* gdbarch.sh (qsupported): Delete.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 # Return the adjusted address and kind to use for Z0/Z1 packets.
490 # KIND is usually the memory length of the breakpoint, but may have a
491 # different target-specific meaning.
492 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496 v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498 # A function can be addressed by either it's "pointer" (possibly a
499 # descriptor address) or "entry point" (first executable instruction).
500 # The method "convert_from_func_ptr_addr" converting the former to the
501 # latter. gdbarch_deprecated_function_start_offset is being used to implement
502 # a simplified subset of that functionality - the function's address
503 # corresponds to the "function pointer" and the function's start
504 # corresponds to the "function entry point" - and hence is redundant.
505
506 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508 # Return the remote protocol register number associated with this
509 # register. Normally the identity mapping.
510 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512 # Fetch the target specific address used to represent a load module.
513 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514 #
515 v:CORE_ADDR:frame_args_skip:::0:::0
516 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519 # frame-base. Enable frame-base before frame-unwind.
520 F:int:frame_num_args:struct frame_info *frame:frame
521 #
522 M:CORE_ADDR:frame_align:CORE_ADDR address:address
523 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524 v:int:frame_red_zone_size
525 #
526 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537 # It is not at all clear why gdbarch_smash_text_address is not folded into
538 # gdbarch_addr_bits_remove.
539 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
542 # indicates if the target needs software single step. An ISA method to
543 # implement it.
544 #
545 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546 # breakpoints using the breakpoint system instead of blatting memory directly
547 # (as with rs6000).
548 #
549 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550 # target can single step. If not, then implement single step using breakpoints.
551 #
552 # A return value of 1 means that the software_single_step breakpoints
553 # were inserted; 0 means they were not.
554 F:int:software_single_step:struct frame_info *frame:frame
555
556 # Return non-zero if the processor is executing a delay slot and a
557 # further single-step is needed before the instruction finishes.
558 M:int:single_step_through_delay:struct frame_info *frame:frame
559 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560 # disassembler. Perhaps objdump can handle it?
561 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566 # evaluates non-zero, this is the address where the debugger will place
567 # a step-resume breakpoint to get us past the dynamic linker.
568 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569 # Some systems also have trampoline code for returning from shared libs.
570 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572 # A target might have problems with watchpoints as soon as the stack
573 # frame of the current function has been destroyed. This mostly happens
574 # as the first action in a funtion's epilogue. in_function_epilogue_p()
575 # is defined to return a non-zero value if either the given addr is one
576 # instruction after the stack destroying instruction up to the trailing
577 # return instruction or if we can figure out that the stack frame has
578 # already been invalidated regardless of the value of addr. Targets
579 # which don't suffer from that problem could just let this functionality
580 # untouched.
581 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584 v:int:cannot_step_breakpoint:::0:0::0
585 v:int:have_nonsteppable_watchpoint:::0:0::0
586 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589 # Is a register in a group
590 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591 # Fetch the pointer to the ith function argument.
592 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594 # Return the appropriate register set for a core file section with
595 # name SECT_NAME and size SECT_SIZE.
596 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598 # When creating core dumps, some systems encode the PID in addition
599 # to the LWP id in core file register section names. In those cases, the
600 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601 # is set to true for such architectures; false if "XXX" represents an LWP
602 # or thread id with no special encoding.
603 v:int:core_reg_section_encodes_pid:::0:0::0
604
605 # Supported register notes in a core file.
606 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609 # core file into buffer READBUF with length LEN.
610 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612 # How the core_stratum layer converts a PTID from a core file to a
613 # string.
614 M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616 # BFD target to use when generating a core file.
617 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619 # If the elements of C++ vtables are in-place function descriptors rather
620 # than normal function pointers (which may point to code or a descriptor),
621 # set this to one.
622 v:int:vtable_function_descriptors:::0:0::0
623
624 # Set if the least significant bit of the delta is used instead of the least
625 # significant bit of the pfn for pointers to virtual member functions.
626 v:int:vbit_in_delta:::0:0::0
627
628 # Advance PC to next instruction in order to skip a permanent breakpoint.
629 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631 # The maximum length of an instruction on this architecture.
632 V:ULONGEST:max_insn_length:::0:0
633
634 # Copy the instruction at FROM to TO, and make any adjustments
635 # necessary to single-step it at that address.
636 #
637 # REGS holds the state the thread's registers will have before
638 # executing the copied instruction; the PC in REGS will refer to FROM,
639 # not the copy at TO. The caller should update it to point at TO later.
640 #
641 # Return a pointer to data of the architecture's choice to be passed
642 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643 # the instruction's effects have been completely simulated, with the
644 # resulting state written back to REGS.
645 #
646 # For a general explanation of displaced stepping and how GDB uses it,
647 # see the comments in infrun.c.
648 #
649 # The TO area is only guaranteed to have space for
650 # gdbarch_max_insn_length (arch) bytes, so this function must not
651 # write more bytes than that to that area.
652 #
653 # If you do not provide this function, GDB assumes that the
654 # architecture does not support displaced stepping.
655 #
656 # If your architecture doesn't need to adjust instructions before
657 # single-stepping them, consider using simple_displaced_step_copy_insn
658 # here.
659 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661 # Return true if GDB should use hardware single-stepping to execute
662 # the displaced instruction identified by CLOSURE. If false,
663 # GDB will simply restart execution at the displaced instruction
664 # location, and it is up to the target to ensure GDB will receive
665 # control again (e.g. by placing a software breakpoint instruction
666 # into the displaced instruction buffer).
667 #
668 # The default implementation returns false on all targets that
669 # provide a gdbarch_software_single_step routine, and true otherwise.
670 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672 # Fix up the state resulting from successfully single-stepping a
673 # displaced instruction, to give the result we would have gotten from
674 # stepping the instruction in its original location.
675 #
676 # REGS is the register state resulting from single-stepping the
677 # displaced instruction.
678 #
679 # CLOSURE is the result from the matching call to
680 # gdbarch_displaced_step_copy_insn.
