fix error in nios2-tdep.c
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
679
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
687
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
690
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
693 # set this to one.
694 v:int:vtable_function_descriptors:::0:0::0
695
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
699
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
702
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
705
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
708 #
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
712 #
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
717 #
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
720 #
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
724 #
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
727 #
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
730 # here.
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
739 #
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
747 #
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
750 #
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
753 #
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
757 #
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
763 #
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
766 #
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
769 #
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
777 # time.
778 #
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
798
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
800
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
805
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
815
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
824
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
834 # Extra signal info inspection.
835 #
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
838
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
841
842 # Function for the 'catch syscall' feature.
843
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
847 # SystemTap related fields and functions.
848
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
852 #
853 # \$10 ;; integer constant 10
854 #
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
857
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
861
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
865 #
866 # \%eax ;; register eax
867 #
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
874
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
878 #
879 # \(\%eax\) ;; indirecting eax
880 #
881 # in this case, this prefix would be the charater \`\(\'.
882 #
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
886
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
890 #
891 # \(\%eax\) ;; indirecting eax
892 #
893 # in this case, this prefix would be the charater \`\)\'.
894 #
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
898
899 # Prefix(es) used to name a register using GDB's nomenclature.
900 #
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
906
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
909
910 # Check if S is a single operand.
911 #
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917 #
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
923
924 # Function used to handle a "special case" in the parser.
925 #
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
929 #
930 # [R0, #4] ;; displacing R0 by 4
931 #
932 # Since the parser assumes that a register displacement is of the form:
933 #
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
935 #
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
938 #
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
952 # addresses.
953 v:int:has_global_solist:::0:0::0
954
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
960
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
963
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
966
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
971
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
974 #
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
979
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
984
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
992 # Implement the "info proc" command.
993 M:void:info_proc:char *args, enum info_proc_what what:args, what
994
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
999
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1002 #
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1006 # returns nonzero.
1007 #
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1009 # the callback.
1010 #
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1017
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1026 EOF
1027 }
1028
1029 #
1030 # The .log file
1031 #
1032 exec > new-gdbarch.log
1033 function_list | while do_read
1034 do
1035 cat <<EOF
1036 ${class} ${returntype} ${function} ($formal)
1037 EOF
1038 for r in ${read}
1039 do
1040 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1041 done
1042 if class_is_predicate_p && fallback_default_p
1043 then
1044 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1045 kill $$
1046 exit 1
1047 fi
1048 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1049 then
1050 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1051 kill $$
1052 exit 1
1053 fi
1054 if class_is_multiarch_p
1055 then
1056 if class_is_predicate_p ; then :
1057 elif test "x${predefault}" = "x"
1058 then
1059 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1060 kill $$
1061 exit 1
1062 fi
1063 fi
1064 echo ""
1065 done
1066
1067 exec 1>&2
1068 compare_new gdbarch.log
1069
1070
1071 copyright ()
1072 {
1073 cat <<EOF
1074 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1075 /* vi:set ro: */
1076
1077 /* Dynamic architecture support for GDB, the GNU debugger.
1078
1079 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1080
1081 This file is part of GDB.
1082
1083 This program is free software; you can redistribute it and/or modify
1084 it under the terms of the GNU General Public License as published by
1085 the Free Software Foundation; either version 3 of the License, or
1086 (at your option) any later version.
1087
1088 This program is distributed in the hope that it will be useful,
1089 but WITHOUT ANY WARRANTY; without even the implied warranty of
1090 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1091 GNU General Public License for more details.
1092
1093 You should have received a copy of the GNU General Public License
1094 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1095
1096 /* This file was created with the aid of \`\`gdbarch.sh''.
1097
1098 The Bourne shell script \`\`gdbarch.sh'' creates the files
1099 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1100 against the existing \`\`gdbarch.[hc]''. Any differences found
1101 being reported.
1102
1103 If editing this file, please also run gdbarch.sh and merge any
1104 changes into that script. Conversely, when making sweeping changes
1105 to this file, modifying gdbarch.sh and using its output may prove
1106 easier. */
1107
1108 EOF
1109 }
1110
1111 #
1112 # The .h file
1113 #
1114
1115 exec > new-gdbarch.h
1116 copyright
1117 cat <<EOF
1118 #ifndef GDBARCH_H
1119 #define GDBARCH_H
1120
1121 struct floatformat;
1122 struct ui_file;
1123 struct frame_info;
1124 struct value;
1125 struct objfile;
1126 struct obj_section;
1127 struct minimal_symbol;
1128 struct regcache;
1129 struct reggroup;
1130 struct regset;
1131 struct disassemble_info;
1132 struct target_ops;
1133 struct obstack;
1134 struct bp_target_info;
1135 struct target_desc;
1136 struct displaced_step_closure;
1137 struct core_regset_section;
1138 struct syscall;
1139 struct agent_expr;
1140 struct axs_value;
1141 struct stap_parse_info;
1142 struct ravenscar_arch_ops;
1143 struct elf_internal_linux_prpsinfo;
1144
1145 /* The architecture associated with the inferior through the
1146 connection to the target.
