* disasm.c (gdb_disassemble_info): Initialize disassemble_info
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # NOTE: cagney/2002-05-02: This function with predicate has a valid
478 # (callable) initial value. As a consequence, even when the predicate
479 # is false, the corresponding function works. This simplifies the
480 # migration process - old code, calling REGISTER_BYTE, doesn't need to
481 # be modified.
482 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
483 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
484 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
485 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
486 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
487 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
488 # MAX_REGISTER_SIZE (a constant).
489 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
490 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
491 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
492 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
493 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
494 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
495 # MAX_REGISTER_SIZE (a constant).
496 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
497 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
498 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
499 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
500 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
501 #
502 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
503 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
504 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
509 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
510 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
511 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
512 # setjmp/longjmp support.
513 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
514 #
515 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
516 # much better but at least they are vaguely consistent). The headers
517 # and body contain convoluted #if/#else sequences for determine how
518 # things should be compiled. Instead of trying to mimic that
519 # behaviour here (and hence entrench it further) gdbarch simply
520 # reqires that these methods be set up from the word go. This also
521 # avoids any potential problems with moving beyond multi-arch partial.
522 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
523 # Replaced by push_dummy_code.
524 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
525 # Replaced by push_dummy_code.
526 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
527 # Replaced by push_dummy_code.
528 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
533 # NOTE: cagney/2002-11-24: This function with predicate has a valid
534 # (callable) initial value. As a consequence, even when the predicate
535 # is false, the corresponding function works. This simplifies the
536 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
537 # doesn't need to be modified.
538 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
539 # Replaced by push_dummy_code.
540 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
543 # Replaced by push_dummy_code.
544 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
545 # Replaced by push_dummy_code.
546 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
547 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
548 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
549 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
550 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
551 #
552 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
553 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
554 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
555 #
556 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
557 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
558 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
559 #
560 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
561 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
562 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
563 #
564 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
565 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
566 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
567 #
568 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
569 # Replaced by PUSH_DUMMY_CALL
570 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
571 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
572 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
573 # NOTE: This can be handled directly in push_dummy_call.
574 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
575 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
576 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
577 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
578 #
579 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
580 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
581 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
582 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
583 #
584 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
585 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
586 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
587 #
588 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
589 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
590 #
591 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
592 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
593 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
594 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
595 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
596 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
597 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
598 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
599 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
600 #
601 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
602 #
603 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
604 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
605 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
606 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
607 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
608 # note, per UNWIND_PC's doco, that while the two have similar
609 # interfaces they have very different underlying implementations.
610 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
611 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
612 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
613 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
614 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
615 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
616 #
617 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
618 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
619 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
620 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
621 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
622 # FIXME: kettenis/2003-03-08: This should be replaced by a function
623 # parametrized with (at least) the regcache.
624 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
625 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
626 v:2:PARM_BOUNDARY:int:parm_boundary
627 #
628 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
629 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
630 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
631 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
632 # On some machines there are bits in addresses which are not really
633 # part of the address, but are used by the kernel, the hardware, etc.
634 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
635 # we get a "real" address such as one would find in a symbol table.
636 # This is used only for addresses of instructions, and even then I'm
637 # not sure it's used in all contexts. It exists to deal with there
638 # being a few stray bits in the PC which would mislead us, not as some
639 # sort of generic thing to handle alignment or segmentation (it's
640 # possible it should be in TARGET_READ_PC instead).
641 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
642 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
643 # ADDR_BITS_REMOVE.
644 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
645 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
646 # the target needs software single step. An ISA method to implement it.
647 #
648 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
649 # using the breakpoint system instead of blatting memory directly (as with rs6000).
650 #
651 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
652 # single step. If not, then implement single step using breakpoints.
653 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
654 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
655 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
656
657
658 # For SVR4 shared libraries, each call goes through a small piece of
659 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
660 # to nonzero if we are currently stopped in one of these.
661 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
662
663 # Some systems also have trampoline code for returning from shared libs.
664 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
665
666 # Sigtramp is a routine that the kernel calls (which then calls the
667 # signal handler). On most machines it is a library routine that is
668 # linked into the executable.
669 #
670 # This macro, given a program counter value and the name of the
671 # function in which that PC resides (which can be null if the name is
672 # not known), returns nonzero if the PC and name show that we are in
673 # sigtramp.
674 #
675 # On most machines just see if the name is sigtramp (and if we have
676 # no name, assume we are not in sigtramp).
677 #
678 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
679 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
680 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
681 # own local NAME lookup.
682 #
683 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
684 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
685 # does not.
686 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
687 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
688 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
689 # A target might have problems with watchpoints as soon as the stack
690 # frame of the current function has been destroyed. This mostly happens
691 # as the first action in a funtion's epilogue. in_function_epilogue_p()
692 # is defined to return a non-zero value if either the given addr is one
693 # instruction after the stack destroying instruction up to the trailing
694 # return instruction or if we can figure out that the stack frame has
695 # already been invalidated regardless of the value of addr. Targets
696 # which don't suffer from that problem could just let this functionality
697 # untouched.
698 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
699 # Given a vector of command-line arguments, return a newly allocated
700 # string which, when passed to the create_inferior function, will be
701 # parsed (on Unix systems, by the shell) to yield the same vector.
702 # This function should call error() if the argument vector is not
703 # representable for this target or if this target does not support
704 # command-line arguments.
705 # ARGC is the number of elements in the vector.
706 # ARGV is an array of strings, one per argument.
707 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
708 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
709 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
710 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
711 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
712 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
713 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
714 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
715 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
716 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
717 # Is a register in a group
718 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
719 EOF
720 }
721
722 #
723 # The .log file
724 #
725 exec > new-gdbarch.log
726 function_list | while do_read
727 do
728 cat <<EOF
729 ${class} ${macro}(${actual})
730 ${returntype} ${function} ($formal)${attrib}
731 EOF
732 for r in ${read}
733 do
734 eval echo \"\ \ \ \ ${r}=\${${r}}\"
735 done
736 if class_is_predicate_p && fallback_default_p
737 then
738 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
739 kill $$
740 exit 1
741 fi
742 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
743 then
744 echo "Error: postdefault is useless when invalid_p=0" 1>&2
745 kill $$
746 exit 1
747 fi
748 if class_is_multiarch_p
749 then
750 if class_is_predicate_p ; then :
751 elif test "x${predefault}" = "x"
752 then
753 echo "Error: pure multi-arch function must have a predefault" 1>&2
754 kill $$
755 exit 1
756 fi
757 fi
758 echo ""
759 done
760
761 exec 1>&2
762 compare_new gdbarch.log
763
764
765 copyright ()
766 {
767 cat <<EOF
768 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
769
770 /* Dynamic architecture support for GDB, the GNU debugger.
771 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
772
773 This file is part of GDB.
774
775 This program is free software; you can redistribute it and/or modify
776 it under the terms of the GNU General Public License as published by
777 the Free Software Foundation; either version 2 of the License, or
778 (at your option) any later version.
