* gdbarch.sh (sofun_address_maybe_missing): New gdbarch variable.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
94 if test "x${macro}" = "x="
95 then
96 # Provide a UCASE version of function (for when there isn't MACRO)
97 macro="${FUNCTION}"
98 elif test "${macro}" = "${FUNCTION}"
99 then
100 echo "${function}: Specify = for macro field" 1>&2
101 kill $$
102 exit 1
103 fi
104
105 # Check that macro definition wasn't supplied for multi-arch
106 case "${class}" in
107 [mM] )
108 if test "${macro}" != ""
109 then
110 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
111 kill $$
112 exit 1
113 fi
114 esac
115
116 case "${class}" in
117 m ) staticdefault="${predefault}" ;;
118 M ) staticdefault="0" ;;
119 * ) test "${staticdefault}" || staticdefault=0 ;;
120 esac
121
122 case "${class}" in
123 F | V | M )
124 case "${invalid_p}" in
125 "" )
126 if test -n "${predefault}"
127 then
128 #invalid_p="gdbarch->${function} == ${predefault}"
129 predicate="gdbarch->${function} != ${predefault}"
130 elif class_is_variable_p
131 then
132 predicate="gdbarch->${function} != 0"
133 elif class_is_function_p
134 then
135 predicate="gdbarch->${function} != NULL"
136 fi
137 ;;
138 * )
139 echo "Predicate function ${function} with invalid_p." 1>&2
140 kill $$
141 exit 1
142 ;;
143 esac
144 esac
145
146 # PREDEFAULT is a valid fallback definition of MEMBER when
147 # multi-arch is not enabled. This ensures that the
148 # default value, when multi-arch is the same as the
149 # default value when not multi-arch. POSTDEFAULT is
150 # always a valid definition of MEMBER as this again
151 # ensures consistency.
152
153 if [ -n "${postdefault}" ]
154 then
155 fallbackdefault="${postdefault}"
156 elif [ -n "${predefault}" ]
157 then
158 fallbackdefault="${predefault}"
159 else
160 fallbackdefault="0"
161 fi
162
163 #NOT YET: See gdbarch.log for basic verification of
164 # database
165
166 break
167 fi
168 done
169 if [ -n "${class}" ]
170 then
171 true
172 else
173 false
174 fi
175 }
176
177
178 fallback_default_p ()
179 {
180 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
181 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
182 }
183
184 class_is_variable_p ()
185 {
186 case "${class}" in
187 *v* | *V* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_function_p ()
193 {
194 case "${class}" in
195 *f* | *F* | *m* | *M* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200 class_is_multiarch_p ()
201 {
202 case "${class}" in
203 *m* | *M* ) true ;;
204 * ) false ;;
205 esac
206 }
207
208 class_is_predicate_p ()
209 {
210 case "${class}" in
211 *F* | *V* | *M* ) true ;;
212 * ) false ;;
213 esac
214 }
215
216 class_is_info_p ()
217 {
218 case "${class}" in
219 *i* ) true ;;
220 * ) false ;;
221 esac
222 }
223
224
225 # dump out/verify the doco
226 for field in ${read}
227 do
228 case ${field} in
229
230 class ) : ;;
231
232 # # -> line disable
233 # f -> function
234 # hiding a function
235 # F -> function + predicate
236 # hiding a function + predicate to test function validity
237 # v -> variable
238 # hiding a variable
239 # V -> variable + predicate
240 # hiding a variable + predicate to test variables validity
241 # i -> set from info
242 # hiding something from the ``struct info'' object
243 # m -> multi-arch function
244 # hiding a multi-arch function (parameterised with the architecture)
245 # M -> multi-arch function + predicate
246 # hiding a multi-arch function + predicate to test function validity
247
248 macro ) : ;;
249
250 # The name of the legacy C macro by which this method can be
251 # accessed. If empty, no macro is defined. If "=", a macro
252 # formed from the upper-case function name is used.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 staticdefault ) : ;;
278
279 # To help with the GDB startup a static gdbarch object is
280 # created. STATICDEFAULT is the value to insert into that
281 # static gdbarch object. Since this a static object only
282 # simple expressions can be used.
283
284 # If STATICDEFAULT is empty, zero is used.
285
286 predefault ) : ;;
287
288 # An initial value to assign to MEMBER of the freshly
289 # malloc()ed gdbarch object. After initialization, the
290 # freshly malloc()ed object is passed to the target
291 # architecture code for further updates.
292
293 # If PREDEFAULT is empty, zero is used.