1147
1148 The architecture vector provides some information that is really a
1149 property of the inferior, accessed through a particular target:
1150 ptrace operations; the layout of certain RSP packets; the solib_ops
1151 vector; etc. To differentiate architecture accesses to
1152 per-inferior/target properties from
1153 per-thread/per-frame/per-objfile properties, accesses to
1154 per-inferior/target properties should be made through this
1155 gdbarch. */
1156
1157 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1158 extern struct gdbarch *target_gdbarch (void);
1159
1160 /* The initial, default architecture. It uses host values (for want of a better
1161 choice). */
1162 extern struct gdbarch startup_gdbarch;
1163
1164
1165 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1166 gdbarch method. */
1167
1168 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1169 (struct objfile *objfile, void *cb_data);
1170 EOF
1171
1172 # function typedef's
1173 printf "\n"
1174 printf "\n"
1175 printf "/* The following are pre-initialized by GDBARCH. */\n"
1176 function_list | while do_read
1177 do
1178 if class_is_info_p
1179 then
1180 printf "\n"
1181 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1182 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1183 fi
1184 done
1185
1186 # function typedef's
1187 printf "\n"
1188 printf "\n"
1189 printf "/* The following are initialized by the target dependent code. */\n"
1190 function_list | while do_read
1191 do
1192 if [ -n "${comment}" ]
1193 then
1194 echo "${comment}" | sed \
1195 -e '2 s,#,/*,' \
1196 -e '3,$ s,#, ,' \
1197 -e '$ s,$, */,'
1198 fi
1199
1200 if class_is_predicate_p
1201 then
1202 printf "\n"
1203 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1204 fi
1205 if class_is_variable_p
1206 then
1207 printf "\n"
1208 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1209 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1210 fi
1211 if class_is_function_p
1212 then
1213 printf "\n"
1214 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1215 then
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1217 elif class_is_multiarch_p
1218 then
1219 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1220 else
1221 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1222 fi
1223 if [ "x${formal}" = "xvoid" ]
1224 then
1225 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1226 else
1227 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1228 fi
1229 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1230 fi
1231 done
1232
1233 # close it off
1234 cat <<EOF
1235
1236 /* Definition for an unknown syscall, used basically in error-cases. */
1237 #define UNKNOWN_SYSCALL (-1)
1238
1239 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1240
1241
1242 /* Mechanism for co-ordinating the selection of a specific
1243 architecture.
1244
1245 GDB targets (*-tdep.c) can register an interest in a specific
1246 architecture. Other GDB components can register a need to maintain
1247 per-architecture data.
1248
1249 The mechanisms below ensures that there is only a loose connection
1250 between the set-architecture command and the various GDB
1251 components. Each component can independently register their need
1252 to maintain architecture specific data with gdbarch.
1253
1254 Pragmatics:
1255
1256 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1257 didn't scale.
1258
1259 The more traditional mega-struct containing architecture specific
1260 data for all the various GDB components was also considered. Since
1261 GDB is built from a variable number of (fairly independent)
1262 components it was determined that the global aproach was not
1263 applicable. */
1264
1265
1266 /* Register a new architectural family with GDB.
1267
1268 Register support for the specified ARCHITECTURE with GDB. When
1269 gdbarch determines that the specified architecture has been
1270 selected, the corresponding INIT function is called.
1271
1272 --
1273
1274 The INIT function takes two parameters: INFO which contains the
1275 information available to gdbarch about the (possibly new)
1276 architecture; ARCHES which is a list of the previously created
1277 \`\`struct gdbarch'' for this architecture.
1278
1279 The INFO parameter is, as far as possible, be pre-initialized with
1280 information obtained from INFO.ABFD or the global defaults.
1281
1282 The ARCHES parameter is a linked list (sorted most recently used)
1283 of all the previously created architures for this architecture
1284 family. The (possibly NULL) ARCHES->gdbarch can used to access
1285 values from the previously selected architecture for this
1286 architecture family.
1287
1288 The INIT function shall return any of: NULL - indicating that it
1289 doesn't recognize the selected architecture; an existing \`\`struct
1290 gdbarch'' from the ARCHES list - indicating that the new
1291 architecture is just a synonym for an earlier architecture (see
1292 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1293 - that describes the selected architecture (see gdbarch_alloc()).
1294
1295 The DUMP_TDEP function shall print out all target specific values.
1296 Care should be taken to ensure that the function works in both the
1297 multi-arch and non- multi-arch cases. */
1298
1299 struct gdbarch_list
1300 {
1301 struct gdbarch *gdbarch;
1302 struct gdbarch_list *next;
1303 };
1304
1305 struct gdbarch_info
1306 {
1307 /* Use default: NULL (ZERO). */
1308 const struct bfd_arch_info *bfd_arch_info;
1309
1310 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1311 enum bfd_endian byte_order;
1312
1313 enum bfd_endian byte_order_for_code;
1314
1315 /* Use default: NULL (ZERO). */
1316 bfd *abfd;
1317
1318 /* Use default: NULL (ZERO). */
1319 struct gdbarch_tdep_info *tdep_info;
1320
1321 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1322 enum gdb_osabi osabi;
1323
1324 /* Use default: NULL (ZERO). */
1325 const struct target_desc *target_desc;
1326 };
1327
1328 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1329 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1330
1331 /* DEPRECATED - use gdbarch_register() */
1332 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1333
1334 extern void gdbarch_register (enum bfd_architecture architecture,
1335 gdbarch_init_ftype *,
1336 gdbarch_dump_tdep_ftype *);
1337
1338
1339 /* Return a freshly allocated, NULL terminated, array of the valid
1340 architecture names. Since architectures are registered during the
1341 _initialize phase this function only returns useful information
1342 once initialization has been completed. */
1343
1344 extern const char **gdbarch_printable_names (void);
1345
1346
1347 /* Helper function. Search the list of ARCHES for a GDBARCH that
1348 matches the information provided by INFO. */
1349
1350 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1351
1352
1353 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1354 basic initialization using values obtained from the INFO and TDEP
1355 parameters. set_gdbarch_*() functions are called to complete the
1356 initialization of the object. */
1357
1358 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1359
1360
1361 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1362 It is assumed that the caller freeds the \`\`struct
1363 gdbarch_tdep''. */
1364
1365 extern void gdbarch_free (struct gdbarch *);
1366
1367
1368 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1369 obstack. The memory is freed when the corresponding architecture
1370 is also freed. */
1371
1372 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1373 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1374 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1375
1376
1377 /* Helper function. Force an update of the current architecture.
