*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
408 #
409 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
411 #
412 # ptr_bit is the size of a pointer on the target
413 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
414 # addr_bit is the size of a target address as represented in gdb
415 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
416 # Number of bits in a BFD_VMA for the target object file format.
417 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
421 #
422 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
423 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
424 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
425 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
430 #
431 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
432 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 #
434 v:=:int:num_regs:::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:=:int:num_pseudo_regs:::0:0::0
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
445 v:=:int:sp_regnum:::-1:-1::0
446 v:=:int:pc_regnum:::-1:-1::0
447 v:=:int:ps_regnum:::-1:-1::0
448 v:=:int:fp0_regnum:::0:-1::0
449 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
450 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
452 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
453 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
454 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
455 # Convert from an sdb register number to an internal gdb register number.
456 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
457 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
458 f:=:const char *:register_name:int regnr:regnr
459
460 # Return the type of a register specified by the architecture. Only
461 # the register cache should call this function directly; others should
462 # use "register_type".
463 M::struct type *:register_type:int reg_nr:reg_nr
464 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
465 # register offsets computed using just REGISTER_TYPE, this can be
466 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
467 # function with predicate has a valid (callable) initial value. As a
468 # consequence, even when the predicate is false, the corresponding
469 # function works. This simplifies the migration process - old code,
470 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
471 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
472
473 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
474 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
475 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
476 # DEPRECATED_FP_REGNUM.
477 v:=:int:deprecated_fp_regnum:::-1:-1::0
478
479 # See gdbint.texinfo. See infcall.c.
480 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
481 # DEPRECATED_REGISTER_SIZE can be deleted.
482 v:=:int:deprecated_register_size
483 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
484 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
485
486 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
487 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
488 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
489 # MAP a GDB RAW register number onto a simulator register number. See
490 # also include/...-sim.h.
491 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
492 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
493 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
494 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
495 # setjmp/longjmp support.
496 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
497 #
498 v:=:int:believe_pcc_promotion:::::::
499 #
500 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
501 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
502 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
503 # Construct a value representing the contents of register REGNUM in
504 # frame FRAME, interpreted as type TYPE. The routine needs to
505 # allocate and return a struct value with all value attributes
506 # (but not the value contents) filled in.
507 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
508 #
509 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
511 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512 #
513 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
514 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
515
516 # It has been suggested that this, well actually its predecessor,
517 # should take the type/value of the function to be called and not the
518 # return type. This is left as an exercise for the reader.
519
520 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
521 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
522 # (via legacy_return_value), when a small struct is involved.
523
524 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
525
526 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
527 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
528 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
529 # RETURN_VALUE.
530
531 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
532 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
533 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
534
535 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
536 # ABI suitable for the implementation of a robust extract
537 # struct-convention return-value address method (the sparc saves the
538 # address in the callers frame). All the other cases so far examined,
539 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
540 # erreneous - the code was incorrectly assuming that the return-value
541 # address, stored in a register, was preserved across the entire
542 # function call.
543
544 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
545 # the ABIs that are still to be analyzed - perhaps this should simply
546 # be deleted. The commented out extract_returned_value_address method
547 # is provided as a starting point for the 32-bit SPARC. It, or
548 # something like it, along with changes to both infcmd.c and stack.c
549 # will be needed for that case to work. NB: It is passed the callers
550 # frame since it is only after the callee has returned that this
551 # function is used.
552
553 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
554 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
555
556 #
557 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
558 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
559 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
560 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
561 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
562 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
563 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
564
565 # A function can be addressed by either it's "pointer" (possibly a
566 # descriptor address) or "entry point" (first executable instruction).
567 # The method "convert_from_func_ptr_addr" converting the former to the
568 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
569 # a simplified subset of that functionality - the function's address
570 # corresponds to the "function pointer" and the function's start
571 # corresponds to the "function entry point" - and hence is redundant.
572
573 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
574
575 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
576
577 # Fetch the target specific address used to represent a load module.
578 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
579 #
580 v:=:CORE_ADDR:frame_args_skip:::0:::0
581 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
582 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
583 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
584 # frame-base. Enable frame-base before frame-unwind.
585 F:=:int:frame_num_args:struct frame_info *frame:frame
586 #
587 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
588 # to frame_align and the requirement that methods such as
589 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
590 # alignment.
591 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
592 M::CORE_ADDR:frame_align:CORE_ADDR address:address
593 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
594 # stabs_argument_has_addr.
595 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
596 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
597 v:=:int:frame_red_zone_size
598 #
599 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
600 # On some machines there are bits in addresses which are not really
601 # part of the address, but are used by the kernel, the hardware, etc.
602 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
603 # we get a "real" address such as one would find in a symbol table.
604 # This is used only for addresses of instructions, and even then I'm
605 # not sure it's used in all contexts. It exists to deal with there
606 # being a few stray bits in the PC which would mislead us, not as some
607 # sort of generic thing to handle alignment or segmentation (it's
608 # possible it should be in TARGET_READ_PC instead).
609 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
610 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
611 # ADDR_BITS_REMOVE.
612 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
613 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
614 # the target needs software single step. An ISA method to implement it.
615 #
616 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
617 # using the breakpoint system instead of blatting memory directly (as with rs6000).
618 #
619 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
620 # single step. If not, then implement single step using breakpoints.
621 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
622 # Return non-zero if the processor is executing a delay slot and a
623 # further single-step is needed before the instruction finishes.
624 M::int:single_step_through_delay:struct frame_info *frame:frame
625 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
626 # disassembler. Perhaps objdump can handle it?
627 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
628 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
629
630
631 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
632 # evaluates non-zero, this is the address where the debugger will place
633 # a step-resume breakpoint to get us past the dynamic linker.
634 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
635 # Some systems also have trampoline code for returning from shared libs.
636 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
637
638 # A target might have problems with watchpoints as soon as the stack
639 # frame of the current function has been destroyed. This mostly happens
640 # as the first action in a funtion's epilogue. in_function_epilogue_p()
641 # is defined to return a non-zero value if either the given addr is one
642 # instruction after the stack destroying instruction up to the trailing
643 # return instruction or if we can figure out that the stack frame has
644 # already been invalidated regardless of the value of addr. Targets
645 # which don't suffer from that problem could just let this functionality
646 # untouched.
647 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
648 # Given a vector of command-line arguments, return a newly allocated
649 # string which, when passed to the create_inferior function, will be
650 # parsed (on Unix systems, by the shell) to yield the same vector.
651 # This function should call error() if the argument vector is not
652 # representable for this target or if this target does not support
653 # command-line arguments.
654 # ARGC is the number of elements in the vector.
655 # ARGV is an array of strings, one per argument.
656 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
657 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
658 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
659 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
660 v:=:int:cannot_step_breakpoint:::0:0::0
661 v:=:int:have_nonsteppable_watchpoint:::0:0::0
662 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
663 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
664 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
665 # Is a register in a group
666 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
667 # Fetch the pointer to the ith function argument.