294
295 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
296 # INVALID_P are specified, PREDEFAULT will be used as the
297 # default for the non- multi-arch target.
298
299 # A zero PREDEFAULT function will force the fallback to call
300 # internal_error().
301
302 # Variable declarations can refer to ``gdbarch'' which will
303 # contain the current architecture. Care should be taken.
304
305 postdefault ) : ;;
306
307 # A value to assign to MEMBER of the new gdbarch object should
308 # the target architecture code fail to change the PREDEFAULT
309 # value.
310
311 # If POSTDEFAULT is empty, no post update is performed.
312
313 # If both INVALID_P and POSTDEFAULT are non-empty then
314 # INVALID_P will be used to determine if MEMBER should be
315 # changed to POSTDEFAULT.
316
317 # If a non-empty POSTDEFAULT and a zero INVALID_P are
318 # specified, POSTDEFAULT will be used as the default for the
319 # non- multi-arch target (regardless of the value of
320 # PREDEFAULT).
321
322 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
323
324 # Variable declarations can refer to ``current_gdbarch'' which
325 # will contain the current architecture. Care should be
326 # taken.
327
328 invalid_p ) : ;;
329
330 # A predicate equation that validates MEMBER. Non-zero is
331 # returned if the code creating the new architecture failed to
332 # initialize MEMBER or the initialized the member is invalid.
333 # If POSTDEFAULT is non-empty then MEMBER will be updated to
334 # that value. If POSTDEFAULT is empty then internal_error()
335 # is called.
336
337 # If INVALID_P is empty, a check that MEMBER is no longer
338 # equal to PREDEFAULT is used.
339
340 # The expression ``0'' disables the INVALID_P check making
341 # PREDEFAULT a legitimate value.
342
343 # See also PREDEFAULT and POSTDEFAULT.
344
345 print ) : ;;
346
347 # An optional expression that convers MEMBER to a value
348 # suitable for formatting using %s.
349
350 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
351 # (anything else) is used.
352
353 garbage_at_eol ) : ;;
354
355 # Catches stray fields.
356
357 *)
358 echo "Bad field ${field}"
359 exit 1;;
360 esac
361 done
362
363
364 function_list ()
365 {
366 # See below (DOCO) for description of each field
367 cat <<EOF
368 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
369 #
370 i::int:byte_order:::BFD_ENDIAN_BIG
371 #
372 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
373 #
374 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392 # Each format describes both the big and little endian layouts (if
393 # useful).
394
395 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
397 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
399 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
405 # / addr_bit will be set from it.
406 #
407 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
408 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
409 # as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
415 #
416 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
417 v::int:char_signed:::1:-1:1
418 #
419 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
420 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428 #
429 v::int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v::int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
440 v::int:sp_regnum:::-1:-1::0
441 v::int:pc_regnum:::-1:-1::0
442 v::int:ps_regnum:::-1:-1::0
443 v::int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f::const char *:register_name:int regnr:regnr
454
455 # Return the type of a register specified by the architecture. Only
456 # the register cache should call this function directly; others should
457 # use "register_type".
458 M::struct type *:register_type:int reg_nr:reg_nr
459
460 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
461 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
462 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
463 # deprecated_fp_regnum.
464 v::int:deprecated_fp_regnum:::-1:-1::0
465
466 # See gdbint.texinfo. See infcall.c.
467 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
468 v::int:call_dummy_location::::AT_ENTRY_POINT::0
469 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
470
471 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
472 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 # MAP a GDB RAW register number onto a simulator register number. See
475 # also include/...-sim.h.
476 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
477 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
478 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
479 # setjmp/longjmp support.
480 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
481 #
482 v::int:believe_pcc_promotion:::::::
483 #
484 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
485 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
486 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
492 #
493 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
494 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
495 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
496
497 # It has been suggested that this, well actually its predecessor,
498 # should take the type/value of the function to be called and not the
499 # return type. This is left as an exercise for the reader.
500
501 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
502
503 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
504 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
505 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
506 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
507 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
508 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
509 v::CORE_ADDR:decr_pc_after_break:::0:::0
510
511 # A function can be addressed by either it's "pointer" (possibly a
512 # descriptor address) or "entry point" (first executable instruction).
513 # The method "convert_from_func_ptr_addr" converting the former to the
514 # latter. gdbarch_deprecated_function_start_offset is being used to implement
515 # a simplified subset of that functionality - the function's address
516 # corresponds to the "function pointer" and the function's start
517 # corresponds to the "function entry point" - and hence is redundant.
