2012-06-04 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
643
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
646
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
649
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
652 # set this to one.
653 v:int:vtable_function_descriptors:::0:0::0
654
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
658
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
661
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
664
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
667 #
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
671 #
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 #
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
683 #
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
686 #
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
689 # here.
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
698 #
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
706 #
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
709 #
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
712 #
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
716 #
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
722 #
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
725 #
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
728 #
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
736 # time.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
757
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
759
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
764
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
774
775 # Signal translation: translate inferior's signal (target's) number
776 # into GDB's representation. The implementation of this method must
777 # be host independent. IOW, don't rely on symbols of the NAT_FILE
778 # header (the nm-*.h files), the host <signal.h> header, or similar
779 # headers. This is mainly used when cross-debugging core files ---
780 # "Live" targets hide the translation behind the target interface
781 # (target_wait, target_resume, etc.).
782 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
783
784 # Extra signal info inspection.
785 #
786 # Return a type suitable to inspect extra signal information.
787 M:struct type *:get_siginfo_type:void:
788
789 # Record architecture-specific information from the symbol table.
790 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
791
792 # Function for the 'catch syscall' feature.
793
794 # Get architecture-specific system calls information from registers.
795 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
796
797 # SystemTap related fields and functions.
798
799 # Prefix used to mark an integer constant on the architecture's assembly
800 # For example, on x86 integer constants are written as:
801 #
802 # \$10 ;; integer constant 10
803 #
804 # in this case, this prefix would be the character \`\$\'.
805 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
806
807 # Suffix used to mark an integer constant on the architecture's assembly.
808 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
809
810 # Prefix used to mark a register name on the architecture's assembly.
811 # For example, on x86 the register name is written as:
812 #
813 # \%eax ;; register eax
814 #
815 # in this case, this prefix would be the character \`\%\'.
816 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
817
818 # Suffix used to mark a register name on the architecture's assembly
819 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
820
821 # Prefix used to mark a register indirection on the architecture's assembly.
822 # For example, on x86 the register indirection is written as:
823 #
824 # \(\%eax\) ;; indirecting eax
825 #
826 # in this case, this prefix would be the charater \`\(\'.
827 #
828 # Please note that we use the indirection prefix also for register
829 # displacement, e.g., \`4\(\%eax\)\' on x86.
830 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
831
832 # Suffix used to mark a register indirection on the architecture's assembly.
833 # For example, on x86 the register indirection is written as:
834 #
835 # \(\%eax\) ;; indirecting eax
836 #
837 # in this case, this prefix would be the charater \`\)\'.
838 #
839 # Please note that we use the indirection suffix also for register
840 # displacement, e.g., \`4\(\%eax\)\' on x86.
841 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
842
843 # Prefix used to name a register using GDB's nomenclature.
844 #
845 # For example, on PPC a register is represented by a number in the assembly
846 # language (e.g., \`10\' is the 10th general-purpose register). However,
847 # inside GDB this same register has an \`r\' appended to its name, so the 10th
848 # register would be represented as \`r10\' internally.
849 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
850
851 # Suffix used to name a register using GDB's nomenclature.
852 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
853
854 # Check if S is a single operand.
855 #
856 # Single operands can be:
857 # \- Literal integers, e.g. \`\$10\' on x86
858 # \- Register access, e.g. \`\%eax\' on x86
859 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
860 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
861 #
862 # This function should check for these patterns on the string
863 # and return 1 if some were found, or zero otherwise. Please try to match
864 # as much info as you can from the string, i.e., if you have to match
865 # something like \`\(\%\', do not match just the \`\(\'.
866 M:int:stap_is_single_operand:const char *s:s
867
868 # Function used to handle a "special case" in the parser.
869 #
870 # A "special case" is considered to be an unknown token, i.e., a token
871 # that the parser does not know how to parse. A good example of special
872 # case would be ARM's register displacement syntax:
873 #
874 # [R0, #4] ;; displacing R0 by 4
875 #
876 # Since the parser assumes that a register displacement is of the form:
877 #
878 # <number> <indirection_prefix> <register_name> <indirection_suffix>
879 #
880 # it means that it will not be able to recognize and parse this odd syntax.
881 # Therefore, we should add a special case function that will handle this token.
882 #
883 # This function should generate the proper expression form of the expression
884 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
885 # and so on). It should also return 1 if the parsing was successful, or zero
886 # if the token was not recognized as a special token (in this case, returning
887 # zero means that the special parser is deferring the parsing to the generic
888 # parser), and should advance the buffer pointer (p->arg).
889 M:int:stap_parse_special_token:struct stap_parse_info *p:p
890
891
892 # True if the list of shared libraries is one and only for all
893 # processes, as opposed to a list of shared libraries per inferior.
894 # This usually means that all processes, although may or may not share
895 # an address space, will see the same set of symbols at the same
896 # addresses.
897 v:int:has_global_solist:::0:0::0
898
899 # On some targets, even though each inferior has its own private
900 # address space, the debug interface takes care of making breakpoints
901 # visible to all address spaces automatically. For such cases,
902 # this property should be set to true.
903 v:int:has_global_breakpoints:::0:0::0
904
905 # True if inferiors share an address space (e.g., uClinux).
906 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
907
908 # True if a fast tracepoint can be set at an address.
909 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
910
911 # Return the "auto" target charset.
912 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
913 # Return the "auto" target wide charset.
914 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
915
916 # If non-empty, this is a file extension that will be opened in place
917 # of the file extension reported by the shared library list.
918 #
919 # This is most useful for toolchains that use a post-linker tool,
920 # where the names of the files run on the target differ in extension
921 # compared to the names of the files GDB should load for debug info.
922 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
923
924 # If true, the target OS has DOS-based file system semantics. That
925 # is, absolute paths include a drive name, and the backslash is
926 # considered a directory separator.