681 #
682 # If you provide gdbarch_displaced_step_copy_insn.but not this
683 # function, then GDB assumes that no fixup is needed after
684 # single-stepping the instruction.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690 # Free a closure returned by gdbarch_displaced_step_copy_insn.
691 #
692 # If you provide gdbarch_displaced_step_copy_insn, you must provide
693 # this function as well.
694 #
695 # If your architecture uses closures that don't need to be freed, then
696 # you can use simple_displaced_step_free_closure here.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702 # Return the address of an appropriate place to put displaced
703 # instructions while we step over them. There need only be one such
704 # place, since we're only stepping one thread over a breakpoint at a
705 # time.
706 #
707 # For a general explanation of displaced stepping and how GDB uses it,
708 # see the comments in infrun.c.
709 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711 # Refresh overlay mapped state for section OSECT.
712 F:void:overlay_update:struct obj_section *osect:osect
713
714 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716 # Handle special encoding of static variables in stabs debug info.
717 F:char *:static_transform_name:char *name:name
718 # Set if the address in N_SO or N_FUN stabs may be zero.
719 v:int:sofun_address_maybe_missing:::0:0::0
720
721 # Parse the instruction at ADDR storing in the record execution log
722 # the registers REGCACHE and memory ranges that will be affected when
723 # the instruction executes, along with their current values.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727 # Save process state after a signal.
728 # Return -1 if something goes wrong, 0 otherwise.
729 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731 # Signal translation: translate inferior's signal (host's) number into
732 # GDB's representation.
733 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734 # Signal translation: translate GDB's signal number into inferior's host
735 # signal number.
736 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738 # Extra signal info inspection.
739 #
740 # Return a type suitable to inspect extra signal information.
741 M:struct type *:get_siginfo_type:void:
742
743 # Record architecture-specific information from the symbol table.
744 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746 # Function for the 'catch syscall' feature.
747
748 # Get architecture-specific system calls information from registers.
749 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751 # True if the list of shared libraries is one and only for all
752 # processes, as opposed to a list of shared libraries per inferior.
753 # This usually means that all processes, although may or may not share
754 # an address space, will see the same set of symbols at the same
755 # addresses.
756 v:int:has_global_solist:::0:0::0
757
758 # On some targets, even though each inferior has its own private
759 # address space, the debug interface takes care of making breakpoints
760 # visible to all address spaces automatically. For such cases,
761 # this property should be set to true.
762 v:int:has_global_breakpoints:::0:0::0
763
764 # True if inferiors share an address space (e.g., uClinux).
765 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767 # True if a fast tracepoint can be set at an address.
768 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769
770 # Return the "auto" target charset.
771 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
772 # Return the "auto" target wide charset.
773 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
774
775 # If non-empty, this is a file extension that will be opened in place
776 # of the file extension reported by the shared library list.
777 #
778 # This is most useful for toolchains that use a post-linker tool,
779 # where the names of the files run on the target differ in extension
780 # compared to the names of the files GDB should load for debug info.
781 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
782
783 # If true, the target OS has DOS-based file system semantics. That
784 # is, absolute paths include a drive name, and the backslash is
785 # considered a directory separator.
786 v:int:has_dos_based_file_system:::0:0::0
787 EOF
788 }
789
790 #
791 # The .log file
792 #
793 exec > new-gdbarch.log
794 function_list | while do_read
795 do
796 cat <<EOF
797 ${class} ${returntype} ${function} ($formal)
798 EOF
799 for r in ${read}
800 do
801 eval echo \"\ \ \ \ ${r}=\${${r}}\"
802 done
803 if class_is_predicate_p && fallback_default_p
804 then
805 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
806 kill $$
807 exit 1
808 fi
809 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
810 then
811 echo "Error: postdefault is useless when invalid_p=0" 1>&2
812 kill $$
813 exit 1
814 fi
815 if class_is_multiarch_p
816 then
817 if class_is_predicate_p ; then :
818 elif test "x${predefault}" = "x"
819 then
820 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
821 kill $$
822 exit 1
823 fi
824 fi
825 echo ""
826 done
827
828 exec 1>&2
829 compare_new gdbarch.log
830
831
832 copyright ()
833 {
834 cat <<EOF
835 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
836
837 /* Dynamic architecture support for GDB, the GNU debugger.
838
839 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
840 2007, 2008, 2009 Free Software Foundation, Inc.
841
842 This file is part of GDB.
843
844 This program is free software; you can redistribute it and/or modify
845 it under the terms of the GNU General Public License as published by
846 the Free Software Foundation; either version 3 of the License, or
847 (at your option) any later version.
848
849 This program is distributed in the hope that it will be useful,
850 but WITHOUT ANY WARRANTY; without even the implied warranty of
851 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
852 GNU General Public License for more details.
853
854 You should have received a copy of the GNU General Public License
855 along with this program. If not, see <http://www.gnu.org/licenses/>. */
856
857 /* This file was created with the aid of \`\`gdbarch.sh''.
858
859 The Bourne shell script \`\`gdbarch.sh'' creates the files
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
862 being reported.
863
864 If editing this file, please also run gdbarch.sh and merge any
865 changes into that script. Conversely, when making sweeping changes
866 to this file, modifying gdbarch.sh and using its output may prove
867 easier. */
868
869 EOF
870 }
871
872 #
873 # The .h file
874 #
875
876 exec > new-gdbarch.h
877 copyright
878 cat <<EOF
879 #ifndef GDBARCH_H
880 #define GDBARCH_H
881
882 struct floatformat;
883 struct ui_file;
884 struct frame_info;
885 struct value;
886 struct objfile;
887 struct obj_section;
888 struct minimal_symbol;
889 struct regcache;
890 struct reggroup;
891 struct regset;
892 struct disassemble_info;
893 struct target_ops;
894 struct obstack;
895 struct bp_target_info;
896 struct target_desc;
897 struct displaced_step_closure;
898 struct core_regset_section;
899 struct syscall;
900
901 /* The architecture associated with the connection to the target.
