Fix internal error when core file section is too big
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
989 # True if the list of shared libraries is one and only for all
990 # processes, as opposed to a list of shared libraries per inferior.
991 # This usually means that all processes, although may or may not share
992 # an address space, will see the same set of symbols at the same
993 # addresses.
994 v:int:has_global_solist:::0:0::0
995
996 # On some targets, even though each inferior has its own private
997 # address space, the debug interface takes care of making breakpoints
998 # visible to all address spaces automatically. For such cases,
999 # this property should be set to true.
1000 v:int:has_global_breakpoints:::0:0::0
1001
1002 # True if inferiors share an address space (e.g., uClinux).
1003 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1004
1005 # True if a fast tracepoint can be set at an address.
1006 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1007
1008 # Return the "auto" target charset.
1009 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010 # Return the "auto" target wide charset.
1011 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1012
1013 # If non-empty, this is a file extension that will be opened in place
1014 # of the file extension reported by the shared library list.
1015 #
1016 # This is most useful for toolchains that use a post-linker tool,
1017 # where the names of the files run on the target differ in extension
1018 # compared to the names of the files GDB should load for debug info.
1019 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1020
1021 # If true, the target OS has DOS-based file system semantics. That
1022 # is, absolute paths include a drive name, and the backslash is
1023 # considered a directory separator.
1024 v:int:has_dos_based_file_system:::0:0::0
1025
1026 # Generate bytecodes to collect the return address in a frame.
1027 # Since the bytecodes run on the target, possibly with GDB not even
1028 # connected, the full unwinding machinery is not available, and
1029 # typically this function will issue bytecodes for one or more likely
1030 # places that the return address may be found.
1031 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
1033 # Implement the "info proc" command.
1034 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1035
1036 # Implement the "info proc" command for core files. Noe that there
1037 # are two "info_proc"-like methods on gdbarch -- one for core files,
1038 # one for live targets.
1039 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1040
1041 # Iterate over all objfiles in the order that makes the most sense
1042 # for the architecture to make global symbol searches.
1043 #
1044 # CB is a callback function where OBJFILE is the objfile to be searched,
1045 # and CB_DATA a pointer to user-defined data (the same data that is passed
1046 # when calling this gdbarch method). The iteration stops if this function
1047 # returns nonzero.
1048 #
1049 # CB_DATA is a pointer to some user-defined data to be passed to
1050 # the callback.
1051 #
1052 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053 # inspected when the symbol search was requested.
1054 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
1056 # Ravenscar arch-dependent ops.
1057 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1058
1059 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1067
1068 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069 # Return 0 if *READPTR is already at the end of the buffer.
1070 # Return -1 if there is insufficient buffer for a whole entry.
1071 # Return 1 if an entry was read into *TYPEP and *VALP.
1072 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1073
1074 # Find the address range of the current inferior's vsyscall/vDSO, and
1075 # write it to *RANGE. If the vsyscall's length can't be determined, a
1076 # range with zero length is returned. Returns true if the vsyscall is
1077 # found, false otherwise.
1078 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1079
1080 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1081 # PROT has GDB_MMAP_PROT_* bitmask format.
1082 # Throw an error if it is not possible. Returned address is always valid.
1083 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1084
1085 # Return string (caller has to use xfree for it) with options for GCC
1086 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1087 # These options are put before CU's DW_AT_producer compilation options so that
1088 # they can override it. Method may also return NULL.
1089 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1090
1091 # Return a regular expression that matches names used by this
1092 # architecture in GNU configury triplets. The result is statically
1093 # allocated and must not be freed. The default implementation simply
1094 # returns the BFD architecture name, which is correct in nearly every
1095 # case.
1096 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1097 EOF
1098 }
1099
1100 #
1101 # The .log file
1102 #
1103 exec > new-gdbarch.log
1104 function_list | while do_read
1105 do
1106 cat <<EOF
1107 ${class} ${returntype} ${function} ($formal)
1108 EOF
1109 for r in ${read}
1110 do
1111 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1112 done
1113 if class_is_predicate_p && fallback_default_p
1114 then
1115 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1116 kill $$
1117 exit 1
1118 fi
1119 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1120 then
1121 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1122 kill $$
1123 exit 1
1124 fi
1125 if class_is_multiarch_p
1126 then
1127 if class_is_predicate_p ; then :
1128 elif test "x${predefault}" = "x"
1129 then
1130 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1131 kill $$
1132 exit 1
1133 fi
1134 fi
1135 echo ""
1136 done
1137
1138 exec 1>&2
1139 compare_new gdbarch.log
1140
1141
1142 copyright ()
1143 {
1144 cat <<EOF
1145 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1146 /* vi:set ro: */
1147
1148 /* Dynamic architecture support for GDB, the GNU debugger.
1149
1150 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1151
1152 This file is part of GDB.
1153
1154 This program is free software; you can redistribute it and/or modify
1155 it under the terms of the GNU General Public License as published by
1156 the Free Software Foundation; either version 3 of the License, or
1157 (at your option) any later version.
1158
1159 This program is distributed in the hope that it will be useful,
1160 but WITHOUT ANY WARRANTY; without even the implied warranty of
1161 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1162 GNU General Public License for more details.
1163
1164 You should have received a copy of the GNU General Public License
1165 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1166
1167 /* This file was created with the aid of \`\`gdbarch.sh''.
1168
1169 The Bourne shell script \`\`gdbarch.sh'' creates the files
1170 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1171 against the existing \`\`gdbarch.[hc]''. Any differences found
1172 being reported.