927 v:int:has_dos_based_file_system:::0:0::0
928
929 # Generate bytecodes to collect the return address in a frame.
930 # Since the bytecodes run on the target, possibly with GDB not even
931 # connected, the full unwinding machinery is not available, and
932 # typically this function will issue bytecodes for one or more likely
933 # places that the return address may be found.
934 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
935
936 # Implement the "info proc" command.
937 M:void:info_proc:char *args, enum info_proc_what what:args, what
938
939 EOF
940 }
941
942 #
943 # The .log file
944 #
945 exec > new-gdbarch.log
946 function_list | while do_read
947 do
948 cat <<EOF
949 ${class} ${returntype} ${function} ($formal)
950 EOF
951 for r in ${read}
952 do
953 eval echo \"\ \ \ \ ${r}=\${${r}}\"
954 done
955 if class_is_predicate_p && fallback_default_p
956 then
957 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
958 kill $$
959 exit 1
960 fi
961 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
962 then
963 echo "Error: postdefault is useless when invalid_p=0" 1>&2
964 kill $$
965 exit 1
966 fi
967 if class_is_multiarch_p
968 then
969 if class_is_predicate_p ; then :
970 elif test "x${predefault}" = "x"
971 then
972 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
973 kill $$
974 exit 1
975 fi
976 fi
977 echo ""
978 done
979
980 exec 1>&2
981 compare_new gdbarch.log
982
983
984 copyright ()
985 {
986 cat <<EOF
987 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
988
989 /* Dynamic architecture support for GDB, the GNU debugger.
990
991 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
992 2007, 2008, 2009 Free Software Foundation, Inc.
993
994 This file is part of GDB.
995
996 This program is free software; you can redistribute it and/or modify
997 it under the terms of the GNU General Public License as published by
998 the Free Software Foundation; either version 3 of the License, or
999 (at your option) any later version.
1000
1001 This program is distributed in the hope that it will be useful,
1002 but WITHOUT ANY WARRANTY; without even the implied warranty of
1003 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1004 GNU General Public License for more details.
1005
1006 You should have received a copy of the GNU General Public License
1007 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1008
1009 /* This file was created with the aid of \`\`gdbarch.sh''.
1010
1011 The Bourne shell script \`\`gdbarch.sh'' creates the files
1012 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1013 against the existing \`\`gdbarch.[hc]''. Any differences found
1014 being reported.
1015
1016 If editing this file, please also run gdbarch.sh and merge any
1017 changes into that script. Conversely, when making sweeping changes
1018 to this file, modifying gdbarch.sh and using its output may prove
1019 easier. */
1020
1021 EOF
1022 }
1023
1024 #
1025 # The .h file
1026 #
1027
1028 exec > new-gdbarch.h
1029 copyright
1030 cat <<EOF
1031 #ifndef GDBARCH_H
1032 #define GDBARCH_H
1033
1034 struct floatformat;
1035 struct ui_file;
1036 struct frame_info;
1037 struct value;
1038 struct objfile;
1039 struct obj_section;
1040 struct minimal_symbol;
1041 struct regcache;
1042 struct reggroup;
1043 struct regset;
1044 struct disassemble_info;
1045 struct target_ops;
1046 struct obstack;
1047 struct bp_target_info;
1048 struct target_desc;
1049 struct displaced_step_closure;
1050 struct core_regset_section;
1051 struct syscall;
1052 struct agent_expr;
1053 struct axs_value;
1054 struct stap_parse_info;
1055
1056 /* The architecture associated with the connection to the target.
1057
1058 The architecture vector provides some information that is really
1059 a property of the target: The layout of certain packets, for instance;
1060 or the solib_ops vector. Etc. To differentiate architecture accesses
1061 to per-target properties from per-thread/per-frame/per-objfile properties,
1062 accesses to per-target properties should be made through target_gdbarch.
1063
1064 Eventually, when support for multiple targets is implemented in
1065 GDB, this global should be made target-specific. */
1066 extern struct gdbarch *target_gdbarch;
1067 EOF
1068
1069 # function typedef's
1070 printf "\n"
1071 printf "\n"
1072 printf "/* The following are pre-initialized by GDBARCH. */\n"
1073 function_list | while do_read
1074 do
1075 if class_is_info_p
1076 then
1077 printf "\n"
1078 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1079 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1080 fi
1081 done
1082
1083 # function typedef's
1084 printf "\n"
1085 printf "\n"
1086 printf "/* The following are initialized by the target dependent code. */\n"
1087 function_list | while do_read
1088 do
1089 if [ -n "${comment}" ]
1090 then
1091 echo "${comment}" | sed \
1092 -e '2 s,#,/*,' \
1093 -e '3,$ s,#, ,' \
1094 -e '$ s,$, */,'
1095 fi
1096
1097 if class_is_predicate_p
1098 then
1099 printf "\n"
1100 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1101 fi
1102 if class_is_variable_p
1103 then
1104 printf "\n"
1105 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1106 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1107 fi
1108 if class_is_function_p
1109 then
1110 printf "\n"
1111 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1112 then
1113 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1114 elif class_is_multiarch_p
1115 then
1116 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1117 else
1118 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1119 fi
1120 if [ "x${formal}" = "xvoid" ]
1121 then
1122 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1123 else
1124 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1125 fi
1126 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1127 fi
1128 done
1129
1130 # close it off
1131 cat <<EOF
1132
1133 /* Definition for an unknown syscall, used basically in error-cases. */
1134 #define UNKNOWN_SYSCALL (-1)
1135
1136 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1137
1138
1139 /* Mechanism for co-ordinating the selection of a specific
1140 architecture.
1141
1142 GDB targets (*-tdep.c) can register an interest in a specific
1143 architecture. Other GDB components can register a need to maintain
1144 per-architecture data.