518
519 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
520
521 # Return the remote protocol register number associated with this
522 # register. Normally the identity mapping.
523 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
524
525 # Fetch the target specific address used to represent a load module.
526 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
527 #
528 v::CORE_ADDR:frame_args_skip:::0:::0
529 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
530 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
531 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
532 # frame-base. Enable frame-base before frame-unwind.
533 F::int:frame_num_args:struct frame_info *frame:frame
534 #
535 M::CORE_ADDR:frame_align:CORE_ADDR address:address
536 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
537 v::int:frame_red_zone_size
538 #
539 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
540 # On some machines there are bits in addresses which are not really
541 # part of the address, but are used by the kernel, the hardware, etc.
542 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
543 # we get a "real" address such as one would find in a symbol table.
544 # This is used only for addresses of instructions, and even then I'm
545 # not sure it's used in all contexts. It exists to deal with there
546 # being a few stray bits in the PC which would mislead us, not as some
547 # sort of generic thing to handle alignment or segmentation (it's
548 # possible it should be in TARGET_READ_PC instead).
549 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
550 # It is not at all clear why gdbarch_smash_text_address is not folded into
551 # gdbarch_addr_bits_remove.
552 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
553
554 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
555 # indicates if the target needs software single step. An ISA method to
556 # implement it.
557 #
558 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
559 # breakpoints using the breakpoint system instead of blatting memory directly
560 # (as with rs6000).
561 #
562 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
563 # target can single step. If not, then implement single step using breakpoints.
564 #
565 # A return value of 1 means that the software_single_step breakpoints
566 # were inserted; 0 means they were not.
567 F::int:software_single_step:struct frame_info *frame:frame
568
569 # Return non-zero if the processor is executing a delay slot and a
570 # further single-step is needed before the instruction finishes.
571 M::int:single_step_through_delay:struct frame_info *frame:frame
572 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
573 # disassembler. Perhaps objdump can handle it?
574 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
575 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
576
577
578 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
579 # evaluates non-zero, this is the address where the debugger will place
580 # a step-resume breakpoint to get us past the dynamic linker.
581 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
582 # Some systems also have trampoline code for returning from shared libs.
583 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
584
585 # A target might have problems with watchpoints as soon as the stack
586 # frame of the current function has been destroyed. This mostly happens
587 # as the first action in a funtion's epilogue. in_function_epilogue_p()
588 # is defined to return a non-zero value if either the given addr is one
589 # instruction after the stack destroying instruction up to the trailing
590 # return instruction or if we can figure out that the stack frame has
591 # already been invalidated regardless of the value of addr. Targets
592 # which don't suffer from that problem could just let this functionality
593 # untouched.
594 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
595 # Given a vector of command-line arguments, return a newly allocated
596 # string which, when passed to the create_inferior function, will be
597 # parsed (on Unix systems, by the shell) to yield the same vector.
598 # This function should call error() if the argument vector is not
599 # representable for this target or if this target does not support
600 # command-line arguments.
601 # ARGC is the number of elements in the vector.
602 # ARGV is an array of strings, one per argument.
603 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
604 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
605 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
606 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
607 v::int:cannot_step_breakpoint:::0:0::0
608 v::int:have_nonsteppable_watchpoint:::0:0::0
609 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
610 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
611 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
612 # Is a register in a group
613 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
614 # Fetch the pointer to the ith function argument.
615 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
616
617 # Return the appropriate register set for a core file section with
618 # name SECT_NAME and size SECT_SIZE.
619 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
620
621 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
622 # core file into buffer READBUF with length LEN.
623 M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
624
625 # If the elements of C++ vtables are in-place function descriptors rather
626 # than normal function pointers (which may point to code or a descriptor),
627 # set this to one.
628 v::int:vtable_function_descriptors:::0:0::0
629
630 # Set if the least significant bit of the delta is used instead of the least
631 # significant bit of the pfn for pointers to virtual member functions.
632 v::int:vbit_in_delta:::0:0::0
633
634 # Advance PC to next instruction in order to skip a permanent breakpoint.
635 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
636
637 # Refresh overlay mapped state for section OSECT.
638 F::void:overlay_update:struct obj_section *osect:osect
639
640 M::const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
641
642 # Handle special encoding of static variables in stabs debug info.
643 F::char *:static_transform_name:char *name:name
644 # Set if the address in N_SO or N_FUN stabs may be zero.