1173
1174 If editing this file, please also run gdbarch.sh and merge any
1175 changes into that script. Conversely, when making sweeping changes
1176 to this file, modifying gdbarch.sh and using its output may prove
1177 easier. */
1178
1179 EOF
1180 }
1181
1182 #
1183 # The .h file
1184 #
1185
1186 exec > new-gdbarch.h
1187 copyright
1188 cat <<EOF
1189 #ifndef GDBARCH_H
1190 #define GDBARCH_H
1191
1192 #include "frame.h"
1193
1194 struct floatformat;
1195 struct ui_file;
1196 struct value;
1197 struct objfile;
1198 struct obj_section;
1199 struct minimal_symbol;
1200 struct regcache;
1201 struct reggroup;
1202 struct regset;
1203 struct disassemble_info;
1204 struct target_ops;
1205 struct obstack;
1206 struct bp_target_info;
1207 struct target_desc;
1208 struct objfile;
1209 struct symbol;
1210 struct displaced_step_closure;
1211 struct core_regset_section;
1212 struct syscall;
1213 struct agent_expr;
1214 struct axs_value;
1215 struct stap_parse_info;
1216 struct ravenscar_arch_ops;
1217 struct elf_internal_linux_prpsinfo;
1218 struct mem_range;
1219 struct syscalls_info;
1220
1221 /* The architecture associated with the inferior through the
1222 connection to the target.
1223
1224 The architecture vector provides some information that is really a
1225 property of the inferior, accessed through a particular target:
1226 ptrace operations; the layout of certain RSP packets; the solib_ops
1227 vector; etc. To differentiate architecture accesses to
1228 per-inferior/target properties from
1229 per-thread/per-frame/per-objfile properties, accesses to
1230 per-inferior/target properties should be made through this
1231 gdbarch. */
1232
1233 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1234 extern struct gdbarch *target_gdbarch (void);
1235
1236 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1237 gdbarch method. */
1238
1239 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1240 (struct objfile *objfile, void *cb_data);
1241
1242 /* Callback type for regset section iterators. The callback usually
1243 invokes the REGSET's supply or collect method, to which it must
1244 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1245 section name, and HUMAN_NAME is used for diagnostic messages.
1246 CB_DATA should have been passed unchanged through the iterator. */
1247
1248 typedef void (iterate_over_regset_sections_cb)
1249 (const char *sect_name, int size, const struct regset *regset,
1250 const char *human_name, void *cb_data);
1251 EOF
1252
1253 # function typedef's
1254 printf "\n"
1255 printf "\n"
1256 printf "/* The following are pre-initialized by GDBARCH. */\n"
1257 function_list | while do_read
1258 do
1259 if class_is_info_p
1260 then
1261 printf "\n"
1262 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1263 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1264 fi
1265 done
1266
1267 # function typedef's
1268 printf "\n"
1269 printf "\n"
1270 printf "/* The following are initialized by the target dependent code. */\n"
1271 function_list | while do_read
1272 do
1273 if [ -n "${comment}" ]
1274 then
1275 echo "${comment}" | sed \
1276 -e '2 s,#,/*,' \
1277 -e '3,$ s,#, ,' \
1278 -e '$ s,$, */,'
1279 fi
1280
1281 if class_is_predicate_p
1282 then
1283 printf "\n"
1284 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1285 fi
1286 if class_is_variable_p
1287 then
1288 printf "\n"
1289 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1290 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1291 fi
1292 if class_is_function_p
1293 then
1294 printf "\n"
1295 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1296 then
1297 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1298 elif class_is_multiarch_p
1299 then
1300 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1301 else
1302 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1303 fi
1304 if [ "x${formal}" = "xvoid" ]
1305 then
1306 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1307 else
1308 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1309 fi
1310 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1311 fi
1312 done
1313
1314 # close it off
1315 cat <<EOF
1316
1317 /* Definition for an unknown syscall, used basically in error-cases. */
1318 #define UNKNOWN_SYSCALL (-1)
1319
1320 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1321
1322
1323 /* Mechanism for co-ordinating the selection of a specific
1324 architecture.
1325
1326 GDB targets (*-tdep.c) can register an interest in a specific
1327 architecture. Other GDB components can register a need to maintain
1328 per-architecture data.
1329
1330 The mechanisms below ensures that there is only a loose connection
1331 between the set-architecture command and the various GDB
1332 components. Each component can independently register their need
1333 to maintain architecture specific data with gdbarch.
1334
1335 Pragmatics:
1336
1337 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1338 didn't scale.
1339
1340 The more traditional mega-struct containing architecture specific
1341 data for all the various GDB components was also considered. Since
1342 GDB is built from a variable number of (fairly independent)
1343 components it was determined that the global aproach was not
1344 applicable. */
1345
1346
1347 /* Register a new architectural family with GDB.
1348
1349 Register support for the specified ARCHITECTURE with GDB. When
1350 gdbarch determines that the specified architecture has been
1351 selected, the corresponding INIT function is called.
1352
1353 --
1354
1355 The INIT function takes two parameters: INFO which contains the
1356 information available to gdbarch about the (possibly new)
1357 architecture; ARCHES which is a list of the previously created
1358 \`\`struct gdbarch'' for this architecture.
1359
1360 The INFO parameter is, as far as possible, be pre-initialized with
1361 information obtained from INFO.ABFD or the global defaults.