1145
1146 The mechanisms below ensures that there is only a loose connection
1147 between the set-architecture command and the various GDB
1148 components. Each component can independently register their need
1149 to maintain architecture specific data with gdbarch.
1150
1151 Pragmatics:
1152
1153 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1154 didn't scale.
1155
1156 The more traditional mega-struct containing architecture specific
1157 data for all the various GDB components was also considered. Since
1158 GDB is built from a variable number of (fairly independent)
1159 components it was determined that the global aproach was not
1160 applicable. */
1161
1162
1163 /* Register a new architectural family with GDB.
1164
1165 Register support for the specified ARCHITECTURE with GDB. When
1166 gdbarch determines that the specified architecture has been
1167 selected, the corresponding INIT function is called.
1168
1169 --
1170
1171 The INIT function takes two parameters: INFO which contains the
1172 information available to gdbarch about the (possibly new)
1173 architecture; ARCHES which is a list of the previously created
1174 \`\`struct gdbarch'' for this architecture.
1175
1176 The INFO parameter is, as far as possible, be pre-initialized with
1177 information obtained from INFO.ABFD or the global defaults.
1178
1179 The ARCHES parameter is a linked list (sorted most recently used)
1180 of all the previously created architures for this architecture
1181 family. The (possibly NULL) ARCHES->gdbarch can used to access
1182 values from the previously selected architecture for this
1183 architecture family.
1184
1185 The INIT function shall return any of: NULL - indicating that it
1186 doesn't recognize the selected architecture; an existing \`\`struct
1187 gdbarch'' from the ARCHES list - indicating that the new
1188 architecture is just a synonym for an earlier architecture (see
1189 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1190 - that describes the selected architecture (see gdbarch_alloc()).
1191
1192 The DUMP_TDEP function shall print out all target specific values.
1193 Care should be taken to ensure that the function works in both the
1194 multi-arch and non- multi-arch cases. */
1195
1196 struct gdbarch_list
1197 {
1198 struct gdbarch *gdbarch;
1199 struct gdbarch_list *next;
1200 };
1201
1202 struct gdbarch_info
1203 {
1204 /* Use default: NULL (ZERO). */
1205 const struct bfd_arch_info *bfd_arch_info;
1206
1207 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1208 int byte_order;
1209
1210 int byte_order_for_code;
1211
1212 /* Use default: NULL (ZERO). */
1213 bfd *abfd;
1214
1215 /* Use default: NULL (ZERO). */
1216 struct gdbarch_tdep_info *tdep_info;
1217
1218 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1219 enum gdb_osabi osabi;
1220
1221 /* Use default: NULL (ZERO). */
1222 const struct target_desc *target_desc;
1223 };
1224
1225 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1226 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1227
1228 /* DEPRECATED - use gdbarch_register() */
1229 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1230
1231 extern void gdbarch_register (enum bfd_architecture architecture,
1232 gdbarch_init_ftype *,
1233 gdbarch_dump_tdep_ftype *);
1234
1235
1236 /* Return a freshly allocated, NULL terminated, array of the valid
1237 architecture names. Since architectures are registered during the
1238 _initialize phase this function only returns useful information
1239 once initialization has been completed. */
1240
1241 extern const char **gdbarch_printable_names (void);
1242
1243
1244 /* Helper function. Search the list of ARCHES for a GDBARCH that
1245 matches the information provided by INFO. */
1246
1247 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1248
1249
1250 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1251 basic initialization using values obtained from the INFO and TDEP
1252 parameters. set_gdbarch_*() functions are called to complete the
1253 initialization of the object. */
1254
1255 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1256
1257
1258 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1259 It is assumed that the caller freeds the \`\`struct
1260 gdbarch_tdep''. */
1261
1262 extern void gdbarch_free (struct gdbarch *);
1263
1264
1265 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1266 obstack. The memory is freed when the corresponding architecture
1267 is also freed. */
1268
1269 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1270 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1271 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1272
1273
1274 /* Helper function. Force an update of the current architecture.
1275
1276 The actual architecture selected is determined by INFO, \`\`(gdb) set
1277 architecture'' et.al., the existing architecture and BFD's default
1278 architecture. INFO should be initialized to zero and then selected
1279 fields should be updated.
1280
1281 Returns non-zero if the update succeeds. */
1282
1283 extern int gdbarch_update_p (struct gdbarch_info info);
1284
1285
1286 /* Helper function. Find an architecture matching info.
1287
1288 INFO should be initialized using gdbarch_info_init, relevant fields
1289 set, and then finished using gdbarch_info_fill.
1290
1291 Returns the corresponding architecture, or NULL if no matching
1292 architecture was found. */
1293
1294 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1295
1296
1297 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1298
1299 FIXME: kettenis/20031124: Of the functions that follow, only
1300 gdbarch_from_bfd is supposed to survive. The others will
1301 dissappear since in the future GDB will (hopefully) be truly
1302 multi-arch. However, for now we're still stuck with the concept of
1303 a single active architecture. */
1304
1305 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1306
1307
1308 /* Register per-architecture data-pointer.
1309
1310 Reserve space for a per-architecture data-pointer. An identifier
1311 for the reserved data-pointer is returned. That identifer should
1312 be saved in a local static variable.
1313
1314 Memory for the per-architecture data shall be allocated using
1315 gdbarch_obstack_zalloc. That memory will be deleted when the
1316 corresponding architecture object is deleted.
1317
1318 When a previously created architecture is re-selected, the
1319 per-architecture data-pointer for that previous architecture is
1320 restored. INIT() is not re-called.