779
780 This program is distributed in the hope that it will be useful,
781 but WITHOUT ANY WARRANTY; without even the implied warranty of
782 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
783 GNU General Public License for more details.
784
785 You should have received a copy of the GNU General Public License
786 along with this program; if not, write to the Free Software
787 Foundation, Inc., 59 Temple Place - Suite 330,
788 Boston, MA 02111-1307, USA. */
789
790 /* This file was created with the aid of \`\`gdbarch.sh''.
791
792 The Bourne shell script \`\`gdbarch.sh'' creates the files
793 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
794 against the existing \`\`gdbarch.[hc]''. Any differences found
795 being reported.
796
797 If editing this file, please also run gdbarch.sh and merge any
798 changes into that script. Conversely, when making sweeping changes
799 to this file, modifying gdbarch.sh and using its output may prove
800 easier. */
801
802 EOF
803 }
804
805 #
806 # The .h file
807 #
808
809 exec > new-gdbarch.h
810 copyright
811 cat <<EOF
812 #ifndef GDBARCH_H
813 #define GDBARCH_H
814
815 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
816 #if !GDB_MULTI_ARCH
817 /* Pull in function declarations refered to, indirectly, via macros. */
818 #include "inferior.h" /* For unsigned_address_to_pointer(). */
819 #include "symfile.h" /* For entry_point_address(). */
820 #endif
821
822 struct floatformat;
823 struct ui_file;
824 struct frame_info;
825 struct value;
826 struct objfile;
827 struct minimal_symbol;
828 struct regcache;
829 struct reggroup;
830
831 extern struct gdbarch *current_gdbarch;
832
833
834 /* If any of the following are defined, the target wasn't correctly
835 converted. */
836
837 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
838 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
839 #endif
840 EOF
841
842 # function typedef's
843 printf "\n"
844 printf "\n"
845 printf "/* The following are pre-initialized by GDBARCH. */\n"
846 function_list | while do_read
847 do
848 if class_is_info_p
849 then
850 printf "\n"
851 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
854 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#endif\n"
856 printf "#if GDB_MULTI_ARCH\n"
857 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
858 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
859 printf "#endif\n"
860 printf "#endif\n"
861 fi
862 done
863
864 # function typedef's
865 printf "\n"
866 printf "\n"
867 printf "/* The following are initialized by the target dependent code. */\n"
868 function_list | while do_read
869 do
870 if [ -n "${comment}" ]
871 then
872 echo "${comment}" | sed \
873 -e '2 s,#,/*,' \
874 -e '3,$ s,#, ,' \
875 -e '$ s,$, */,'
876 fi
877 if class_is_multiarch_p
878 then
879 if class_is_predicate_p
880 then
881 printf "\n"
882 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
883 fi
884 else
885 if class_is_predicate_p
886 then
887 printf "\n"
888 printf "#if defined (${macro})\n"
889 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
890 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
891 printf "#if !defined (${macro}_P)\n"
892 printf "#define ${macro}_P() (1)\n"
893 printf "#endif\n"
894 printf "#endif\n"
895 printf "\n"
896 printf "/* Default predicate for non- multi-arch targets. */\n"
897 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
898 printf "#define ${macro}_P() (0)\n"
899 printf "#endif\n"
900 printf "\n"
901 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
903 printf "#error \"Non multi-arch definition of ${macro}\"\n"
904 printf "#endif\n"
905 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
906 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
907 printf "#endif\n"
908 fi
909 fi
910 if class_is_variable_p
911 then
912 if fallback_default_p || class_is_predicate_p
913 then
914 printf "\n"
915 printf "/* Default (value) for non- multi-arch platforms. */\n"
916 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
917 echo "#define ${macro} (${fallbackdefault})" \
918 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
919 printf "#endif\n"
920 fi
921 printf "\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
924 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
925 printf "#error \"Non multi-arch definition of ${macro}\"\n"
926 printf "#endif\n"
927 if test "${level}" = ""
928 then
929 printf "#if !defined (${macro})\n"
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
931 printf "#endif\n"
932 else
933 printf "#if GDB_MULTI_ARCH\n"
934 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
935 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
936 printf "#endif\n"
937 printf "#endif\n"
938 fi
939 fi
940 if class_is_function_p
941 then
942 if class_is_multiarch_p ; then :
943 elif fallback_default_p || class_is_predicate_p
944 then
945 printf "\n"
946 printf "/* Default (function) for non- multi-arch platforms. */\n"
947 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
948 if [ "x${fallbackdefault}" = "x0" ]
949 then
950 if [ "x${actual}" = "x-" ]
951 then
952 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
953 else
954 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
955 fi
956 else
957 # FIXME: Should be passing current_gdbarch through!
958 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
959 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
960 fi
961 printf "#endif\n"
962 fi
963 printf "\n"
964 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
967 elif class_is_multiarch_p
968 then
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
970 else
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
972 fi
973 if [ "x${formal}" = "xvoid" ]
974 then
975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
976 else
977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
978 fi
979 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
980 if class_is_multiarch_p ; then :
981 else
982 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
983 printf "#error \"Non multi-arch definition of ${macro}\"\n"
984 printf "#endif\n"
985 printf "#if GDB_MULTI_ARCH\n"
986 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
987 if [ "x${actual}" = "x" ]
988 then
989 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
990 elif [ "x${actual}" = "x-" ]
991 then
992 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
993 else
994 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
995 fi
996 printf "#endif\n"
997 printf "#endif\n"
998 fi
999 fi
1000 done
1001
1002 # close it off
1003 cat <<EOF
1004
1005 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1006
1007
1008 /* Mechanism for co-ordinating the selection of a specific
1009 architecture.
1010
1011 GDB targets (*-tdep.c) can register an interest in a specific
1012 architecture. Other GDB components can register a need to maintain
1013 per-architecture data.
1014
1015 The mechanisms below ensures that there is only a loose connection
1016 between the set-architecture command and the various GDB
1017 components. Each component can independently register their need
1018 to maintain architecture specific data with gdbarch.
1019
1020 Pragmatics:
1021
1022 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1023 didn't scale.
1024
1025 The more traditional mega-struct containing architecture specific
1026 data for all the various GDB components was also considered. Since
1027 GDB is built from a variable number of (fairly independent)
1028 components it was determined that the global aproach was not
1029 applicable. */
1030
1031
1032 /* Register a new architectural family with GDB.
1033
1034 Register support for the specified ARCHITECTURE with GDB. When
1035 gdbarch determines that the specified architecture has been
1036 selected, the corresponding INIT function is called.
1037
1038 --
1039
1040 The INIT function takes two parameters: INFO which contains the
1041 information available to gdbarch about the (possibly new)
1042 architecture; ARCHES which is a list of the previously created
1043 \`\`struct gdbarch'' for this architecture.
1044
1045 The INFO parameter is, as far as possible, be pre-initialized with
1046 information obtained from INFO.ABFD or the previously selected
1047 architecture.
1048
1049 The ARCHES parameter is a linked list (sorted most recently used)
1050 of all the previously created architures for this architecture
1051 family. The (possibly NULL) ARCHES->gdbarch can used to access
1052 values from the previously selected architecture for this
1053 architecture family. The global \`\`current_gdbarch'' shall not be
1054 used.
