* breakpoint.c (print_it_typical) <bp_access_watchpoint> [UI_OUT]:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 v:2:NUM_REGS:int:num_regs::::0:-1
387 # This macro gives the number of pseudo-registers that live in the
388 # register namespace but do not get fetched or stored on the target.
389 # These pseudo-registers may be aliases for other registers,
390 # combinations of other registers, or they may be computed by GDB.
391 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
392 v:2:SP_REGNUM:int:sp_regnum::::0:-1
393 v:2:FP_REGNUM:int:fp_regnum::::0:-1
394 v:2:PC_REGNUM:int:pc_regnum::::0:-1
395 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
396 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
397 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
398 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
399 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
400 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
401 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
402 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
403 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
404 # Convert from an sdb register number to an internal gdb register number.
405 # This should be defined in tm.h, if REGISTER_NAMES is not set up
406 # to map one to one onto the sdb register numbers.
407 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
408 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
409 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
410 v:2:REGISTER_SIZE:int:register_size::::0:-1
411 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
412 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
413 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
414 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
415 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
416 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
417 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
418 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
419 # MAP a GDB RAW register number onto a simulator register number. See
420 # also include/...-sim.h.
421 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
422 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
423 #
424 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
425 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
426 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
427 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
428 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
429 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
430 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
431 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
432 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
433 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
434 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
435 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
436 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
437 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
438 #
439 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
440 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
441 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
442 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
443 #
444 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
445 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
446 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
447 # This function is called when the value of a pseudo-register needs to
448 # be updated. Typically it will be defined on a per-architecture
449 # basis.
450 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
451 # This function is called when the value of a pseudo-register needs to
452 # be set or stored. Typically it will be defined on a
453 # per-architecture basis.
454 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
455 #
456 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
457 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
458 #
459 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
460 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
461 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
462 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
463 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
464 f:2:POP_FRAME:void:pop_frame:void:-:::0
465 #
466 # I wish that these would just go away....
467 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
468 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
469 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
470 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
471 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
472 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
473 #
474 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
475 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
476 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
477 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
478 #
479 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
480 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
481 #
482 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
483 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
484 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
485 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
486 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
487 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
488 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
489 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
490 #
491 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
492 #
493 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
494 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
495 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
496 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
497 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
498 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
499 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
500 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
501 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
502 #
503 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
504 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
505 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
506 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
507 v:2:PARM_BOUNDARY:int:parm_boundary
508 #
509 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
510 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
511 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
512 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
513 EOF
514 }
515
516 #
517 # The .log file
518 #
519 exec > new-gdbarch.log
520 function_list | while do_read
521 do
522 cat <<EOF
523 ${class} ${macro}(${actual})
524 ${returntype} ${function} ($formal)${attrib}
525 EOF
526 for r in ${read}
527 do
528 eval echo \"\ \ \ \ ${r}=\${${r}}\"
529 done
530 # #fallbackdefault=${fallbackdefault}
531 # #valid_p=${valid_p}
532 #EOF
533 if class_is_predicate_p && fallback_default_p
534 then
535 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
536 kill $$
537 exit 1
538 fi
539 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
540 then
541 echo "Error: postdefault is useless when invalid_p=0" 1>&2
542 kill $$
543 exit 1
544 fi
545 echo ""
546 done
547
548 exec 1>&2
549 compare_new gdbarch.log
550
551
552 copyright ()
553 {
554 cat <<EOF
555 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
556
557 /* Dynamic architecture support for GDB, the GNU debugger.
558 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
559
560 This file is part of GDB.
561
562 This program is free software; you can redistribute it and/or modify
563 it under the terms of the GNU General Public License as published by
564 the Free Software Foundation; either version 2 of the License, or
565 (at your option) any later version.
566
567 This program is distributed in the hope that it will be useful,
568 but WITHOUT ANY WARRANTY; without even the implied warranty of
569 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
570 GNU General Public License for more details.
571
572 You should have received a copy of the GNU General Public License
573 along with this program; if not, write to the Free Software
574 Foundation, Inc., 59 Temple Place - Suite 330,
575 Boston, MA 02111-1307, USA. */
576
577 /* This file was created with the aid of \`\`gdbarch.sh''.
578
579 The Bourne shell script \`\`gdbarch.sh'' creates the files
580 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
581 against the existing \`\`gdbarch.[hc]''. Any differences found
582 being reported.
583
584 If editing this file, please also run gdbarch.sh and merge any
585 changes into that script. Conversely, when making sweeping changes
586 to this file, modifying gdbarch.sh and using its output may prove
587 easier. */
588
589 EOF
590 }
591
592 #
593 # The .h file
594 #
595
596 exec > new-gdbarch.h
597 copyright
598 cat <<EOF
599 #ifndef GDBARCH_H
600 #define GDBARCH_H
601
602 struct frame_info;
603 struct value;
604
605
606 extern struct gdbarch *current_gdbarch;
607
608
609 /* If any of the following are defined, the target wasn't correctly
610 converted. */
611
612 #if GDB_MULTI_ARCH
613 #if defined (EXTRA_FRAME_INFO)
614 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
615 #endif
616 #endif
617
618 #if GDB_MULTI_ARCH
619 #if defined (FRAME_FIND_SAVED_REGS)
620 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
621 #endif
622 #endif
623 EOF
624
625 # function typedef's
626 printf "\n"
627 printf "\n"
628 printf "/* The following are pre-initialized by GDBARCH. */\n"
629 function_list | while do_read
630 do
631 if class_is_info_p
632 then
633 printf "\n"
634 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
635 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
636 printf "#if GDB_MULTI_ARCH\n"
637 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
638 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
639 printf "#endif\n"
640 printf "#endif\n"
641 fi
642 done
643
644 # function typedef's
645 printf "\n"
646 printf "\n"
647 printf "/* The following are initialized by the target dependent code. */\n"
648 function_list | while do_read
649 do
650 if [ "${comment}" ]
651 then
652 echo "${comment}" | sed \
653 -e '2 s,#,/*,' \
654 -e '3,$ s,#, ,' \
655 -e '$ s,$, */,'
656 fi
657 if class_is_predicate_p && ! class_is_multiarch_p
658 then
659 printf "\n"
660 printf "#if defined (${macro})\n"
661 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
662 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
663 printf "#define ${macro}_P() (1)\n"
664 printf "#endif\n"
665 printf "\n"
666 printf "/* Default predicate for non- multi-arch targets. */\n"
667 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
668 printf "#define ${macro}_P() (0)\n"
669 printf "#endif\n"
670 printf "\n"
671 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
672 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
673 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
674 printf "#endif\n"
675 fi
676 if class_is_predicate_p && class_is_multiarch_p
677 then
678 printf "\n"
679 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
680 fi
681 if class_is_variable_p
682 then
683 if fallback_default_p || class_is_predicate_p
684 then
685 printf "\n"
686 printf "/* Default (value) for non- multi-arch platforms. */\n"
687 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
688 echo "#define ${macro} (${fallbackdefault})" \
689 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
690 printf "#endif\n"
691 fi
692 printf "\n"
693 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
694 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
695 printf "#if GDB_MULTI_ARCH\n"
696 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
697 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
698 printf "#endif\n"
699 printf "#endif\n"
700 fi
701 if class_is_function_p
702 then
703 if ( fallback_default_p || class_is_predicate_p ) && ! class_is_multiarch_p
704 then
705 printf "\n"
706 printf "/* Default (function) for non- multi-arch platforms. */\n"
707 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
708 if [ "${fallbackdefault}" = "0" ]
709 then
710 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
711 else
712 # FIXME: Should be passing current_gdbarch through!