1362
1363 The ARCHES parameter is a linked list (sorted most recently used)
1364 of all the previously created architures for this architecture
1365 family. The (possibly NULL) ARCHES->gdbarch can used to access
1366 values from the previously selected architecture for this
1367 architecture family.
1368
1369 The INIT function shall return any of: NULL - indicating that it
1370 doesn't recognize the selected architecture; an existing \`\`struct
1371 gdbarch'' from the ARCHES list - indicating that the new
1372 architecture is just a synonym for an earlier architecture (see
1373 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1374 - that describes the selected architecture (see gdbarch_alloc()).
1375
1376 The DUMP_TDEP function shall print out all target specific values.
1377 Care should be taken to ensure that the function works in both the
1378 multi-arch and non- multi-arch cases. */
1379
1380 struct gdbarch_list
1381 {
1382 struct gdbarch *gdbarch;
1383 struct gdbarch_list *next;
1384 };
1385
1386 struct gdbarch_info
1387 {
1388 /* Use default: NULL (ZERO). */
1389 const struct bfd_arch_info *bfd_arch_info;
1390
1391 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1392 enum bfd_endian byte_order;
1393
1394 enum bfd_endian byte_order_for_code;
1395
1396 /* Use default: NULL (ZERO). */
1397 bfd *abfd;
1398
1399 /* Use default: NULL (ZERO). */
1400 struct gdbarch_tdep_info *tdep_info;
1401
1402 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1403 enum gdb_osabi osabi;
1404
1405 /* Use default: NULL (ZERO). */
1406 const struct target_desc *target_desc;
1407 };
1408
1409 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1410 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1411
1412 /* DEPRECATED - use gdbarch_register() */
1413 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1414
1415 extern void gdbarch_register (enum bfd_architecture architecture,
1416 gdbarch_init_ftype *,
1417 gdbarch_dump_tdep_ftype *);
1418
1419
1420 /* Return a freshly allocated, NULL terminated, array of the valid
1421 architecture names. Since architectures are registered during the
1422 _initialize phase this function only returns useful information
1423 once initialization has been completed. */
1424
1425 extern const char **gdbarch_printable_names (void);
1426
1427
1428 /* Helper function. Search the list of ARCHES for a GDBARCH that
1429 matches the information provided by INFO. */
1430
1431 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1432
1433
1434 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1435 basic initialization using values obtained from the INFO and TDEP
1436 parameters. set_gdbarch_*() functions are called to complete the
1437 initialization of the object. */
1438
1439 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1440
1441
1442 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1443 It is assumed that the caller freeds the \`\`struct
1444 gdbarch_tdep''. */
1445
1446 extern void gdbarch_free (struct gdbarch *);
1447
1448
1449 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1450 obstack. The memory is freed when the corresponding architecture
1451 is also freed. */
1452
1453 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1454 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1455 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1456
1457
1458 /* Helper function. Force an update of the current architecture.
1459
1460 The actual architecture selected is determined by INFO, \`\`(gdb) set
1461 architecture'' et.al., the existing architecture and BFD's default
1462 architecture. INFO should be initialized to zero and then selected
1463 fields should be updated.
1464
1465 Returns non-zero if the update succeeds. */
1466
1467 extern int gdbarch_update_p (struct gdbarch_info info);
1468
1469
1470 /* Helper function. Find an architecture matching info.
1471
1472 INFO should be initialized using gdbarch_info_init, relevant fields
1473 set, and then finished using gdbarch_info_fill.
1474
1475 Returns the corresponding architecture, or NULL if no matching
1476 architecture was found. */
1477
1478 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1479
1480
1481 /* Helper function. Set the target gdbarch to "gdbarch". */
1482
1483 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1484
1485
1486 /* Register per-architecture data-pointer.
1487
1488 Reserve space for a per-architecture data-pointer. An identifier
1489 for the reserved data-pointer is returned. That identifer should
1490 be saved in a local static variable.
1491
1492 Memory for the per-architecture data shall be allocated using
1493 gdbarch_obstack_zalloc. That memory will be deleted when the
1494 corresponding architecture object is deleted.
1495
1496 When a previously created architecture is re-selected, the
1497 per-architecture data-pointer for that previous architecture is
1498 restored. INIT() is not re-called.