668 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
669
670 # Return the appropriate register set for a core file section with
671 # name SECT_NAME and size SECT_SIZE.
672 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
673
674 # If the elements of C++ vtables are in-place function descriptors rather
675 # than normal function pointers (which may point to code or a descriptor),
676 # set this to one.
677 v::int:vtable_function_descriptors:::0:0::0
678
679 # Set if the least significant bit of the delta is used instead of the least
680 # significant bit of the pfn for pointers to virtual member functions.
681 v::int:vbit_in_delta:::0:0::0
682 EOF
683 }
684
685 #
686 # The .log file
687 #
688 exec > new-gdbarch.log
689 function_list | while do_read
690 do
691 cat <<EOF
692 ${class} ${returntype} ${function} ($formal)
693 EOF
694 for r in ${read}
695 do
696 eval echo \"\ \ \ \ ${r}=\${${r}}\"
697 done
698 if class_is_predicate_p && fallback_default_p
699 then
700 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
701 kill $$
702 exit 1
703 fi
704 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
705 then
706 echo "Error: postdefault is useless when invalid_p=0" 1>&2
707 kill $$
708 exit 1
709 fi
710 if class_is_multiarch_p
711 then
712 if class_is_predicate_p ; then :
713 elif test "x${predefault}" = "x"
714 then
715 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
716 kill $$
717 exit 1
718 fi
719 fi
720 echo ""
721 done
722
723 exec 1>&2
724 compare_new gdbarch.log
725
726
727 copyright ()
728 {
729 cat <<EOF
730 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
731
732 /* Dynamic architecture support for GDB, the GNU debugger.
733
734 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
735 Free Software Foundation, Inc.
736
737 This file is part of GDB.
738
739 This program is free software; you can redistribute it and/or modify
740 it under the terms of the GNU General Public License as published by
741 the Free Software Foundation; either version 2 of the License, or
742 (at your option) any later version.
743
744 This program is distributed in the hope that it will be useful,
745 but WITHOUT ANY WARRANTY; without even the implied warranty of
746 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
747 GNU General Public License for more details.
748
749 You should have received a copy of the GNU General Public License
750 along with this program; if not, write to the Free Software
751 Foundation, Inc., 51 Franklin Street, Fifth Floor,
752 Boston, MA 02110-1301, USA. */
753
754 /* This file was created with the aid of \`\`gdbarch.sh''.
755
756 The Bourne shell script \`\`gdbarch.sh'' creates the files
757 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
758 against the existing \`\`gdbarch.[hc]''. Any differences found
759 being reported.
760
761 If editing this file, please also run gdbarch.sh and merge any
762 changes into that script. Conversely, when making sweeping changes
763 to this file, modifying gdbarch.sh and using its output may prove
764 easier. */
765
766 EOF
767 }
768
769 #
770 # The .h file
771 #
772
773 exec > new-gdbarch.h
774 copyright
775 cat <<EOF
776 #ifndef GDBARCH_H
777 #define GDBARCH_H
778
779 struct floatformat;
780 struct ui_file;
781 struct frame_info;
782 struct value;
783 struct objfile;
784 struct minimal_symbol;
785 struct regcache;
786 struct reggroup;
787 struct regset;
788 struct disassemble_info;
789 struct target_ops;
790 struct obstack;
791 struct bp_target_info;
792 struct target_desc;
793
794 extern struct gdbarch *current_gdbarch;
795 EOF
796
797 # function typedef's
798 printf "\n"
799 printf "\n"
800 printf "/* The following are pre-initialized by GDBARCH. */\n"
801 function_list | while do_read
802 do
803 if class_is_info_p
804 then
805 printf "\n"
806 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
807 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
808 if test -n "${macro}"
809 then
810 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
811 printf "#error \"Non multi-arch definition of ${macro}\"\n"
812 printf "#endif\n"
813 printf "#if !defined (${macro})\n"
814 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
815 printf "#endif\n"
816 fi
817 fi
818 done
819
820 # function typedef's
821 printf "\n"
822 printf "\n"
823 printf "/* The following are initialized by the target dependent code. */\n"
824 function_list | while do_read
825 do
826 if [ -n "${comment}" ]
827 then
828 echo "${comment}" | sed \
829 -e '2 s,#,/*,' \
830 -e '3,$ s,#, ,' \
831 -e '$ s,$, */,'
832 fi
833
834 if class_is_predicate_p
835 then
836 if test -n "${macro}"
837 then
838 printf "\n"
839 printf "#if defined (${macro})\n"
840 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
841 printf "#if !defined (${macro}_P)\n"
842 printf "#define ${macro}_P() (1)\n"
843 printf "#endif\n"
844 printf "#endif\n"
845 fi
846 printf "\n"
847 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
848 if test -n "${macro}"
849 then
850 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
851 printf "#error \"Non multi-arch definition of ${macro}\"\n"
852 printf "#endif\n"
853 printf "#if !defined (${macro}_P)\n"
854 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
855 printf "#endif\n"
856 fi
857 fi
858 if class_is_variable_p
859 then
860 printf "\n"
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
862 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
863 if test -n "${macro}"
864 then
865 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
866 printf "#error \"Non multi-arch definition of ${macro}\"\n"
867 printf "#endif\n"
868 printf "#if !defined (${macro})\n"
869 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
870 printf "#endif\n"
871 fi
872 fi
873 if class_is_function_p
874 then
875 printf "\n"
876 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
877 then
878 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
879 elif class_is_multiarch_p
880 then
881 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
882 else
883 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
884 fi
885 if [ "x${formal}" = "xvoid" ]
886 then
887 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
888 else
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
890 fi
891 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
892 if test -n "${macro}"
893 then
894 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
895 printf "#error \"Non multi-arch definition of ${macro}\"\n"
896 printf "#endif\n"
897 if [ "x${actual}" = "x" ]
898 then
899 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
900 elif [ "x${actual}" = "x-" ]
901 then
902 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
903 else
904 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
905 fi
906 printf "#if !defined (${macro})\n"
907 if [ "x${actual}" = "x" ]
908 then
909 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
910 elif [ "x${actual}" = "x-" ]
911 then
912 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
913 else
914 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
915 fi
916 printf "#endif\n"
917 fi
918 fi
919 done
920
921 # close it off
922 cat <<EOF
923
924 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
925
926
927 /* Mechanism for co-ordinating the selection of a specific
928 architecture.
929
930 GDB targets (*-tdep.c) can register an interest in a specific
931 architecture. Other GDB components can register a need to maintain
932 per-architecture data.
933
934 The mechanisms below ensures that there is only a loose connection
935 between the set-architecture command and the various GDB
936 components. Each component can independently register their need
937 to maintain architecture specific data with gdbarch.
938
939 Pragmatics:
940
941 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
942 didn't scale.