902
903 The architecture vector provides some information that is really
904 a property of the target: The layout of certain packets, for instance;
905 or the solib_ops vector. Etc. To differentiate architecture accesses
906 to per-target properties from per-thread/per-frame/per-objfile properties,
907 accesses to per-target properties should be made through target_gdbarch.
908
909 Eventually, when support for multiple targets is implemented in
910 GDB, this global should be made target-specific. */
911 extern struct gdbarch *target_gdbarch;
912 EOF
913
914 # function typedef's
915 printf "\n"
916 printf "\n"
917 printf "/* The following are pre-initialized by GDBARCH. */\n"
918 function_list | while do_read
919 do
920 if class_is_info_p
921 then
922 printf "\n"
923 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
924 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
925 fi
926 done
927
928 # function typedef's
929 printf "\n"
930 printf "\n"
931 printf "/* The following are initialized by the target dependent code. */\n"
932 function_list | while do_read
933 do
934 if [ -n "${comment}" ]
935 then
936 echo "${comment}" | sed \
937 -e '2 s,#,/*,' \
938 -e '3,$ s,#, ,' \
939 -e '$ s,$, */,'
940 fi
941
942 if class_is_predicate_p
943 then
944 printf "\n"
945 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
946 fi
947 if class_is_variable_p
948 then
949 printf "\n"
950 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
951 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
952 fi
953 if class_is_function_p
954 then
955 printf "\n"
956 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
959 elif class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
962 else
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
964 fi
965 if [ "x${formal}" = "xvoid" ]
966 then
967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
968 else
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
970 fi
971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
972 fi
973 done
974
975 # close it off
976 cat <<EOF
977
978 /* Definition for an unknown syscall, used basically in error-cases. */
979 #define UNKNOWN_SYSCALL (-1)
980
981 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
982
983
984 /* Mechanism for co-ordinating the selection of a specific
985 architecture.
986
987 GDB targets (*-tdep.c) can register an interest in a specific
988 architecture. Other GDB components can register a need to maintain
989 per-architecture data.
990
991 The mechanisms below ensures that there is only a loose connection
992 between the set-architecture command and the various GDB
993 components. Each component can independently register their need
994 to maintain architecture specific data with gdbarch.
995
996 Pragmatics:
997
998 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
999 didn't scale.
1000
1001 The more traditional mega-struct containing architecture specific
1002 data for all the various GDB components was also considered. Since
1003 GDB is built from a variable number of (fairly independent)
1004 components it was determined that the global aproach was not
1005 applicable. */
1006
1007
1008 /* Register a new architectural family with GDB.
1009
1010 Register support for the specified ARCHITECTURE with GDB. When
1011 gdbarch determines that the specified architecture has been
1012 selected, the corresponding INIT function is called.
1013
1014 --
1015
1016 The INIT function takes two parameters: INFO which contains the
1017 information available to gdbarch about the (possibly new)
1018 architecture; ARCHES which is a list of the previously created
1019 \`\`struct gdbarch'' for this architecture.
1020
1021 The INFO parameter is, as far as possible, be pre-initialized with
1022 information obtained from INFO.ABFD or the global defaults.
1023
1024 The ARCHES parameter is a linked list (sorted most recently used)
1025 of all the previously created architures for this architecture
1026 family. The (possibly NULL) ARCHES->gdbarch can used to access
1027 values from the previously selected architecture for this
1028 architecture family.
1029
1030 The INIT function shall return any of: NULL - indicating that it
1031 doesn't recognize the selected architecture; an existing \`\`struct
1032 gdbarch'' from the ARCHES list - indicating that the new
1033 architecture is just a synonym for an earlier architecture (see
1034 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1035 - that describes the selected architecture (see gdbarch_alloc()).
1036
1037 The DUMP_TDEP function shall print out all target specific values.
1038 Care should be taken to ensure that the function works in both the
1039 multi-arch and non- multi-arch cases. */
1040
1041 struct gdbarch_list
1042 {
1043 struct gdbarch *gdbarch;
1044 struct gdbarch_list *next;
1045 };
1046
1047 struct gdbarch_info
1048 {
1049 /* Use default: NULL (ZERO). */
1050 const struct bfd_arch_info *bfd_arch_info;
1051
1052 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1053 int byte_order;
1054
1055 int byte_order_for_code;
1056
1057 /* Use default: NULL (ZERO). */
1058 bfd *abfd;
1059
1060 /* Use default: NULL (ZERO). */
1061 struct gdbarch_tdep_info *tdep_info;
1062
1063 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1064 enum gdb_osabi osabi;
1065
1066 /* Use default: NULL (ZERO). */
1067 const struct target_desc *target_desc;
1068 };
1069
1070 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1071 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1072
1073 /* DEPRECATED - use gdbarch_register() */
1074 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1075
1076 extern void gdbarch_register (enum bfd_architecture architecture,
1077 gdbarch_init_ftype *,
1078 gdbarch_dump_tdep_ftype *);
1079
1080
1081 /* Return a freshly allocated, NULL terminated, array of the valid
1082 architecture names. Since architectures are registered during the
1083 _initialize phase this function only returns useful information
1084 once initialization has been completed. */
1085
1086 extern const char **gdbarch_printable_names (void);
1087
1088
1089 /* Helper function. Search the list of ARCHES for a GDBARCH that
1090 matches the information provided by INFO. */
1091
1092 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1093
1094
1095 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1096 basic initialization using values obtained from the INFO and TDEP
1097 parameters. set_gdbarch_*() functions are called to complete the
1098 initialization of the object. */
1099
1100 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1101
1102
1103 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1104 It is assumed that the caller freeds the \`\`struct
1105 gdbarch_tdep''. */
1106
1107 extern void gdbarch_free (struct gdbarch *);
1108
1109
1110 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1111 obstack. The memory is freed when the corresponding architecture
1112 is also freed. */
1113
1114 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1115 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1116 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1117
1118
1119 /* Helper function. Force an update of the current architecture.
1120
1121 The actual architecture selected is determined by INFO, \`\`(gdb) set
1122 architecture'' et.al., the existing architecture and BFD's default
1123 architecture. INFO should be initialized to zero and then selected
1124 fields should be updated.