645 v::int:sofun_address_maybe_missing:::0:0::0
646 EOF
647 }
648
649 #
650 # The .log file
651 #
652 exec > new-gdbarch.log
653 function_list | while do_read
654 do
655 cat <<EOF
656 ${class} ${returntype} ${function} ($formal)
657 EOF
658 for r in ${read}
659 do
660 eval echo \"\ \ \ \ ${r}=\${${r}}\"
661 done
662 if class_is_predicate_p && fallback_default_p
663 then
664 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
665 kill $$
666 exit 1
667 fi
668 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
669 then
670 echo "Error: postdefault is useless when invalid_p=0" 1>&2
671 kill $$
672 exit 1
673 fi
674 if class_is_multiarch_p
675 then
676 if class_is_predicate_p ; then :
677 elif test "x${predefault}" = "x"
678 then
679 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
680 kill $$
681 exit 1
682 fi
683 fi
684 echo ""
685 done
686
687 exec 1>&2
688 compare_new gdbarch.log
689
690
691 copyright ()
692 {
693 cat <<EOF
694 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
695
696 /* Dynamic architecture support for GDB, the GNU debugger.
697
698 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
699 Free Software Foundation, Inc.
700
701 This file is part of GDB.
702
703 This program is free software; you can redistribute it and/or modify
704 it under the terms of the GNU General Public License as published by
705 the Free Software Foundation; either version 3 of the License, or
706 (at your option) any later version.
707
708 This program is distributed in the hope that it will be useful,
709 but WITHOUT ANY WARRANTY; without even the implied warranty of
710 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
711 GNU General Public License for more details.
712
713 You should have received a copy of the GNU General Public License
714 along with this program. If not, see <http://www.gnu.org/licenses/>. */
715
716 /* This file was created with the aid of \`\`gdbarch.sh''.
717
718 The Bourne shell script \`\`gdbarch.sh'' creates the files
719 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
720 against the existing \`\`gdbarch.[hc]''. Any differences found
721 being reported.
722
723 If editing this file, please also run gdbarch.sh and merge any
724 changes into that script. Conversely, when making sweeping changes
725 to this file, modifying gdbarch.sh and using its output may prove
726 easier. */
727
728 EOF
729 }
730
731 #
732 # The .h file
733 #
734
735 exec > new-gdbarch.h
736 copyright
737 cat <<EOF
738 #ifndef GDBARCH_H
739 #define GDBARCH_H
740
741 struct floatformat;
742 struct ui_file;
743 struct frame_info;
744 struct value;
745 struct objfile;
746 struct obj_section;
747 struct minimal_symbol;
748 struct regcache;
749 struct reggroup;
750 struct regset;
751 struct disassemble_info;
752 struct target_ops;
753 struct obstack;
754 struct bp_target_info;
755 struct target_desc;
756
757 extern struct gdbarch *current_gdbarch;
758 EOF
759
760 # function typedef's
761 printf "\n"
762 printf "\n"
763 printf "/* The following are pre-initialized by GDBARCH. */\n"
764 function_list | while do_read
765 do
766 if class_is_info_p
767 then
768 printf "\n"
769 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
770 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
771 if test -n "${macro}"
772 then
773 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
774 printf "#error \"Non multi-arch definition of ${macro}\"\n"
775 printf "#endif\n"
776 printf "#if !defined (${macro})\n"
777 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
778 printf "#endif\n"
779 fi
780 fi
781 done
782
783 # function typedef's
784 printf "\n"
785 printf "\n"
786 printf "/* The following are initialized by the target dependent code. */\n"
787 function_list | while do_read
788 do
789 if [ -n "${comment}" ]
790 then
791 echo "${comment}" | sed \
792 -e '2 s,#,/*,' \
793 -e '3,$ s,#, ,' \
794 -e '$ s,$, */,'
795 fi
796
797 if class_is_predicate_p
798 then
799 if test -n "${macro}"
800 then
801 printf "\n"
802 printf "#if defined (${macro})\n"
803 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
804 printf "#if !defined (${macro}_P)\n"
805 printf "#define ${macro}_P() (1)\n"
806 printf "#endif\n"
807 printf "#endif\n"
808 fi
809 printf "\n"
810 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
811 if test -n "${macro}"
812 then
813 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
814 printf "#error \"Non multi-arch definition of ${macro}\"\n"
815 printf "#endif\n"
816 printf "#if !defined (${macro}_P)\n"
817 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
818 printf "#endif\n"
819 fi
820 fi
821 if class_is_variable_p
822 then
823 printf "\n"
824 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
825 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
826 if test -n "${macro}"
827 then
828 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
829 printf "#error \"Non multi-arch definition of ${macro}\"\n"
830 printf "#endif\n"
831 printf "#if !defined (${macro})\n"
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "#endif\n"
834 fi
835 fi
836 if class_is_function_p
837 then
838 printf "\n"
839 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
840 then
841 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
842 elif class_is_multiarch_p
843 then
844 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
845 else
846 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
847 fi
848 if [ "x${formal}" = "xvoid" ]
849 then
850 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
851 else
852 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
853 fi
854 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
855 if test -n "${macro}"
856 then
857 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
858 printf "#error \"Non multi-arch definition of ${macro}\"\n"
859 printf "#endif\n"
860 if [ "x${actual}" = "x" ]
861 then
862 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
863 elif [ "x${actual}" = "x-" ]
864 then
865 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
866 else
867 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
868 fi
869 printf "#if !defined (${macro})\n"
870 if [ "x${actual}" = "x" ]
871 then
872 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
873 elif [ "x${actual}" = "x-" ]
874 then
875 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
876 else
877 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
878 fi
879 printf "#endif\n"
880 fi
881 fi
882 done
883
884 # close it off
885 cat <<EOF
886
887 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
888
889
890 /* Mechanism for co-ordinating the selection of a specific
891 architecture.