1055
1056 The INIT function shall return any of: NULL - indicating that it
1057 doesn't recognize the selected architecture; an existing \`\`struct
1058 gdbarch'' from the ARCHES list - indicating that the new
1059 architecture is just a synonym for an earlier architecture (see
1060 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1061 - that describes the selected architecture (see gdbarch_alloc()).
1062
1063 The DUMP_TDEP function shall print out all target specific values.
1064 Care should be taken to ensure that the function works in both the
1065 multi-arch and non- multi-arch cases. */
1066
1067 struct gdbarch_list
1068 {
1069 struct gdbarch *gdbarch;
1070 struct gdbarch_list *next;
1071 };
1072
1073 struct gdbarch_info
1074 {
1075 /* Use default: NULL (ZERO). */
1076 const struct bfd_arch_info *bfd_arch_info;
1077
1078 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1079 int byte_order;
1080
1081 /* Use default: NULL (ZERO). */
1082 bfd *abfd;
1083
1084 /* Use default: NULL (ZERO). */
1085 struct gdbarch_tdep_info *tdep_info;
1086
1087 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1088 enum gdb_osabi osabi;
1089 };
1090
1091 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1092 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1093
1094 /* DEPRECATED - use gdbarch_register() */
1095 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1096
1097 extern void gdbarch_register (enum bfd_architecture architecture,
1098 gdbarch_init_ftype *,
1099 gdbarch_dump_tdep_ftype *);
1100
1101
1102 /* Return a freshly allocated, NULL terminated, array of the valid
1103 architecture names. Since architectures are registered during the
1104 _initialize phase this function only returns useful information
1105 once initialization has been completed. */
1106
1107 extern const char **gdbarch_printable_names (void);
1108
1109
1110 /* Helper function. Search the list of ARCHES for a GDBARCH that
1111 matches the information provided by INFO. */
1112
1113 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1114
1115
1116 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1117 basic initialization using values obtained from the INFO andTDEP
1118 parameters. set_gdbarch_*() functions are called to complete the
1119 initialization of the object. */
1120
1121 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1122
1123
1124 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1125 It is assumed that the caller freeds the \`\`struct
1126 gdbarch_tdep''. */
1127
1128 extern void gdbarch_free (struct gdbarch *);
1129
1130
1131 /* Helper function. Force an update of the current architecture.
1132
1133 The actual architecture selected is determined by INFO, \`\`(gdb) set
1134 architecture'' et.al., the existing architecture and BFD's default
1135 architecture. INFO should be initialized to zero and then selected
1136 fields should be updated.
1137
1138 Returns non-zero if the update succeeds */
1139
1140 extern int gdbarch_update_p (struct gdbarch_info info);
1141
1142
1143
1144 /* Register per-architecture data-pointer.
1145
1146 Reserve space for a per-architecture data-pointer. An identifier
1147 for the reserved data-pointer is returned. That identifer should
1148 be saved in a local static variable.
1149
1150 The per-architecture data-pointer is either initialized explicitly
1151 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1152 gdbarch_data()). FREE() is called to delete either an existing
1153 data-pointer overridden by set_gdbarch_data() or when the
1154 architecture object is being deleted.
1155
1156 When a previously created architecture is re-selected, the
1157 per-architecture data-pointer for that previous architecture is
1158 restored. INIT() is not re-called.
1159
1160 Multiple registrarants for any architecture are allowed (and
1161 strongly encouraged). */
1162
1163 struct gdbarch_data;
1164
1165 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1166 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1167 void *pointer);
1168 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1169 gdbarch_data_free_ftype *free);
1170 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1171 struct gdbarch_data *data,
1172 void *pointer);
1173
1174 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1175
1176
1177 /* Register per-architecture memory region.
1178
1179 Provide a memory-region swap mechanism. Per-architecture memory
1180 region are created. These memory regions are swapped whenever the
1181 architecture is changed. For a new architecture, the memory region
1182 is initialized with zero (0) and the INIT function is called.
1183
1184 Memory regions are swapped / initialized in the order that they are
1185 registered. NULL DATA and/or INIT values can be specified.
1186
1187 New code should use register_gdbarch_data(). */
1188
1189 typedef void (gdbarch_swap_ftype) (void);
1190 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1191 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1192
1193
1194
1195 /* The target-system-dependent byte order is dynamic */
1196
1197 extern int target_byte_order;
1198 #ifndef TARGET_BYTE_ORDER
1199 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1200 #endif
1201
1202 extern int target_byte_order_auto;
1203 #ifndef TARGET_BYTE_ORDER_AUTO
1204 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1205 #endif
1206
1207
1208
1209 /* The target-system-dependent BFD architecture is dynamic */
1210
1211 extern int target_architecture_auto;
1212 #ifndef TARGET_ARCHITECTURE_AUTO
1213 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1214 #endif
1215
1216 extern const struct bfd_arch_info *target_architecture;
1217 #ifndef TARGET_ARCHITECTURE
1218 #define TARGET_ARCHITECTURE (target_architecture + 0)
1219 #endif
1220
1221
1222 /* The target-system-dependent disassembler is semi-dynamic */
1223
1224 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1225 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1226
1227 /* Use set_gdbarch_print_insn instead. */
1228 extern disassemble_info deprecated_tm_print_insn_info;
1229
1230 /* Set the dynamic target-system-dependent parameters (architecture,
1231 byte-order, ...) using information found in the BFD */
1232
1233 extern void set_gdbarch_from_file (bfd *);
1234
1235
1236 /* Initialize the current architecture to the "first" one we find on
1237 our list. */
1238
1239 extern void initialize_current_architecture (void);
1240
1241 /* For non-multiarched targets, do any initialization of the default
1242 gdbarch object necessary after the _initialize_MODULE functions
1243 have run. */
1244 extern void initialize_non_multiarch (void);
1245
1246 /* gdbarch trace variable */
1247 extern int gdbarch_debug;
1248
1249 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1250
1251 #endif
1252 EOF
1253 exec 1>&2
1254 #../move-if-change new-gdbarch.h gdbarch.h
1255 compare_new gdbarch.h
1256