713 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
714 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
715 fi
716 printf "#endif\n"
717 fi
718 printf "\n"
719 if [ "${formal}" = "void" ] && class_is_multiarch_p
720 then
721 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
722 elif class_is_multiarch_p
723 then
724 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
725 else
726 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
727 fi
728 if [ "${formal}" = "void" ]
729 then
730 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
731 else
732 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
733 fi
734 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
735 if ! class_is_multiarch_p
736 then
737 printf "#if GDB_MULTI_ARCH\n"
738 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
739 if [ "${actual}" = "" ]
740 then
741 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
742 elif [ "${actual}" = "-" ]
743 then
744 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
745 else
746 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
747 fi
748 printf "#endif\n"
749 printf "#endif\n"
750 fi
751 fi
752 done
753
754 # close it off
755 cat <<EOF
756
757 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
758
759
760 /* Mechanism for co-ordinating the selection of a specific
761 architecture.
762
763 GDB targets (*-tdep.c) can register an interest in a specific
764 architecture. Other GDB components can register a need to maintain
765 per-architecture data.
766
767 The mechanisms below ensures that there is only a loose connection
768 between the set-architecture command and the various GDB
769 components. Each component can independently register their need
770 to maintain architecture specific data with gdbarch.
771
772 Pragmatics:
773
774 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
775 didn't scale.
776
777 The more traditional mega-struct containing architecture specific
778 data for all the various GDB components was also considered. Since
779 GDB is built from a variable number of (fairly independent)
780 components it was determined that the global aproach was not
781 applicable. */
782
783
784 /* Register a new architectural family with GDB.
785
786 Register support for the specified ARCHITECTURE with GDB. When
787 gdbarch determines that the specified architecture has been
788 selected, the corresponding INIT function is called.
789
790 --
791
792 The INIT function takes two parameters: INFO which contains the
793 information available to gdbarch about the (possibly new)
794 architecture; ARCHES which is a list of the previously created
795 \`\`struct gdbarch'' for this architecture.
796
797 The INIT function parameter INFO shall, as far as possible, be
798 pre-initialized with information obtained from INFO.ABFD or
799 previously selected architecture (if similar). INIT shall ensure
800 that the INFO.BYTE_ORDER is non-zero.
801
802 The INIT function shall return any of: NULL - indicating that it
803 doesn't recognize the selected architecture; an existing \`\`struct
804 gdbarch'' from the ARCHES list - indicating that the new
805 architecture is just a synonym for an earlier architecture (see
806 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
807 - that describes the selected architecture (see gdbarch_alloc()).
808
809 The DUMP_TDEP function shall print out all target specific values.
810 Care should be taken to ensure that the function works in both the
811 multi-arch and non- multi-arch cases. */
812
813 struct gdbarch_list
814 {
815 struct gdbarch *gdbarch;
816 struct gdbarch_list *next;
817 };
818
819 struct gdbarch_info
820 {
821 /* Use default: bfd_arch_unknown (ZERO). */
822 enum bfd_architecture bfd_architecture;
823
824 /* Use default: NULL (ZERO). */
825 const struct bfd_arch_info *bfd_arch_info;
826
827 /* Use default: 0 (ZERO). */
828 int byte_order;
829
830 /* Use default: NULL (ZERO). */
831 bfd *abfd;
832
833 /* Use default: NULL (ZERO). */
834 struct gdbarch_tdep_info *tdep_info;
835 };
836
837 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
838 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
839
840 /* DEPRECATED - use gdbarch_register() */
841 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
842
843 extern void gdbarch_register (enum bfd_architecture architecture,
844 gdbarch_init_ftype *,
845 gdbarch_dump_tdep_ftype *);
846
847
848 /* Return a freshly allocated, NULL terminated, array of the valid
849 architecture names. Since architectures are registered during the
850 _initialize phase this function only returns useful information
851 once initialization has been completed. */
852
853 extern const char **gdbarch_printable_names (void);
854
855
856 /* Helper function. Search the list of ARCHES for a GDBARCH that
857 matches the information provided by INFO. */
858
859 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
860
861
862 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
863 basic initialization using values obtained from the INFO andTDEP
864 parameters. set_gdbarch_*() functions are called to complete the
865 initialization of the object. */
866
867 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
868
869
870 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
871 It is assumed that the caller freeds the \`\`struct
872 gdbarch_tdep''. */
873
874 extern void gdbarch_free (struct gdbarch *);
875
876
877 /* Helper function. Force an update of the current architecture. Used
878 by legacy targets that have added their own target specific
879 architecture manipulation commands.
880
881 The INFO parameter shall be fully initialized (\`\`memset (&INFO,
882 sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
883 is called. gdbarch_update_p() shall initialize any \`\`default''
884 fields using information obtained from the previous architecture or
885 INFO.ABFD (if specified) before calling the corresponding
886 architectures INIT function.
887
888 Returns non-zero if the update succeeds */
889
890 extern int gdbarch_update_p (struct gdbarch_info info);
891
892
893
894 /* Register per-architecture data-pointer.