892
893 GDB targets (*-tdep.c) can register an interest in a specific
894 architecture. Other GDB components can register a need to maintain
895 per-architecture data.
896
897 The mechanisms below ensures that there is only a loose connection
898 between the set-architecture command and the various GDB
899 components. Each component can independently register their need
900 to maintain architecture specific data with gdbarch.
901
902 Pragmatics:
903
904 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
905 didn't scale.
906
907 The more traditional mega-struct containing architecture specific
908 data for all the various GDB components was also considered. Since
909 GDB is built from a variable number of (fairly independent)
910 components it was determined that the global aproach was not
911 applicable. */
912
913
914 /* Register a new architectural family with GDB.
915
916 Register support for the specified ARCHITECTURE with GDB. When
917 gdbarch determines that the specified architecture has been
918 selected, the corresponding INIT function is called.
919
920 --
921
922 The INIT function takes two parameters: INFO which contains the
923 information available to gdbarch about the (possibly new)
924 architecture; ARCHES which is a list of the previously created
925 \`\`struct gdbarch'' for this architecture.
926
927 The INFO parameter is, as far as possible, be pre-initialized with
928 information obtained from INFO.ABFD or the global defaults.
929
930 The ARCHES parameter is a linked list (sorted most recently used)
931 of all the previously created architures for this architecture
932 family. The (possibly NULL) ARCHES->gdbarch can used to access
933 values from the previously selected architecture for this
934 architecture family. The global \`\`current_gdbarch'' shall not be
935 used.
936
937 The INIT function shall return any of: NULL - indicating that it
938 doesn't recognize the selected architecture; an existing \`\`struct
939 gdbarch'' from the ARCHES list - indicating that the new
940 architecture is just a synonym for an earlier architecture (see
941 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
942 - that describes the selected architecture (see gdbarch_alloc()).
943
944 The DUMP_TDEP function shall print out all target specific values.
945 Care should be taken to ensure that the function works in both the
946 multi-arch and non- multi-arch cases. */
947
948 struct gdbarch_list
949 {
950 struct gdbarch *gdbarch;
951 struct gdbarch_list *next;
952 };
953
954 struct gdbarch_info
955 {
956 /* Use default: NULL (ZERO). */
957 const struct bfd_arch_info *bfd_arch_info;
958
959 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
960 int byte_order;
961
962 /* Use default: NULL (ZERO). */
963 bfd *abfd;
964
965 /* Use default: NULL (ZERO). */
966 struct gdbarch_tdep_info *tdep_info;
967
968 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
969 enum gdb_osabi osabi;
970
971 /* Use default: NULL (ZERO). */
972 const struct target_desc *target_desc;
973 };
974
975 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
976 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
977
978 /* DEPRECATED - use gdbarch_register() */
979 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
980
981 extern void gdbarch_register (enum bfd_architecture architecture,
982 gdbarch_init_ftype *,
983 gdbarch_dump_tdep_ftype *);
984
985
986 /* Return a freshly allocated, NULL terminated, array of the valid
987 architecture names. Since architectures are registered during the
988 _initialize phase this function only returns useful information
989 once initialization has been completed. */
990
991 extern const char **gdbarch_printable_names (void);
992
993
994 /* Helper function. Search the list of ARCHES for a GDBARCH that
995 matches the information provided by INFO. */
996
997 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
998
999
1000 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1001 basic initialization using values obtained from the INFO and TDEP
1002 parameters. set_gdbarch_*() functions are called to complete the
1003 initialization of the object. */
1004
1005 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1006
1007
1008 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1009 It is assumed that the caller freeds the \`\`struct
1010 gdbarch_tdep''. */
1011
1012 extern void gdbarch_free (struct gdbarch *);
1013
1014
1015 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1016 obstack. The memory is freed when the corresponding architecture
1017 is also freed. */
1018
1019 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1020 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1021 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1022
1023
1024 /* Helper function. Force an update of the current architecture.