1257
1258 #
1259 # C file
1260 #
1261
1262 exec > new-gdbarch.c
1263 copyright
1264 cat <<EOF
1265
1266 #include "defs.h"
1267 #include "arch-utils.h"
1268
1269 #if GDB_MULTI_ARCH
1270 #include "gdbcmd.h"
1271 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1272 #else
1273 /* Just include everything in sight so that the every old definition
1274 of macro is visible. */
1275 #include "gdb_string.h"
1276 #include <ctype.h>
1277 #include "symtab.h"
1278 #include "frame.h"
1279 #include "inferior.h"
1280 #include "breakpoint.h"
1281 #include "gdb_wait.h"
1282 #include "gdbcore.h"
1283 #include "gdbcmd.h"
1284 #include "target.h"
1285 #include "gdbthread.h"
1286 #include "annotate.h"
1287 #include "symfile.h" /* for overlay functions */
1288 #include "value.h" /* For old tm.h/nm.h macros. */
1289 #endif
1290 #include "symcat.h"
1291
1292 #include "floatformat.h"
1293
1294 #include "gdb_assert.h"
1295 #include "gdb_string.h"
1296 #include "gdb-events.h"
1297 #include "reggroups.h"
1298 #include "osabi.h"
1299 #include "symfile.h" /* For entry_point_address. */
1300
1301 /* Static function declarations */
1302
1303 static void verify_gdbarch (struct gdbarch *gdbarch);
1304 static void alloc_gdbarch_data (struct gdbarch *);
1305 static void free_gdbarch_data (struct gdbarch *);
1306 static void init_gdbarch_swap (struct gdbarch *);
1307 static void clear_gdbarch_swap (struct gdbarch *);
1308 static void swapout_gdbarch_swap (struct gdbarch *);
1309 static void swapin_gdbarch_swap (struct gdbarch *);
1310
1311 /* Non-zero if we want to trace architecture code. */
1312
1313 #ifndef GDBARCH_DEBUG
1314 #define GDBARCH_DEBUG 0
1315 #endif
1316 int gdbarch_debug = GDBARCH_DEBUG;
1317
1318 EOF
1319
1320 # gdbarch open the gdbarch object
1321 printf "\n"
1322 printf "/* Maintain the struct gdbarch object */\n"
1323 printf "\n"
1324 printf "struct gdbarch\n"
1325 printf "{\n"
1326 printf " /* Has this architecture been fully initialized? */\n"
1327 printf " int initialized_p;\n"
1328 printf " /* basic architectural information */\n"
1329 function_list | while do_read
1330 do
1331 if class_is_info_p
1332 then
1333 printf " ${returntype} ${function};\n"
1334 fi
1335 done
1336 printf "\n"
1337 printf " /* target specific vector. */\n"
1338 printf " struct gdbarch_tdep *tdep;\n"
1339 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1340 printf "\n"
1341 printf " /* per-architecture data-pointers */\n"
1342 printf " unsigned nr_data;\n"
1343 printf " void **data;\n"
1344 printf "\n"
1345 printf " /* per-architecture swap-regions */\n"
1346 printf " struct gdbarch_swap *swap;\n"
1347 printf "\n"
1348 cat <<EOF
1349 /* Multi-arch values.
1350
1351 When extending this structure you must:
1352
1353 Add the field below.
1354
1355 Declare set/get functions and define the corresponding
1356 macro in gdbarch.h.
1357
1358 gdbarch_alloc(): If zero/NULL is not a suitable default,
1359 initialize the new field.
1360
1361 verify_gdbarch(): Confirm that the target updated the field
1362 correctly.
1363
1364 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1365 field is dumped out
1366
1367 \`\`startup_gdbarch()'': Append an initial value to the static
1368 variable (base values on the host's c-type system).
1369
1370 get_gdbarch(): Implement the set/get functions (probably using
1371 the macro's as shortcuts).
1372
1373 */
1374
1375 EOF
1376 function_list | while do_read
1377 do
1378 if class_is_variable_p
1379 then
1380 printf " ${returntype} ${function};\n"
1381 elif class_is_function_p
1382 then
1383 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1384 fi
1385 done
1386 printf "};\n"
1387
1388 # A pre-initialized vector
1389 printf "\n"
1390 printf "\n"
1391 cat <<EOF
1392 /* The default architecture uses host values (for want of a better
1393 choice). */
1394 EOF
1395 printf "\n"
1396 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1397 printf "\n"
1398 printf "struct gdbarch startup_gdbarch =\n"
1399 printf "{\n"
1400 printf " 1, /* Always initialized. */\n"
1401 printf " /* basic architecture information */\n"
1402 function_list | while do_read
1403 do
1404 if class_is_info_p
1405 then
1406 printf " ${staticdefault},\n"
1407 fi
1408 done
1409 cat <<EOF
1410 /* target specific vector and its dump routine */
1411 NULL, NULL,
1412 /*per-architecture data-pointers and swap regions */
1413 0, NULL, NULL,
1414 /* Multi-arch values */
1415 EOF
1416 function_list | while do_read
1417 do
1418 if class_is_function_p || class_is_variable_p
1419 then
1420 printf " ${staticdefault},\n"
1421 fi
1422 done
1423 cat <<EOF
1424 /* startup_gdbarch() */
1425 };
1426
1427 struct gdbarch *current_gdbarch = &startup_gdbarch;
1428
1429 /* Do any initialization needed for a non-multiarch configuration
1430 after the _initialize_MODULE functions have been run. */
1431 void
1432 initialize_non_multiarch (void)
1433 {
1434 alloc_gdbarch_data (&startup_gdbarch);
1435 /* Ensure that all swap areas are zeroed so that they again think
1436 they are starting from scratch. */
1437 clear_gdbarch_swap (&startup_gdbarch);
1438 init_gdbarch_swap (&startup_gdbarch);
1439 }
1440 EOF
1441
1442 # Create a new gdbarch struct
1443 printf "\n"
1444 printf "\n"
1445 cat <<EOF
1446 /* Create a new \`\`struct gdbarch'' based on information provided by
1447 \`\`struct gdbarch_info''. */
1448 EOF
1449 printf "\n"
1450 cat <<EOF
1451 struct gdbarch *
1452 gdbarch_alloc (const struct gdbarch_info *info,
1453 struct gdbarch_tdep *tdep)
1454 {
1455 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1456 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1457 the current local architecture and not the previous global
1458 architecture. This ensures that the new architectures initial
1459 values are not influenced by the previous architecture. Once
1460 everything is parameterised with gdbarch, this will go away. */
1461 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1462 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1463
1464 alloc_gdbarch_data (current_gdbarch);
1465
1466 current_gdbarch->tdep = tdep;
1467 EOF
1468 printf "\n"
1469 function_list | while do_read
1470 do
1471 if class_is_info_p
1472 then
1473 printf " current_gdbarch->${function} = info->${function};\n"
1474 fi
1475 done
1476 printf "\n"
1477 printf " /* Force the explicit initialization of these. */\n"
1478 function_list | while do_read
1479 do
1480 if class_is_function_p || class_is_variable_p
1481 then
1482 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1483 then
1484 printf " current_gdbarch->${function} = ${predefault};\n"
1485 fi
1486 fi
1487 done
1488 cat <<EOF
1489 /* gdbarch_alloc() */
1490
1491 return current_gdbarch;
1492 }
1493 EOF
1494
1495 # Free a gdbarch struct.
1496 printf "\n"
1497 printf "\n"
1498 cat <<EOF
1499 /* Free a gdbarch struct. This should never happen in normal
1500 operation --- once you've created a gdbarch, you keep it around.