1499
1500 Multiple registrarants for any architecture are allowed (and
1501 strongly encouraged). */
1502
1503 struct gdbarch_data;
1504
1505 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1506 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1507 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1508 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1509 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1510 struct gdbarch_data *data,
1511 void *pointer);
1512
1513 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1514
1515
1516 /* Set the dynamic target-system-dependent parameters (architecture,
1517 byte-order, ...) using information found in the BFD. */
1518
1519 extern void set_gdbarch_from_file (bfd *);
1520
1521
1522 /* Initialize the current architecture to the "first" one we find on
1523 our list. */
1524
1525 extern void initialize_current_architecture (void);
1526
1527 /* gdbarch trace variable */
1528 extern unsigned int gdbarch_debug;
1529
1530 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1531
1532 #endif
1533 EOF
1534 exec 1>&2
1535 #../move-if-change new-gdbarch.h gdbarch.h
1536 compare_new gdbarch.h
1537
1538
1539 #
1540 # C file
1541 #
1542
1543 exec > new-gdbarch.c
1544 copyright
1545 cat <<EOF
1546
1547 #include "defs.h"
1548 #include "arch-utils.h"
1549
1550 #include "gdbcmd.h"
1551 #include "inferior.h"
1552 #include "symcat.h"
1553
1554 #include "floatformat.h"
1555 #include "reggroups.h"
1556 #include "osabi.h"
1557 #include "gdb_obstack.h"
1558 #include "observer.h"
1559 #include "regcache.h"
1560 #include "objfiles.h"
1561
1562 /* Static function declarations */
1563
1564 static void alloc_gdbarch_data (struct gdbarch *);
1565
1566 /* Non-zero if we want to trace architecture code. */
1567
1568 #ifndef GDBARCH_DEBUG
1569 #define GDBARCH_DEBUG 0
1570 #endif
1571 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1572 static void
1573 show_gdbarch_debug (struct ui_file *file, int from_tty,
1574 struct cmd_list_element *c, const char *value)
1575 {
1576 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1577 }
1578
1579 static const char *
1580 pformat (const struct floatformat **format)
1581 {
1582 if (format == NULL)
1583 return "(null)";
1584 else
1585 /* Just print out one of them - this is only for diagnostics. */
1586 return format[0]->name;
1587 }
1588
1589 static const char *
1590 pstring (const char *string)
1591 {
1592 if (string == NULL)
1593 return "(null)";
1594 return string;
1595 }
1596
1597 /* Helper function to print a list of strings, represented as "const
1598 char *const *". The list is printed comma-separated. */
1599
1600 static char *
1601 pstring_list (const char *const *list)
1602 {
1603 static char ret[100];
1604 const char *const *p;
1605 size_t offset = 0;
1606
1607 if (list == NULL)
1608 return "(null)";
1609
1610 ret[0] = '\0';
1611 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1612 {
1613 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1614 offset += 2 + s;
1615 }
1616
1617 if (offset > 0)
1618 {
1619 gdb_assert (offset - 2 < sizeof (ret));
1620 ret[offset - 2] = '\0';
1621 }
1622
1623 return ret;
1624 }
1625
1626 EOF
1627
1628 # gdbarch open the gdbarch object
1629 printf "\n"
1630 printf "/* Maintain the struct gdbarch object. */\n"
1631 printf "\n"
1632 printf "struct gdbarch\n"
1633 printf "{\n"
1634 printf " /* Has this architecture been fully initialized? */\n"
1635 printf " int initialized_p;\n"
1636 printf "\n"
1637 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1638 printf " struct obstack *obstack;\n"
1639 printf "\n"
1640 printf " /* basic architectural information. */\n"
1641 function_list | while do_read
1642 do
1643 if class_is_info_p
1644 then
1645 printf " ${returntype} ${function};\n"
1646 fi
1647 done
1648 printf "\n"
1649 printf " /* target specific vector. */\n"
1650 printf " struct gdbarch_tdep *tdep;\n"
1651 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1652 printf "\n"
1653 printf " /* per-architecture data-pointers. */\n"
1654 printf " unsigned nr_data;\n"
1655 printf " void **data;\n"
1656 printf "\n"
1657 cat <<EOF
1658 /* Multi-arch values.
1659
1660 When extending this structure you must:
1661
1662 Add the field below.
1663
1664 Declare set/get functions and define the corresponding
1665 macro in gdbarch.h.
1666
1667 gdbarch_alloc(): If zero/NULL is not a suitable default,
1668 initialize the new field.
1669
1670 verify_gdbarch(): Confirm that the target updated the field
1671 correctly.
1672
1673 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1674 field is dumped out
1675
1676 get_gdbarch(): Implement the set/get functions (probably using
1677 the macro's as shortcuts).
1678
1679 */
1680
1681 EOF
1682 function_list | while do_read
1683 do
1684 if class_is_variable_p
1685 then
1686 printf " ${returntype} ${function};\n"
1687 elif class_is_function_p
1688 then
1689 printf " gdbarch_${function}_ftype *${function};\n"
1690 fi
1691 done
1692 printf "};\n"
1693
1694 # Create a new gdbarch struct
1695 cat <<EOF
1696
1697 /* Create a new \`\`struct gdbarch'' based on information provided by
1698 \`\`struct gdbarch_info''. */
1699 EOF
1700 printf "\n"
1701 cat <<EOF
1702 struct gdbarch *
1703 gdbarch_alloc (const struct gdbarch_info *info,
1704 struct gdbarch_tdep *tdep)
1705 {
1706 struct gdbarch *gdbarch;
1707
1708 /* Create an obstack for allocating all the per-architecture memory,
1709 then use that to allocate the architecture vector. */
1710 struct obstack *obstack = XNEW (struct obstack);
1711 obstack_init (obstack);
1712 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1713 memset (gdbarch, 0, sizeof (*gdbarch));
1714 gdbarch->obstack = obstack;
1715
1716 alloc_gdbarch_data (gdbarch);
1717
1718 gdbarch->tdep = tdep;
1719 EOF
1720 printf "\n"
1721 function_list | while do_read
1722 do
1723 if class_is_info_p
1724 then
1725 printf " gdbarch->${function} = info->${function};\n"
1726 fi
1727 done
1728 printf "\n"
1729 printf " /* Force the explicit initialization of these. */\n"
1730 function_list | while do_read
1731 do
1732 if class_is_function_p || class_is_variable_p
1733 then
1734 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1735 then
1736 printf " gdbarch->${function} = ${predefault};\n"
1737 fi
1738 fi
1739 done
1740 cat <<EOF
1741 /* gdbarch_alloc() */
1742
1743 return gdbarch;
1744 }
1745 EOF
1746
1747 # Free a gdbarch struct.