1321
1322 Multiple registrarants for any architecture are allowed (and
1323 strongly encouraged). */
1324
1325 struct gdbarch_data;
1326
1327 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1328 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1329 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1330 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1331 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1332 struct gdbarch_data *data,
1333 void *pointer);
1334
1335 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1336
1337
1338 /* Set the dynamic target-system-dependent parameters (architecture,
1339 byte-order, ...) using information found in the BFD. */
1340
1341 extern void set_gdbarch_from_file (bfd *);
1342
1343
1344 /* Initialize the current architecture to the "first" one we find on
1345 our list. */
1346
1347 extern void initialize_current_architecture (void);
1348
1349 /* gdbarch trace variable */
1350 extern int gdbarch_debug;
1351
1352 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1353
1354 #endif
1355 EOF
1356 exec 1>&2
1357 #../move-if-change new-gdbarch.h gdbarch.h
1358 compare_new gdbarch.h
1359
1360
1361 #
1362 # C file
1363 #
1364
1365 exec > new-gdbarch.c
1366 copyright
1367 cat <<EOF
1368
1369 #include "defs.h"
1370 #include "arch-utils.h"
1371
1372 #include "gdbcmd.h"
1373 #include "inferior.h"
1374 #include "symcat.h"
1375
1376 #include "floatformat.h"
1377
1378 #include "gdb_assert.h"
1379 #include "gdb_string.h"
1380 #include "reggroups.h"
1381 #include "osabi.h"
1382 #include "gdb_obstack.h"
1383 #include "observer.h"
1384 #include "regcache.h"
1385
1386 /* Static function declarations */
1387
1388 static void alloc_gdbarch_data (struct gdbarch *);
1389
1390 /* Non-zero if we want to trace architecture code. */
1391
1392 #ifndef GDBARCH_DEBUG
1393 #define GDBARCH_DEBUG 0
1394 #endif
1395 int gdbarch_debug = GDBARCH_DEBUG;
1396 static void
1397 show_gdbarch_debug (struct ui_file *file, int from_tty,
1398 struct cmd_list_element *c, const char *value)
1399 {
1400 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1401 }
1402
1403 static const char *
1404 pformat (const struct floatformat **format)
1405 {
1406 if (format == NULL)
1407 return "(null)";
1408 else
1409 /* Just print out one of them - this is only for diagnostics. */
1410 return format[0]->name;
1411 }
1412
1413 static const char *
1414 pstring (const char *string)
1415 {
1416 if (string == NULL)
1417 return "(null)";
1418 return string;
1419 }
1420
1421 EOF
1422
1423 # gdbarch open the gdbarch object
1424 printf "\n"
1425 printf "/* Maintain the struct gdbarch object. */\n"
1426 printf "\n"
1427 printf "struct gdbarch\n"
1428 printf "{\n"
1429 printf " /* Has this architecture been fully initialized? */\n"
1430 printf " int initialized_p;\n"
1431 printf "\n"
1432 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1433 printf " struct obstack *obstack;\n"
1434 printf "\n"
1435 printf " /* basic architectural information. */\n"
1436 function_list | while do_read
1437 do
1438 if class_is_info_p
1439 then
1440 printf " ${returntype} ${function};\n"
1441 fi
1442 done
1443 printf "\n"
1444 printf " /* target specific vector. */\n"
1445 printf " struct gdbarch_tdep *tdep;\n"
1446 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1447 printf "\n"
1448 printf " /* per-architecture data-pointers. */\n"
1449 printf " unsigned nr_data;\n"
1450 printf " void **data;\n"
1451 printf "\n"
1452 printf " /* per-architecture swap-regions. */\n"
1453 printf " struct gdbarch_swap *swap;\n"
1454 printf "\n"
1455 cat <<EOF
1456 /* Multi-arch values.
1457
1458 When extending this structure you must:
1459
1460 Add the field below.
1461
1462 Declare set/get functions and define the corresponding
1463 macro in gdbarch.h.
1464
1465 gdbarch_alloc(): If zero/NULL is not a suitable default,
1466 initialize the new field.
1467
1468 verify_gdbarch(): Confirm that the target updated the field
1469 correctly.
1470
1471 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1472 field is dumped out
1473
1474 \`\`startup_gdbarch()'': Append an initial value to the static
1475 variable (base values on the host's c-type system).
1476
1477 get_gdbarch(): Implement the set/get functions (probably using
1478 the macro's as shortcuts).