1125
1126 Returns non-zero if the update succeeds */
1127
1128 extern int gdbarch_update_p (struct gdbarch_info info);
1129
1130
1131 /* Helper function. Find an architecture matching info.
1132
1133 INFO should be initialized using gdbarch_info_init, relevant fields
1134 set, and then finished using gdbarch_info_fill.
1135
1136 Returns the corresponding architecture, or NULL if no matching
1137 architecture was found. */
1138
1139 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1140
1141
1142 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1143
1144 FIXME: kettenis/20031124: Of the functions that follow, only
1145 gdbarch_from_bfd is supposed to survive. The others will
1146 dissappear since in the future GDB will (hopefully) be truly
1147 multi-arch. However, for now we're still stuck with the concept of
1148 a single active architecture. */
1149
1150 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1151
1152
1153 /* Register per-architecture data-pointer.
1154
1155 Reserve space for a per-architecture data-pointer. An identifier
1156 for the reserved data-pointer is returned. That identifer should
1157 be saved in a local static variable.
1158
1159 Memory for the per-architecture data shall be allocated using
1160 gdbarch_obstack_zalloc. That memory will be deleted when the
1161 corresponding architecture object is deleted.
1162
1163 When a previously created architecture is re-selected, the
1164 per-architecture data-pointer for that previous architecture is
1165 restored. INIT() is not re-called.
1166
1167 Multiple registrarants for any architecture are allowed (and
1168 strongly encouraged). */
1169
1170 struct gdbarch_data;
1171
1172 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1173 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1174 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1175 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1176 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1177 struct gdbarch_data *data,
1178 void *pointer);
1179
1180 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1181
1182
1183 /* Set the dynamic target-system-dependent parameters (architecture,
1184 byte-order, ...) using information found in the BFD */
1185
1186 extern void set_gdbarch_from_file (bfd *);
1187
1188
1189 /* Initialize the current architecture to the "first" one we find on
1190 our list. */
1191
1192 extern void initialize_current_architecture (void);
1193
1194 /* gdbarch trace variable */
1195 extern int gdbarch_debug;
1196
1197 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1198
1199 #endif
1200 EOF
1201 exec 1>&2
1202 #../move-if-change new-gdbarch.h gdbarch.h
1203 compare_new gdbarch.h
1204
1205
1206 #
1207 # C file
1208 #
1209
1210 exec > new-gdbarch.c
1211 copyright
1212 cat <<EOF
1213
1214 #include "defs.h"
1215 #include "arch-utils.h"
1216
1217 #include "gdbcmd.h"
1218 #include "inferior.h"
1219 #include "symcat.h"
1220
1221 #include "floatformat.h"
1222
1223 #include "gdb_assert.h"
1224 #include "gdb_string.h"
1225 #include "reggroups.h"
1226 #include "osabi.h"
1227 #include "gdb_obstack.h"
1228 #include "observer.h"
1229 #include "regcache.h"
1230
1231 /* Static function declarations */
1232
1233 static void alloc_gdbarch_data (struct gdbarch *);
1234
1235 /* Non-zero if we want to trace architecture code. */
1236
1237 #ifndef GDBARCH_DEBUG
1238 #define GDBARCH_DEBUG 0
1239 #endif
1240 int gdbarch_debug = GDBARCH_DEBUG;
1241 static void
1242 show_gdbarch_debug (struct ui_file *file, int from_tty,
1243 struct cmd_list_element *c, const char *value)
1244 {
1245 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1246 }
1247
1248 static const char *
1249 pformat (const struct floatformat **format)
1250 {
1251 if (format == NULL)
1252 return "(null)";
1253 else
1254 /* Just print out one of them - this is only for diagnostics. */
1255 return format[0]->name;
1256 }
1257
1258 static const char *
1259 pstring (const char *string)
1260 {
1261 if (string == NULL)
1262 return "(null)";
1263 return string;
1264 }
1265
1266 EOF
1267
1268 # gdbarch open the gdbarch object
1269 printf "\n"
1270 printf "/* Maintain the struct gdbarch object */\n"
1271 printf "\n"
1272 printf "struct gdbarch\n"
1273 printf "{\n"
1274 printf " /* Has this architecture been fully initialized? */\n"
1275 printf " int initialized_p;\n"
1276 printf "\n"
1277 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1278 printf " struct obstack *obstack;\n"
1279 printf "\n"
1280 printf " /* basic architectural information */\n"
1281 function_list | while do_read
1282 do
1283 if class_is_info_p
1284 then
1285 printf " ${returntype} ${function};\n"
1286 fi
1287 done
1288 printf "\n"
1289 printf " /* target specific vector. */\n"
1290 printf " struct gdbarch_tdep *tdep;\n"
1291 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1292 printf "\n"
1293 printf " /* per-architecture data-pointers */\n"
1294 printf " unsigned nr_data;\n"
1295 printf " void **data;\n"
1296 printf "\n"
1297 printf " /* per-architecture swap-regions */\n"
1298 printf " struct gdbarch_swap *swap;\n"
1299 printf "\n"
1300 cat <<EOF
1301 /* Multi-arch values.
1302
1303 When extending this structure you must:
1304
1305 Add the field below.
1306
1307 Declare set/get functions and define the corresponding
1308 macro in gdbarch.h.
1309
1310 gdbarch_alloc(): If zero/NULL is not a suitable default,
1311 initialize the new field.
1312
1313 verify_gdbarch(): Confirm that the target updated the field
1314 correctly.
1315
1316 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1317 field is dumped out
1318
1319 \`\`startup_gdbarch()'': Append an initial value to the static
1320 variable (base values on the host's c-type system).
1321
1322 get_gdbarch(): Implement the set/get functions (probably using
1323 the macro's as shortcuts).