943
944 The more traditional mega-struct containing architecture specific
945 data for all the various GDB components was also considered. Since
946 GDB is built from a variable number of (fairly independent)
947 components it was determined that the global aproach was not
948 applicable. */
949
950
951 /* Register a new architectural family with GDB.
952
953 Register support for the specified ARCHITECTURE with GDB. When
954 gdbarch determines that the specified architecture has been
955 selected, the corresponding INIT function is called.
956
957 --
958
959 The INIT function takes two parameters: INFO which contains the
960 information available to gdbarch about the (possibly new)
961 architecture; ARCHES which is a list of the previously created
962 \`\`struct gdbarch'' for this architecture.
963
964 The INFO parameter is, as far as possible, be pre-initialized with
965 information obtained from INFO.ABFD or the global defaults.
966
967 The ARCHES parameter is a linked list (sorted most recently used)
968 of all the previously created architures for this architecture
969 family. The (possibly NULL) ARCHES->gdbarch can used to access
970 values from the previously selected architecture for this
971 architecture family. The global \`\`current_gdbarch'' shall not be
972 used.
973
974 The INIT function shall return any of: NULL - indicating that it
975 doesn't recognize the selected architecture; an existing \`\`struct
976 gdbarch'' from the ARCHES list - indicating that the new
977 architecture is just a synonym for an earlier architecture (see
978 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
979 - that describes the selected architecture (see gdbarch_alloc()).
980
981 The DUMP_TDEP function shall print out all target specific values.
982 Care should be taken to ensure that the function works in both the
983 multi-arch and non- multi-arch cases. */
984
985 struct gdbarch_list
986 {
987 struct gdbarch *gdbarch;
988 struct gdbarch_list *next;
989 };
990
991 struct gdbarch_info
992 {
993 /* Use default: NULL (ZERO). */
994 const struct bfd_arch_info *bfd_arch_info;
995
996 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
997 int byte_order;
998
999 /* Use default: NULL (ZERO). */
1000 bfd *abfd;
1001
1002 /* Use default: NULL (ZERO). */
1003 struct gdbarch_tdep_info *tdep_info;
1004
1005 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1006 enum gdb_osabi osabi;
1007
1008 /* Use default: NULL (ZERO). */
1009 const struct target_desc *target_desc;
1010 };
1011
1012 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1013 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1014
1015 /* DEPRECATED - use gdbarch_register() */
1016 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1017
1018 extern void gdbarch_register (enum bfd_architecture architecture,
1019 gdbarch_init_ftype *,
1020 gdbarch_dump_tdep_ftype *);
1021
1022
1023 /* Return a freshly allocated, NULL terminated, array of the valid
1024 architecture names. Since architectures are registered during the
1025 _initialize phase this function only returns useful information
1026 once initialization has been completed. */
1027
1028 extern const char **gdbarch_printable_names (void);
1029
1030
1031 /* Helper function. Search the list of ARCHES for a GDBARCH that
1032 matches the information provided by INFO. */
1033
1034 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1035
1036
1037 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1038 basic initialization using values obtained from the INFO and TDEP
1039 parameters. set_gdbarch_*() functions are called to complete the
1040 initialization of the object. */
1041
1042 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1043
1044
1045 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1046 It is assumed that the caller freeds the \`\`struct
1047 gdbarch_tdep''. */
1048
1049 extern void gdbarch_free (struct gdbarch *);
1050
1051
1052 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1053 obstack. The memory is freed when the corresponding architecture
1054 is also freed. */
1055
1056 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1057 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1058 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1059
1060
1061 /* Helper function. Force an update of the current architecture.
1062
1063 The actual architecture selected is determined by INFO, \`\`(gdb) set
1064 architecture'' et.al., the existing architecture and BFD's default
1065 architecture. INFO should be initialized to zero and then selected
1066 fields should be updated.
1067
1068 Returns non-zero if the update succeeds */
1069
1070 extern int gdbarch_update_p (struct gdbarch_info info);
1071
1072
1073 /* Helper function. Find an architecture matching info.
1074
1075 INFO should be initialized using gdbarch_info_init, relevant fields
1076 set, and then finished using gdbarch_info_fill.
1077
1078 Returns the corresponding architecture, or NULL if no matching
1079 architecture was found. "current_gdbarch" is not updated. */
1080
1081 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1082
1083
1084 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1085
1086 FIXME: kettenis/20031124: Of the functions that follow, only
1087 gdbarch_from_bfd is supposed to survive. The others will
1088 dissappear since in the future GDB will (hopefully) be truly
1089 multi-arch. However, for now we're still stuck with the concept of
1090 a single active architecture. */
1091
1092 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1093
1094
1095 /* Register per-architecture data-pointer.
1096
1097 Reserve space for a per-architecture data-pointer. An identifier
1098 for the reserved data-pointer is returned. That identifer should
1099 be saved in a local static variable.
1100
1101 Memory for the per-architecture data shall be allocated using
1102 gdbarch_obstack_zalloc. That memory will be deleted when the
1103 corresponding architecture object is deleted.
1104
1105 When a previously created architecture is re-selected, the
1106 per-architecture data-pointer for that previous architecture is
1107 restored. INIT() is not re-called.
1108
1109 Multiple registrarants for any architecture are allowed (and
1110 strongly encouraged). */
1111
1112 struct gdbarch_data;
1113
1114 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1115 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1116 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1117 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1118 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1119 struct gdbarch_data *data,
1120 void *pointer);
1121
1122 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1123
1124
1125
1126 /* Register per-architecture memory region.
1127
1128 Provide a memory-region swap mechanism. Per-architecture memory
1129 region are created. These memory regions are swapped whenever the
1130 architecture is changed. For a new architecture, the memory region
1131 is initialized with zero (0) and the INIT function is called.
1132
1133 Memory regions are swapped / initialized in the order that they are
1134 registered. NULL DATA and/or INIT values can be specified.