1378
1379 The actual architecture selected is determined by INFO, \`\`(gdb) set
1380 architecture'' et.al., the existing architecture and BFD's default
1381 architecture. INFO should be initialized to zero and then selected
1382 fields should be updated.
1383
1384 Returns non-zero if the update succeeds. */
1385
1386 extern int gdbarch_update_p (struct gdbarch_info info);
1387
1388
1389 /* Helper function. Find an architecture matching info.
1390
1391 INFO should be initialized using gdbarch_info_init, relevant fields
1392 set, and then finished using gdbarch_info_fill.
1393
1394 Returns the corresponding architecture, or NULL if no matching
1395 architecture was found. */
1396
1397 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1398
1399
1400 /* Helper function. Set the target gdbarch to "gdbarch". */
1401
1402 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1403
1404
1405 /* Register per-architecture data-pointer.
1406
1407 Reserve space for a per-architecture data-pointer. An identifier
1408 for the reserved data-pointer is returned. That identifer should
1409 be saved in a local static variable.
1410
1411 Memory for the per-architecture data shall be allocated using
1412 gdbarch_obstack_zalloc. That memory will be deleted when the
1413 corresponding architecture object is deleted.
1414
1415 When a previously created architecture is re-selected, the
1416 per-architecture data-pointer for that previous architecture is
1417 restored. INIT() is not re-called.
1418
1419 Multiple registrarants for any architecture are allowed (and
1420 strongly encouraged). */
1421
1422 struct gdbarch_data;
1423
1424 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1425 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1426 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1427 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1428 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1429 struct gdbarch_data *data,
1430 void *pointer);
1431
1432 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1433
1434
1435 /* Set the dynamic target-system-dependent parameters (architecture,
1436 byte-order, ...) using information found in the BFD. */
1437
1438 extern void set_gdbarch_from_file (bfd *);
1439
1440
1441 /* Initialize the current architecture to the "first" one we find on
1442 our list. */
1443
1444 extern void initialize_current_architecture (void);
1445
1446 /* gdbarch trace variable */
1447 extern unsigned int gdbarch_debug;
1448
1449 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1450
1451 #endif
1452 EOF
1453 exec 1>&2
1454 #../move-if-change new-gdbarch.h gdbarch.h
1455 compare_new gdbarch.h
1456
1457
1458 #
1459 # C file
1460 #
1461
1462 exec > new-gdbarch.c
1463 copyright
1464 cat <<EOF
1465
1466 #include "defs.h"
1467 #include "arch-utils.h"
1468
1469 #include "gdbcmd.h"
1470 #include "inferior.h"
1471 #include "symcat.h"
1472
1473 #include "floatformat.h"
1474
1475 #include "gdb_assert.h"
1476 #include <string.h>
1477 #include "reggroups.h"
1478 #include "osabi.h"
1479 #include "gdb_obstack.h"
1480 #include "observer.h"
1481 #include "regcache.h"
1482 #include "objfiles.h"
1483
1484 /* Static function declarations */
1485
1486 static void alloc_gdbarch_data (struct gdbarch *);
1487
1488 /* Non-zero if we want to trace architecture code. */
1489
1490 #ifndef GDBARCH_DEBUG
1491 #define GDBARCH_DEBUG 0
1492 #endif
1493 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1494 static void
1495 show_gdbarch_debug (struct ui_file *file, int from_tty,
1496 struct cmd_list_element *c, const char *value)
1497 {
1498 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1499 }
1500
1501 static const char *
1502 pformat (const struct floatformat **format)
1503 {
1504 if (format == NULL)
1505 return "(null)";
1506 else
1507 /* Just print out one of them - this is only for diagnostics. */
1508 return format[0]->name;
1509 }
1510
1511 static const char *
1512 pstring (const char *string)
1513 {
1514 if (string == NULL)
1515 return "(null)";
1516 return string;
1517 }
1518
1519 /* Helper function to print a list of strings, represented as "const
1520 char *const *". The list is printed comma-separated. */
1521
1522 static char *
1523 pstring_list (const char *const *list)
1524 {
1525 static char ret[100];
1526 const char *const *p;
1527 size_t offset = 0;
1528
1529 if (list == NULL)
1530 return "(null)";
1531
1532 ret[0] = '\0';
1533 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1534 {
1535 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1536 offset += 2 + s;
1537 }
1538
1539 if (offset > 0)
1540 {
1541 gdb_assert (offset - 2 < sizeof (ret));
1542 ret[offset - 2] = '\0';
1543 }
1544
1545 return ret;
1546 }
1547
1548 EOF
1549
1550 # gdbarch open the gdbarch object
1551 printf "\n"
1552 printf "/* Maintain the struct gdbarch object. */\n"
1553 printf "\n"
1554 printf "struct gdbarch\n"
1555 printf "{\n"
1556 printf " /* Has this architecture been fully initialized? */\n"
1557 printf " int initialized_p;\n"
1558 printf "\n"
1559 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1560 printf " struct obstack *obstack;\n"
1561 printf "\n"
1562 printf " /* basic architectural information. */\n"
1563 function_list | while do_read
1564 do
1565 if class_is_info_p
1566 then
1567 printf " ${returntype} ${function};\n"
1568 fi
1569 done
1570 printf "\n"
1571 printf " /* target specific vector. */\n"
1572 printf " struct gdbarch_tdep *tdep;\n"
1573 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1574 printf "\n"
1575 printf " /* per-architecture data-pointers. */\n"
1576 printf " unsigned nr_data;\n"
1577 printf " void **data;\n"
1578 printf "\n"
1579 cat <<EOF
1580 /* Multi-arch values.