1479
1480 */
1481
1482 EOF
1483 function_list | while do_read
1484 do
1485 if class_is_variable_p
1486 then
1487 printf " ${returntype} ${function};\n"
1488 elif class_is_function_p
1489 then
1490 printf " gdbarch_${function}_ftype *${function};\n"
1491 fi
1492 done
1493 printf "};\n"
1494
1495 # A pre-initialized vector
1496 printf "\n"
1497 printf "\n"
1498 cat <<EOF
1499 /* The default architecture uses host values (for want of a better
1500 choice). */
1501 EOF
1502 printf "\n"
1503 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1504 printf "\n"
1505 printf "struct gdbarch startup_gdbarch =\n"
1506 printf "{\n"
1507 printf " 1, /* Always initialized. */\n"
1508 printf " NULL, /* The obstack. */\n"
1509 printf " /* basic architecture information. */\n"
1510 function_list | while do_read
1511 do
1512 if class_is_info_p
1513 then
1514 printf " ${staticdefault}, /* ${function} */\n"
1515 fi
1516 done
1517 cat <<EOF
1518 /* target specific vector and its dump routine. */
1519 NULL, NULL,
1520 /*per-architecture data-pointers and swap regions. */
1521 0, NULL, NULL,
1522 /* Multi-arch values */
1523 EOF
1524 function_list | while do_read
1525 do
1526 if class_is_function_p || class_is_variable_p
1527 then
1528 printf " ${staticdefault}, /* ${function} */\n"
1529 fi
1530 done
1531 cat <<EOF
1532 /* startup_gdbarch() */
1533 };
1534
1535 struct gdbarch *target_gdbarch = &startup_gdbarch;
1536 EOF
1537
1538 # Create a new gdbarch struct
1539 cat <<EOF
1540
1541 /* Create a new \`\`struct gdbarch'' based on information provided by
1542 \`\`struct gdbarch_info''. */
1543 EOF
1544 printf "\n"
1545 cat <<EOF
1546 struct gdbarch *
1547 gdbarch_alloc (const struct gdbarch_info *info,
1548 struct gdbarch_tdep *tdep)
1549 {
1550 struct gdbarch *gdbarch;
1551
1552 /* Create an obstack for allocating all the per-architecture memory,
1553 then use that to allocate the architecture vector. */
1554 struct obstack *obstack = XMALLOC (struct obstack);
1555 obstack_init (obstack);
1556 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1557 memset (gdbarch, 0, sizeof (*gdbarch));
1558 gdbarch->obstack = obstack;
1559
1560 alloc_gdbarch_data (gdbarch);
1561
1562 gdbarch->tdep = tdep;
1563 EOF
1564 printf "\n"
1565 function_list | while do_read
1566 do
1567 if class_is_info_p
1568 then
1569 printf " gdbarch->${function} = info->${function};\n"
1570 fi
1571 done
1572 printf "\n"
1573 printf " /* Force the explicit initialization of these. */\n"
1574 function_list | while do_read
1575 do
1576 if class_is_function_p || class_is_variable_p
1577 then
1578 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1579 then
1580 printf " gdbarch->${function} = ${predefault};\n"
1581 fi
1582 fi
1583 done
1584 cat <<EOF
1585 /* gdbarch_alloc() */
1586
1587 return gdbarch;
1588 }
1589 EOF
1590
1591 # Free a gdbarch struct.
1592 printf "\n"
1593 printf "\n"
1594 cat <<EOF
1595 /* Allocate extra space using the per-architecture obstack. */
1596
1597 void *
1598 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1599 {
1600 void *data = obstack_alloc (arch->obstack, size);
1601
1602 memset (data, 0, size);
1603 return data;
1604 }
1605
1606
1607 /* Free a gdbarch struct. This should never happen in normal
1608 operation --- once you've created a gdbarch, you keep it around.
1609 However, if an architecture's init function encounters an error
1610 building the structure, it may need to clean up a partially
1611 constructed gdbarch. */
1612
1613 void
1614 gdbarch_free (struct gdbarch *arch)
1615 {
1616 struct obstack *obstack;
1617
1618 gdb_assert (arch != NULL);
1619 gdb_assert (!arch->initialized_p);
1620 obstack = arch->obstack;
1621 obstack_free (obstack, 0); /* Includes the ARCH. */
1622 xfree (obstack);
1623 }
1624 EOF
1625
1626 # verify a new architecture
1627 cat <<EOF
1628
1629
1630 /* Ensure that all values in a GDBARCH are reasonable. */
1631
1632 static void
1633 verify_gdbarch (struct gdbarch *gdbarch)
1634 {
1635 struct ui_file *log;
1636 struct cleanup *cleanups;
1637 long length;
1638 char *buf;
1639
1640 log = mem_fileopen ();
1641 cleanups = make_cleanup_ui_file_delete (log);
1642 /* fundamental */
1643 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1644 fprintf_unfiltered (log, "\n\tbyte-order");
1645 if (gdbarch->bfd_arch_info == NULL)
1646 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1647 /* Check those that need to be defined for the given multi-arch level. */
1648 EOF
1649 function_list | while do_read
1650 do
1651 if class_is_function_p || class_is_variable_p
1652 then
1653 if [ "x${invalid_p}" = "x0" ]
1654 then
1655 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1656 elif class_is_predicate_p
1657 then
1658 printf " /* Skip verify of ${function}, has predicate. */\n"
1659 # FIXME: See do_read for potential simplification
1660 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1661 then
1662 printf " if (${invalid_p})\n"
1663 printf " gdbarch->${function} = ${postdefault};\n"
1664 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1665 then
1666 printf " if (gdbarch->${function} == ${predefault})\n"
1667 printf " gdbarch->${function} = ${postdefault};\n"
1668 elif [ -n "${postdefault}" ]
1669 then
1670 printf " if (gdbarch->${function} == 0)\n"
1671 printf " gdbarch->${function} = ${postdefault};\n"
1672 elif [ -n "${invalid_p}" ]
1673 then
1674 printf " if (${invalid_p})\n"
1675 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1676 elif [ -n "${predefault}" ]
1677 then
1678 printf " if (gdbarch->${function} == ${predefault})\n"
1679 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1680 fi
1681 fi
1682 done
1683 cat <<EOF
1684 buf = ui_file_xstrdup (log, &length);
1685 make_cleanup (xfree, buf);
1686 if (length > 0)
1687 internal_error (__FILE__, __LINE__,
1688 _("verify_gdbarch: the following are invalid ...%s"),
1689 buf);
1690 do_cleanups (cleanups);
1691 }
1692 EOF
1693
1694 # dump the structure
1695 printf "\n"
1696 printf "\n"
1697 cat <<EOF
1698 /* Print out the details of the current architecture. */
1699
1700 void
1701 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1702 {
1703 const char *gdb_nm_file = "<not-defined>";
1704
1705 #if defined (GDB_NM_FILE)
1706 gdb_nm_file = GDB_NM_FILE;
1707 #endif
1708 fprintf_unfiltered (file,
1709 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1710 gdb_nm_file);
1711 EOF
1712 function_list | sort -t: -k 3 | while do_read
1713 do
1714 # First the predicate
1715 if class_is_predicate_p
1716 then
1717 printf " fprintf_unfiltered (file,\n"
1718 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1719 printf " gdbarch_${function}_p (gdbarch));\n"
1720 fi
1721 # Print the corresponding value.