1501 However, if an architecture's init function encounters an error
1502 building the structure, it may need to clean up a partially
1503 constructed gdbarch. */
1504
1505 void
1506 gdbarch_free (struct gdbarch *arch)
1507 {
1508 gdb_assert (arch != NULL);
1509 free_gdbarch_data (arch);
1510 xfree (arch);
1511 }
1512 EOF
1513
1514 # verify a new architecture
1515 printf "\n"
1516 printf "\n"
1517 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1518 printf "\n"
1519 cat <<EOF
1520 static void
1521 verify_gdbarch (struct gdbarch *gdbarch)
1522 {
1523 struct ui_file *log;
1524 struct cleanup *cleanups;
1525 long dummy;
1526 char *buf;
1527 /* Only perform sanity checks on a multi-arch target. */
1528 if (!GDB_MULTI_ARCH)
1529 return;
1530 log = mem_fileopen ();
1531 cleanups = make_cleanup_ui_file_delete (log);
1532 /* fundamental */
1533 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1534 fprintf_unfiltered (log, "\n\tbyte-order");
1535 if (gdbarch->bfd_arch_info == NULL)
1536 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1537 /* Check those that need to be defined for the given multi-arch level. */
1538 EOF
1539 function_list | while do_read
1540 do
1541 if class_is_function_p || class_is_variable_p
1542 then
1543 if [ "x${invalid_p}" = "x0" ]
1544 then
1545 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1546 elif class_is_predicate_p
1547 then
1548 printf " /* Skip verify of ${function}, has predicate */\n"
1549 # FIXME: See do_read for potential simplification
1550 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1551 then
1552 printf " if (${invalid_p})\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1555 then
1556 printf " if (gdbarch->${function} == ${predefault})\n"
1557 printf " gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${postdefault}" ]
1559 then
1560 printf " if (gdbarch->${function} == 0)\n"
1561 printf " gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${invalid_p}" ]
1563 then
1564 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1565 printf " && (${invalid_p}))\n"
1566 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1567 elif [ -n "${predefault}" ]
1568 then
1569 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1570 printf " && (gdbarch->${function} == ${predefault}))\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 fi
1573 fi
1574 done
1575 cat <<EOF
1576 buf = ui_file_xstrdup (log, &dummy);
1577 make_cleanup (xfree, buf);
1578 if (strlen (buf) > 0)
1579 internal_error (__FILE__, __LINE__,
1580 "verify_gdbarch: the following are invalid ...%s",
1581 buf);
1582 do_cleanups (cleanups);
1583 }
1584 EOF
1585
1586 # dump the structure
1587 printf "\n"
1588 printf "\n"
1589 cat <<EOF
1590 /* Print out the details of the current architecture. */
1591
1592 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1593 just happens to match the global variable \`\`current_gdbarch''. That
1594 way macros refering to that variable get the local and not the global
1595 version - ulgh. Once everything is parameterised with gdbarch, this
1596 will go away. */
1597
1598 void
1599 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1600 {
1601 fprintf_unfiltered (file,
1602 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1603 GDB_MULTI_ARCH);
1604 EOF
1605 function_list | sort -t: -k 3 | while do_read
1606 do
1607 # First the predicate
1608 if class_is_predicate_p
1609 then
1610 if class_is_multiarch_p
1611 then
1612 printf " if (GDB_MULTI_ARCH)\n"
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1615 printf " gdbarch_${function}_p (current_gdbarch));\n"
1616 else
1617 printf "#ifdef ${macro}_P\n"
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1620 printf " \"${macro}_P()\",\n"
1621 printf " XSTRING (${macro}_P ()));\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1624 printf " ${macro}_P ());\n"
1625 printf "#endif\n"
1626 fi
1627 fi
1628 # multiarch functions don't have macros.
1629 if class_is_multiarch_p
1630 then
1631 printf " if (GDB_MULTI_ARCH)\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1634 printf " (long) current_gdbarch->${function});\n"
1635 continue
1636 fi
1637 # Print the macro definition.
1638 printf "#ifdef ${macro}\n"
1639 if [ "x${returntype}" = "xvoid" ]
1640 then
1641 printf "#if GDB_MULTI_ARCH\n"
1642 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1643 fi
1644 if class_is_function_p
1645 then
1646 printf " fprintf_unfiltered (file,\n"
1647 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1648 printf " \"${macro}(${actual})\",\n"
1649 printf " XSTRING (${macro} (${actual})));\n"
1650 else
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1653 printf " XSTRING (${macro}));\n"
1654 fi
1655 # Print the architecture vector value
1656 if [ "x${returntype}" = "xvoid" ]
1657 then
1658 printf "#endif\n"
1659 fi
1660 if [ "x${print_p}" = "x()" ]
1661 then
1662 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1663 elif [ "x${print_p}" = "x0" ]
1664 then
1665 printf " /* skip print of ${macro}, print_p == 0. */\n"
1666 elif [ -n "${print_p}" ]
1667 then
1668 printf " if (${print_p})\n"
1669 printf " fprintf_unfiltered (file,\n"
1670 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1671 printf " ${print});\n"
1672 elif class_is_function_p
1673 then
1674 printf " if (GDB_MULTI_ARCH)\n"
1675 printf " fprintf_unfiltered (file,\n"
1676 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1677 printf " (long) current_gdbarch->${function}\n"
1678 printf " /*${macro} ()*/);\n"
1679 else
1680 printf " fprintf_unfiltered (file,\n"
1681 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1682 printf " ${print});\n"
1683 fi
1684 printf "#endif\n"
1685 done
1686 cat <<EOF
1687 if (current_gdbarch->dump_tdep != NULL)
1688 current_gdbarch->dump_tdep (current_gdbarch, file);
1689 }
1690 EOF
1691
1692
1693 # GET/SET
1694 printf "\n"
1695 cat <<EOF
1696 struct gdbarch_tdep *
1697 gdbarch_tdep (struct gdbarch *gdbarch)
1698 {
1699 if (gdbarch_debug >= 2)
1700 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1701 return gdbarch->tdep;
1702 }
1703 EOF
1704 printf "\n"
1705 function_list | while do_read
1706 do
1707 if class_is_predicate_p
1708 then
1709 printf "\n"
1710 printf "int\n"
1711 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1712 printf "{\n"
1713 printf " gdb_assert (gdbarch != NULL);\n"
1714 if [ -n "${predicate}" ]
1715 then
1716 printf " return ${predicate};\n"
1717 else
1718 printf " return gdbarch->${function} != 0;\n"
1719 fi
1720 printf "}\n"
1721 fi
1722 if class_is_function_p
1723 then
1724 printf "\n"
1725 printf "${returntype}\n"
1726 if [ "x${formal}" = "xvoid" ]
1727 then
1728 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1729 else
1730 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1731 fi
1732 printf "{\n"
1733 printf " gdb_assert (gdbarch != NULL);\n"
1734 printf " if (gdbarch->${function} == 0)\n"
1735 printf " internal_error (__FILE__, __LINE__,\n"
1736 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1737 if class_is_predicate_p && test -n "${predicate}"
1738 then
1739 # Allow a call to a function with a predicate.