895
896 Reserve space for a per-architecture data-pointer. An identifier
897 for the reserved data-pointer is returned. That identifer should
898 be saved in a local static variable.
899
900 The per-architecture data-pointer can be initialized in one of two
901 ways: The value can be set explicitly using a call to
902 set_gdbarch_data(); the value can be set implicitly using the value
903 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
904 called after the basic architecture vector has been created.
905
906 When a previously created architecture is re-selected, the
907 per-architecture data-pointer for that previous architecture is
908 restored. INIT() is not called.
909
910 During initialization, multiple assignments of the data-pointer are
911 allowed, non-NULL values are deleted by calling FREE(). If the
912 architecture is deleted using gdbarch_free() all non-NULL data
913 pointers are also deleted using FREE().
914
915 Multiple registrarants for any architecture are allowed (and
916 strongly encouraged). */
917
918 struct gdbarch_data;
919
920 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
921 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
922 void *pointer);
923 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
924 gdbarch_data_free_ftype *free);
925 extern void set_gdbarch_data (struct gdbarch *gdbarch,
926 struct gdbarch_data *data,
927 void *pointer);
928
929 extern void *gdbarch_data (struct gdbarch_data*);
930
931
932 /* Register per-architecture memory region.
933
934 Provide a memory-region swap mechanism. Per-architecture memory
935 region are created. These memory regions are swapped whenever the
936 architecture is changed. For a new architecture, the memory region
937 is initialized with zero (0) and the INIT function is called.
938
939 Memory regions are swapped / initialized in the order that they are
940 registered. NULL DATA and/or INIT values can be specified.
941
942 New code should use register_gdbarch_data(). */
943
944 typedef void (gdbarch_swap_ftype) (void);
945 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
946 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
947
948
949
950 /* The target-system-dependent byte order is dynamic */
951
952 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
953 is selectable at runtime. The user can use the \`\`set endian''
954 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
955 target_byte_order should be auto-detected (from the program image
956 say). */
957
958 #if GDB_MULTI_ARCH
959 /* Multi-arch GDB is always bi-endian. */
960 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
961 #endif
962
963 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
964 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
965 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
966 #ifdef TARGET_BYTE_ORDER_SELECTABLE
967 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
968 #else
969 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
970 #endif
971 #endif
972
973 extern int target_byte_order;
974 #ifdef TARGET_BYTE_ORDER_SELECTABLE
975 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
976 and expect defs.h to re-define TARGET_BYTE_ORDER. */
977 #undef TARGET_BYTE_ORDER
978 #endif
979 #ifndef TARGET_BYTE_ORDER
980 #define TARGET_BYTE_ORDER (target_byte_order + 0)
981 #endif
982
983 extern int target_byte_order_auto;
984 #ifndef TARGET_BYTE_ORDER_AUTO
985 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
986 #endif
987
988
989
990 /* The target-system-dependent BFD architecture is dynamic */
991
992 extern int target_architecture_auto;
993 #ifndef TARGET_ARCHITECTURE_AUTO
994 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
995 #endif
996
997 extern const struct bfd_arch_info *target_architecture;
998 #ifndef TARGET_ARCHITECTURE
999 #define TARGET_ARCHITECTURE (target_architecture + 0)
1000 #endif
1001
1002
1003 /* The target-system-dependent disassembler is semi-dynamic */
1004
1005 #include "dis-asm.h" /* Get defs for disassemble_info */
1006
1007 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1008 unsigned int len, disassemble_info *info);
1009
1010 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1011 disassemble_info *info);
1012
1013 extern void dis_asm_print_address (bfd_vma addr,
1014 disassemble_info *info);
1015
1016 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1017 extern disassemble_info tm_print_insn_info;
1018 #ifndef TARGET_PRINT_INSN
1019 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1020 #endif
1021 #ifndef TARGET_PRINT_INSN_INFO
1022 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1023 #endif
1024
1025
1026
1027 /* Explicit test for D10V architecture.
1028 USE of these macro's is *STRONGLY* discouraged. */
1029
1030 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1031
1032
1033 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1034 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1035 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1036 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1037 #else
1038 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1039 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1040 #endif
1041 #endif
1042
1043
1044 /* Set the dynamic target-system-dependent parameters (architecture,
1045 byte-order, ...) using information found in the BFD */
1046
1047 extern void set_gdbarch_from_file (bfd *);
1048
1049
1050 /* Initialize the current architecture to the "first" one we find on
1051 our list. */
1052
1053 extern void initialize_current_architecture (void);
1054
1055
1056 /* gdbarch trace variable */
1057 extern int gdbarch_debug;
1058
1059 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1060
1061 #endif
1062 EOF
1063 exec 1>&2
1064 #../move-if-change new-gdbarch.h gdbarch.h
1065 compare_new gdbarch.h
1066
1067
1068 #
1069 # C file
1070 #
1071
1072 exec > new-gdbarch.c
1073 copyright
1074 cat <<EOF
1075
1076 #include "defs.h"
1077 #include "arch-utils.h"
1078
1079 #if GDB_MULTI_ARCH
1080 #include "gdbcmd.h"
1081 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1082 #else
1083 /* Just include everything in sight so that the every old definition
1084 of macro is visible. */
1085 #include "gdb_string.h"
1086 #include <ctype.h>
1087 #include "symtab.h"
1088 #include "frame.h"
1089 #include "inferior.h"
1090 #include "breakpoint.h"
1091 #include "gdb_wait.h"
1092 #include "gdbcore.h"
1093 #include "gdbcmd.h"
1094 #include "target.h"
1095 #include "gdbthread.h"
1096 #include "annotate.h"
1097 #include "symfile.h" /* for overlay functions */
1098 #endif
1099 #include "symcat.h"
1100
1101 #include "floatformat.h"
1102
1103 #include "gdb_assert.h"
1104
1105 /* Static function declarations */
1106
1107 static void verify_gdbarch (struct gdbarch *gdbarch);
1108 static void alloc_gdbarch_data (struct gdbarch *);
1109 static void init_gdbarch_data (struct gdbarch *);
1110 static void free_gdbarch_data (struct gdbarch *);
1111 static void init_gdbarch_swap (struct gdbarch *);
1112 static void swapout_gdbarch_swap (struct gdbarch *);
1113 static void swapin_gdbarch_swap (struct gdbarch *);
1114
1115 /* Convenience macro for allocting typesafe memory. */
1116
1117 #ifndef XMALLOC
1118 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1119 #endif
1120
1121
1122 /* Non-zero if we want to trace architecture code. */
1123
1124 #ifndef GDBARCH_DEBUG
1125 #define GDBARCH_DEBUG 0
1126 #endif
1127 int gdbarch_debug = GDBARCH_DEBUG;
1128
1129 EOF
1130
1131 # gdbarch open the gdbarch object
1132 printf "\n"
1133 printf "/* Maintain the struct gdbarch object */\n"
1134 printf "\n"
1135 printf "struct gdbarch\n"
1136 printf "{\n"
1137 printf " /* basic architectural information */\n"
1138 function_list | while do_read
1139 do
1140 if class_is_info_p
1141 then
1142 printf " ${returntype} ${function};\n"
1143 fi
1144 done
1145 printf "\n"
1146 printf " /* target specific vector. */\n"
1147 printf " struct gdbarch_tdep *tdep;\n"
1148 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1149 printf "\n"
1150 printf " /* per-architecture data-pointers */\n"
1151 printf " unsigned nr_data;\n"
1152 printf " void **data;\n"
1153 printf "\n"
1154 printf " /* per-architecture swap-regions */\n"
1155 printf " struct gdbarch_swap *swap;\n"
1156 printf "\n"
1157 cat <<EOF
1158 /* Multi-arch values.