1581
1582 When extending this structure you must:
1583
1584 Add the field below.
1585
1586 Declare set/get functions and define the corresponding
1587 macro in gdbarch.h.
1588
1589 gdbarch_alloc(): If zero/NULL is not a suitable default,
1590 initialize the new field.
1591
1592 verify_gdbarch(): Confirm that the target updated the field
1593 correctly.
1594
1595 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1596 field is dumped out
1597
1598 \`\`startup_gdbarch()'': Append an initial value to the static
1599 variable (base values on the host's c-type system).
1600
1601 get_gdbarch(): Implement the set/get functions (probably using
1602 the macro's as shortcuts).
1603
1604 */
1605
1606 EOF
1607 function_list | while do_read
1608 do
1609 if class_is_variable_p
1610 then
1611 printf " ${returntype} ${function};\n"
1612 elif class_is_function_p
1613 then
1614 printf " gdbarch_${function}_ftype *${function};\n"
1615 fi
1616 done
1617 printf "};\n"
1618
1619 # A pre-initialized vector
1620 printf "\n"
1621 printf "\n"
1622 cat <<EOF
1623 /* The default architecture uses host values (for want of a better
1624 choice). */
1625 EOF
1626 printf "\n"
1627 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1628 printf "\n"
1629 printf "struct gdbarch startup_gdbarch =\n"
1630 printf "{\n"
1631 printf " 1, /* Always initialized. */\n"
1632 printf " NULL, /* The obstack. */\n"
1633 printf " /* basic architecture information. */\n"
1634 function_list | while do_read
1635 do
1636 if class_is_info_p
1637 then
1638 printf " ${staticdefault}, /* ${function} */\n"
1639 fi
1640 done
1641 cat <<EOF
1642 /* target specific vector and its dump routine. */
1643 NULL, NULL,
1644 /*per-architecture data-pointers. */
1645 0, NULL,
1646 /* Multi-arch values */
1647 EOF
1648 function_list | while do_read
1649 do
1650 if class_is_function_p || class_is_variable_p
1651 then
1652 printf " ${staticdefault}, /* ${function} */\n"
1653 fi
1654 done
1655 cat <<EOF
1656 /* startup_gdbarch() */
1657 };
1658
1659 EOF
1660
1661 # Create a new gdbarch struct
1662 cat <<EOF
1663
1664 /* Create a new \`\`struct gdbarch'' based on information provided by
1665 \`\`struct gdbarch_info''. */
1666 EOF
1667 printf "\n"
1668 cat <<EOF
1669 struct gdbarch *
1670 gdbarch_alloc (const struct gdbarch_info *info,
1671 struct gdbarch_tdep *tdep)
1672 {
1673 struct gdbarch *gdbarch;
1674
1675 /* Create an obstack for allocating all the per-architecture memory,
1676 then use that to allocate the architecture vector. */
1677 struct obstack *obstack = XNEW (struct obstack);
1678 obstack_init (obstack);
1679 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1680 memset (gdbarch, 0, sizeof (*gdbarch));
1681 gdbarch->obstack = obstack;
1682
1683 alloc_gdbarch_data (gdbarch);
1684
1685 gdbarch->tdep = tdep;
1686 EOF
1687 printf "\n"
1688 function_list | while do_read
1689 do
1690 if class_is_info_p
1691 then
1692 printf " gdbarch->${function} = info->${function};\n"
1693 fi
1694 done
1695 printf "\n"
1696 printf " /* Force the explicit initialization of these. */\n"
1697 function_list | while do_read
1698 do
1699 if class_is_function_p || class_is_variable_p
1700 then
1701 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1702 then
1703 printf " gdbarch->${function} = ${predefault};\n"
1704 fi
1705 fi
1706 done
1707 cat <<EOF
1708 /* gdbarch_alloc() */
1709
1710 return gdbarch;
1711 }
1712 EOF
1713
1714 # Free a gdbarch struct.
1715 printf "\n"
1716 printf "\n"
1717 cat <<EOF
1718 /* Allocate extra space using the per-architecture obstack. */
1719
1720 void *
1721 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1722 {
1723 void *data = obstack_alloc (arch->obstack, size);
1724
1725 memset (data, 0, size);
1726 return data;
1727 }
1728
1729
1730 /* Free a gdbarch struct. This should never happen in normal
1731 operation --- once you've created a gdbarch, you keep it around.