1740 printf " /* Ignore predicate (${predicate}). */\n"
1741 fi
1742 printf " if (gdbarch_debug >= 2)\n"
1743 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1744 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1745 then
1746 if class_is_multiarch_p
1747 then
1748 params="gdbarch"
1749 else
1750 params=""
1751 fi
1752 else
1753 if class_is_multiarch_p
1754 then
1755 params="gdbarch, ${actual}"
1756 else
1757 params="${actual}"
1758 fi
1759 fi
1760 if [ "x${returntype}" = "xvoid" ]
1761 then
1762 printf " gdbarch->${function} (${params});\n"
1763 else
1764 printf " return gdbarch->${function} (${params});\n"
1765 fi
1766 printf "}\n"
1767 printf "\n"
1768 printf "void\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1771 printf "{\n"
1772 printf " gdbarch->${function} = ${function};\n"
1773 printf "}\n"
1774 elif class_is_variable_p
1775 then
1776 printf "\n"
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf "{\n"
1780 printf " gdb_assert (gdbarch != NULL);\n"
1781 if [ "x${invalid_p}" = "x0" ]
1782 then
1783 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1784 elif [ -n "${invalid_p}" ]
1785 then
1786 printf " if (${invalid_p})\n"
1787 printf " internal_error (__FILE__, __LINE__,\n"
1788 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1789 elif [ -n "${predefault}" ]
1790 then
1791 printf " if (gdbarch->${function} == ${predefault})\n"
1792 printf " internal_error (__FILE__, __LINE__,\n"
1793 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1794 fi
1795 printf " if (gdbarch_debug >= 2)\n"
1796 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1797 printf " return gdbarch->${function};\n"
1798 printf "}\n"
1799 printf "\n"
1800 printf "void\n"
1801 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1802 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1803 printf "{\n"
1804 printf " gdbarch->${function} = ${function};\n"
1805 printf "}\n"
1806 elif class_is_info_p
1807 then
1808 printf "\n"
1809 printf "${returntype}\n"
1810 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1811 printf "{\n"
1812 printf " gdb_assert (gdbarch != NULL);\n"
1813 printf " if (gdbarch_debug >= 2)\n"
1814 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1815 printf " return gdbarch->${function};\n"
1816 printf "}\n"
1817 fi
1818 done
1819
1820 # All the trailing guff
1821 cat <<EOF
1822
1823
1824 /* Keep a registry of per-architecture data-pointers required by GDB
1825 modules. */
1826
1827 struct gdbarch_data
1828 {
1829 unsigned index;
1830 int init_p;
1831 gdbarch_data_init_ftype *init;
1832 gdbarch_data_free_ftype *free;
1833 };
1834
1835 struct gdbarch_data_registration
1836 {
1837 struct gdbarch_data *data;
1838 struct gdbarch_data_registration *next;
1839 };
1840
1841 struct gdbarch_data_registry
1842 {
1843 unsigned nr;
1844 struct gdbarch_data_registration *registrations;
1845 };
1846
1847 struct gdbarch_data_registry gdbarch_data_registry =
1848 {
1849 0, NULL,
1850 };
1851
1852 struct gdbarch_data *
1853 register_gdbarch_data (gdbarch_data_init_ftype *init,
1854 gdbarch_data_free_ftype *free)
1855 {
1856 struct gdbarch_data_registration **curr;
1857 /* Append the new registraration. */
1858 for (curr = &gdbarch_data_registry.registrations;
1859 (*curr) != NULL;
1860 curr = &(*curr)->next);
1861 (*curr) = XMALLOC (struct gdbarch_data_registration);
1862 (*curr)->next = NULL;
1863 (*curr)->data = XMALLOC (struct gdbarch_data);
1864 (*curr)->data->index = gdbarch_data_registry.nr++;
1865 (*curr)->data->init = init;
1866 (*curr)->data->init_p = 1;
1867 (*curr)->data->free = free;
1868 return (*curr)->data;
1869 }
1870
1871
1872 /* Create/delete the gdbarch data vector. */
1873
1874 static void
1875 alloc_gdbarch_data (struct gdbarch *gdbarch)
1876 {
1877 gdb_assert (gdbarch->data == NULL);
1878 gdbarch->nr_data = gdbarch_data_registry.nr;
1879 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1880 }
1881
1882 static void
1883 free_gdbarch_data (struct gdbarch *gdbarch)
1884 {
1885 struct gdbarch_data_registration *rego;
1886 gdb_assert (gdbarch->data != NULL);
1887 for (rego = gdbarch_data_registry.registrations;
1888 rego != NULL;
1889 rego = rego->next)
1890 {
1891 struct gdbarch_data *data = rego->data;
1892 gdb_assert (data->index < gdbarch->nr_data);
1893 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1894 {
1895 data->free (gdbarch, gdbarch->data[data->index]);
1896 gdbarch->data[data->index] = NULL;
1897 }
1898 }
1899 xfree (gdbarch->data);
1900 gdbarch->data = NULL;
1901 }
1902
1903
1904 /* Initialize the current value of the specified per-architecture
1905 data-pointer. */
1906
1907 void
1908 set_gdbarch_data (struct gdbarch *gdbarch,
1909 struct gdbarch_data *data,
1910 void *pointer)
1911 {
1912 gdb_assert (data->index < gdbarch->nr_data);
1913 if (gdbarch->data[data->index] != NULL)
1914 {
1915 gdb_assert (data->free != NULL);
1916 data->free (gdbarch, gdbarch->data[data->index]);
1917 }
1918 gdbarch->data[data->index] = pointer;
1919 }
1920
1921 /* Return the current value of the specified per-architecture
1922 data-pointer. */
1923
1924 void *
1925 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1926 {
1927 gdb_assert (data->index < gdbarch->nr_data);
1928 /* The data-pointer isn't initialized, call init() to get a value but
1929 only if the architecture initializaiton has completed. Otherwise
1930 punt - hope that the caller knows what they are doing. */
1931 if (gdbarch->data[data->index] == NULL
1932 && gdbarch->initialized_p)
1933 {
1934 /* Be careful to detect an initialization cycle. */
1935 gdb_assert (data->init_p);
1936 data->init_p = 0;
1937 gdb_assert (data->init != NULL);
1938 gdbarch->data[data->index] = data->init (gdbarch);
1939 data->init_p = 1;
1940 gdb_assert (gdbarch->data[data->index] != NULL);
1941 }
1942 return gdbarch->data[data->index];
1943 }
1944
1945
1946
1947 /* Keep a registry of swapped data required by GDB modules. */
1948
1949 struct gdbarch_swap
1950 {
1951 void *swap;
1952 struct gdbarch_swap_registration *source;
1953 struct gdbarch_swap *next;
1954 };
1955
1956 struct gdbarch_swap_registration
1957 {
1958 void *data;
1959 unsigned long sizeof_data;
1960 gdbarch_swap_ftype *init;
1961 struct gdbarch_swap_registration *next;
1962 };
1963
1964 struct gdbarch_swap_registry
1965 {
1966 int nr;
1967 struct gdbarch_swap_registration *registrations;
1968 };
1969
1970 struct gdbarch_swap_registry gdbarch_swap_registry =
1971 {
1972 0, NULL,
1973 };
1974
1975 void
1976 register_gdbarch_swap (void *data,
1977 unsigned long sizeof_data,
1978 gdbarch_swap_ftype *init)
1979 {
1980 struct gdbarch_swap_registration **rego;
1981 for (rego = &gdbarch_swap_registry.registrations;