1748 printf "\n"
1749 printf "\n"
1750 cat <<EOF
1751 /* Allocate extra space using the per-architecture obstack. */
1752
1753 void *
1754 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1755 {
1756 void *data = obstack_alloc (arch->obstack, size);
1757
1758 memset (data, 0, size);
1759 return data;
1760 }
1761
1762
1763 /* Free a gdbarch struct. This should never happen in normal
1764 operation --- once you've created a gdbarch, you keep it around.
1765 However, if an architecture's init function encounters an error
1766 building the structure, it may need to clean up a partially
1767 constructed gdbarch. */
1768
1769 void
1770 gdbarch_free (struct gdbarch *arch)
1771 {
1772 struct obstack *obstack;
1773
1774 gdb_assert (arch != NULL);
1775 gdb_assert (!arch->initialized_p);
1776 obstack = arch->obstack;
1777 obstack_free (obstack, 0); /* Includes the ARCH. */
1778 xfree (obstack);
1779 }
1780 EOF
1781
1782 # verify a new architecture
1783 cat <<EOF
1784
1785
1786 /* Ensure that all values in a GDBARCH are reasonable. */
1787
1788 static void
1789 verify_gdbarch (struct gdbarch *gdbarch)
1790 {
1791 struct ui_file *log;
1792 struct cleanup *cleanups;
1793 long length;
1794 char *buf;
1795
1796 log = mem_fileopen ();
1797 cleanups = make_cleanup_ui_file_delete (log);
1798 /* fundamental */
1799 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1800 fprintf_unfiltered (log, "\n\tbyte-order");
1801 if (gdbarch->bfd_arch_info == NULL)
1802 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1803 /* Check those that need to be defined for the given multi-arch level. */
1804 EOF
1805 function_list | while do_read
1806 do
1807 if class_is_function_p || class_is_variable_p
1808 then
1809 if [ "x${invalid_p}" = "x0" ]
1810 then
1811 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1812 elif class_is_predicate_p
1813 then
1814 printf " /* Skip verify of ${function}, has predicate. */\n"
1815 # FIXME: See do_read for potential simplification
1816 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1817 then
1818 printf " if (${invalid_p})\n"
1819 printf " gdbarch->${function} = ${postdefault};\n"
1820 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1821 then
1822 printf " if (gdbarch->${function} == ${predefault})\n"
1823 printf " gdbarch->${function} = ${postdefault};\n"
1824 elif [ -n "${postdefault}" ]
1825 then
1826 printf " if (gdbarch->${function} == 0)\n"
1827 printf " gdbarch->${function} = ${postdefault};\n"
1828 elif [ -n "${invalid_p}" ]
1829 then
1830 printf " if (${invalid_p})\n"
1831 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1832 elif [ -n "${predefault}" ]
1833 then
1834 printf " if (gdbarch->${function} == ${predefault})\n"
1835 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1836 fi
1837 fi
1838 done
1839 cat <<EOF
1840 buf = ui_file_xstrdup (log, &length);
1841 make_cleanup (xfree, buf);
1842 if (length > 0)
1843 internal_error (__FILE__, __LINE__,
1844 _("verify_gdbarch: the following are invalid ...%s"),
1845 buf);
1846 do_cleanups (cleanups);
1847 }
1848 EOF
1849
1850 # dump the structure
1851 printf "\n"
1852 printf "\n"
1853 cat <<EOF
1854 /* Print out the details of the current architecture. */
1855
1856 void
1857 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1858 {
1859 const char *gdb_nm_file = "<not-defined>";
1860
1861 #if defined (GDB_NM_FILE)
1862 gdb_nm_file = GDB_NM_FILE;
1863 #endif
1864 fprintf_unfiltered (file,
1865 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1866 gdb_nm_file);
1867 EOF
1868 function_list | sort -t: -k 3 | while do_read
1869 do
1870 # First the predicate
1871 if class_is_predicate_p
1872 then
1873 printf " fprintf_unfiltered (file,\n"
1874 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1875 printf " gdbarch_${function}_p (gdbarch));\n"
1876 fi
1877 # Print the corresponding value.
1878 if class_is_function_p
1879 then
1880 printf " fprintf_unfiltered (file,\n"
1881 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1882 printf " host_address_to_string (gdbarch->${function}));\n"
1883 else
1884 # It is a variable
1885 case "${print}:${returntype}" in
1886 :CORE_ADDR )
1887 fmt="%s"
1888 print="core_addr_to_string_nz (gdbarch->${function})"
1889 ;;
1890 :* )
1891 fmt="%s"
1892 print="plongest (gdbarch->${function})"
1893 ;;
1894 * )
1895 fmt="%s"
1896 ;;
1897 esac
1898 printf " fprintf_unfiltered (file,\n"
1899 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1900 printf " ${print});\n"
1901 fi
1902 done
1903 cat <<EOF
1904 if (gdbarch->dump_tdep != NULL)
1905 gdbarch->dump_tdep (gdbarch, file);
1906 }
1907 EOF
1908
1909
1910 # GET/SET
1911 printf "\n"
1912 cat <<EOF
1913 struct gdbarch_tdep *
1914 gdbarch_tdep (struct gdbarch *gdbarch)
1915 {
1916 if (gdbarch_debug >= 2)
1917 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1918 return gdbarch->tdep;
1919 }
1920 EOF
1921 printf "\n"
1922 function_list | while do_read
1923 do
1924 if class_is_predicate_p
1925 then
1926 printf "\n"
1927 printf "int\n"
1928 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1929 printf "{\n"
1930 printf " gdb_assert (gdbarch != NULL);\n"
1931 printf " return ${predicate};\n"
1932 printf "}\n"
1933 fi
1934 if class_is_function_p
1935 then
1936 printf "\n"
1937 printf "${returntype}\n"
1938 if [ "x${formal}" = "xvoid" ]
1939 then
1940 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1941 else
1942 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1943 fi
1944 printf "{\n"
1945 printf " gdb_assert (gdbarch != NULL);\n"
1946 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1947 if class_is_predicate_p && test -n "${predefault}"
1948 then
1949 # Allow a call to a function with a predicate.