1025
1026 The actual architecture selected is determined by INFO, \`\`(gdb) set
1027 architecture'' et.al., the existing architecture and BFD's default
1028 architecture. INFO should be initialized to zero and then selected
1029 fields should be updated.
1030
1031 Returns non-zero if the update succeeds */
1032
1033 extern int gdbarch_update_p (struct gdbarch_info info);
1034
1035
1036 /* Helper function. Find an architecture matching info.
1037
1038 INFO should be initialized using gdbarch_info_init, relevant fields
1039 set, and then finished using gdbarch_info_fill.
1040
1041 Returns the corresponding architecture, or NULL if no matching
1042 architecture was found. "current_gdbarch" is not updated. */
1043
1044 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1045
1046
1047 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1048
1049 FIXME: kettenis/20031124: Of the functions that follow, only
1050 gdbarch_from_bfd is supposed to survive. The others will
1051 dissappear since in the future GDB will (hopefully) be truly
1052 multi-arch. However, for now we're still stuck with the concept of
1053 a single active architecture. */
1054
1055 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1056
1057
1058 /* Register per-architecture data-pointer.
1059
1060 Reserve space for a per-architecture data-pointer. An identifier
1061 for the reserved data-pointer is returned. That identifer should
1062 be saved in a local static variable.
1063
1064 Memory for the per-architecture data shall be allocated using
1065 gdbarch_obstack_zalloc. That memory will be deleted when the
1066 corresponding architecture object is deleted.
1067
1068 When a previously created architecture is re-selected, the
1069 per-architecture data-pointer for that previous architecture is
1070 restored. INIT() is not re-called.
1071
1072 Multiple registrarants for any architecture are allowed (and
1073 strongly encouraged). */
1074
1075 struct gdbarch_data;
1076
1077 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1078 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1079 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1080 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1081 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1082 struct gdbarch_data *data,
1083 void *pointer);
1084
1085 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1086
1087
1088 /* Set the dynamic target-system-dependent parameters (architecture,
1089 byte-order, ...) using information found in the BFD */
1090
1091 extern void set_gdbarch_from_file (bfd *);
1092
1093
1094 /* Initialize the current architecture to the "first" one we find on
1095 our list. */
1096
1097 extern void initialize_current_architecture (void);
1098
1099 /* gdbarch trace variable */
1100 extern int gdbarch_debug;
1101
1102 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1103
1104 #endif
1105 EOF
1106 exec 1>&2
1107 #../move-if-change new-gdbarch.h gdbarch.h
1108 compare_new gdbarch.h
1109
1110
1111 #
1112 # C file
1113 #
1114
1115 exec > new-gdbarch.c
1116 copyright
1117 cat <<EOF
1118
1119 #include "defs.h"
1120 #include "arch-utils.h"
1121
1122 #include "gdbcmd.h"
1123 #include "inferior.h"
1124 #include "symcat.h"
1125
1126 #include "floatformat.h"
1127
1128 #include "gdb_assert.h"
1129 #include "gdb_string.h"
1130 #include "gdb-events.h"
1131 #include "reggroups.h"
1132 #include "osabi.h"
1133 #include "gdb_obstack.h"
1134
1135 /* Static function declarations */
1136
1137 static void alloc_gdbarch_data (struct gdbarch *);
1138
1139 /* Non-zero if we want to trace architecture code. */
1140
1141 #ifndef GDBARCH_DEBUG
1142 #define GDBARCH_DEBUG 0
1143 #endif
1144 int gdbarch_debug = GDBARCH_DEBUG;
1145 static void
1146 show_gdbarch_debug (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
1148 {
1149 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1150 }
1151
1152 static const char *
1153 pformat (const struct floatformat **format)
1154 {
1155 if (format == NULL)
1156 return "(null)";
1157 else
1158 /* Just print out one of them - this is only for diagnostics. */
1159 return format[0]->name;
1160 }
1161
1162 EOF
1163
1164 # gdbarch open the gdbarch object
1165 printf "\n"
1166 printf "/* Maintain the struct gdbarch object */\n"
1167 printf "\n"
1168 printf "struct gdbarch\n"
1169 printf "{\n"
1170 printf " /* Has this architecture been fully initialized? */\n"
1171 printf " int initialized_p;\n"
1172 printf "\n"
1173 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1174 printf " struct obstack *obstack;\n"
1175 printf "\n"
1176 printf " /* basic architectural information */\n"
1177 function_list | while do_read
1178 do
1179 if class_is_info_p
1180 then
1181 printf " ${returntype} ${function};\n"
1182 fi
1183 done
1184 printf "\n"
1185 printf " /* target specific vector. */\n"
1186 printf " struct gdbarch_tdep *tdep;\n"
1187 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1188 printf "\n"
1189 printf " /* per-architecture data-pointers */\n"
1190 printf " unsigned nr_data;\n"
1191 printf " void **data;\n"
1192 printf "\n"
1193 printf " /* per-architecture swap-regions */\n"
1194 printf " struct gdbarch_swap *swap;\n"
1195 printf "\n"
1196 cat <<EOF
1197 /* Multi-arch values.