1135
1136 New code should use gdbarch_data_register_*(). */
1137
1138 typedef void (gdbarch_swap_ftype) (void);
1139 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1140 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1141
1142
1143
1144 /* Set the dynamic target-system-dependent parameters (architecture,
1145 byte-order, ...) using information found in the BFD */
1146
1147 extern void set_gdbarch_from_file (bfd *);
1148
1149
1150 /* Initialize the current architecture to the "first" one we find on
1151 our list. */
1152
1153 extern void initialize_current_architecture (void);
1154
1155 /* gdbarch trace variable */
1156 extern int gdbarch_debug;
1157
1158 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1159
1160 #endif
1161 EOF
1162 exec 1>&2
1163 #../move-if-change new-gdbarch.h gdbarch.h
1164 compare_new gdbarch.h
1165
1166
1167 #
1168 # C file
1169 #
1170
1171 exec > new-gdbarch.c
1172 copyright
1173 cat <<EOF
1174
1175 #include "defs.h"
1176 #include "arch-utils.h"
1177
1178 #include "gdbcmd.h"
1179 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1180 #include "symcat.h"
1181
1182 #include "floatformat.h"
1183
1184 #include "gdb_assert.h"
1185 #include "gdb_string.h"
1186 #include "gdb-events.h"
1187 #include "reggroups.h"
1188 #include "osabi.h"
1189 #include "gdb_obstack.h"
1190
1191 /* Static function declarations */
1192
1193 static void alloc_gdbarch_data (struct gdbarch *);
1194
1195 /* Non-zero if we want to trace architecture code. */
1196
1197 #ifndef GDBARCH_DEBUG
1198 #define GDBARCH_DEBUG 0
1199 #endif
1200 int gdbarch_debug = GDBARCH_DEBUG;
1201 static void
1202 show_gdbarch_debug (struct ui_file *file, int from_tty,
1203 struct cmd_list_element *c, const char *value)
1204 {
1205 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1206 }
1207
1208 static const char *
1209 pformat (const struct floatformat **format)
1210 {
1211 if (format == NULL)
1212 return "(null)";
1213 else
1214 /* Just print out one of them - this is only for diagnostics. */
1215 return format[0]->name;
1216 }
1217
1218 EOF
1219
1220 # gdbarch open the gdbarch object
1221 printf "\n"
1222 printf "/* Maintain the struct gdbarch object */\n"
1223 printf "\n"
1224 printf "struct gdbarch\n"
1225 printf "{\n"
1226 printf " /* Has this architecture been fully initialized? */\n"
1227 printf " int initialized_p;\n"
1228 printf "\n"
1229 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1230 printf " struct obstack *obstack;\n"
1231 printf "\n"
1232 printf " /* basic architectural information */\n"
1233 function_list | while do_read
1234 do
1235 if class_is_info_p
1236 then
1237 printf " ${returntype} ${function};\n"
1238 fi
1239 done
1240 printf "\n"
1241 printf " /* target specific vector. */\n"
1242 printf " struct gdbarch_tdep *tdep;\n"
1243 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1244 printf "\n"
1245 printf " /* per-architecture data-pointers */\n"
1246 printf " unsigned nr_data;\n"
1247 printf " void **data;\n"
1248 printf "\n"
1249 printf " /* per-architecture swap-regions */\n"
1250 printf " struct gdbarch_swap *swap;\n"
1251 printf "\n"
1252 cat <<EOF
1253 /* Multi-arch values.
1254
1255 When extending this structure you must:
1256
1257 Add the field below.
1258
1259 Declare set/get functions and define the corresponding
1260 macro in gdbarch.h.
1261
1262 gdbarch_alloc(): If zero/NULL is not a suitable default,
1263 initialize the new field.
1264
1265 verify_gdbarch(): Confirm that the target updated the field
1266 correctly.
1267
1268 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1269 field is dumped out
1270
1271 \`\`startup_gdbarch()'': Append an initial value to the static
1272 variable (base values on the host's c-type system).
1273
1274 get_gdbarch(): Implement the set/get functions (probably using
1275 the macro's as shortcuts).
1276
1277 */
1278
1279 EOF
1280 function_list | while do_read
1281 do
1282 if class_is_variable_p
1283 then
1284 printf " ${returntype} ${function};\n"
1285 elif class_is_function_p
1286 then
1287 printf " gdbarch_${function}_ftype *${function};\n"
1288 fi
1289 done
1290 printf "};\n"
1291
1292 # A pre-initialized vector
1293 printf "\n"
1294 printf "\n"
1295 cat <<EOF
1296 /* The default architecture uses host values (for want of a better
1297 choice). */
1298 EOF
1299 printf "\n"
1300 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1301 printf "\n"
1302 printf "struct gdbarch startup_gdbarch =\n"
1303 printf "{\n"
1304 printf " 1, /* Always initialized. */\n"
1305 printf " NULL, /* The obstack. */\n"
1306 printf " /* basic architecture information */\n"
1307 function_list | while do_read
1308 do
1309 if class_is_info_p
1310 then
1311 printf " ${staticdefault}, /* ${function} */\n"
1312 fi
1313 done
1314 cat <<EOF
1315 /* target specific vector and its dump routine */
1316 NULL, NULL,
1317 /*per-architecture data-pointers and swap regions */
1318 0, NULL, NULL,
1319 /* Multi-arch values */
1320 EOF
1321 function_list | while do_read
1322 do
1323 if class_is_function_p || class_is_variable_p
1324 then
1325 printf " ${staticdefault}, /* ${function} */\n"
1326 fi
1327 done
1328 cat <<EOF
1329 /* startup_gdbarch() */
1330 };
1331
1332 struct gdbarch *current_gdbarch = &startup_gdbarch;
1333 EOF
1334
1335 # Create a new gdbarch struct
1336 cat <<EOF
1337
1338 /* Create a new \`\`struct gdbarch'' based on information provided by
1339 \`\`struct gdbarch_info''. */
1340 EOF
1341 printf "\n"
1342 cat <<EOF
1343 struct gdbarch *
1344 gdbarch_alloc (const struct gdbarch_info *info,
1345 struct gdbarch_tdep *tdep)
1346 {
1347 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1348 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1349 the current local architecture and not the previous global
1350 architecture. This ensures that the new architectures initial
1351 values are not influenced by the previous architecture. Once
1352 everything is parameterised with gdbarch, this will go away. */
1353 struct gdbarch *current_gdbarch;
1354
1355 /* Create an obstack for allocating all the per-architecture memory,
1356 then use that to allocate the architecture vector. */
1357 struct obstack *obstack = XMALLOC (struct obstack);
1358 obstack_init (obstack);
1359 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1360 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1361 current_gdbarch->obstack = obstack;
1362
1363 alloc_gdbarch_data (current_gdbarch);
1364
1365 current_gdbarch->tdep = tdep;
1366 EOF
1367 printf "\n"
1368 function_list | while do_read
1369 do
1370 if class_is_info_p
1371 then
1372 printf " current_gdbarch->${function} = info->${function};\n"
1373 fi
1374 done
1375 printf "\n"
1376 printf " /* Force the explicit initialization of these. */\n"
1377 function_list | while do_read
1378 do
1379 if class_is_function_p || class_is_variable_p
1380 then
1381 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1382 then
1383 printf " current_gdbarch->${function} = ${predefault};\n"
1384 fi
1385 fi
1386 done
1387 cat <<EOF
1388 /* gdbarch_alloc() */
1389
1390 return current_gdbarch;
1391 }
1392 EOF
1393
1394 # Free a gdbarch struct.