1159
1160 When extending this structure you must:
1161
1162 Add the field below.
1163
1164 Declare set/get functions and define the corresponding
1165 macro in gdbarch.h.
1166
1167 gdbarch_alloc(): If zero/NULL is not a suitable default,
1168 initialize the new field.
1169
1170 verify_gdbarch(): Confirm that the target updated the field
1171 correctly.
1172
1173 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1174 field is dumped out
1175
1176 \`\`startup_gdbarch()'': Append an initial value to the static
1177 variable (base values on the host's c-type system).
1178
1179 get_gdbarch(): Implement the set/get functions (probably using
1180 the macro's as shortcuts).
1181
1182 */
1183
1184 EOF
1185 function_list | while do_read
1186 do
1187 if class_is_variable_p
1188 then
1189 printf " ${returntype} ${function};\n"
1190 elif class_is_function_p
1191 then
1192 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1193 fi
1194 done
1195 printf "};\n"
1196
1197 # A pre-initialized vector
1198 printf "\n"
1199 printf "\n"
1200 cat <<EOF
1201 /* The default architecture uses host values (for want of a better
1202 choice). */
1203 EOF
1204 printf "\n"
1205 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1206 printf "\n"
1207 printf "struct gdbarch startup_gdbarch =\n"
1208 printf "{\n"
1209 printf " /* basic architecture information */\n"
1210 function_list | while do_read
1211 do
1212 if class_is_info_p
1213 then
1214 printf " ${staticdefault},\n"
1215 fi
1216 done
1217 cat <<EOF
1218 /* target specific vector and its dump routine */
1219 NULL, NULL,
1220 /*per-architecture data-pointers and swap regions */
1221 0, NULL, NULL,
1222 /* Multi-arch values */
1223 EOF
1224 function_list | while do_read
1225 do
1226 if class_is_function_p || class_is_variable_p
1227 then
1228 printf " ${staticdefault},\n"
1229 fi
1230 done
1231 cat <<EOF
1232 /* startup_gdbarch() */
1233 };
1234
1235 struct gdbarch *current_gdbarch = &startup_gdbarch;
1236 EOF
1237
1238 # Create a new gdbarch struct
1239 printf "\n"
1240 printf "\n"
1241 cat <<EOF
1242 /* Create a new \`\`struct gdbarch'' based on information provided by
1243 \`\`struct gdbarch_info''. */
1244 EOF
1245 printf "\n"
1246 cat <<EOF
1247 struct gdbarch *
1248 gdbarch_alloc (const struct gdbarch_info *info,
1249 struct gdbarch_tdep *tdep)
1250 {
1251 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1252 memset (gdbarch, 0, sizeof (*gdbarch));
1253
1254 alloc_gdbarch_data (gdbarch);
1255
1256 gdbarch->tdep = tdep;
1257 EOF
1258 printf "\n"
1259 function_list | while do_read
1260 do
1261 if class_is_info_p
1262 then
1263 printf " gdbarch->${function} = info->${function};\n"
1264 fi
1265 done
1266 printf "\n"
1267 printf " /* Force the explicit initialization of these. */\n"
1268 function_list | while do_read
1269 do
1270 if class_is_function_p || class_is_variable_p
1271 then
1272 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1273 then
1274 printf " gdbarch->${function} = ${predefault};\n"
1275 fi
1276 fi
1277 done
1278 cat <<EOF
1279 /* gdbarch_alloc() */
1280
1281 return gdbarch;
1282 }
1283 EOF
1284
1285 # Free a gdbarch struct.
1286 printf "\n"
1287 printf "\n"
1288 cat <<EOF
1289 /* Free a gdbarch struct. This should never happen in normal
1290 operation --- once you've created a gdbarch, you keep it around.