1324
1325 */
1326
1327 EOF
1328 function_list | while do_read
1329 do
1330 if class_is_variable_p
1331 then
1332 printf " ${returntype} ${function};\n"
1333 elif class_is_function_p
1334 then
1335 printf " gdbarch_${function}_ftype *${function};\n"
1336 fi
1337 done
1338 printf "};\n"
1339
1340 # A pre-initialized vector
1341 printf "\n"
1342 printf "\n"
1343 cat <<EOF
1344 /* The default architecture uses host values (for want of a better
1345 choice). */
1346 EOF
1347 printf "\n"
1348 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1349 printf "\n"
1350 printf "struct gdbarch startup_gdbarch =\n"
1351 printf "{\n"
1352 printf " 1, /* Always initialized. */\n"
1353 printf " NULL, /* The obstack. */\n"
1354 printf " /* basic architecture information */\n"
1355 function_list | while do_read
1356 do
1357 if class_is_info_p
1358 then
1359 printf " ${staticdefault}, /* ${function} */\n"
1360 fi
1361 done
1362 cat <<EOF
1363 /* target specific vector and its dump routine */
1364 NULL, NULL,
1365 /*per-architecture data-pointers and swap regions */
1366 0, NULL, NULL,
1367 /* Multi-arch values */
1368 EOF
1369 function_list | while do_read
1370 do
1371 if class_is_function_p || class_is_variable_p
1372 then
1373 printf " ${staticdefault}, /* ${function} */\n"
1374 fi
1375 done
1376 cat <<EOF
1377 /* startup_gdbarch() */
1378 };
1379
1380 struct gdbarch *target_gdbarch = &startup_gdbarch;
1381 EOF
1382
1383 # Create a new gdbarch struct
1384 cat <<EOF
1385
1386 /* Create a new \`\`struct gdbarch'' based on information provided by
1387 \`\`struct gdbarch_info''. */
1388 EOF
1389 printf "\n"
1390 cat <<EOF
1391 struct gdbarch *
1392 gdbarch_alloc (const struct gdbarch_info *info,
1393 struct gdbarch_tdep *tdep)
1394 {
1395 struct gdbarch *gdbarch;
1396
1397 /* Create an obstack for allocating all the per-architecture memory,
1398 then use that to allocate the architecture vector. */
1399 struct obstack *obstack = XMALLOC (struct obstack);
1400 obstack_init (obstack);
1401 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1402 memset (gdbarch, 0, sizeof (*gdbarch));
1403 gdbarch->obstack = obstack;
1404
1405 alloc_gdbarch_data (gdbarch);
1406
1407 gdbarch->tdep = tdep;
1408 EOF
1409 printf "\n"
1410 function_list | while do_read
1411 do
1412 if class_is_info_p
1413 then
1414 printf " gdbarch->${function} = info->${function};\n"
1415 fi
1416 done
1417 printf "\n"
1418 printf " /* Force the explicit initialization of these. */\n"
1419 function_list | while do_read
1420 do
1421 if class_is_function_p || class_is_variable_p
1422 then
1423 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1424 then
1425 printf " gdbarch->${function} = ${predefault};\n"
1426 fi
1427 fi
1428 done
1429 cat <<EOF
1430 /* gdbarch_alloc() */
1431
1432 return gdbarch;
1433 }
1434 EOF
1435
1436 # Free a gdbarch struct.
1437 printf "\n"
1438 printf "\n"
1439 cat <<EOF
1440 /* Allocate extra space using the per-architecture obstack. */
1441
1442 void *
1443 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1444 {
1445 void *data = obstack_alloc (arch->obstack, size);
1446 memset (data, 0, size);
1447 return data;
1448 }
1449
1450
1451 /* Free a gdbarch struct. This should never happen in normal
1452 operation --- once you've created a gdbarch, you keep it around.
1453 However, if an architecture's init function encounters an error
1454 building the structure, it may need to clean up a partially
1455 constructed gdbarch. */
1456
1457 void
1458 gdbarch_free (struct gdbarch *arch)
1459 {
1460 struct obstack *obstack;
1461 gdb_assert (arch != NULL);
1462 gdb_assert (!arch->initialized_p);
1463 obstack = arch->obstack;
1464 obstack_free (obstack, 0); /* Includes the ARCH. */
1465 xfree (obstack);
1466 }
1467 EOF
1468
1469 # verify a new architecture
1470 cat <<EOF
1471
1472
1473 /* Ensure that all values in a GDBARCH are reasonable. */
1474
1475 static void
1476 verify_gdbarch (struct gdbarch *gdbarch)
1477 {
1478 struct ui_file *log;
1479 struct cleanup *cleanups;
1480 long length;
1481 char *buf;
1482 log = mem_fileopen ();
1483 cleanups = make_cleanup_ui_file_delete (log);
1484 /* fundamental */
1485 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1486 fprintf_unfiltered (log, "\n\tbyte-order");
1487 if (gdbarch->bfd_arch_info == NULL)
1488 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1489 /* Check those that need to be defined for the given multi-arch level. */
1490 EOF
1491 function_list | while do_read
1492 do
1493 if class_is_function_p || class_is_variable_p
1494 then
1495 if [ "x${invalid_p}" = "x0" ]
1496 then
1497 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1498 elif class_is_predicate_p
1499 then
1500 printf " /* Skip verify of ${function}, has predicate */\n"
1501 # FIXME: See do_read for potential simplification
1502 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1503 then
1504 printf " if (${invalid_p})\n"
1505 printf " gdbarch->${function} = ${postdefault};\n"
1506 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1507 then
1508 printf " if (gdbarch->${function} == ${predefault})\n"
1509 printf " gdbarch->${function} = ${postdefault};\n"
1510 elif [ -n "${postdefault}" ]
1511 then
1512 printf " if (gdbarch->${function} == 0)\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
1514 elif [ -n "${invalid_p}" ]
1515 then
1516 printf " if (${invalid_p})\n"
1517 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1518 elif [ -n "${predefault}" ]
1519 then
1520 printf " if (gdbarch->${function} == ${predefault})\n"
1521 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1522 fi
1523 fi
1524 done
1525 cat <<EOF
1526 buf = ui_file_xstrdup (log, &length);
1527 make_cleanup (xfree, buf);
1528 if (length > 0)
1529 internal_error (__FILE__, __LINE__,
1530 _("verify_gdbarch: the following are invalid ...%s"),
1531 buf);
1532 do_cleanups (cleanups);
1533 }
1534 EOF
1535
1536 # dump the structure
1537 printf "\n"
1538 printf "\n"
1539 cat <<EOF
1540 /* Print out the details of the current architecture. */
1541
1542 void
1543 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1544 {
1545 const char *gdb_nm_file = "<not-defined>";
1546 #if defined (GDB_NM_FILE)
1547 gdb_nm_file = GDB_NM_FILE;
1548 #endif
1549 fprintf_unfiltered (file,
1550 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1551 gdb_nm_file);
1552 EOF
1553 function_list | sort -t: -k 3 | while do_read
1554 do
1555 # First the predicate
1556 if class_is_predicate_p
1557 then
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1560 printf " gdbarch_${function}_p (gdbarch));\n"
1561 fi
1562 # Print the corresponding value.