1722 if class_is_function_p
1723 then
1724 printf " fprintf_unfiltered (file,\n"
1725 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1726 printf " host_address_to_string (gdbarch->${function}));\n"
1727 else
1728 # It is a variable
1729 case "${print}:${returntype}" in
1730 :CORE_ADDR )
1731 fmt="%s"
1732 print="core_addr_to_string_nz (gdbarch->${function})"
1733 ;;
1734 :* )
1735 fmt="%s"
1736 print="plongest (gdbarch->${function})"
1737 ;;
1738 * )
1739 fmt="%s"
1740 ;;
1741 esac
1742 printf " fprintf_unfiltered (file,\n"
1743 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1744 printf " ${print});\n"
1745 fi
1746 done
1747 cat <<EOF
1748 if (gdbarch->dump_tdep != NULL)
1749 gdbarch->dump_tdep (gdbarch, file);
1750 }
1751 EOF
1752
1753
1754 # GET/SET
1755 printf "\n"
1756 cat <<EOF
1757 struct gdbarch_tdep *
1758 gdbarch_tdep (struct gdbarch *gdbarch)
1759 {
1760 if (gdbarch_debug >= 2)
1761 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1762 return gdbarch->tdep;
1763 }
1764 EOF
1765 printf "\n"
1766 function_list | while do_read
1767 do
1768 if class_is_predicate_p
1769 then
1770 printf "\n"
1771 printf "int\n"
1772 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1773 printf "{\n"
1774 printf " gdb_assert (gdbarch != NULL);\n"
1775 printf " return ${predicate};\n"
1776 printf "}\n"
1777 fi
1778 if class_is_function_p
1779 then
1780 printf "\n"
1781 printf "${returntype}\n"
1782 if [ "x${formal}" = "xvoid" ]
1783 then
1784 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1785 else
1786 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1787 fi
1788 printf "{\n"
1789 printf " gdb_assert (gdbarch != NULL);\n"
1790 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1791 if class_is_predicate_p && test -n "${predefault}"
1792 then
1793 # Allow a call to a function with a predicate.
1794 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1795 fi
1796 printf " if (gdbarch_debug >= 2)\n"
1797 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1798 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1799 then
1800 if class_is_multiarch_p
1801 then
1802 params="gdbarch"
1803 else
1804 params=""
1805 fi
1806 else
1807 if class_is_multiarch_p
1808 then
1809 params="gdbarch, ${actual}"
1810 else
1811 params="${actual}"
1812 fi
1813 fi
1814 if [ "x${returntype}" = "xvoid" ]
1815 then
1816 printf " gdbarch->${function} (${params});\n"
1817 else
1818 printf " return gdbarch->${function} (${params});\n"
1819 fi
1820 printf "}\n"
1821 printf "\n"
1822 printf "void\n"
1823 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1824 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1825 printf "{\n"
1826 printf " gdbarch->${function} = ${function};\n"
1827 printf "}\n"
1828 elif class_is_variable_p
1829 then
1830 printf "\n"
1831 printf "${returntype}\n"
1832 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1833 printf "{\n"
1834 printf " gdb_assert (gdbarch != NULL);\n"
1835 if [ "x${invalid_p}" = "x0" ]
1836 then
1837 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1838 elif [ -n "${invalid_p}" ]
1839 then
1840 printf " /* Check variable is valid. */\n"
1841 printf " gdb_assert (!(${invalid_p}));\n"
1842 elif [ -n "${predefault}" ]
1843 then
1844 printf " /* Check variable changed from pre-default. */\n"
1845 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1846 fi
1847 printf " if (gdbarch_debug >= 2)\n"
1848 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1849 printf " return gdbarch->${function};\n"
1850 printf "}\n"
1851 printf "\n"
1852 printf "void\n"
1853 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1854 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1855 printf "{\n"
1856 printf " gdbarch->${function} = ${function};\n"
1857 printf "}\n"
1858 elif class_is_info_p
1859 then
1860 printf "\n"
1861 printf "${returntype}\n"
1862 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1863 printf "{\n"
1864 printf " gdb_assert (gdbarch != NULL);\n"
1865 printf " if (gdbarch_debug >= 2)\n"
1866 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1867 printf " return gdbarch->${function};\n"
1868 printf "}\n"
1869 fi
1870 done
1871
1872 # All the trailing guff
1873 cat <<EOF
1874
1875
1876 /* Keep a registry of per-architecture data-pointers required by GDB
1877 modules. */
1878
1879 struct gdbarch_data
1880 {
1881 unsigned index;
1882 int init_p;
1883 gdbarch_data_pre_init_ftype *pre_init;
1884 gdbarch_data_post_init_ftype *post_init;
1885 };
1886
1887 struct gdbarch_data_registration
1888 {
1889 struct gdbarch_data *data;
1890 struct gdbarch_data_registration *next;
1891 };
1892
1893 struct gdbarch_data_registry
1894 {
1895 unsigned nr;
1896 struct gdbarch_data_registration *registrations;
1897 };
1898
1899 struct gdbarch_data_registry gdbarch_data_registry =
1900 {
1901 0, NULL,
1902 };
1903
1904 static struct gdbarch_data *
1905 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1906 gdbarch_data_post_init_ftype *post_init)
1907 {
1908 struct gdbarch_data_registration **curr;
1909
1910 /* Append the new registration. */
1911 for (curr = &gdbarch_data_registry.registrations;
1912 (*curr) != NULL;
1913 curr = &(*curr)->next);
1914 (*curr) = XMALLOC (struct gdbarch_data_registration);
1915 (*curr)->next = NULL;
1916 (*curr)->data = XMALLOC (struct gdbarch_data);
1917 (*curr)->data->index = gdbarch_data_registry.nr++;
1918 (*curr)->data->pre_init = pre_init;
1919 (*curr)->data->post_init = post_init;
1920 (*curr)->data->init_p = 1;
1921 return (*curr)->data;