1291 However, if an architecture's init function encounters an error
1292 building the structure, it may need to clean up a partially
1293 constructed gdbarch. */
1294
1295 void
1296 gdbarch_free (struct gdbarch *arch)
1297 {
1298 gdb_assert (arch != NULL);
1299 free_gdbarch_data (arch);
1300 xfree (arch);
1301 }
1302 EOF
1303
1304 # verify a new architecture
1305 printf "\n"
1306 printf "\n"
1307 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1308 printf "\n"
1309 cat <<EOF
1310 static void
1311 verify_gdbarch (struct gdbarch *gdbarch)
1312 {
1313 /* Only perform sanity checks on a multi-arch target. */
1314 if (!GDB_MULTI_ARCH)
1315 return;
1316 /* fundamental */
1317 if (gdbarch->byte_order == 0)
1318 internal_error (__FILE__, __LINE__,
1319 "verify_gdbarch: byte-order unset");
1320 if (gdbarch->bfd_arch_info == NULL)
1321 internal_error (__FILE__, __LINE__,
1322 "verify_gdbarch: bfd_arch_info unset");
1323 /* Check those that need to be defined for the given multi-arch level. */
1324 EOF
1325 function_list | while do_read
1326 do
1327 if class_is_function_p || class_is_variable_p
1328 then
1329 if [ "${invalid_p}" = "0" ]
1330 then
1331 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1332 elif class_is_predicate_p
1333 then
1334 printf " /* Skip verify of ${function}, has predicate */\n"
1335 # FIXME: See do_read for potential simplification
1336 elif [ "${invalid_p}" -a "${postdefault}" ]
1337 then
1338 printf " if (${invalid_p})\n"
1339 printf " gdbarch->${function} = ${postdefault};\n"
1340 elif [ "${predefault}" -a "${postdefault}" ]
1341 then
1342 printf " if (gdbarch->${function} == ${predefault})\n"
1343 printf " gdbarch->${function} = ${postdefault};\n"
1344 elif [ "${postdefault}" ]
1345 then
1346 printf " if (gdbarch->${function} == 0)\n"
1347 printf " gdbarch->${function} = ${postdefault};\n"
1348 elif [ "${invalid_p}" ]
1349 then
1350 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1351 printf " && (${invalid_p}))\n"
1352 printf " internal_error (__FILE__, __LINE__,\n"
1353 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1354 elif [ "${predefault}" ]
1355 then
1356 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1357 printf " && (gdbarch->${function} == ${predefault}))\n"
1358 printf " internal_error (__FILE__, __LINE__,\n"
1359 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1360 fi
1361 fi
1362 done
1363 cat <<EOF
1364 }
1365 EOF
1366
1367 # dump the structure
1368 printf "\n"
1369 printf "\n"
1370 cat <<EOF
1371 /* Print out the details of the current architecture. */
1372
1373 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1374 just happens to match the global variable \`\`current_gdbarch''. That
1375 way macros refering to that variable get the local and not the global
1376 version - ulgh. Once everything is parameterised with gdbarch, this
1377 will go away. */
1378
1379 void
1380 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1381 {
1382 fprintf_unfiltered (file,
1383 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1384 GDB_MULTI_ARCH);
1385 EOF
1386 function_list | while do_read
1387 do
1388 # multiarch functions don't have macros.
1389 class_is_multiarch_p && continue
1390 if [ "${returntype}" = "void" ]
1391 then
1392 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1393 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1394 else
1395 printf "#ifdef ${macro}\n"
1396 fi
1397 if class_is_function_p
1398 then
1399 printf " fprintf_unfiltered (file,\n"
1400 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1401 printf " \"${macro}(${actual})\",\n"
1402 printf " XSTRING (${macro} (${actual})));\n"
1403 else
1404 printf " fprintf_unfiltered (file,\n"
1405 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1406 printf " XSTRING (${macro}));\n"
1407 fi
1408 printf "#endif\n"
1409 done
1410 function_list | while do_read
1411 do
1412 if class_is_multiarch_p
1413 then
1414 printf " if (GDB_MULTI_ARCH)\n"
1415 printf " fprintf_unfiltered (file,\n"
1416 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1417 printf " (long) current_gdbarch->${function});\n"
1418 continue
1419 fi
1420 printf "#ifdef ${macro}\n"
1421 if [ "${print_p}" = "()" ]
1422 then
1423 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1424 elif [ "${print_p}" = "0" ]
1425 then
1426 printf " /* skip print of ${macro}, print_p == 0. */\n"
1427 elif [ "${print_p}" ]
1428 then
1429 printf " if (${print_p})\n"
1430 printf " fprintf_unfiltered (file,\n"
1431 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1432 printf " ${print});\n"
1433 elif class_is_function_p
1434 then
1435 printf " if (GDB_MULTI_ARCH)\n"
1436 printf " fprintf_unfiltered (file,\n"
1437 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1438 printf " (long) current_gdbarch->${function}\n"
1439 printf " /*${macro} ()*/);\n"
1440 else
1441 printf " fprintf_unfiltered (file,\n"
1442 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1443 printf " ${print});\n"
1444 fi
1445 printf "#endif\n"
1446 done
1447 cat <<EOF
1448 if (current_gdbarch->dump_tdep != NULL)
1449 current_gdbarch->dump_tdep (current_gdbarch, file);
1450 }
1451 EOF
1452
1453
1454 # GET/SET
1455 printf "\n"
1456 cat <<EOF
1457 struct gdbarch_tdep *
1458 gdbarch_tdep (struct gdbarch *gdbarch)
1459 {
1460 if (gdbarch_debug >= 2)
1461 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1462 return gdbarch->tdep;
1463 }
1464 EOF
1465 printf "\n"
1466 function_list | while do_read
1467 do
1468 if class_is_predicate_p
1469 then
1470 printf "\n"
1471 printf "int\n"
1472 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1473 printf "{\n"
1474 if [ "${valid_p}" ]
1475 then
1476 printf " return ${valid_p};\n"
1477 else
1478 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1479 fi
1480 printf "}\n"
1481 fi
1482 if class_is_function_p
1483 then
1484 printf "\n"
1485 printf "${returntype}\n"
1486 if [ "${formal}" = "void" ]
1487 then
1488 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1489 else
1490 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1491 fi
1492 printf "{\n"
1493 printf " if (gdbarch->${function} == 0)\n"