1563 if class_is_function_p
1564 then
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1567 printf " host_address_to_string (gdbarch->${function}));\n"
1568 else
1569 # It is a variable
1570 case "${print}:${returntype}" in
1571 :CORE_ADDR )
1572 fmt="%s"
1573 print="core_addr_to_string_nz (gdbarch->${function})"
1574 ;;
1575 :* )
1576 fmt="%s"
1577 print="plongest (gdbarch->${function})"
1578 ;;
1579 * )
1580 fmt="%s"
1581 ;;
1582 esac
1583 printf " fprintf_unfiltered (file,\n"
1584 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1585 printf " ${print});\n"
1586 fi
1587 done
1588 cat <<EOF
1589 if (gdbarch->dump_tdep != NULL)
1590 gdbarch->dump_tdep (gdbarch, file);
1591 }
1592 EOF
1593
1594
1595 # GET/SET
1596 printf "\n"
1597 cat <<EOF
1598 struct gdbarch_tdep *
1599 gdbarch_tdep (struct gdbarch *gdbarch)
1600 {
1601 if (gdbarch_debug >= 2)
1602 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1603 return gdbarch->tdep;
1604 }
1605 EOF
1606 printf "\n"
1607 function_list | while do_read
1608 do
1609 if class_is_predicate_p
1610 then
1611 printf "\n"
1612 printf "int\n"
1613 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1614 printf "{\n"
1615 printf " gdb_assert (gdbarch != NULL);\n"
1616 printf " return ${predicate};\n"
1617 printf "}\n"
1618 fi
1619 if class_is_function_p
1620 then
1621 printf "\n"
1622 printf "${returntype}\n"
1623 if [ "x${formal}" = "xvoid" ]
1624 then
1625 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1626 else
1627 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1628 fi
1629 printf "{\n"
1630 printf " gdb_assert (gdbarch != NULL);\n"
1631 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1632 if class_is_predicate_p && test -n "${predefault}"
1633 then
1634 # Allow a call to a function with a predicate.
1635 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1636 fi
1637 printf " if (gdbarch_debug >= 2)\n"
1638 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1639 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1640 then
1641 if class_is_multiarch_p
1642 then
1643 params="gdbarch"
1644 else
1645 params=""
1646 fi
1647 else
1648 if class_is_multiarch_p
1649 then
1650 params="gdbarch, ${actual}"
1651 else
1652 params="${actual}"
1653 fi
1654 fi
1655 if [ "x${returntype}" = "xvoid" ]
1656 then
1657 printf " gdbarch->${function} (${params});\n"
1658 else
1659 printf " return gdbarch->${function} (${params});\n"
1660 fi
1661 printf "}\n"
1662 printf "\n"
1663 printf "void\n"
1664 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1665 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1666 printf "{\n"
1667 printf " gdbarch->${function} = ${function};\n"
1668 printf "}\n"
1669 elif class_is_variable_p
1670 then
1671 printf "\n"
1672 printf "${returntype}\n"
1673 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1674 printf "{\n"
1675 printf " gdb_assert (gdbarch != NULL);\n"
1676 if [ "x${invalid_p}" = "x0" ]
1677 then
1678 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1679 elif [ -n "${invalid_p}" ]
1680 then
1681 printf " /* Check variable is valid. */\n"
1682 printf " gdb_assert (!(${invalid_p}));\n"
1683 elif [ -n "${predefault}" ]
1684 then
1685 printf " /* Check variable changed from pre-default. */\n"
1686 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1687 fi
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1691 printf "}\n"
1692 printf "\n"
1693 printf "void\n"
1694 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1695 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1696 printf "{\n"
1697 printf " gdbarch->${function} = ${function};\n"
1698 printf "}\n"
1699 elif class_is_info_p
1700 then
1701 printf "\n"
1702 printf "${returntype}\n"
1703 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1704 printf "{\n"
1705 printf " gdb_assert (gdbarch != NULL);\n"
1706 printf " if (gdbarch_debug >= 2)\n"
1707 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1708 printf " return gdbarch->${function};\n"
1709 printf "}\n"
1710 fi
1711 done
1712
1713 # All the trailing guff
1714 cat <<EOF
1715
1716
1717 /* Keep a registry of per-architecture data-pointers required by GDB
1718 modules. */
1719
1720 struct gdbarch_data
1721 {
1722 unsigned index;
1723 int init_p;
1724 gdbarch_data_pre_init_ftype *pre_init;
1725 gdbarch_data_post_init_ftype *post_init;
1726 };
1727
1728 struct gdbarch_data_registration
1729 {
1730 struct gdbarch_data *data;
1731 struct gdbarch_data_registration *next;
1732 };
1733
1734 struct gdbarch_data_registry
1735 {
1736 unsigned nr;
1737 struct gdbarch_data_registration *registrations;
1738 };
1739
1740 struct gdbarch_data_registry gdbarch_data_registry =
1741 {
1742 0, NULL,
1743 };
1744
1745 static struct gdbarch_data *
1746 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1747 gdbarch_data_post_init_ftype *post_init)
1748 {
1749 struct gdbarch_data_registration **curr;
1750 /* Append the new registraration. */
1751 for (curr = &gdbarch_data_registry.registrations;
1752 (*curr) != NULL;
1753 curr = &(*curr)->next);
1754 (*curr) = XMALLOC (struct gdbarch_data_registration);
1755 (*curr)->next = NULL;
1756 (*curr)->data = XMALLOC (struct gdbarch_data);
1757 (*curr)->data->index = gdbarch_data_registry.nr++;
1758 (*curr)->data->pre_init = pre_init;
1759 (*curr)->data->post_init = post_init;
1760 (*curr)->data->init_p = 1;
1761 return (*curr)->data;
1762 }
1763
1764 struct gdbarch_data *
1765 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1766 {