1950 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1951 fi
1952 printf " if (gdbarch_debug >= 2)\n"
1953 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1954 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1955 then
1956 if class_is_multiarch_p
1957 then
1958 params="gdbarch"
1959 else
1960 params=""
1961 fi
1962 else
1963 if class_is_multiarch_p
1964 then
1965 params="gdbarch, ${actual}"
1966 else
1967 params="${actual}"
1968 fi
1969 fi
1970 if [ "x${returntype}" = "xvoid" ]
1971 then
1972 printf " gdbarch->${function} (${params});\n"
1973 else
1974 printf " return gdbarch->${function} (${params});\n"
1975 fi
1976 printf "}\n"
1977 printf "\n"
1978 printf "void\n"
1979 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1980 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1981 printf "{\n"
1982 printf " gdbarch->${function} = ${function};\n"
1983 printf "}\n"
1984 elif class_is_variable_p
1985 then
1986 printf "\n"
1987 printf "${returntype}\n"
1988 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1989 printf "{\n"
1990 printf " gdb_assert (gdbarch != NULL);\n"
1991 if [ "x${invalid_p}" = "x0" ]
1992 then
1993 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1994 elif [ -n "${invalid_p}" ]
1995 then
1996 printf " /* Check variable is valid. */\n"
1997 printf " gdb_assert (!(${invalid_p}));\n"
1998 elif [ -n "${predefault}" ]
1999 then
2000 printf " /* Check variable changed from pre-default. */\n"
2001 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2002 fi
2003 printf " if (gdbarch_debug >= 2)\n"
2004 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2005 printf " return gdbarch->${function};\n"
2006 printf "}\n"
2007 printf "\n"
2008 printf "void\n"
2009 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2010 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2011 printf "{\n"
2012 printf " gdbarch->${function} = ${function};\n"
2013 printf "}\n"
2014 elif class_is_info_p
2015 then
2016 printf "\n"
2017 printf "${returntype}\n"
2018 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2019 printf "{\n"
2020 printf " gdb_assert (gdbarch != NULL);\n"
2021 printf " if (gdbarch_debug >= 2)\n"
2022 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2023 printf " return gdbarch->${function};\n"
2024 printf "}\n"
2025 fi
2026 done
2027
2028 # All the trailing guff
2029 cat <<EOF
2030
2031
2032 /* Keep a registry of per-architecture data-pointers required by GDB
2033 modules. */
2034
2035 struct gdbarch_data
2036 {
2037 unsigned index;
2038 int init_p;
2039 gdbarch_data_pre_init_ftype *pre_init;
2040 gdbarch_data_post_init_ftype *post_init;
2041 };
2042
2043 struct gdbarch_data_registration
2044 {
2045 struct gdbarch_data *data;
2046 struct gdbarch_data_registration *next;
2047 };
2048
2049 struct gdbarch_data_registry
2050 {
2051 unsigned nr;
2052 struct gdbarch_data_registration *registrations;
2053 };
2054
2055 struct gdbarch_data_registry gdbarch_data_registry =
2056 {
2057 0, NULL,
2058 };
2059
2060 static struct gdbarch_data *
2061 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2062 gdbarch_data_post_init_ftype *post_init)
2063 {
2064 struct gdbarch_data_registration **curr;
2065
2066 /* Append the new registration. */
2067 for (curr = &gdbarch_data_registry.registrations;
2068 (*curr) != NULL;
2069 curr = &(*curr)->next);
2070 (*curr) = XNEW (struct gdbarch_data_registration);
2071 (*curr)->next = NULL;
2072 (*curr)->data = XNEW (struct gdbarch_data);
2073 (*curr)->data->index = gdbarch_data_registry.nr++;
2074 (*curr)->data->pre_init = pre_init;
2075 (*curr)->data->post_init = post_init;
2076 (*curr)->data->init_p = 1;
2077 return (*curr)->data;
2078 }
2079
2080 struct gdbarch_data *
2081 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2082 {
2083 return gdbarch_data_register (pre_init, NULL);
2084 }
2085
2086 struct gdbarch_data *
2087 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2088 {
2089 return gdbarch_data_register (NULL, post_init);
2090 }
2091
2092 /* Create/delete the gdbarch data vector. */
2093
2094 static void
2095 alloc_gdbarch_data (struct gdbarch *gdbarch)
2096 {
2097 gdb_assert (gdbarch->data == NULL);
2098 gdbarch->nr_data = gdbarch_data_registry.nr;
2099 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2100 }
2101
2102 /* Initialize the current value of the specified per-architecture
2103 data-pointer. */
2104
2105 void
2106 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2107 struct gdbarch_data *data,
2108 void *pointer)
2109 {
2110 gdb_assert (data->index < gdbarch->nr_data);
2111 gdb_assert (gdbarch->data[data->index] == NULL);
2112 gdb_assert (data->pre_init == NULL);
2113 gdbarch->data[data->index] = pointer;
2114 }
2115
2116 /* Return the current value of the specified per-architecture
2117 data-pointer. */
2118
2119 void *
2120 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2121 {
2122 gdb_assert (data->index < gdbarch->nr_data);