1922 }
1923
1924 struct gdbarch_data *
1925 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1926 {
1927 return gdbarch_data_register (pre_init, NULL);
1928 }
1929
1930 struct gdbarch_data *
1931 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1932 {
1933 return gdbarch_data_register (NULL, post_init);
1934 }
1935
1936 /* Create/delete the gdbarch data vector. */
1937
1938 static void
1939 alloc_gdbarch_data (struct gdbarch *gdbarch)
1940 {
1941 gdb_assert (gdbarch->data == NULL);
1942 gdbarch->nr_data = gdbarch_data_registry.nr;
1943 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1944 }
1945
1946 /* Initialize the current value of the specified per-architecture
1947 data-pointer. */
1948
1949 void
1950 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1951 struct gdbarch_data *data,
1952 void *pointer)
1953 {
1954 gdb_assert (data->index < gdbarch->nr_data);
1955 gdb_assert (gdbarch->data[data->index] == NULL);
1956 gdb_assert (data->pre_init == NULL);
1957 gdbarch->data[data->index] = pointer;
1958 }
1959
1960 /* Return the current value of the specified per-architecture
1961 data-pointer. */
1962
1963 void *
1964 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1965 {
1966 gdb_assert (data->index < gdbarch->nr_data);
1967 if (gdbarch->data[data->index] == NULL)
1968 {
1969 /* The data-pointer isn't initialized, call init() to get a
1970 value. */
1971 if (data->pre_init != NULL)
1972 /* Mid architecture creation: pass just the obstack, and not
1973 the entire architecture, as that way it isn't possible for
1974 pre-init code to refer to undefined architecture
1975 fields. */
1976 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1977 else if (gdbarch->initialized_p
1978 && data->post_init != NULL)
1979 /* Post architecture creation: pass the entire architecture
1980 (as all fields are valid), but be careful to also detect
1981 recursive references. */
1982 {
1983 gdb_assert (data->init_p);
1984 data->init_p = 0;
1985 gdbarch->data[data->index] = data->post_init (gdbarch);
1986 data->init_p = 1;
1987 }
1988 else
1989 /* The architecture initialization hasn't completed - punt -
1990 hope that the caller knows what they are doing. Once
1991 deprecated_set_gdbarch_data has been initialized, this can be
1992 changed to an internal error. */
1993 return NULL;
1994 gdb_assert (gdbarch->data[data->index] != NULL);
1995 }
1996 return gdbarch->data[data->index];
1997 }
1998
1999
2000 /* Keep a registry of the architectures known by GDB. */
2001
2002 struct gdbarch_registration
2003 {
2004 enum bfd_architecture bfd_architecture;
2005 gdbarch_init_ftype *init;
2006 gdbarch_dump_tdep_ftype *dump_tdep;
2007 struct gdbarch_list *arches;
2008 struct gdbarch_registration *next;
2009 };
2010
2011 static struct gdbarch_registration *gdbarch_registry = NULL;
2012
2013 static void
2014 append_name (const char ***buf, int *nr, const char *name)
2015 {
2016 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2017 (*buf)[*nr] = name;
2018 *nr += 1;
2019 }
2020
2021 const char **
2022 gdbarch_printable_names (void)
2023 {
2024 /* Accumulate a list of names based on the registed list of
2025 architectures. */
2026 int nr_arches = 0;
2027 const char **arches = NULL;
2028 struct gdbarch_registration *rego;
2029
2030 for (rego = gdbarch_registry;
2031 rego != NULL;
2032 rego = rego->next)
2033 {
2034 const struct bfd_arch_info *ap;
2035 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2036 if (ap == NULL)
2037 internal_error (__FILE__, __LINE__,
2038 _("gdbarch_architecture_names: multi-arch unknown"));
2039 do
2040 {
2041 append_name (&arches, &nr_arches, ap->printable_name);
2042 ap = ap->next;
2043 }
2044 while (ap != NULL);
2045 }
2046 append_name (&arches, &nr_arches, NULL);
2047 return arches;
2048 }
2049
2050
2051 void
2052 gdbarch_register (enum bfd_architecture bfd_architecture,
2053 gdbarch_init_ftype *init,
2054 gdbarch_dump_tdep_ftype *dump_tdep)
2055 {
2056 struct gdbarch_registration **curr;
2057 const struct bfd_arch_info *bfd_arch_info;
2058
2059 /* Check that BFD recognizes this architecture */
2060 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2061 if (bfd_arch_info == NULL)
2062 {
2063 internal_error (__FILE__, __LINE__,
2064 _("gdbarch: Attempt to register "
2065 "unknown architecture (%d)"),
2066 bfd_architecture);
2067 }
2068 /* Check that we haven't seen this architecture before. */
2069 for (curr = &gdbarch_registry;
2070 (*curr) != NULL;
2071 curr = &(*curr)->next)
2072 {
2073 if (bfd_architecture == (*curr)->bfd_architecture)
2074 internal_error (__FILE__, __LINE__,
2075 _("gdbarch: Duplicate registration "
2076 "of architecture (%s)"),
2077 bfd_arch_info->printable_name);
2078 }
2079 /* log it */
2080 if (gdbarch_debug)
2081 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2082 bfd_arch_info->printable_name,
2083 host_address_to_string (init));
2084 /* Append it */
2085 (*curr) = XMALLOC (struct gdbarch_registration);
2086 (*curr)->bfd_architecture = bfd_architecture;
2087 (*curr)->init = init;
2088 (*curr)->dump_tdep = dump_tdep;
2089 (*curr)->arches = NULL;
2090 (*curr)->next = NULL;
2091 }
2092
2093 void
2094 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2095 gdbarch_init_ftype *init)
2096 {
2097 gdbarch_register (bfd_architecture, init, NULL);
2098 }
2099
2100
2101 /* Look for an architecture using gdbarch_info. */
2102
2103 struct gdbarch_list *
2104 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2105 const struct gdbarch_info *info)