1767 return gdbarch_data_register (pre_init, NULL);
1768 }
1769
1770 struct gdbarch_data *
1771 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1772 {
1773 return gdbarch_data_register (NULL, post_init);
1774 }
1775
1776 /* Create/delete the gdbarch data vector. */
1777
1778 static void
1779 alloc_gdbarch_data (struct gdbarch *gdbarch)
1780 {
1781 gdb_assert (gdbarch->data == NULL);
1782 gdbarch->nr_data = gdbarch_data_registry.nr;
1783 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1784 }
1785
1786 /* Initialize the current value of the specified per-architecture
1787 data-pointer. */
1788
1789 void
1790 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1791 struct gdbarch_data *data,
1792 void *pointer)
1793 {
1794 gdb_assert (data->index < gdbarch->nr_data);
1795 gdb_assert (gdbarch->data[data->index] == NULL);
1796 gdb_assert (data->pre_init == NULL);
1797 gdbarch->data[data->index] = pointer;
1798 }
1799
1800 /* Return the current value of the specified per-architecture
1801 data-pointer. */
1802
1803 void *
1804 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1805 {
1806 gdb_assert (data->index < gdbarch->nr_data);
1807 if (gdbarch->data[data->index] == NULL)
1808 {
1809 /* The data-pointer isn't initialized, call init() to get a
1810 value. */
1811 if (data->pre_init != NULL)
1812 /* Mid architecture creation: pass just the obstack, and not
1813 the entire architecture, as that way it isn't possible for
1814 pre-init code to refer to undefined architecture
1815 fields. */
1816 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1817 else if (gdbarch->initialized_p
1818 && data->post_init != NULL)
1819 /* Post architecture creation: pass the entire architecture
1820 (as all fields are valid), but be careful to also detect
1821 recursive references. */
1822 {
1823 gdb_assert (data->init_p);
1824 data->init_p = 0;
1825 gdbarch->data[data->index] = data->post_init (gdbarch);
1826 data->init_p = 1;
1827 }
1828 else
1829 /* The architecture initialization hasn't completed - punt -
1830 hope that the caller knows what they are doing. Once
1831 deprecated_set_gdbarch_data has been initialized, this can be
1832 changed to an internal error. */
1833 return NULL;
1834 gdb_assert (gdbarch->data[data->index] != NULL);
1835 }
1836 return gdbarch->data[data->index];
1837 }
1838
1839
1840 /* Keep a registry of the architectures known by GDB. */
1841
1842 struct gdbarch_registration
1843 {
1844 enum bfd_architecture bfd_architecture;
1845 gdbarch_init_ftype *init;
1846 gdbarch_dump_tdep_ftype *dump_tdep;
1847 struct gdbarch_list *arches;
1848 struct gdbarch_registration *next;
1849 };
1850
1851 static struct gdbarch_registration *gdbarch_registry = NULL;
1852
1853 static void
1854 append_name (const char ***buf, int *nr, const char *name)
1855 {
1856 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1857 (*buf)[*nr] = name;
1858 *nr += 1;
1859 }
1860
1861 const char **
1862 gdbarch_printable_names (void)
1863 {
1864 /* Accumulate a list of names based on the registed list of
1865 architectures. */
1866 int nr_arches = 0;
1867 const char **arches = NULL;
1868 struct gdbarch_registration *rego;
1869 for (rego = gdbarch_registry;
1870 rego != NULL;
1871 rego = rego->next)
1872 {
1873 const struct bfd_arch_info *ap;
1874 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1875 if (ap == NULL)
1876 internal_error (__FILE__, __LINE__,
1877 _("gdbarch_architecture_names: multi-arch unknown"));
1878 do
1879 {
1880 append_name (&arches, &nr_arches, ap->printable_name);
1881 ap = ap->next;
1882 }
1883 while (ap != NULL);
1884 }
1885 append_name (&arches, &nr_arches, NULL);
1886 return arches;
1887 }
1888
1889
1890 void
1891 gdbarch_register (enum bfd_architecture bfd_architecture,
1892 gdbarch_init_ftype *init,
1893 gdbarch_dump_tdep_ftype *dump_tdep)
1894 {
1895 struct gdbarch_registration **curr;
1896 const struct bfd_arch_info *bfd_arch_info;
1897 /* Check that BFD recognizes this architecture */
1898 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1899 if (bfd_arch_info == NULL)
1900 {
1901 internal_error (__FILE__, __LINE__,
1902 _("gdbarch: Attempt to register unknown architecture (%d)"),
1903 bfd_architecture);
1904 }
1905 /* Check that we haven't seen this architecture before */
1906 for (curr = &gdbarch_registry;
1907 (*curr) != NULL;
1908 curr = &(*curr)->next)
1909 {
1910 if (bfd_architecture == (*curr)->bfd_architecture)
1911 internal_error (__FILE__, __LINE__,
1912 _("gdbarch: Duplicate registraration of architecture (%s)"),
1913 bfd_arch_info->printable_name);
1914 }
1915 /* log it */
1916 if (gdbarch_debug)
1917 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1918 bfd_arch_info->printable_name,
1919 host_address_to_string (init));
1920 /* Append it */
1921 (*curr) = XMALLOC (struct gdbarch_registration);
1922 (*curr)->bfd_architecture = bfd_architecture;
1923 (*curr)->init = init;
1924 (*curr)->dump_tdep = dump_tdep;
1925 (*curr)->arches = NULL;
1926 (*curr)->next = NULL;
1927 }
1928
1929 void
1930 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1931 gdbarch_init_ftype *init)
1932 {
1933 gdbarch_register (bfd_architecture, init, NULL);
1934 }
1935
1936
1937 /* Look for an architecture using gdbarch_info. */
1938
1939 struct gdbarch_list *
1940 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1941 const struct gdbarch_info *info)
1942 {
1943 for (; arches != NULL; arches = arches->next)
1944 {