2123 if (gdbarch->data[data->index] == NULL)
2124 {
2125 /* The data-pointer isn't initialized, call init() to get a
2126 value. */
2127 if (data->pre_init != NULL)
2128 /* Mid architecture creation: pass just the obstack, and not
2129 the entire architecture, as that way it isn't possible for
2130 pre-init code to refer to undefined architecture
2131 fields. */
2132 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2133 else if (gdbarch->initialized_p
2134 && data->post_init != NULL)
2135 /* Post architecture creation: pass the entire architecture
2136 (as all fields are valid), but be careful to also detect
2137 recursive references. */
2138 {
2139 gdb_assert (data->init_p);
2140 data->init_p = 0;
2141 gdbarch->data[data->index] = data->post_init (gdbarch);
2142 data->init_p = 1;
2143 }
2144 else
2145 /* The architecture initialization hasn't completed - punt -
2146 hope that the caller knows what they are doing. Once
2147 deprecated_set_gdbarch_data has been initialized, this can be
2148 changed to an internal error. */
2149 return NULL;
2150 gdb_assert (gdbarch->data[data->index] != NULL);
2151 }
2152 return gdbarch->data[data->index];
2153 }
2154
2155
2156 /* Keep a registry of the architectures known by GDB. */
2157
2158 struct gdbarch_registration
2159 {
2160 enum bfd_architecture bfd_architecture;
2161 gdbarch_init_ftype *init;
2162 gdbarch_dump_tdep_ftype *dump_tdep;
2163 struct gdbarch_list *arches;
2164 struct gdbarch_registration *next;
2165 };
2166
2167 static struct gdbarch_registration *gdbarch_registry = NULL;
2168
2169 static void
2170 append_name (const char ***buf, int *nr, const char *name)
2171 {
2172 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2173 (*buf)[*nr] = name;
2174 *nr += 1;
2175 }
2176
2177 const char **
2178 gdbarch_printable_names (void)
2179 {
2180 /* Accumulate a list of names based on the registed list of
2181 architectures. */
2182 int nr_arches = 0;
2183 const char **arches = NULL;
2184 struct gdbarch_registration *rego;
2185
2186 for (rego = gdbarch_registry;
2187 rego != NULL;
2188 rego = rego->next)
2189 {
2190 const struct bfd_arch_info *ap;
2191 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2192 if (ap == NULL)
2193 internal_error (__FILE__, __LINE__,
2194 _("gdbarch_architecture_names: multi-arch unknown"));
2195 do
2196 {
2197 append_name (&arches, &nr_arches, ap->printable_name);
2198 ap = ap->next;
2199 }
2200 while (ap != NULL);
2201 }
2202 append_name (&arches, &nr_arches, NULL);
2203 return arches;
2204 }
2205
2206
2207 void
2208 gdbarch_register (enum bfd_architecture bfd_architecture,
2209 gdbarch_init_ftype *init,
2210 gdbarch_dump_tdep_ftype *dump_tdep)
2211 {
2212 struct gdbarch_registration **curr;
2213 const struct bfd_arch_info *bfd_arch_info;
2214
2215 /* Check that BFD recognizes this architecture */
2216 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2217 if (bfd_arch_info == NULL)
2218 {
2219 internal_error (__FILE__, __LINE__,
2220 _("gdbarch: Attempt to register "
2221 "unknown architecture (%d)"),
2222 bfd_architecture);
2223 }
2224 /* Check that we haven't seen this architecture before. */
2225 for (curr = &gdbarch_registry;
2226 (*curr) != NULL;
2227 curr = &(*curr)->next)
2228 {
2229 if (bfd_architecture == (*curr)->bfd_architecture)
2230 internal_error (__FILE__, __LINE__,
2231 _("gdbarch: Duplicate registration "
2232 "of architecture (%s)"),
2233 bfd_arch_info->printable_name);
2234 }
2235 /* log it */
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2238 bfd_arch_info->printable_name,
2239 host_address_to_string (init));
2240 /* Append it */
2241 (*curr) = XNEW (struct gdbarch_registration);
2242 (*curr)->bfd_architecture = bfd_architecture;
2243 (*curr)->init = init;
2244 (*curr)->dump_tdep = dump_tdep;
2245 (*curr)->arches = NULL;
2246 (*curr)->next = NULL;
2247 }
2248
2249 void
2250 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2251 gdbarch_init_ftype *init)
2252 {
2253 gdbarch_register (bfd_architecture, init, NULL);
2254 }
2255
2256
2257 /* Look for an architecture using gdbarch_info. */
2258
2259 struct gdbarch_list *
2260 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2261 const struct gdbarch_info *info)
2262 {
2263 for (; arches != NULL; arches = arches->next)
2264 {
2265 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2266 continue;
2267 if (info->byte_order != arches->gdbarch->byte_order)
2268 continue;
2269 if (info->osabi != arches->gdbarch->osabi)
2270 continue;
2271 if (info->target_desc != arches->gdbarch->target_desc)
2272 continue;
2273 return arches;
2274 }
2275 return NULL;
2276 }
2277
2278
2279 /* Find an architecture that matches the specified INFO. Create a new
2280 architecture if needed. Return that new architecture. */
2281
2282 struct gdbarch *
2283 gdbarch_find_by_info (struct gdbarch_info info)
2284 {
2285 struct gdbarch *new_gdbarch;
2286 struct gdbarch_registration *rego;
2287
2288 /* Fill in missing parts of the INFO struct using a number of