1395 printf "\n"
1396 printf "\n"
1397 cat <<EOF
1398 /* Allocate extra space using the per-architecture obstack. */
1399
1400 void *
1401 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1402 {
1403 void *data = obstack_alloc (arch->obstack, size);
1404 memset (data, 0, size);
1405 return data;
1406 }
1407
1408
1409 /* Free a gdbarch struct. This should never happen in normal
1410 operation --- once you've created a gdbarch, you keep it around.
1411 However, if an architecture's init function encounters an error
1412 building the structure, it may need to clean up a partially
1413 constructed gdbarch. */
1414
1415 void
1416 gdbarch_free (struct gdbarch *arch)
1417 {
1418 struct obstack *obstack;
1419 gdb_assert (arch != NULL);
1420 gdb_assert (!arch->initialized_p);
1421 obstack = arch->obstack;
1422 obstack_free (obstack, 0); /* Includes the ARCH. */
1423 xfree (obstack);
1424 }
1425 EOF
1426
1427 # verify a new architecture
1428 cat <<EOF
1429
1430
1431 /* Ensure that all values in a GDBARCH are reasonable. */
1432
1433 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1434 just happens to match the global variable \`\`current_gdbarch''. That
1435 way macros refering to that variable get the local and not the global
1436 version - ulgh. Once everything is parameterised with gdbarch, this
1437 will go away. */
1438
1439 static void
1440 verify_gdbarch (struct gdbarch *current_gdbarch)
1441 {
1442 struct ui_file *log;
1443 struct cleanup *cleanups;
1444 long dummy;
1445 char *buf;
1446 log = mem_fileopen ();
1447 cleanups = make_cleanup_ui_file_delete (log);
1448 /* fundamental */
1449 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1450 fprintf_unfiltered (log, "\n\tbyte-order");
1451 if (current_gdbarch->bfd_arch_info == NULL)
1452 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1453 /* Check those that need to be defined for the given multi-arch level. */
1454 EOF
1455 function_list | while do_read
1456 do
1457 if class_is_function_p || class_is_variable_p
1458 then
1459 if [ "x${invalid_p}" = "x0" ]
1460 then
1461 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1462 elif class_is_predicate_p
1463 then
1464 printf " /* Skip verify of ${function}, has predicate */\n"
1465 # FIXME: See do_read for potential simplification
1466 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1467 then
1468 printf " if (${invalid_p})\n"
1469 printf " current_gdbarch->${function} = ${postdefault};\n"
1470 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1471 then
1472 printf " if (current_gdbarch->${function} == ${predefault})\n"
1473 printf " current_gdbarch->${function} = ${postdefault};\n"
1474 elif [ -n "${postdefault}" ]
1475 then
1476 printf " if (current_gdbarch->${function} == 0)\n"
1477 printf " current_gdbarch->${function} = ${postdefault};\n"
1478 elif [ -n "${invalid_p}" ]
1479 then
1480 printf " if (${invalid_p})\n"
1481 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1482 elif [ -n "${predefault}" ]
1483 then
1484 printf " if (current_gdbarch->${function} == ${predefault})\n"
1485 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1486 fi
1487 fi
1488 done
1489 cat <<EOF
1490 buf = ui_file_xstrdup (log, &dummy);
1491 make_cleanup (xfree, buf);
1492 if (strlen (buf) > 0)
1493 internal_error (__FILE__, __LINE__,
1494 _("verify_gdbarch: the following are invalid ...%s"),
1495 buf);
1496 do_cleanups (cleanups);
1497 }
1498 EOF
1499
1500 # dump the structure
1501 printf "\n"
1502 printf "\n"
1503 cat <<EOF
1504 /* Print out the details of the current architecture. */
1505
1506 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1507 just happens to match the global variable \`\`current_gdbarch''. That
1508 way macros refering to that variable get the local and not the global
1509 version - ulgh. Once everything is parameterised with gdbarch, this
1510 will go away. */
1511
1512 void
1513 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1514 {
1515 const char *gdb_xm_file = "<not-defined>";
1516 const char *gdb_nm_file = "<not-defined>";
1517 const char *gdb_tm_file = "<not-defined>";
1518 #if defined (GDB_XM_FILE)
1519 gdb_xm_file = GDB_XM_FILE;
1520 #endif
1521 fprintf_unfiltered (file,
1522 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1523 gdb_xm_file);
1524 #if defined (GDB_NM_FILE)
1525 gdb_nm_file = GDB_NM_FILE;
1526 #endif
1527 fprintf_unfiltered (file,
1528 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1529 gdb_nm_file);
1530 #if defined (GDB_TM_FILE)
1531 gdb_tm_file = GDB_TM_FILE;
1532 #endif
1533 fprintf_unfiltered (file,
1534 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1535 gdb_tm_file);
1536 EOF
1537 function_list | sort -t: -k 4 | while do_read
1538 do
1539 # First the predicate
1540 if class_is_predicate_p
1541 then
1542 if test -n "${macro}"
1543 then
1544 printf "#ifdef ${macro}_P\n"
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1547 printf " \"${macro}_P()\",\n"
1548 printf " XSTRING (${macro}_P ()));\n"
1549 printf "#endif\n"
1550 fi
1551 printf " fprintf_unfiltered (file,\n"
1552 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1553 printf " gdbarch_${function}_p (current_gdbarch));\n"
1554 fi
1555 # Print the macro definition.
1556 if test -n "${macro}"
1557 then
1558 printf "#ifdef ${macro}\n"
1559 if class_is_function_p
1560 then
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1563 printf " \"${macro}(${actual})\",\n"
1564 printf " XSTRING (${macro} (${actual})));\n"
1565 else
1566 printf " fprintf_unfiltered (file,\n"
1567 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1568 printf " XSTRING (${macro}));\n"
1569 fi
1570 printf "#endif\n"
1571 fi
1572 # Print the corresponding value.
1573 if class_is_function_p
1574 then
1575 printf " fprintf_unfiltered (file,\n"
1576 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1577 printf " (long) current_gdbarch->${function});\n"
1578 else
1579 # It is a variable
1580 case "${print}:${returntype}" in
1581 :CORE_ADDR )
1582 fmt="0x%s"
1583 print="paddr_nz (current_gdbarch->${function})"
1584 ;;
1585 :* )
1586 fmt="%s"
1587 print="paddr_d (current_gdbarch->${function})"
1588 ;;
1589 * )
1590 fmt="%s"
1591 ;;
1592 esac
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1595 printf " ${print});\n"
1596 fi
1597 done
1598 cat <<EOF
1599 if (current_gdbarch->dump_tdep != NULL)
1600 current_gdbarch->dump_tdep (current_gdbarch, file);
1601 }
1602 EOF
1603
1604
1605 # GET/SET
1606 printf "\n"
1607 cat <<EOF
1608 struct gdbarch_tdep *
1609 gdbarch_tdep (struct gdbarch *gdbarch)
1610 {
1611 if (gdbarch_debug >= 2)
1612 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1613 return gdbarch->tdep;
1614 }
1615 EOF
1616 printf "\n"
1617 function_list | while do_read
1618 do
1619 if class_is_predicate_p
1620 then
1621 printf "\n"
1622 printf "int\n"
1623 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1624 printf "{\n"
1625 printf " gdb_assert (gdbarch != NULL);\n"
1626 printf " return ${predicate};\n"
1627 printf "}\n"
1628 fi
1629 if class_is_function_p
1630 then
1631 printf "\n"
1632 printf "${returntype}\n"
1633 if [ "x${formal}" = "xvoid" ]
1634 then
1635 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1636 else
1637 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1638 fi
1639 printf "{\n"
1640 printf " gdb_assert (gdbarch != NULL);\n"
1641 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1642 if class_is_predicate_p && test -n "${predefault}"
1643 then
1644 # Allow a call to a function with a predicate.