1945 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1946 continue;
1947 if (info->byte_order != arches->gdbarch->byte_order)
1948 continue;
1949 if (info->osabi != arches->gdbarch->osabi)
1950 continue;
1951 if (info->target_desc != arches->gdbarch->target_desc)
1952 continue;
1953 return arches;
1954 }
1955 return NULL;
1956 }
1957
1958
1959 /* Find an architecture that matches the specified INFO. Create a new
1960 architecture if needed. Return that new architecture. */
1961
1962 struct gdbarch *
1963 gdbarch_find_by_info (struct gdbarch_info info)
1964 {
1965 struct gdbarch *new_gdbarch;
1966 struct gdbarch_registration *rego;
1967
1968 /* Fill in missing parts of the INFO struct using a number of
1969 sources: "set ..."; INFOabfd supplied; and the global
1970 defaults. */
1971 gdbarch_info_fill (&info);
1972
1973 /* Must have found some sort of architecture. */
1974 gdb_assert (info.bfd_arch_info != NULL);
1975
1976 if (gdbarch_debug)
1977 {
1978 fprintf_unfiltered (gdb_stdlog,
1979 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1980 (info.bfd_arch_info != NULL
1981 ? info.bfd_arch_info->printable_name
1982 : "(null)"));
1983 fprintf_unfiltered (gdb_stdlog,
1984 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1985 info.byte_order,
1986 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1987 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1988 : "default"));
1989 fprintf_unfiltered (gdb_stdlog,
1990 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1991 info.osabi, gdbarch_osabi_name (info.osabi));
1992 fprintf_unfiltered (gdb_stdlog,
1993 "gdbarch_find_by_info: info.abfd %s\n",
1994 host_address_to_string (info.abfd));
1995 fprintf_unfiltered (gdb_stdlog,
1996 "gdbarch_find_by_info: info.tdep_info %s\n",
1997 host_address_to_string (info.tdep_info));
1998 }
1999
2000 /* Find the tdep code that knows about this architecture. */
2001 for (rego = gdbarch_registry;
2002 rego != NULL;
2003 rego = rego->next)
2004 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2005 break;
2006 if (rego == NULL)
2007 {
2008 if (gdbarch_debug)
2009 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2010 "No matching architecture\n");
2011 return 0;
2012 }
2013
2014 /* Ask the tdep code for an architecture that matches "info". */
2015 new_gdbarch = rego->init (info, rego->arches);
2016
2017 /* Did the tdep code like it? No. Reject the change and revert to
2018 the old architecture. */
2019 if (new_gdbarch == NULL)
2020 {
2021 if (gdbarch_debug)
2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2023 "Target rejected architecture\n");
2024 return NULL;
2025 }
2026
2027 /* Is this a pre-existing architecture (as determined by already
2028 being initialized)? Move it to the front of the architecture
2029 list (keeping the list sorted Most Recently Used). */
2030 if (new_gdbarch->initialized_p)
2031 {
2032 struct gdbarch_list **list;
2033 struct gdbarch_list *this;
2034 if (gdbarch_debug)
2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2036 "Previous architecture %s (%s) selected\n",
2037 host_address_to_string (new_gdbarch),
2038 new_gdbarch->bfd_arch_info->printable_name);
2039 /* Find the existing arch in the list. */
2040 for (list = &rego->arches;
2041 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2042 list = &(*list)->next);
2043 /* It had better be in the list of architectures. */
2044 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2045 /* Unlink THIS. */
2046 this = (*list);
2047 (*list) = this->next;
2048 /* Insert THIS at the front. */
2049 this->next = rego->arches;
2050 rego->arches = this;
2051 /* Return it. */
2052 return new_gdbarch;
2053 }
2054
2055 /* It's a new architecture. */
2056 if (gdbarch_debug)
2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2058 "New architecture %s (%s) selected\n",
2059 host_address_to_string (new_gdbarch),
2060 new_gdbarch->bfd_arch_info->printable_name);
2061
2062 /* Insert the new architecture into the front of the architecture
2063 list (keep the list sorted Most Recently Used). */
2064 {
2065 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2066 this->next = rego->arches;
2067 this->gdbarch = new_gdbarch;
2068 rego->arches = this;
2069 }
2070
2071 /* Check that the newly installed architecture is valid. Plug in
2072 any post init values. */
2073 new_gdbarch->dump_tdep = rego->dump_tdep;
2074 verify_gdbarch (new_gdbarch);
2075 new_gdbarch->initialized_p = 1;
2076
2077 if (gdbarch_debug)
2078 gdbarch_dump (new_gdbarch, gdb_stdlog);
2079
2080 return new_gdbarch;
2081 }
2082
2083 /* Make the specified architecture current. */
2084
2085 void
2086 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2087 {
2088 gdb_assert (new_gdbarch != NULL);
2089 gdb_assert (new_gdbarch->initialized_p);
2090 target_gdbarch = new_gdbarch;
2091 observer_notify_architecture_changed (new_gdbarch);
2092 registers_changed ();
2093 }
2094
2095 extern void _initialize_gdbarch (void);
2096
2097 void
2098 _initialize_gdbarch (void)
2099 {
2100 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2101 Set architecture debugging."), _("\\
2102 Show architecture debugging."), _("\\
2103 When non-zero, architecture debugging is enabled."),
2104 NULL,
2105 show_gdbarch_debug,
2106 &setdebuglist, &showdebuglist);
2107 }
2108 EOF
2109
2110 # close things off
2111 exec 1>&2
2112 #../move-if-change new-gdbarch.c gdbarch.c
2113 compare_new gdbarch.c
This page took 0.075966 seconds and 5 git commands to generate.