1732 However, if an architecture's init function encounters an error
1733 building the structure, it may need to clean up a partially
1734 constructed gdbarch. */
1735
1736 void
1737 gdbarch_free (struct gdbarch *arch)
1738 {
1739 struct obstack *obstack;
1740
1741 gdb_assert (arch != NULL);
1742 gdb_assert (!arch->initialized_p);
1743 obstack = arch->obstack;
1744 obstack_free (obstack, 0); /* Includes the ARCH. */
1745 xfree (obstack);
1746 }
1747 EOF
1748
1749 # verify a new architecture
1750 cat <<EOF
1751
1752
1753 /* Ensure that all values in a GDBARCH are reasonable. */
1754
1755 static void
1756 verify_gdbarch (struct gdbarch *gdbarch)
1757 {
1758 struct ui_file *log;
1759 struct cleanup *cleanups;
1760 long length;
1761 char *buf;
1762
1763 log = mem_fileopen ();
1764 cleanups = make_cleanup_ui_file_delete (log);
1765 /* fundamental */
1766 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1767 fprintf_unfiltered (log, "\n\tbyte-order");
1768 if (gdbarch->bfd_arch_info == NULL)
1769 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1770 /* Check those that need to be defined for the given multi-arch level. */
1771 EOF
1772 function_list | while do_read
1773 do
1774 if class_is_function_p || class_is_variable_p
1775 then
1776 if [ "x${invalid_p}" = "x0" ]
1777 then
1778 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1779 elif class_is_predicate_p
1780 then
1781 printf " /* Skip verify of ${function}, has predicate. */\n"
1782 # FIXME: See do_read for potential simplification
1783 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1784 then
1785 printf " if (${invalid_p})\n"
1786 printf " gdbarch->${function} = ${postdefault};\n"
1787 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1788 then
1789 printf " if (gdbarch->${function} == ${predefault})\n"
1790 printf " gdbarch->${function} = ${postdefault};\n"
1791 elif [ -n "${postdefault}" ]
1792 then
1793 printf " if (gdbarch->${function} == 0)\n"
1794 printf " gdbarch->${function} = ${postdefault};\n"
1795 elif [ -n "${invalid_p}" ]
1796 then
1797 printf " if (${invalid_p})\n"
1798 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1799 elif [ -n "${predefault}" ]
1800 then
1801 printf " if (gdbarch->${function} == ${predefault})\n"
1802 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1803 fi
1804 fi
1805 done
1806 cat <<EOF
1807 buf = ui_file_xstrdup (log, &length);
1808 make_cleanup (xfree, buf);
1809 if (length > 0)
1810 internal_error (__FILE__, __LINE__,
1811 _("verify_gdbarch: the following are invalid ...%s"),
1812 buf);
1813 do_cleanups (cleanups);
1814 }
1815 EOF
1816
1817 # dump the structure
1818 printf "\n"
1819 printf "\n"
1820 cat <<EOF
1821 /* Print out the details of the current architecture. */
1822
1823 void
1824 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1825 {
1826 const char *gdb_nm_file = "<not-defined>";
1827
1828 #if defined (GDB_NM_FILE)
1829 gdb_nm_file = GDB_NM_FILE;
1830 #endif
1831 fprintf_unfiltered (file,
1832 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1833 gdb_nm_file);
1834 EOF
1835 function_list | sort -t: -k 3 | while do_read
1836 do
1837 # First the predicate
1838 if class_is_predicate_p
1839 then
1840 printf " fprintf_unfiltered (file,\n"
1841 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1842 printf " gdbarch_${function}_p (gdbarch));\n"
1843 fi
1844 # Print the corresponding value.
1845 if class_is_function_p
1846 then
1847 printf " fprintf_unfiltered (file,\n"
1848 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1849 printf " host_address_to_string (gdbarch->${function}));\n"
1850 else
1851 # It is a variable
1852 case "${print}:${returntype}" in
1853 :CORE_ADDR )
1854 fmt="%s"
1855 print="core_addr_to_string_nz (gdbarch->${function})"
1856 ;;
1857 :* )
1858 fmt="%s"
1859 print="plongest (gdbarch->${function})"
1860 ;;
1861 * )
1862 fmt="%s"
1863 ;;
1864 esac
1865 printf " fprintf_unfiltered (file,\n"
1866 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1867 printf " ${print});\n"
1868 fi
1869 done
1870 cat <<EOF
1871 if (gdbarch->dump_tdep != NULL)
1872 gdbarch->dump_tdep (gdbarch, file);
1873 }
1874 EOF
1875
1876
1877 # GET/SET
1878 printf "\n"
1879 cat <<EOF
1880 struct gdbarch_tdep *
1881 gdbarch_tdep (struct gdbarch *gdbarch)
1882 {
1883 if (gdbarch_debug >= 2)
1884 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1885 return gdbarch->tdep;
1886 }
1887 EOF
1888 printf "\n"
1889 function_list | while do_read
1890 do
1891 if class_is_predicate_p
1892 then
1893 printf "\n"
1894 printf "int\n"
1895 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1896 printf "{\n"
1897 printf " gdb_assert (gdbarch != NULL);\n"
1898 printf " return ${predicate};\n"
1899 printf "}\n"
1900 fi
1901 if class_is_function_p
1902 then
1903 printf "\n"
1904 printf "${returntype}\n"
1905 if [ "x${formal}" = "xvoid" ]
1906 then
1907 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1908 else
1909 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1910 fi
1911 printf "{\n"
1912 printf " gdb_assert (gdbarch != NULL);\n"
1913 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1914 if class_is_predicate_p && test -n "${predefault}"
1915 then
1916 # Allow a call to a function with a predicate.