2106 {
2107 for (; arches != NULL; arches = arches->next)
2108 {
2109 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2110 continue;
2111 if (info->byte_order != arches->gdbarch->byte_order)
2112 continue;
2113 if (info->osabi != arches->gdbarch->osabi)
2114 continue;
2115 if (info->target_desc != arches->gdbarch->target_desc)
2116 continue;
2117 return arches;
2118 }
2119 return NULL;
2120 }
2121
2122
2123 /* Find an architecture that matches the specified INFO. Create a new
2124 architecture if needed. Return that new architecture. */
2125
2126 struct gdbarch *
2127 gdbarch_find_by_info (struct gdbarch_info info)
2128 {
2129 struct gdbarch *new_gdbarch;
2130 struct gdbarch_registration *rego;
2131
2132 /* Fill in missing parts of the INFO struct using a number of
2133 sources: "set ..."; INFOabfd supplied; and the global
2134 defaults. */
2135 gdbarch_info_fill (&info);
2136
2137 /* Must have found some sort of architecture. */
2138 gdb_assert (info.bfd_arch_info != NULL);
2139
2140 if (gdbarch_debug)
2141 {
2142 fprintf_unfiltered (gdb_stdlog,
2143 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2144 (info.bfd_arch_info != NULL
2145 ? info.bfd_arch_info->printable_name
2146 : "(null)"));
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2149 info.byte_order,
2150 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2151 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2152 : "default"));
2153 fprintf_unfiltered (gdb_stdlog,
2154 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2155 info.osabi, gdbarch_osabi_name (info.osabi));
2156 fprintf_unfiltered (gdb_stdlog,
2157 "gdbarch_find_by_info: info.abfd %s\n",
2158 host_address_to_string (info.abfd));
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_find_by_info: info.tdep_info %s\n",
2161 host_address_to_string (info.tdep_info));
2162 }
2163
2164 /* Find the tdep code that knows about this architecture. */
2165 for (rego = gdbarch_registry;
2166 rego != NULL;
2167 rego = rego->next)
2168 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2169 break;
2170 if (rego == NULL)
2171 {
2172 if (gdbarch_debug)
2173 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2174 "No matching architecture\n");
2175 return 0;
2176 }
2177
2178 /* Ask the tdep code for an architecture that matches "info". */
2179 new_gdbarch = rego->init (info, rego->arches);
2180
2181 /* Did the tdep code like it? No. Reject the change and revert to
2182 the old architecture. */
2183 if (new_gdbarch == NULL)
2184 {
2185 if (gdbarch_debug)
2186 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2187 "Target rejected architecture\n");
2188 return NULL;
2189 }
2190
2191 /* Is this a pre-existing architecture (as determined by already
2192 being initialized)? Move it to the front of the architecture
2193 list (keeping the list sorted Most Recently Used). */
2194 if (new_gdbarch->initialized_p)
2195 {
2196 struct gdbarch_list **list;
2197 struct gdbarch_list *this;
2198 if (gdbarch_debug)
2199 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2200 "Previous architecture %s (%s) selected\n",
2201 host_address_to_string (new_gdbarch),
2202 new_gdbarch->bfd_arch_info->printable_name);
2203 /* Find the existing arch in the list. */
2204 for (list = &rego->arches;
2205 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2206 list = &(*list)->next);
2207 /* It had better be in the list of architectures. */
2208 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2209 /* Unlink THIS. */
2210 this = (*list);
2211 (*list) = this->next;
2212 /* Insert THIS at the front. */
2213 this->next = rego->arches;
2214 rego->arches = this;
2215 /* Return it. */
2216 return new_gdbarch;
2217 }
2218
2219 /* It's a new architecture. */
2220 if (gdbarch_debug)
2221 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2222 "New architecture %s (%s) selected\n",
2223 host_address_to_string (new_gdbarch),
2224 new_gdbarch->bfd_arch_info->printable_name);
2225
2226 /* Insert the new architecture into the front of the architecture
2227 list (keep the list sorted Most Recently Used). */
2228 {
2229 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2230 this->next = rego->arches;
2231 this->gdbarch = new_gdbarch;
2232 rego->arches = this;
2233 }
2234
2235 /* Check that the newly installed architecture is valid. Plug in
2236 any post init values. */
2237 new_gdbarch->dump_tdep = rego->dump_tdep;
2238 verify_gdbarch (new_gdbarch);
2239 new_gdbarch->initialized_p = 1;
2240
2241 if (gdbarch_debug)
2242 gdbarch_dump (new_gdbarch, gdb_stdlog);
2243
2244 return new_gdbarch;
2245 }
2246
2247 /* Make the specified architecture current. */
2248
2249 void
2250 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2251 {
2252 gdb_assert (new_gdbarch != NULL);
2253 gdb_assert (new_gdbarch->initialized_p);
2254 target_gdbarch = new_gdbarch;
2255 observer_notify_architecture_changed (new_gdbarch);
2256 registers_changed ();
2257 }
2258
2259 extern void _initialize_gdbarch (void);
2260
2261 void
2262 _initialize_gdbarch (void)
2263 {
2264 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2265 Set architecture debugging."), _("\\
2266 Show architecture debugging."), _("\\
2267 When non-zero, architecture debugging is enabled."),
2268 NULL,
2269 show_gdbarch_debug,
2270 &setdebuglist, &showdebuglist);
2271 }
2272 EOF
2273
2274 # close things off
2275 exec 1>&2
2276 #../move-if-change new-gdbarch.c gdbarch.c
2277 compare_new gdbarch.c
This page took 0.10986 seconds and 5 git commands to generate.