2289 sources: "set ..."; INFOabfd supplied; and the global
2290 defaults. */
2291 gdbarch_info_fill (&info);
2292
2293 /* Must have found some sort of architecture. */
2294 gdb_assert (info.bfd_arch_info != NULL);
2295
2296 if (gdbarch_debug)
2297 {
2298 fprintf_unfiltered (gdb_stdlog,
2299 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2300 (info.bfd_arch_info != NULL
2301 ? info.bfd_arch_info->printable_name
2302 : "(null)"));
2303 fprintf_unfiltered (gdb_stdlog,
2304 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2305 info.byte_order,
2306 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2307 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2308 : "default"));
2309 fprintf_unfiltered (gdb_stdlog,
2310 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2311 info.osabi, gdbarch_osabi_name (info.osabi));
2312 fprintf_unfiltered (gdb_stdlog,
2313 "gdbarch_find_by_info: info.abfd %s\n",
2314 host_address_to_string (info.abfd));
2315 fprintf_unfiltered (gdb_stdlog,
2316 "gdbarch_find_by_info: info.tdep_info %s\n",
2317 host_address_to_string (info.tdep_info));
2318 }
2319
2320 /* Find the tdep code that knows about this architecture. */
2321 for (rego = gdbarch_registry;
2322 rego != NULL;
2323 rego = rego->next)
2324 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2325 break;
2326 if (rego == NULL)
2327 {
2328 if (gdbarch_debug)
2329 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2330 "No matching architecture\n");
2331 return 0;
2332 }
2333
2334 /* Ask the tdep code for an architecture that matches "info". */
2335 new_gdbarch = rego->init (info, rego->arches);
2336
2337 /* Did the tdep code like it? No. Reject the change and revert to
2338 the old architecture. */
2339 if (new_gdbarch == NULL)
2340 {
2341 if (gdbarch_debug)
2342 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2343 "Target rejected architecture\n");
2344 return NULL;
2345 }
2346
2347 /* Is this a pre-existing architecture (as determined by already
2348 being initialized)? Move it to the front of the architecture
2349 list (keeping the list sorted Most Recently Used). */
2350 if (new_gdbarch->initialized_p)
2351 {
2352 struct gdbarch_list **list;
2353 struct gdbarch_list *this;
2354 if (gdbarch_debug)
2355 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2356 "Previous architecture %s (%s) selected\n",
2357 host_address_to_string (new_gdbarch),
2358 new_gdbarch->bfd_arch_info->printable_name);
2359 /* Find the existing arch in the list. */
2360 for (list = &rego->arches;
2361 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2362 list = &(*list)->next);
2363 /* It had better be in the list of architectures. */
2364 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2365 /* Unlink THIS. */
2366 this = (*list);
2367 (*list) = this->next;
2368 /* Insert THIS at the front. */
2369 this->next = rego->arches;
2370 rego->arches = this;
2371 /* Return it. */
2372 return new_gdbarch;
2373 }
2374
2375 /* It's a new architecture. */
2376 if (gdbarch_debug)
2377 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2378 "New architecture %s (%s) selected\n",
2379 host_address_to_string (new_gdbarch),
2380 new_gdbarch->bfd_arch_info->printable_name);
2381
2382 /* Insert the new architecture into the front of the architecture
2383 list (keep the list sorted Most Recently Used). */
2384 {
2385 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2386 this->next = rego->arches;
2387 this->gdbarch = new_gdbarch;
2388 rego->arches = this;
2389 }
2390
2391 /* Check that the newly installed architecture is valid. Plug in
2392 any post init values. */
2393 new_gdbarch->dump_tdep = rego->dump_tdep;
2394 verify_gdbarch (new_gdbarch);
2395 new_gdbarch->initialized_p = 1;
2396
2397 if (gdbarch_debug)
2398 gdbarch_dump (new_gdbarch, gdb_stdlog);
2399
2400 return new_gdbarch;
2401 }
2402
2403 /* Make the specified architecture current. */
2404
2405 void
2406 set_target_gdbarch (struct gdbarch *new_gdbarch)
2407 {
2408 gdb_assert (new_gdbarch != NULL);
2409 gdb_assert (new_gdbarch->initialized_p);
2410 current_inferior ()->gdbarch = new_gdbarch;
2411 observer_notify_architecture_changed (new_gdbarch);
2412 registers_changed ();
2413 }
2414
2415 /* Return the current inferior's arch. */
2416
2417 struct gdbarch *
2418 target_gdbarch (void)
2419 {
2420 return current_inferior ()->gdbarch;
2421 }
2422
2423 extern void _initialize_gdbarch (void);
2424
2425 void
2426 _initialize_gdbarch (void)
2427 {
2428 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2429 Set architecture debugging."), _("\\
2430 Show architecture debugging."), _("\\
2431 When non-zero, architecture debugging is enabled."),
2432 NULL,
2433 show_gdbarch_debug,
2434 &setdebuglist, &showdebuglist);
2435 }
2436 EOF
2437
2438 # close things off
2439 exec 1>&2
2440 #../move-if-change new-gdbarch.c gdbarch.c
2441 compare_new gdbarch.c
This page took 0.095034 seconds and 5 git commands to generate.