1982 (*rego) != NULL;
1983 rego = &(*rego)->next);
1984 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1985 (*rego)->next = NULL;
1986 (*rego)->init = init;
1987 (*rego)->data = data;
1988 (*rego)->sizeof_data = sizeof_data;
1989 }
1990
1991 static void
1992 clear_gdbarch_swap (struct gdbarch *gdbarch)
1993 {
1994 struct gdbarch_swap *curr;
1995 for (curr = gdbarch->swap;
1996 curr != NULL;
1997 curr = curr->next)
1998 {
1999 memset (curr->source->data, 0, curr->source->sizeof_data);
2000 }
2001 }
2002
2003 static void
2004 init_gdbarch_swap (struct gdbarch *gdbarch)
2005 {
2006 struct gdbarch_swap_registration *rego;
2007 struct gdbarch_swap **curr = &gdbarch->swap;
2008 for (rego = gdbarch_swap_registry.registrations;
2009 rego != NULL;
2010 rego = rego->next)
2011 {
2012 if (rego->data != NULL)
2013 {
2014 (*curr) = XMALLOC (struct gdbarch_swap);
2015 (*curr)->source = rego;
2016 (*curr)->swap = xmalloc (rego->sizeof_data);
2017 (*curr)->next = NULL;
2018 curr = &(*curr)->next;
2019 }
2020 if (rego->init != NULL)
2021 rego->init ();
2022 }
2023 }
2024
2025 static void
2026 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2027 {
2028 struct gdbarch_swap *curr;
2029 for (curr = gdbarch->swap;
2030 curr != NULL;
2031 curr = curr->next)
2032 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2033 }
2034
2035 static void
2036 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2037 {
2038 struct gdbarch_swap *curr;
2039 for (curr = gdbarch->swap;
2040 curr != NULL;
2041 curr = curr->next)
2042 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2043 }
2044
2045
2046 /* Keep a registry of the architectures known by GDB. */
2047
2048 struct gdbarch_registration
2049 {
2050 enum bfd_architecture bfd_architecture;
2051 gdbarch_init_ftype *init;
2052 gdbarch_dump_tdep_ftype *dump_tdep;
2053 struct gdbarch_list *arches;
2054 struct gdbarch_registration *next;
2055 };
2056
2057 static struct gdbarch_registration *gdbarch_registry = NULL;
2058
2059 static void
2060 append_name (const char ***buf, int *nr, const char *name)
2061 {
2062 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2063 (*buf)[*nr] = name;
2064 *nr += 1;
2065 }
2066
2067 const char **
2068 gdbarch_printable_names (void)
2069 {
2070 if (GDB_MULTI_ARCH)
2071 {
2072 /* Accumulate a list of names based on the registed list of
2073 architectures. */
2074 enum bfd_architecture a;
2075 int nr_arches = 0;
2076 const char **arches = NULL;
2077 struct gdbarch_registration *rego;
2078 for (rego = gdbarch_registry;
2079 rego != NULL;
2080 rego = rego->next)
2081 {
2082 const struct bfd_arch_info *ap;
2083 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2084 if (ap == NULL)
2085 internal_error (__FILE__, __LINE__,
2086 "gdbarch_architecture_names: multi-arch unknown");
2087 do
2088 {
2089 append_name (&arches, &nr_arches, ap->printable_name);
2090 ap = ap->next;
2091 }
2092 while (ap != NULL);
2093 }
2094 append_name (&arches, &nr_arches, NULL);
2095 return arches;
2096 }
2097 else
2098 /* Just return all the architectures that BFD knows. Assume that
2099 the legacy architecture framework supports them. */
2100 return bfd_arch_list ();
2101 }
2102
2103
2104 void
2105 gdbarch_register (enum bfd_architecture bfd_architecture,
2106 gdbarch_init_ftype *init,
2107 gdbarch_dump_tdep_ftype *dump_tdep)
2108 {
2109 struct gdbarch_registration **curr;
2110 const struct bfd_arch_info *bfd_arch_info;
2111 /* Check that BFD recognizes this architecture */
2112 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2113 if (bfd_arch_info == NULL)
2114 {
2115 internal_error (__FILE__, __LINE__,
2116 "gdbarch: Attempt to register unknown architecture (%d)",
2117 bfd_architecture);
2118 }
2119 /* Check that we haven't seen this architecture before */
2120 for (curr = &gdbarch_registry;
2121 (*curr) != NULL;
2122 curr = &(*curr)->next)
2123 {
2124 if (bfd_architecture == (*curr)->bfd_architecture)
2125 internal_error (__FILE__, __LINE__,
2126 "gdbarch: Duplicate registraration of architecture (%s)",
2127 bfd_arch_info->printable_name);
2128 }
2129 /* log it */
2130 if (gdbarch_debug)
2131 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2132 bfd_arch_info->printable_name,
2133 (long) init);
2134 /* Append it */
2135 (*curr) = XMALLOC (struct gdbarch_registration);
2136 (*curr)->bfd_architecture = bfd_architecture;
2137 (*curr)->init = init;
2138 (*curr)->dump_tdep = dump_tdep;
2139 (*curr)->arches = NULL;
2140 (*curr)->next = NULL;
2141 /* When non- multi-arch, install whatever target dump routine we've
2142 been provided - hopefully that routine has been written correctly
2143 and works regardless of multi-arch. */
2144 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2145 && startup_gdbarch.dump_tdep == NULL)
2146 startup_gdbarch.dump_tdep = dump_tdep;
2147 }
2148
2149 void
2150 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2151 gdbarch_init_ftype *init)
2152 {
2153 gdbarch_register (bfd_architecture, init, NULL);
2154 }
2155
2156
2157 /* Look for an architecture using gdbarch_info. Base search on only
2158 BFD_ARCH_INFO and BYTE_ORDER. */
2159
2160 struct gdbarch_list *
2161 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2162 const struct gdbarch_info *info)
2163 {
2164 for (; arches != NULL; arches = arches->next)
2165 {
2166 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2167 continue;
2168 if (info->byte_order != arches->gdbarch->byte_order)
2169 continue;
2170 if (info->osabi != arches->gdbarch->osabi)
2171 continue;
2172 return arches;
2173 }
2174 return NULL;
2175 }
2176
2177
2178 /* Update the current architecture. Return ZERO if the update request
2179 failed. */
2180
2181 int
2182 gdbarch_update_p (struct gdbarch_info info)
2183 {
2184 struct gdbarch *new_gdbarch;
2185 struct gdbarch *old_gdbarch;
2186 struct gdbarch_registration *rego;
2187
2188 /* Fill in missing parts of the INFO struct using a number of
2189 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2190
2191 /* \`\`(gdb) set architecture ...'' */
2192 if (info.bfd_arch_info == NULL
2193 && !TARGET_ARCHITECTURE_AUTO)
2194 info.bfd_arch_info = TARGET_ARCHITECTURE;
2195 if (info.bfd_arch_info == NULL
2196 && info.abfd != NULL
2197 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2198 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2199 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2200 if (info.bfd_arch_info == NULL)
2201 info.bfd_arch_info = TARGET_ARCHITECTURE;
2202
2203 /* \`\`(gdb) set byte-order ...'' */
2204 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2205 && !TARGET_BYTE_ORDER_AUTO)
2206 info.byte_order = TARGET_BYTE_ORDER;
2207 /* From the INFO struct. */