1917 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1918 fi
1919 printf " if (gdbarch_debug >= 2)\n"
1920 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1921 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1922 then
1923 if class_is_multiarch_p
1924 then
1925 params="gdbarch"
1926 else
1927 params=""
1928 fi
1929 else
1930 if class_is_multiarch_p
1931 then
1932 params="gdbarch, ${actual}"
1933 else
1934 params="${actual}"
1935 fi
1936 fi
1937 if [ "x${returntype}" = "xvoid" ]
1938 then
1939 printf " gdbarch->${function} (${params});\n"
1940 else
1941 printf " return gdbarch->${function} (${params});\n"
1942 fi
1943 printf "}\n"
1944 printf "\n"
1945 printf "void\n"
1946 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1947 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1948 printf "{\n"
1949 printf " gdbarch->${function} = ${function};\n"
1950 printf "}\n"
1951 elif class_is_variable_p
1952 then
1953 printf "\n"
1954 printf "${returntype}\n"
1955 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1956 printf "{\n"
1957 printf " gdb_assert (gdbarch != NULL);\n"
1958 if [ "x${invalid_p}" = "x0" ]
1959 then
1960 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1961 elif [ -n "${invalid_p}" ]
1962 then
1963 printf " /* Check variable is valid. */\n"
1964 printf " gdb_assert (!(${invalid_p}));\n"
1965 elif [ -n "${predefault}" ]
1966 then
1967 printf " /* Check variable changed from pre-default. */\n"
1968 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1969 fi
1970 printf " if (gdbarch_debug >= 2)\n"
1971 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1972 printf " return gdbarch->${function};\n"
1973 printf "}\n"
1974 printf "\n"
1975 printf "void\n"
1976 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1977 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1978 printf "{\n"
1979 printf " gdbarch->${function} = ${function};\n"
1980 printf "}\n"
1981 elif class_is_info_p
1982 then
1983 printf "\n"
1984 printf "${returntype}\n"
1985 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1986 printf "{\n"
1987 printf " gdb_assert (gdbarch != NULL);\n"
1988 printf " if (gdbarch_debug >= 2)\n"
1989 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1990 printf " return gdbarch->${function};\n"
1991 printf "}\n"
1992 fi
1993 done
1994
1995 # All the trailing guff
1996 cat <<EOF
1997
1998
1999 /* Keep a registry of per-architecture data-pointers required by GDB
2000 modules. */
2001
2002 struct gdbarch_data
2003 {
2004 unsigned index;
2005 int init_p;
2006 gdbarch_data_pre_init_ftype *pre_init;
2007 gdbarch_data_post_init_ftype *post_init;
2008 };
2009
2010 struct gdbarch_data_registration
2011 {
2012 struct gdbarch_data *data;
2013 struct gdbarch_data_registration *next;
2014 };
2015
2016 struct gdbarch_data_registry
2017 {
2018 unsigned nr;
2019 struct gdbarch_data_registration *registrations;
2020 };
2021
2022 struct gdbarch_data_registry gdbarch_data_registry =
2023 {
2024 0, NULL,
2025 };
2026
2027 static struct gdbarch_data *
2028 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2029 gdbarch_data_post_init_ftype *post_init)
2030 {
2031 struct gdbarch_data_registration **curr;
2032
2033 /* Append the new registration. */
2034 for (curr = &gdbarch_data_registry.registrations;
2035 (*curr) != NULL;
2036 curr = &(*curr)->next);
2037 (*curr) = XNEW (struct gdbarch_data_registration);
2038 (*curr)->next = NULL;
2039 (*curr)->data = XNEW (struct gdbarch_data);
2040 (*curr)->data->index = gdbarch_data_registry.nr++;
2041 (*curr)->data->pre_init = pre_init;
2042 (*curr)->data->post_init = post_init;
2043 (*curr)->data->init_p = 1;
2044 return (*curr)->data;
2045 }
2046
2047 struct gdbarch_data *
2048 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2049 {
2050 return gdbarch_data_register (pre_init, NULL);
2051 }
2052
2053 struct gdbarch_data *
2054 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2055 {
2056 return gdbarch_data_register (NULL, post_init);
2057 }
2058
2059 /* Create/delete the gdbarch data vector. */
2060
2061 static void
2062 alloc_gdbarch_data (struct gdbarch *gdbarch)
2063 {
2064 gdb_assert (gdbarch->data == NULL);
2065 gdbarch->nr_data = gdbarch_data_registry.nr;
2066 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2067 }
2068
2069 /* Initialize the current value of the specified per-architecture
2070 data-pointer. */
2071
2072 void
2073 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2074 struct gdbarch_data *data,
2075 void *pointer)
2076 {
2077 gdb_assert (data->index < gdbarch->nr_data);
2078 gdb_assert (gdbarch->data[data->index] == NULL);
2079 gdb_assert (data->pre_init == NULL);
2080 gdbarch->data[data->index] = pointer;
2081 }
2082
2083 /* Return the current value of the specified per-architecture
2084 data-pointer. */
2085
2086 void *
2087 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2088 {
2089 gdb_assert (data->index < gdbarch->nr_data);
2090 if (gdbarch->data[data->index] == NULL)