1198
1199 When extending this structure you must:
1200
1201 Add the field below.
1202
1203 Declare set/get functions and define the corresponding
1204 macro in gdbarch.h.
1205
1206 gdbarch_alloc(): If zero/NULL is not a suitable default,
1207 initialize the new field.
1208
1209 verify_gdbarch(): Confirm that the target updated the field
1210 correctly.
1211
1212 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1213 field is dumped out
1214
1215 \`\`startup_gdbarch()'': Append an initial value to the static
1216 variable (base values on the host's c-type system).
1217
1218 get_gdbarch(): Implement the set/get functions (probably using
1219 the macro's as shortcuts).
1220
1221 */
1222
1223 EOF
1224 function_list | while do_read
1225 do
1226 if class_is_variable_p
1227 then
1228 printf " ${returntype} ${function};\n"
1229 elif class_is_function_p
1230 then
1231 printf " gdbarch_${function}_ftype *${function};\n"
1232 fi
1233 done
1234 printf "};\n"
1235
1236 # A pre-initialized vector
1237 printf "\n"
1238 printf "\n"
1239 cat <<EOF
1240 /* The default architecture uses host values (for want of a better
1241 choice). */
1242 EOF
1243 printf "\n"
1244 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1245 printf "\n"
1246 printf "struct gdbarch startup_gdbarch =\n"
1247 printf "{\n"
1248 printf " 1, /* Always initialized. */\n"
1249 printf " NULL, /* The obstack. */\n"
1250 printf " /* basic architecture information */\n"
1251 function_list | while do_read
1252 do
1253 if class_is_info_p
1254 then
1255 printf " ${staticdefault}, /* ${function} */\n"
1256 fi
1257 done
1258 cat <<EOF
1259 /* target specific vector and its dump routine */
1260 NULL, NULL,
1261 /*per-architecture data-pointers and swap regions */
1262 0, NULL, NULL,
1263 /* Multi-arch values */
1264 EOF
1265 function_list | while do_read
1266 do
1267 if class_is_function_p || class_is_variable_p
1268 then
1269 printf " ${staticdefault}, /* ${function} */\n"
1270 fi
1271 done
1272 cat <<EOF
1273 /* startup_gdbarch() */
1274 };
1275
1276 struct gdbarch *current_gdbarch = &startup_gdbarch;
1277 EOF
1278
1279 # Create a new gdbarch struct
1280 cat <<EOF
1281
1282 /* Create a new \`\`struct gdbarch'' based on information provided by
1283 \`\`struct gdbarch_info''. */
1284 EOF
1285 printf "\n"
1286 cat <<EOF
1287 struct gdbarch *
1288 gdbarch_alloc (const struct gdbarch_info *info,
1289 struct gdbarch_tdep *tdep)
1290 {
1291 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1292 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1293 the current local architecture and not the previous global
1294 architecture. This ensures that the new architectures initial
1295 values are not influenced by the previous architecture. Once
1296 everything is parameterised with gdbarch, this will go away. */
1297 struct gdbarch *current_gdbarch;
1298
1299 /* Create an obstack for allocating all the per-architecture memory,
1300 then use that to allocate the architecture vector. */
1301 struct obstack *obstack = XMALLOC (struct obstack);
1302 obstack_init (obstack);
1303 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1304 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1305 current_gdbarch->obstack = obstack;
1306
1307 alloc_gdbarch_data (current_gdbarch);
1308
1309 current_gdbarch->tdep = tdep;
1310 EOF
1311 printf "\n"
1312 function_list | while do_read
1313 do
1314 if class_is_info_p
1315 then
1316 printf " current_gdbarch->${function} = info->${function};\n"
1317 fi
1318 done
1319 printf "\n"
1320 printf " /* Force the explicit initialization of these. */\n"
1321 function_list | while do_read
1322 do
1323 if class_is_function_p || class_is_variable_p
1324 then
1325 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1326 then
1327 printf " current_gdbarch->${function} = ${predefault};\n"
1328 fi
1329 fi
1330 done
1331 cat <<EOF
1332 /* gdbarch_alloc() */
1333
1334 return current_gdbarch;
1335 }
1336 EOF
1337
1338 # Free a gdbarch struct.