2208 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2209 && info.abfd != NULL)
2210 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2211 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2212 : BFD_ENDIAN_UNKNOWN);
2213 /* From the current target. */
2214 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2215 info.byte_order = TARGET_BYTE_ORDER;
2216
2217 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2218 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2219 info.osabi = gdbarch_lookup_osabi (info.abfd);
2220 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2221 info.osabi = current_gdbarch->osabi;
2222
2223 /* Must have found some sort of architecture. */
2224 gdb_assert (info.bfd_arch_info != NULL);
2225
2226 if (gdbarch_debug)
2227 {
2228 fprintf_unfiltered (gdb_stdlog,
2229 "gdbarch_update: info.bfd_arch_info %s\n",
2230 (info.bfd_arch_info != NULL
2231 ? info.bfd_arch_info->printable_name
2232 : "(null)"));
2233 fprintf_unfiltered (gdb_stdlog,
2234 "gdbarch_update: info.byte_order %d (%s)\n",
2235 info.byte_order,
2236 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2237 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2238 : "default"));
2239 fprintf_unfiltered (gdb_stdlog,
2240 "gdbarch_update: info.osabi %d (%s)\n",
2241 info.osabi, gdbarch_osabi_name (info.osabi));
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_update: info.abfd 0x%lx\n",
2244 (long) info.abfd);
2245 fprintf_unfiltered (gdb_stdlog,
2246 "gdbarch_update: info.tdep_info 0x%lx\n",
2247 (long) info.tdep_info);
2248 }
2249
2250 /* Find the target that knows about this architecture. */
2251 for (rego = gdbarch_registry;
2252 rego != NULL;
2253 rego = rego->next)
2254 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2255 break;
2256 if (rego == NULL)
2257 {
2258 if (gdbarch_debug)
2259 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2260 return 0;
2261 }
2262
2263 /* Swap the data belonging to the old target out setting the
2264 installed data to zero. This stops the ->init() function trying
2265 to refer to the previous architecture's global data structures. */
2266 swapout_gdbarch_swap (current_gdbarch);
2267 clear_gdbarch_swap (current_gdbarch);
2268
2269 /* Save the previously selected architecture, setting the global to
2270 NULL. This stops ->init() trying to use the previous
2271 architecture's configuration. The previous architecture may not
2272 even be of the same architecture family. The most recent
2273 architecture of the same family is found at the head of the
2274 rego->arches list. */
2275 old_gdbarch = current_gdbarch;
2276 current_gdbarch = NULL;
2277
2278 /* Ask the target for a replacement architecture. */
2279 new_gdbarch = rego->init (info, rego->arches);
2280
2281 /* Did the target like it? No. Reject the change and revert to the
2282 old architecture. */
2283 if (new_gdbarch == NULL)
2284 {
2285 if (gdbarch_debug)
2286 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2287 swapin_gdbarch_swap (old_gdbarch);
2288 current_gdbarch = old_gdbarch;
2289 return 0;
2290 }
2291
2292 /* Did the architecture change? No. Oops, put the old architecture
2293 back. */
2294 if (old_gdbarch == new_gdbarch)
2295 {
2296 if (gdbarch_debug)
2297 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2298 (long) new_gdbarch,
2299 new_gdbarch->bfd_arch_info->printable_name);
2300 swapin_gdbarch_swap (old_gdbarch);
2301 current_gdbarch = old_gdbarch;
2302 return 1;
2303 }
2304
2305 /* Is this a pre-existing architecture? Yes. Move it to the front
2306 of the list of architectures (keeping the list sorted Most
2307 Recently Used) and then copy it in. */
2308 {
2309 struct gdbarch_list **list;
2310 for (list = &rego->arches;
2311 (*list) != NULL;
2312 list = &(*list)->next)
2313 {
2314 if ((*list)->gdbarch == new_gdbarch)
2315 {
2316 struct gdbarch_list *this;
2317 if (gdbarch_debug)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2320 (long) new_gdbarch,
2321 new_gdbarch->bfd_arch_info->printable_name);
2322 /* Unlink this. */
2323 this = (*list);
2324 (*list) = this->next;
2325 /* Insert in the front. */
2326 this->next = rego->arches;
2327 rego->arches = this;
2328 /* Copy the new architecture in. */
2329 current_gdbarch = new_gdbarch;
2330 swapin_gdbarch_swap (new_gdbarch);
2331 architecture_changed_event ();
2332 return 1;
2333 }
2334 }
2335 }
2336
2337 /* Prepend this new architecture to the architecture list (keep the
2338 list sorted Most Recently Used). */
2339 {
2340 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2341 this->next = rego->arches;
2342 this->gdbarch = new_gdbarch;
2343 rego->arches = this;
2344 }
2345
2346 /* Switch to this new architecture marking it initialized. */
2347 current_gdbarch = new_gdbarch;
2348 current_gdbarch->initialized_p = 1;
2349 if (gdbarch_debug)
2350 {
2351 fprintf_unfiltered (gdb_stdlog,
2352 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2353 (long) new_gdbarch,
2354 new_gdbarch->bfd_arch_info->printable_name);
2355 }
2356
2357 /* Check that the newly installed architecture is valid. Plug in
2358 any post init values. */
2359 new_gdbarch->dump_tdep = rego->dump_tdep;
2360 verify_gdbarch (new_gdbarch);
2361
2362 /* Initialize the per-architecture memory (swap) areas.
2363 CURRENT_GDBARCH must be update before these modules are
2364 called. */
2365 init_gdbarch_swap (new_gdbarch);
2366
2367 /* Initialize the per-architecture data. CURRENT_GDBARCH
2368 must be updated before these modules are called. */
2369 architecture_changed_event ();
2370
2371 if (gdbarch_debug)
2372 gdbarch_dump (current_gdbarch, gdb_stdlog);
2373
2374 return 1;
2375 }
2376
2377
2378 /* Disassembler */
2379
2380 /* Pointer to the target-dependent disassembly function. */
2381 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2382
2383 extern void _initialize_gdbarch (void);
2384
2385 void
2386 _initialize_gdbarch (void)
2387 {
2388 struct cmd_list_element *c;
2389
2390 add_show_from_set (add_set_cmd ("arch",
2391 class_maintenance,
2392 var_zinteger,
2393 (char *)&gdbarch_debug,
2394 "Set architecture debugging.\\n\\
2395 When non-zero, architecture debugging is enabled.", &setdebuglist),
2396 &showdebuglist);
2397 c = add_set_cmd ("archdebug",
2398 class_maintenance,
2399 var_zinteger,
2400 (char *)&gdbarch_debug,
2401 "Set architecture debugging.\\n\\
2402 When non-zero, architecture debugging is enabled.", &setlist);
2403
2404 deprecate_cmd (c, "set debug arch");
2405 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2406 }
2407 EOF
2408
2409 # close things off
2410 exec 1>&2
2411 #../move-if-change new-gdbarch.c gdbarch.c
2412 compare_new gdbarch.c
This page took 0.086416 seconds and 4 git commands to generate.