1494 printf " internal_error (__FILE__, __LINE__,\n"
1495 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1496 printf " if (gdbarch_debug >= 2)\n"
1497 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1498 if [ "${actual}" = "-" -o "${actual}" = "" ]
1499 then
1500 if class_is_multiarch_p
1501 then
1502 params="gdbarch"
1503 else
1504 params=""
1505 fi
1506 else
1507 if class_is_multiarch_p
1508 then
1509 params="gdbarch, ${actual}"
1510 else
1511 params="${actual}"
1512 fi
1513 fi
1514 if [ "${returntype}" = "void" ]
1515 then
1516 printf " gdbarch->${function} (${params});\n"
1517 else
1518 printf " return gdbarch->${function} (${params});\n"
1519 fi
1520 printf "}\n"
1521 printf "\n"
1522 printf "void\n"
1523 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1524 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1525 printf "{\n"
1526 printf " gdbarch->${function} = ${function};\n"
1527 printf "}\n"
1528 elif class_is_variable_p
1529 then
1530 printf "\n"
1531 printf "${returntype}\n"
1532 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1533 printf "{\n"
1534 if [ "${invalid_p}" = "0" ]
1535 then
1536 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1537 elif [ "${invalid_p}" ]
1538 then
1539 printf " if (${invalid_p})\n"
1540 printf " internal_error (__FILE__, __LINE__,\n"
1541 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1542 elif [ "${predefault}" ]
1543 then
1544 printf " if (gdbarch->${function} == ${predefault})\n"
1545 printf " internal_error (__FILE__, __LINE__,\n"
1546 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1547 fi
1548 printf " if (gdbarch_debug >= 2)\n"
1549 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1550 printf " return gdbarch->${function};\n"
1551 printf "}\n"
1552 printf "\n"
1553 printf "void\n"
1554 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1555 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1556 printf "{\n"
1557 printf " gdbarch->${function} = ${function};\n"
1558 printf "}\n"
1559 elif class_is_info_p
1560 then
1561 printf "\n"
1562 printf "${returntype}\n"
1563 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1564 printf "{\n"
1565 printf " if (gdbarch_debug >= 2)\n"
1566 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1567 printf " return gdbarch->${function};\n"
1568 printf "}\n"
1569 fi
1570 done
1571
1572 # All the trailing guff
1573 cat <<EOF
1574
1575
1576 /* Keep a registry of per-architecture data-pointers required by GDB
1577 modules. */
1578
1579 struct gdbarch_data
1580 {
1581 unsigned index;
1582 gdbarch_data_init_ftype *init;
1583 gdbarch_data_free_ftype *free;
1584 };
1585
1586 struct gdbarch_data_registration
1587 {
1588 struct gdbarch_data *data;
1589 struct gdbarch_data_registration *next;
1590 };
1591
1592 struct gdbarch_data_registry
1593 {
1594 unsigned nr;
1595 struct gdbarch_data_registration *registrations;
1596 };
1597
1598 struct gdbarch_data_registry gdbarch_data_registry =
1599 {
1600 0, NULL,
1601 };
1602
1603 struct gdbarch_data *
1604 register_gdbarch_data (gdbarch_data_init_ftype *init,
1605 gdbarch_data_free_ftype *free)
1606 {
1607 struct gdbarch_data_registration **curr;
1608 for (curr = &gdbarch_data_registry.registrations;
1609 (*curr) != NULL;
1610 curr = &(*curr)->next);
1611 (*curr) = XMALLOC (struct gdbarch_data_registration);
1612 (*curr)->next = NULL;
1613 (*curr)->data = XMALLOC (struct gdbarch_data);
1614 (*curr)->data->index = gdbarch_data_registry.nr++;
1615 (*curr)->data->init = init;
1616 (*curr)->data->free = free;
1617 return (*curr)->data;
1618 }
1619
1620
1621 /* Walk through all the registered users initializing each in turn. */
1622
1623 static void
1624 init_gdbarch_data (struct gdbarch *gdbarch)
1625 {
1626 struct gdbarch_data_registration *rego;
1627 for (rego = gdbarch_data_registry.registrations;
1628 rego != NULL;
1629 rego = rego->next)
1630 {
1631 struct gdbarch_data *data = rego->data;
1632 gdb_assert (data->index < gdbarch->nr_data);
1633 if (data->init != NULL)
1634 {
1635 void *pointer = data->init (gdbarch);
1636 set_gdbarch_data (gdbarch, data, pointer);
1637 }
1638 }
1639 }
1640
1641 /* Create/delete the gdbarch data vector. */
1642
1643 static void
1644 alloc_gdbarch_data (struct gdbarch *gdbarch)
1645 {
1646 gdb_assert (gdbarch->data == NULL);
1647 gdbarch->nr_data = gdbarch_data_registry.nr;
1648 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1649 }
1650
1651 static void
1652 free_gdbarch_data (struct gdbarch *gdbarch)
1653 {
1654 struct gdbarch_data_registration *rego;
1655 gdb_assert (gdbarch->data != NULL);
1656 for (rego = gdbarch_data_registry.registrations;
1657 rego != NULL;
1658 rego = rego->next)
1659 {
1660 struct gdbarch_data *data = rego->data;
1661 gdb_assert (data->index < gdbarch->nr_data);
1662 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1663 {
1664 data->free (gdbarch, gdbarch->data[data->index]);
1665 gdbarch->data[data->index] = NULL;
1666 }
1667 }
1668 xfree (gdbarch->data);
1669 gdbarch->data = NULL;
1670 }
1671
1672
1673 /* Initialize the current value of thee specified per-architecture
1674 data-pointer. */
1675
1676 void
1677 set_gdbarch_data (struct gdbarch *gdbarch,
1678 struct gdbarch_data *data,
1679 void *pointer)
1680 {
1681 gdb_assert (data->index < gdbarch->nr_data);
1682 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1683 data->free (gdbarch, gdbarch->data[data->index]);
1684 gdbarch->data[data->index] = pointer;
1685 }
1686
1687 /* Return the current value of the specified per-architecture
1688 data-pointer. */
1689
1690 void *
1691 gdbarch_data (struct gdbarch_data *data)
1692 {
1693 gdb_assert (data->index < current_gdbarch->nr_data);
1694 return current_gdbarch->data[data->index];
1695 }
1696
1697
1698
1699 /* Keep a registry of swapped data required by GDB modules. */
1700
1701 struct gdbarch_swap
1702 {
1703 void *swap;
1704 struct gdbarch_swap_registration *source;
1705 struct gdbarch_swap *next;
1706 };
1707
1708 struct gdbarch_swap_registration
1709 {
1710 void *data;
1711 unsigned long sizeof_data;
1712 gdbarch_swap_ftype *init;