2091 {
2092 /* The data-pointer isn't initialized, call init() to get a
2093 value. */
2094 if (data->pre_init != NULL)
2095 /* Mid architecture creation: pass just the obstack, and not
2096 the entire architecture, as that way it isn't possible for
2097 pre-init code to refer to undefined architecture
2098 fields. */
2099 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2100 else if (gdbarch->initialized_p
2101 && data->post_init != NULL)
2102 /* Post architecture creation: pass the entire architecture
2103 (as all fields are valid), but be careful to also detect
2104 recursive references. */
2105 {
2106 gdb_assert (data->init_p);
2107 data->init_p = 0;
2108 gdbarch->data[data->index] = data->post_init (gdbarch);
2109 data->init_p = 1;
2110 }
2111 else
2112 /* The architecture initialization hasn't completed - punt -
2113 hope that the caller knows what they are doing. Once
2114 deprecated_set_gdbarch_data has been initialized, this can be
2115 changed to an internal error. */
2116 return NULL;
2117 gdb_assert (gdbarch->data[data->index] != NULL);
2118 }
2119 return gdbarch->data[data->index];
2120 }
2121
2122
2123 /* Keep a registry of the architectures known by GDB. */
2124
2125 struct gdbarch_registration
2126 {
2127 enum bfd_architecture bfd_architecture;
2128 gdbarch_init_ftype *init;
2129 gdbarch_dump_tdep_ftype *dump_tdep;
2130 struct gdbarch_list *arches;
2131 struct gdbarch_registration *next;
2132 };
2133
2134 static struct gdbarch_registration *gdbarch_registry = NULL;
2135
2136 static void
2137 append_name (const char ***buf, int *nr, const char *name)
2138 {
2139 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2140 (*buf)[*nr] = name;
2141 *nr += 1;
2142 }
2143
2144 const char **
2145 gdbarch_printable_names (void)
2146 {
2147 /* Accumulate a list of names based on the registed list of
2148 architectures. */
2149 int nr_arches = 0;
2150 const char **arches = NULL;
2151 struct gdbarch_registration *rego;
2152
2153 for (rego = gdbarch_registry;
2154 rego != NULL;
2155 rego = rego->next)
2156 {
2157 const struct bfd_arch_info *ap;
2158 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2159 if (ap == NULL)
2160 internal_error (__FILE__, __LINE__,
2161 _("gdbarch_architecture_names: multi-arch unknown"));
2162 do
2163 {
2164 append_name (&arches, &nr_arches, ap->printable_name);
2165 ap = ap->next;
2166 }
2167 while (ap != NULL);
2168 }
2169 append_name (&arches, &nr_arches, NULL);
2170 return arches;
2171 }
2172
2173
2174 void
2175 gdbarch_register (enum bfd_architecture bfd_architecture,
2176 gdbarch_init_ftype *init,
2177 gdbarch_dump_tdep_ftype *dump_tdep)
2178 {
2179 struct gdbarch_registration **curr;
2180 const struct bfd_arch_info *bfd_arch_info;
2181
2182 /* Check that BFD recognizes this architecture */
2183 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2184 if (bfd_arch_info == NULL)
2185 {
2186 internal_error (__FILE__, __LINE__,
2187 _("gdbarch: Attempt to register "
2188 "unknown architecture (%d)"),
2189 bfd_architecture);
2190 }
2191 /* Check that we haven't seen this architecture before. */
2192 for (curr = &gdbarch_registry;
2193 (*curr) != NULL;
2194 curr = &(*curr)->next)
2195 {
2196 if (bfd_architecture == (*curr)->bfd_architecture)
2197 internal_error (__FILE__, __LINE__,
2198 _("gdbarch: Duplicate registration "
2199 "of architecture (%s)"),
2200 bfd_arch_info->printable_name);
2201 }
2202 /* log it */
2203 if (gdbarch_debug)
2204 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2205 bfd_arch_info->printable_name,
2206 host_address_to_string (init));
2207 /* Append it */
2208 (*curr) = XNEW (struct gdbarch_registration);
2209 (*curr)->bfd_architecture = bfd_architecture;
2210 (*curr)->init = init;
2211 (*curr)->dump_tdep = dump_tdep;
2212 (*curr)->arches = NULL;
2213 (*curr)->next = NULL;
2214 }
2215
2216 void
2217 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2218 gdbarch_init_ftype *init)
2219 {
2220 gdbarch_register (bfd_architecture, init, NULL);
2221 }
2222
2223
2224 /* Look for an architecture using gdbarch_info. */
2225
2226 struct gdbarch_list *
2227 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2228 const struct gdbarch_info *info)
2229 {
2230 for (; arches != NULL; arches = arches->next)
2231 {
2232 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2233 continue;
2234 if (info->byte_order != arches->gdbarch->byte_order)
2235 continue;
2236 if (info->osabi != arches->gdbarch->osabi)
2237 continue;
2238 if (info->target_desc != arches->gdbarch->target_desc)
2239 continue;
2240 return arches;
2241 }
2242 return NULL;
2243 }
2244
2245
2246 /* Find an architecture that matches the specified INFO. Create a new
2247 architecture if needed. Return that new architecture. */
2248
2249 struct gdbarch *
2250 gdbarch_find_by_info (struct gdbarch_info info)
2251 {
2252 struct gdbarch *new_gdbarch;
2253 struct gdbarch_registration *rego;
2254
2255 /* Fill in missing parts of the INFO struct using a number of