1645 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1646 fi
1647 printf " if (gdbarch_debug >= 2)\n"
1648 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1649 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1650 then
1651 if class_is_multiarch_p
1652 then
1653 params="gdbarch"
1654 else
1655 params=""
1656 fi
1657 else
1658 if class_is_multiarch_p
1659 then
1660 params="gdbarch, ${actual}"
1661 else
1662 params="${actual}"
1663 fi
1664 fi
1665 if [ "x${returntype}" = "xvoid" ]
1666 then
1667 printf " gdbarch->${function} (${params});\n"
1668 else
1669 printf " return gdbarch->${function} (${params});\n"
1670 fi
1671 printf "}\n"
1672 printf "\n"
1673 printf "void\n"
1674 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1675 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1676 printf "{\n"
1677 printf " gdbarch->${function} = ${function};\n"
1678 printf "}\n"
1679 elif class_is_variable_p
1680 then
1681 printf "\n"
1682 printf "${returntype}\n"
1683 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1684 printf "{\n"
1685 printf " gdb_assert (gdbarch != NULL);\n"
1686 if [ "x${invalid_p}" = "x0" ]
1687 then
1688 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1689 elif [ -n "${invalid_p}" ]
1690 then
1691 printf " /* Check variable is valid. */\n"
1692 printf " gdb_assert (!(${invalid_p}));\n"
1693 elif [ -n "${predefault}" ]
1694 then
1695 printf " /* Check variable changed from pre-default. */\n"
1696 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1697 fi
1698 printf " if (gdbarch_debug >= 2)\n"
1699 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1700 printf " return gdbarch->${function};\n"
1701 printf "}\n"
1702 printf "\n"
1703 printf "void\n"
1704 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1705 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1706 printf "{\n"
1707 printf " gdbarch->${function} = ${function};\n"
1708 printf "}\n"
1709 elif class_is_info_p
1710 then
1711 printf "\n"
1712 printf "${returntype}\n"
1713 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1714 printf "{\n"
1715 printf " gdb_assert (gdbarch != NULL);\n"
1716 printf " if (gdbarch_debug >= 2)\n"
1717 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1718 printf " return gdbarch->${function};\n"
1719 printf "}\n"
1720 fi
1721 done
1722
1723 # All the trailing guff
1724 cat <<EOF
1725
1726
1727 /* Keep a registry of per-architecture data-pointers required by GDB
1728 modules. */
1729
1730 struct gdbarch_data
1731 {
1732 unsigned index;
1733 int init_p;
1734 gdbarch_data_pre_init_ftype *pre_init;
1735 gdbarch_data_post_init_ftype *post_init;
1736 };
1737
1738 struct gdbarch_data_registration
1739 {
1740 struct gdbarch_data *data;
1741 struct gdbarch_data_registration *next;
1742 };
1743
1744 struct gdbarch_data_registry
1745 {
1746 unsigned nr;
1747 struct gdbarch_data_registration *registrations;
1748 };
1749
1750 struct gdbarch_data_registry gdbarch_data_registry =
1751 {
1752 0, NULL,
1753 };
1754
1755 static struct gdbarch_data *
1756 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1757 gdbarch_data_post_init_ftype *post_init)
1758 {
1759 struct gdbarch_data_registration **curr;
1760 /* Append the new registraration. */
1761 for (curr = &gdbarch_data_registry.registrations;
1762 (*curr) != NULL;
1763 curr = &(*curr)->next);
1764 (*curr) = XMALLOC (struct gdbarch_data_registration);
1765 (*curr)->next = NULL;
1766 (*curr)->data = XMALLOC (struct gdbarch_data);
1767 (*curr)->data->index = gdbarch_data_registry.nr++;
1768 (*curr)->data->pre_init = pre_init;
1769 (*curr)->data->post_init = post_init;
1770 (*curr)->data->init_p = 1;
1771 return (*curr)->data;
1772 }
1773
1774 struct gdbarch_data *
1775 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1776 {
1777 return gdbarch_data_register (pre_init, NULL);
1778 }
1779
1780 struct gdbarch_data *
1781 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1782 {
1783 return gdbarch_data_register (NULL, post_init);
1784 }
1785
1786 /* Create/delete the gdbarch data vector. */
1787
1788 static void
1789 alloc_gdbarch_data (struct gdbarch *gdbarch)
1790 {
1791 gdb_assert (gdbarch->data == NULL);
1792 gdbarch->nr_data = gdbarch_data_registry.nr;
1793 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1794 }
1795
1796 /* Initialize the current value of the specified per-architecture
1797 data-pointer. */
1798
1799 void
1800 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1801 struct gdbarch_data *data,
1802 void *pointer)
1803 {
1804 gdb_assert (data->index < gdbarch->nr_data);
1805 gdb_assert (gdbarch->data[data->index] == NULL);
1806 gdb_assert (data->pre_init == NULL);
1807 gdbarch->data[data->index] = pointer;
1808 }
1809
1810 /* Return the current value of the specified per-architecture
1811 data-pointer. */
1812
1813 void *
1814 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1815 {
1816 gdb_assert (data->index < gdbarch->nr_data);
1817 if (gdbarch->data[data->index] == NULL)
1818 {
1819 /* The data-pointer isn't initialized, call init() to get a
1820 value. */
1821 if (data->pre_init != NULL)
1822 /* Mid architecture creation: pass just the obstack, and not
1823 the entire architecture, as that way it isn't possible for
1824 pre-init code to refer to undefined architecture
1825 fields. */
1826 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1827 else if (gdbarch->initialized_p
1828 && data->post_init != NULL)
1829 /* Post architecture creation: pass the entire architecture
1830 (as all fields are valid), but be careful to also detect
1831 recursive references. */
1832 {
1833 gdb_assert (data->init_p);
1834 data->init_p = 0;
1835 gdbarch->data[data->index] = data->post_init (gdbarch);
1836 data->init_p = 1;
1837 }
1838 else
1839 /* The architecture initialization hasn't completed - punt -
1840 hope that the caller knows what they are doing. Once
1841 deprecated_set_gdbarch_data has been initialized, this can be
1842 changed to an internal error. */
1843 return NULL;
1844 gdb_assert (gdbarch->data[data->index] != NULL);
1845 }
1846 return gdbarch->data[data->index];
1847 }
1848
1849
1850
1851 /* Keep a registry of swapped data required by GDB modules. */
1852
1853 struct gdbarch_swap
