gdbarch (new_gdbarch);
2141 new_gdbarch->initialized_p = 1;
2142
2143 if (gdbarch_debug)
2144 gdbarch_dump (new_gdbarch, gdb_stdlog);
2145
2146 return new_gdbarch;
2147 }
2148
2149 /* Make the specified architecture current. */
2150
2151 void
2152 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2153 {
2154 gdb_assert (new_gdbarch != NULL);
2155 gdb_assert (new_gdbarch->initialized_p);
2156 target_gdbarch = new_gdbarch;
2157 observer_notify_architecture_changed (new_gdbarch);
2158 registers_changed ();
2159 }
2160
2161 extern void _initialize_gdbarch (void);
2162
2163 void
2164 _initialize_gdbarch (void)
2165 {
2166 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2167 Set architecture debugging."), _("\\
2168 Show architecture debugging."), _("\\
2169 When non-zero, architecture debugging is enabled."),
2170 NULL,
2171 show_gdbarch_debug,
2172 &setdebuglist, &showdebuglist);
2173 }
2174 EOF
2175
2176 # close things off
2177 exec 1>&2
2178 #../move-if-change new-gdbarch.c gdbarch.c
2179 compare_new gdbarch.c
This page took 0.106786 seconds and 4 git commands to generate.