2256 sources: "set ..."; INFOabfd supplied; and the global
2257 defaults. */
2258 gdbarch_info_fill (&info);
2259
2260 /* Must have found some sort of architecture. */
2261 gdb_assert (info.bfd_arch_info != NULL);
2262
2263 if (gdbarch_debug)
2264 {
2265 fprintf_unfiltered (gdb_stdlog,
2266 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2267 (info.bfd_arch_info != NULL
2268 ? info.bfd_arch_info->printable_name
2269 : "(null)"));
2270 fprintf_unfiltered (gdb_stdlog,
2271 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2272 info.byte_order,
2273 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2274 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2275 : "default"));
2276 fprintf_unfiltered (gdb_stdlog,
2277 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2278 info.osabi, gdbarch_osabi_name (info.osabi));
2279 fprintf_unfiltered (gdb_stdlog,
2280 "gdbarch_find_by_info: info.abfd %s\n",
2281 host_address_to_string (info.abfd));
2282 fprintf_unfiltered (gdb_stdlog,
2283 "gdbarch_find_by_info: info.tdep_info %s\n",
2284 host_address_to_string (info.tdep_info));
2285 }
2286
2287 /* Find the tdep code that knows about this architecture. */
2288 for (rego = gdbarch_registry;
2289 rego != NULL;
2290 rego = rego->next)
2291 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2292 break;
2293 if (rego == NULL)
2294 {
2295 if (gdbarch_debug)
2296 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2297 "No matching architecture\n");
2298 return 0;
2299 }
2300
2301 /* Ask the tdep code for an architecture that matches "info". */
2302 new_gdbarch = rego->init (info, rego->arches);
2303
2304 /* Did the tdep code like it? No. Reject the change and revert to
2305 the old architecture. */
2306 if (new_gdbarch == NULL)
2307 {
2308 if (gdbarch_debug)
2309 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2310 "Target rejected architecture\n");
2311 return NULL;
2312 }
2313
2314 /* Is this a pre-existing architecture (as determined by already
2315 being initialized)? Move it to the front of the architecture
2316 list (keeping the list sorted Most Recently Used). */
2317 if (new_gdbarch->initialized_p)
2318 {
2319 struct gdbarch_list **list;
2320 struct gdbarch_list *this;
2321 if (gdbarch_debug)
2322 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2323 "Previous architecture %s (%s) selected\n",
2324 host_address_to_string (new_gdbarch),
2325 new_gdbarch->bfd_arch_info->printable_name);
2326 /* Find the existing arch in the list. */
2327 for (list = &rego->arches;
2328 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2329 list = &(*list)->next);
2330 /* It had better be in the list of architectures. */
2331 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2332 /* Unlink THIS. */
2333 this = (*list);
2334 (*list) = this->next;
2335 /* Insert THIS at the front. */
2336 this->next = rego->arches;
2337 rego->arches = this;
2338 /* Return it. */
2339 return new_gdbarch;
2340 }
2341
2342 /* It's a new architecture. */
2343 if (gdbarch_debug)
2344 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2345 "New architecture %s (%s) selected\n",
2346 host_address_to_string (new_gdbarch),
2347 new_gdbarch->bfd_arch_info->printable_name);
2348
2349 /* Insert the new architecture into the front of the architecture
2350 list (keep the list sorted Most Recently Used). */
2351 {
2352 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2353 this->next = rego->arches;
2354 this->gdbarch = new_gdbarch;
2355 rego->arches = this;
2356 }
2357
2358 /* Check that the newly installed architecture is valid. Plug in
2359 any post init values. */
2360 new_gdbarch->dump_tdep = rego->dump_tdep;
2361 verify_gdbarch (new_gdbarch);
2362 new_gdbarch->initialized_p = 1;
2363
2364 if (gdbarch_debug)
2365 gdbarch_dump (new_gdbarch, gdb_stdlog);
2366
2367 return new_gdbarch;
2368 }
2369
2370 /* Make the specified architecture current. */
2371
2372 void
2373 set_target_gdbarch (struct gdbarch *new_gdbarch)
2374 {
2375 gdb_assert (new_gdbarch != NULL);
2376 gdb_assert (new_gdbarch->initialized_p);
2377 current_inferior ()->gdbarch = new_gdbarch;
2378 observer_notify_architecture_changed (new_gdbarch);
2379 registers_changed ();
2380 }
2381
2382 /* Return the current inferior's arch. */
2383
2384 struct gdbarch *
2385 target_gdbarch (void)
2386 {
2387 return current_inferior ()->gdbarch;
2388 }
2389
2390 extern void _initialize_gdbarch (void);
2391
2392 void
2393 _initialize_gdbarch (void)
2394 {
2395 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2396 Set architecture debugging."), _("\\
2397 Show architecture debugging."), _("\\
2398 When non-zero, architecture debugging is enabled."),
2399 NULL,
2400 show_gdbarch_debug,
2401 &setdebuglist, &showdebuglist);
2402 }
2403 EOF
2404
2405 # close things off
2406 exec 1>&2
2407 #../move-if-change new-gdbarch.c gdbarch.c
2408 compare_new gdbarch.c
This page took 0.087324 seconds and 4 git commands to generate.