1854 {
1855 void *swap;
1856 struct gdbarch_swap_registration *source;
1857 struct gdbarch_swap *next;
1858 };
1859
1860 struct gdbarch_swap_registration
1861 {
1862 void *data;
1863 unsigned long sizeof_data;
1864 gdbarch_swap_ftype *init;
1865 struct gdbarch_swap_registration *next;
1866 };
1867
1868 struct gdbarch_swap_registry
1869 {
1870 int nr;
1871 struct gdbarch_swap_registration *registrations;
1872 };
1873
1874 struct gdbarch_swap_registry gdbarch_swap_registry =
1875 {
1876 0, NULL,
1877 };
1878
1879 void
1880 deprecated_register_gdbarch_swap (void *data,
1881 unsigned long sizeof_data,
1882 gdbarch_swap_ftype *init)
1883 {
1884 struct gdbarch_swap_registration **rego;
1885 for (rego = &gdbarch_swap_registry.registrations;
1886 (*rego) != NULL;
1887 rego = &(*rego)->next);
1888 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1889 (*rego)->next = NULL;
1890 (*rego)->init = init;
1891 (*rego)->data = data;
1892 (*rego)->sizeof_data = sizeof_data;
1893 }
1894
1895 static void
1896 current_gdbarch_swap_init_hack (void)
1897 {
1898 struct gdbarch_swap_registration *rego;
1899 struct gdbarch_swap **curr = &current_gdbarch->swap;
1900 for (rego = gdbarch_swap_registry.registrations;
1901 rego != NULL;
1902 rego = rego->next)
1903 {
1904 if (rego->data != NULL)
1905 {
1906 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1907 struct gdbarch_swap);
1908 (*curr)->source = rego;
1909 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1910 rego->sizeof_data);
1911 (*curr)->next = NULL;
1912 curr = &(*curr)->next;
1913 }
1914 if (rego->init != NULL)
1915 rego->init ();
1916 }
1917 }
1918
1919 static struct gdbarch *
1920 current_gdbarch_swap_out_hack (void)
1921 {
1922 struct gdbarch *old_gdbarch = current_gdbarch;
1923 struct gdbarch_swap *curr;
1924
1925 gdb_assert (old_gdbarch != NULL);
1926 for (curr = old_gdbarch->swap;
1927 curr != NULL;
1928 curr = curr->next)
1929 {
1930 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1931 memset (curr->source->data, 0, curr->source->sizeof_data);
1932 }
1933 current_gdbarch = NULL;
1934 return old_gdbarch;
1935 }
1936
1937 static void
1938 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1939 {
1940 struct gdbarch_swap *curr;
1941
1942 gdb_assert (current_gdbarch == NULL);
1943 for (curr = new_gdbarch->swap;
1944 curr != NULL;
1945 curr = curr->next)
1946 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1947 current_gdbarch = new_gdbarch;
1948 }
1949
1950
1951 /* Keep a registry of the architectures known by GDB. */
1952
1953 struct gdbarch_registration
1954 {
1955 enum bfd_architecture bfd_architecture;
1956 gdbarch_init_ftype *init;
1957 gdbarch_dump_tdep_ftype *dump_tdep;
1958 struct gdbarch_list *arches;
1959 struct gdbarch_registration *next;
1960 };
1961
1962 static struct gdbarch_registration *gdbarch_registry = NULL;
1963
1964 static void
1965 append_name (const char ***buf, int *nr, const char *name)
1966 {
1967 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1968 (*buf)[*nr] = name;
1969 *nr += 1;
1970 }
1971
1972 const char **
1973 gdbarch_printable_names (void)
1974 {
1975 /* Accumulate a list of names based on the registed list of
1976 architectures. */
1977 enum bfd_architecture a;
1978 int nr_arches = 0;
1979 const char **arches = NULL;
1980 struct gdbarch_registration *rego;
1981 for (rego = gdbarch_registry;
1982 rego != NULL;
1983 rego = rego->next)
1984 {
1985 const struct bfd_arch_info *ap;
1986 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1987 if (ap == NULL)
1988 internal_error (__FILE__, __LINE__,
1989 _("gdbarch_architecture_names: multi-arch unknown"));
1990 do
1991 {
1992 append_name (&arches, &nr_arches, ap->printable_name);
1993 ap = ap->next;
1994 }
1995 while (ap != NULL);
1996 }
1997 append_name (&arches, &nr_arches, NULL);
1998 return arches;
1999 }
2000
2001
2002 void
2003 gdbarch_register (enum bfd_architecture bfd_architecture,
2004 gdbarch_init_ftype *init,
2005 gdbarch_dump_tdep_ftype *dump_tdep)
2006 {
2007 struct gdbarch_registration **curr;
2008 const struct bfd_arch_info *bfd_arch_info;
2009 /* Check that BFD recognizes this architecture */
2010 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2011 if (bfd_arch_info == NULL)
2012 {
2013 internal_error (__FILE__, __LINE__,
2014 _("gdbarch: Attempt to register unknown architecture (%d)"),
2015 bfd_architecture);
2016 }
2017 /* Check that we haven't seen this architecture before */
2018 for (curr = &gdbarch_registry;
2019 (*curr) != NULL;
2020 curr = &(*curr)->next)
2021 {
2022 if (bfd_architecture == (*curr)->bfd_architecture)
2023 internal_error (__FILE__, __LINE__,
2024 _("gdbarch: Duplicate registraration of architecture (%s)"),
2025 bfd_arch_info->printable_name);
2026 }
2027 /* log it */
2028 if (gdbarch_debug)
2029 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2030 bfd_arch_info->printable_name,
2031 (long) init);
2032 /* Append it */
2033 (*curr) = XMALLOC (struct gdbarch_registration);
2034 (*curr)->bfd_architecture = bfd_architecture;
2035 (*curr)->init = init;
2036 (*curr)->dump_tdep = dump_tdep;
2037 (*curr)->arches = NULL;
2038 (*curr)->next = NULL;
2039 }
2040
2041 void
2042 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2043 gdbarch_init_ftype *init)
2044 {
2045 gdbarch_register (bfd_architecture, init, NULL);
2046 }
2047
2048
2049 /* Look for an architecture using gdbarch_info. */
2050
2051 struct gdbarch_list *
2052 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2053 const struct gdbarch_info *info)
2054 {
2055 for (; arches != NULL; arches = arches->next)
2056 {
2057 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2058 continue;
2059 if (info->byte_order != arches->gdbarch->byte_order)
2060 continue;
2061 if (info->osabi != arches->gdbarch->osabi)
2062 continue;
2063 if (info->target_desc != arches->gdbarch->target_desc)
2064 continue;
2065 return arches;
2066 }
2067 return NULL;
2068 }
2069
2070
2071 /* Find an architecture that matches the specified INFO. Create a new
2072 architecture if needed. Return that new architecture. Assumes
2073 that there is no current architecture. */
2074
2075 static struct gdbarch *
2076 find_arch_by_info (struct gdbarch_info info)
2077 {