1713 struct gdbarch_swap_registration *next;
1714 };
1715
1716 struct gdbarch_swap_registry
1717 {
1718 int nr;
1719 struct gdbarch_swap_registration *registrations;
1720 };
1721
1722 struct gdbarch_swap_registry gdbarch_swap_registry =
1723 {
1724 0, NULL,
1725 };
1726
1727 void
1728 register_gdbarch_swap (void *data,
1729 unsigned long sizeof_data,
1730 gdbarch_swap_ftype *init)
1731 {
1732 struct gdbarch_swap_registration **rego;
1733 for (rego = &gdbarch_swap_registry.registrations;
1734 (*rego) != NULL;
1735 rego = &(*rego)->next);
1736 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1737 (*rego)->next = NULL;
1738 (*rego)->init = init;
1739 (*rego)->data = data;
1740 (*rego)->sizeof_data = sizeof_data;
1741 }
1742
1743
1744 static void
1745 init_gdbarch_swap (struct gdbarch *gdbarch)
1746 {
1747 struct gdbarch_swap_registration *rego;
1748 struct gdbarch_swap **curr = &gdbarch->swap;
1749 for (rego = gdbarch_swap_registry.registrations;
1750 rego != NULL;
1751 rego = rego->next)
1752 {
1753 if (rego->data != NULL)
1754 {
1755 (*curr) = XMALLOC (struct gdbarch_swap);
1756 (*curr)->source = rego;
1757 (*curr)->swap = xmalloc (rego->sizeof_data);
1758 (*curr)->next = NULL;
1759 memset (rego->data, 0, rego->sizeof_data);
1760 curr = &(*curr)->next;
1761 }
1762 if (rego->init != NULL)
1763 rego->init ();
1764 }
1765 }
1766
1767 static void
1768 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1769 {
1770 struct gdbarch_swap *curr;
1771 for (curr = gdbarch->swap;
1772 curr != NULL;
1773 curr = curr->next)
1774 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1775 }
1776
1777 static void
1778 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1779 {
1780 struct gdbarch_swap *curr;
1781 for (curr = gdbarch->swap;
1782 curr != NULL;
1783 curr = curr->next)
1784 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1785 }
1786
1787
1788 /* Keep a registry of the architectures known by GDB. */
1789
1790 struct gdbarch_registration
1791 {
1792 enum bfd_architecture bfd_architecture;
1793 gdbarch_init_ftype *init;
1794 gdbarch_dump_tdep_ftype *dump_tdep;
1795 struct gdbarch_list *arches;
1796 struct gdbarch_registration *next;
1797 };
1798
1799 static struct gdbarch_registration *gdbarch_registry = NULL;
1800
1801 static void
1802 append_name (const char ***buf, int *nr, const char *name)
1803 {
1804 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1805 (*buf)[*nr] = name;
1806 *nr += 1;
1807 }
1808
1809 const char **
1810 gdbarch_printable_names (void)
1811 {
1812 if (GDB_MULTI_ARCH)
1813 {
1814 /* Accumulate a list of names based on the registed list of
1815 architectures. */
1816 enum bfd_architecture a;
1817 int nr_arches = 0;
1818 const char **arches = NULL;
1819 struct gdbarch_registration *rego;
1820 for (rego = gdbarch_registry;
1821 rego != NULL;
1822 rego = rego->next)
1823 {
1824 const struct bfd_arch_info *ap;
1825 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1826 if (ap == NULL)
1827 internal_error (__FILE__, __LINE__,
1828 "gdbarch_architecture_names: multi-arch unknown");
1829 do
1830 {
1831 append_name (&arches, &nr_arches, ap->printable_name);
1832 ap = ap->next;
1833 }
1834 while (ap != NULL);
1835 }
1836 append_name (&arches, &nr_arches, NULL);
1837 return arches;
1838 }
1839 else
1840 /* Just return all the architectures that BFD knows. Assume that
1841 the legacy architecture framework supports them. */
1842 return bfd_arch_list ();
1843 }
1844
1845
1846 void
1847 gdbarch_register (enum bfd_architecture bfd_architecture,
1848 gdbarch_init_ftype *init,
1849 gdbarch_dump_tdep_ftype *dump_tdep)
1850 {
1851 struct gdbarch_registration **curr;
1852 const struct bfd_arch_info *bfd_arch_info;
1853 /* Check that BFD recognizes this architecture */
1854 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1855 if (bfd_arch_info == NULL)
1856 {
1857 internal_error (__FILE__, __LINE__,
1858 "gdbarch: Attempt to register unknown architecture (%d)",
1859 bfd_architecture);
1860 }
1861 /* Check that we haven't seen this architecture before */
1862 for (curr = &gdbarch_registry;
1863 (*curr) != NULL;
1864 curr = &(*curr)->next)
1865 {
1866 if (bfd_architecture == (*curr)->bfd_architecture)
1867 internal_error (__FILE__, __LINE__,
1868 "gdbarch: Duplicate registraration of architecture (%s)",
1869 bfd_arch_info->printable_name);
1870 }
1871 /* log it */
1872 if (gdbarch_debug)
1873 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1874 bfd_arch_info->printable_name,
1875 (long) init);
1876 /* Append it */
1877 (*curr) = XMALLOC (struct gdbarch_registration);
1878 (*curr)->bfd_architecture = bfd_architecture;
1879 (*curr)->init = init;
1880 (*curr)->dump_tdep = dump_tdep;
1881 (*curr)->arches = NULL;
1882 (*curr)->next = NULL;
1883 /* When non- multi-arch, install whatever target dump routine we've
1884 been provided - hopefully that routine has been written correctly
1885 and works regardless of multi-arch. */
1886 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1887 && startup_gdbarch.dump_tdep == NULL)
1888 startup_gdbarch.dump_tdep = dump_tdep;
1889 }
1890
1891 void
1892 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1893 gdbarch_init_ftype *init)
1894 {
1895 gdbarch_register (bfd_architecture, init, NULL);
1896 }
1897
1898
1899 /* Look for an architecture using gdbarch_info. Base search on only
1900 BFD_ARCH_INFO and BYTE_ORDER. */
1901
1902 struct gdbarch_list *
1903 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1904 const struct gdbarch_info *info)
1905 {
1906 for (; arches != NULL; arches = arches->next)
1907 {
1908 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1909 continue;
1910 if (info->byte_order != arches->gdbarch->byte_order)
1911 continue;
1912 return arches;
1913 }
1914 return NULL;
1915 }
1916
1917
1918 /* Update the current architecture. Return ZERO if the update request
1919 failed. */
1920
1921 int
1922 gdbarch_update_p (struct gdbarch_info info)
1923 {
1924 struct gdbarch *new_gdbarch;
1925 struct gdbarch_list **list;
1926 struct gdbarch_registration *rego;
1927
1928 /* Fill in any missing bits. Most important is the bfd_architecture