2078 struct gdbarch *new_gdbarch;
2079 struct gdbarch_registration *rego;
2080
2081 /* The existing architecture has been swapped out - all this code
2082 works from a clean slate. */
2083 gdb_assert (current_gdbarch == NULL);
2084
2085 /* Fill in missing parts of the INFO struct using a number of
2086 sources: "set ..."; INFOabfd supplied; and the global
2087 defaults. */
2088 gdbarch_info_fill (&info);
2089
2090 /* Must have found some sort of architecture. */
2091 gdb_assert (info.bfd_arch_info != NULL);
2092
2093 if (gdbarch_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog,
2096 "find_arch_by_info: info.bfd_arch_info %s\n",
2097 (info.bfd_arch_info != NULL
2098 ? info.bfd_arch_info->printable_name
2099 : "(null)"));
2100 fprintf_unfiltered (gdb_stdlog,
2101 "find_arch_by_info: info.byte_order %d (%s)\n",
2102 info.byte_order,
2103 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2104 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2105 : "default"));
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.osabi %d (%s)\n",
2108 info.osabi, gdbarch_osabi_name (info.osabi));
2109 fprintf_unfiltered (gdb_stdlog,
2110 "find_arch_by_info: info.abfd 0x%lx\n",
2111 (long) info.abfd);
2112 fprintf_unfiltered (gdb_stdlog,
2113 "find_arch_by_info: info.tdep_info 0x%lx\n",
2114 (long) info.tdep_info);
2115 }
2116
2117 /* Find the tdep code that knows about this architecture. */
2118 for (rego = gdbarch_registry;
2119 rego != NULL;
2120 rego = rego->next)
2121 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2122 break;
2123 if (rego == NULL)
2124 {
2125 if (gdbarch_debug)
2126 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2127 "No matching architecture\n");
2128 return 0;
2129 }
2130
2131 /* Ask the tdep code for an architecture that matches "info". */
2132 new_gdbarch = rego->init (info, rego->arches);
2133
2134 /* Did the tdep code like it? No. Reject the change and revert to
2135 the old architecture. */
2136 if (new_gdbarch == NULL)
2137 {
2138 if (gdbarch_debug)
2139 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2140 "Target rejected architecture\n");
2141 return NULL;
2142 }
2143
2144 /* Is this a pre-existing architecture (as determined by already
2145 being initialized)? Move it to the front of the architecture
2146 list (keeping the list sorted Most Recently Used). */
2147 if (new_gdbarch->initialized_p)
2148 {
2149 struct gdbarch_list **list;
2150 struct gdbarch_list *this;
2151 if (gdbarch_debug)
2152 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2153 "Previous architecture 0x%08lx (%s) selected\n",
2154 (long) new_gdbarch,
2155 new_gdbarch->bfd_arch_info->printable_name);
2156 /* Find the existing arch in the list. */
2157 for (list = &rego->arches;
2158 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2159 list = &(*list)->next);
2160 /* It had better be in the list of architectures. */
2161 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2162 /* Unlink THIS. */
2163 this = (*list);
2164 (*list) = this->next;
2165 /* Insert THIS at the front. */
2166 this->next = rego->arches;
2167 rego->arches = this;
2168 /* Return it. */
2169 return new_gdbarch;
2170 }
2171
2172 /* It's a new architecture. */
2173 if (gdbarch_debug)
2174 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2175 "New architecture 0x%08lx (%s) selected\n",
2176 (long) new_gdbarch,
2177 new_gdbarch->bfd_arch_info->printable_name);
2178
2179 /* Insert the new architecture into the front of the architecture
2180 list (keep the list sorted Most Recently Used). */
2181 {
2182 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2183 this->next = rego->arches;
2184 this->gdbarch = new_gdbarch;
2185 rego->arches = this;
2186 }
2187
2188 /* Check that the newly installed architecture is valid. Plug in
2189 any post init values. */
2190 new_gdbarch->dump_tdep = rego->dump_tdep;
2191 verify_gdbarch (new_gdbarch);
2192 new_gdbarch->initialized_p = 1;
2193
2194 /* Initialize any per-architecture swap areas. This phase requires
2195 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2196 swap the entire architecture out. */
2197 current_gdbarch = new_gdbarch;
2198 current_gdbarch_swap_init_hack ();
2199 current_gdbarch_swap_out_hack ();
2200
2201 if (gdbarch_debug)
2202 gdbarch_dump (new_gdbarch, gdb_stdlog);
2203
2204 return new_gdbarch;
2205 }
2206
2207 struct gdbarch *
2208 gdbarch_find_by_info (struct gdbarch_info info)
2209 {
2210 /* Save the previously selected architecture, setting the global to
2211 NULL. This stops things like gdbarch->init() trying to use the
2212 previous architecture's configuration. The previous architecture
2213 may not even be of the same architecture family. The most recent
2214 architecture of the same family is found at the head of the
2215 rego->arches list. */
2216 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2217
2218 /* Find the specified architecture. */
2219 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2220
2221 /* Restore the existing architecture. */
2222 gdb_assert (current_gdbarch == NULL);
2223 current_gdbarch_swap_in_hack (old_gdbarch);
2224
2225 return new_gdbarch;
2226 }
2227
2228 /* Make the specified architecture current, swapping the existing one
2229 out. */
2230
2231 void
2232 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2233 {
2234 gdb_assert (new_gdbarch != NULL);
2235 gdb_assert (current_gdbarch != NULL);
2236 gdb_assert (new_gdbarch->initialized_p);
2237 current_gdbarch_swap_out_hack ();
2238 current_gdbarch_swap_in_hack (new_gdbarch);
2239 architecture_changed_event ();
2240 flush_cached_frames ();
2241 }
2242
2243 extern void _initialize_gdbarch (void);
2244
2245 void
2246 _initialize_gdbarch (void)
2247 {
2248 struct cmd_list_element *c;
2249
2250 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2251 Set architecture debugging."), _("\\
2252 Show architecture debugging."), _("\\
2253 When non-zero, architecture debugging is enabled."),
2254 NULL,
2255 show_gdbarch_debug,
2256 &setdebuglist, &showdebuglist);
2257 }
2258 EOF
2259
2260 # close things off
2261 exec 1>&2
2262 #../move-if-change new-gdbarch.c gdbarch.c
2263 compare_new gdbarch.c
This page took 0.078055 seconds and 5 git commands to generate.