1929 which is used to select the target architecture. */
1930 if (info.bfd_architecture == bfd_arch_unknown)
1931 {
1932 if (info.bfd_arch_info != NULL)
1933 info.bfd_architecture = info.bfd_arch_info->arch;
1934 else if (info.abfd != NULL)
1935 info.bfd_architecture = bfd_get_arch (info.abfd);
1936 /* FIXME - should query BFD for its default architecture. */
1937 else
1938 info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
1939 }
1940 if (info.bfd_arch_info == NULL)
1941 {
1942 if (target_architecture_auto && info.abfd != NULL)
1943 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1944 else
1945 info.bfd_arch_info = current_gdbarch->bfd_arch_info;
1946 }
1947 if (info.byte_order == 0)
1948 {
1949 if (target_byte_order_auto && info.abfd != NULL)
1950 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1951 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1952 : 0);
1953 else
1954 info.byte_order = current_gdbarch->byte_order;
1955 /* FIXME - should query BFD for its default byte-order. */
1956 }
1957 /* A default for abfd? */
1958
1959 /* Find the target that knows about this architecture. */
1960 for (rego = gdbarch_registry;
1961 rego != NULL;
1962 rego = rego->next)
1963 if (rego->bfd_architecture == info.bfd_architecture)
1964 break;
1965 if (rego == NULL)
1966 {
1967 if (gdbarch_debug)
1968 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1969 return 0;
1970 }
1971
1972 if (gdbarch_debug)
1973 {
1974 fprintf_unfiltered (gdb_stdlog,
1975 "gdbarch_update: info.bfd_architecture %d (%s)\\n",
1976 info.bfd_architecture,
1977 bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
1978 fprintf_unfiltered (gdb_stdlog,
1979 "gdbarch_update: info.bfd_arch_info %s\\n",
1980 (info.bfd_arch_info != NULL
1981 ? info.bfd_arch_info->printable_name
1982 : "(null)"));
1983 fprintf_unfiltered (gdb_stdlog,
1984 "gdbarch_update: info.byte_order %d (%s)\\n",
1985 info.byte_order,
1986 (info.byte_order == BIG_ENDIAN ? "big"
1987 : info.byte_order == LITTLE_ENDIAN ? "little"
1988 : "default"));
1989 fprintf_unfiltered (gdb_stdlog,
1990 "gdbarch_update: info.abfd 0x%lx\\n",
1991 (long) info.abfd);
1992 fprintf_unfiltered (gdb_stdlog,
1993 "gdbarch_update: info.tdep_info 0x%lx\\n",
1994 (long) info.tdep_info);
1995 }
1996
1997 /* Ask the target for a replacement architecture. */
1998 new_gdbarch = rego->init (info, rego->arches);
1999
2000 /* Did the target like it? No. Reject the change. */
2001 if (new_gdbarch == NULL)
2002 {
2003 if (gdbarch_debug)
2004 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2005 return 0;
2006 }
2007
2008 /* Did the architecture change? No. Do nothing. */
2009 if (current_gdbarch == new_gdbarch)
2010 {
2011 if (gdbarch_debug)
2012 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2013 (long) new_gdbarch,
2014 new_gdbarch->bfd_arch_info->printable_name);
2015 return 1;
2016 }
2017
2018 /* Swap all data belonging to the old target out */
2019 swapout_gdbarch_swap (current_gdbarch);
2020
2021 /* Is this a pre-existing architecture? Yes. Swap it in. */
2022 for (list = &rego->arches;
2023 (*list) != NULL;
2024 list = &(*list)->next)
2025 {
2026 if ((*list)->gdbarch == new_gdbarch)
2027 {
2028 if (gdbarch_debug)
2029 fprintf_unfiltered (gdb_stdlog,
2030 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2031 (long) new_gdbarch,
2032 new_gdbarch->bfd_arch_info->printable_name);
2033 current_gdbarch = new_gdbarch;
2034 swapin_gdbarch_swap (new_gdbarch);
2035 return 1;
2036 }
2037 }
2038
2039 /* Append this new architecture to this targets list. */
2040 (*list) = XMALLOC (struct gdbarch_list);
2041 (*list)->next = NULL;
2042 (*list)->gdbarch = new_gdbarch;
2043
2044 /* Switch to this new architecture. Dump it out. */
2045 current_gdbarch = new_gdbarch;
2046 if (gdbarch_debug)
2047 {
2048 fprintf_unfiltered (gdb_stdlog,
2049 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2050 (long) new_gdbarch,
2051 new_gdbarch->bfd_arch_info->printable_name);
2052 }
2053
2054 /* Check that the newly installed architecture is valid. Plug in
2055 any post init values. */
2056 new_gdbarch->dump_tdep = rego->dump_tdep;
2057 verify_gdbarch (new_gdbarch);
2058
2059 /* Initialize the per-architecture memory (swap) areas.
2060 CURRENT_GDBARCH must be update before these modules are
2061 called. */
2062 init_gdbarch_swap (new_gdbarch);
2063
2064 /* Initialize the per-architecture data-pointer of all parties that
2065 registered an interest in this architecture. CURRENT_GDBARCH
2066 must be updated before these modules are called. */
2067 init_gdbarch_data (new_gdbarch);
2068
2069 if (gdbarch_debug)
2070 gdbarch_dump (current_gdbarch, gdb_stdlog);
2071
2072 return 1;
2073 }
2074
2075
2076 /* Disassembler */
2077
2078 /* Pointer to the target-dependent disassembly function. */
2079 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2080 disassemble_info tm_print_insn_info;
2081
2082
2083 extern void _initialize_gdbarch (void);
2084
2085 void
2086 _initialize_gdbarch (void)
2087 {
2088 struct cmd_list_element *c;
2089
2090 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2091 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2092 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2093 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2094 tm_print_insn_info.print_address_func = dis_asm_print_address;
2095
2096 add_show_from_set (add_set_cmd ("arch",
2097 class_maintenance,
2098 var_zinteger,
2099 (char *)&gdbarch_debug,
2100 "Set architecture debugging.\\n\\
2101 When non-zero, architecture debugging is enabled.", &setdebuglist),
2102 &showdebuglist);
2103 c = add_set_cmd ("archdebug",
2104 class_maintenance,
2105 var_zinteger,
2106 (char *)&gdbarch_debug,
2107 "Set architecture debugging.\\n\\
2108 When non-zero, architecture debugging is enabled.", &setlist);
2109
2110 deprecate_cmd (c, "set debug arch");
2111 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2112 }
2113 EOF
2114
2115 # close things off
2116 exec 1>&2
2117 #../move-if-change new-gdbarch.c gdbarch.c
2118 compare_new gdbarch.c
This page took 0.075306 seconds and 4 git commands to generate.