1339 printf "\n"
1340 printf "\n"
1341 cat <<EOF
1342 /* Allocate extra space using the per-architecture obstack. */
1343
1344 void *
1345 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1346 {
1347 void *data = obstack_alloc (arch->obstack, size);
1348 memset (data, 0, size);
1349 return data;
1350 }
1351
1352
1353 /* Free a gdbarch struct. This should never happen in normal
1354 operation --- once you've created a gdbarch, you keep it around.
1355 However, if an architecture's init function encounters an error
1356 building the structure, it may need to clean up a partially
1357 constructed gdbarch. */
1358
1359 void
1360 gdbarch_free (struct gdbarch *arch)
1361 {
1362 struct obstack *obstack;
1363 gdb_assert (arch != NULL);
1364 gdb_assert (!arch->initialized_p);
1365 obstack = arch->obstack;
1366 obstack_free (obstack, 0); /* Includes the ARCH. */
1367 xfree (obstack);
1368 }
1369 EOF
1370
1371 # verify a new architecture
1372 cat <<EOF
1373
1374
1375 /* Ensure that all values in a GDBARCH are reasonable. */
1376
1377 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1378 just happens to match the global variable \`\`current_gdbarch''. That
1379 way macros refering to that variable get the local and not the global
1380 version - ulgh. Once everything is parameterised with gdbarch, this
1381 will go away. */
1382
1383 static void
1384 verify_gdbarch (struct gdbarch *current_gdbarch)
1385 {
1386 struct ui_file *log;
1387 struct cleanup *cleanups;
1388 long dummy;
1389 char *buf;
1390 log = mem_fileopen ();
1391 cleanups = make_cleanup_ui_file_delete (log);
1392 /* fundamental */
1393 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1394 fprintf_unfiltered (log, "\n\tbyte-order");
1395 if (current_gdbarch->bfd_arch_info == NULL)
1396 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1397 /* Check those that need to be defined for the given multi-arch level. */
1398 EOF
1399 function_list | while do_read
1400 do
1401 if class_is_function_p || class_is_variable_p
1402 then
1403 if [ "x${invalid_p}" = "x0" ]
1404 then
1405 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1406 elif class_is_predicate_p
1407 then
1408 printf " /* Skip verify of ${function}, has predicate */\n"
1409 # FIXME: See do_read for potential simplification
1410 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1411 then
1412 printf " if (${invalid_p})\n"
1413 printf " current_gdbarch->${function} = ${postdefault};\n"
1414 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1415 then
1416 printf " if (current_gdbarch->${function} == ${predefault})\n"
1417 printf " current_gdbarch->${function} = ${postdefault};\n"
1418 elif [ -n "${postdefault}" ]
1419 then
1420 printf " if (current_gdbarch->${function} == 0)\n"
1421 printf " current_gdbarch->${function} = ${postdefault};\n"
1422 elif [ -n "${invalid_p}" ]
1423 then
1424 printf " if (${invalid_p})\n"
1425 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1426 elif [ -n "${predefault}" ]
1427 then
1428 printf " if (current_gdbarch->${function} == ${predefault})\n"
1429 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1430 fi
1431 fi
1432 done
1433 cat <<EOF
1434 buf = ui_file_xstrdup (log, &dummy);
1435 make_cleanup (xfree, buf);
1436 if (strlen (buf) > 0)
1437 internal_error (__FILE__, __LINE__,
1438 _("verify_gdbarch: the following are invalid ...%s"),
1439 buf);
1440 do_cleanups (cleanups);
1441 }
1442 EOF
1443
1444 # dump the structure
1445 printf "\n"
1446 printf "\n"
1447 cat <<EOF
1448 /* Print out the details of the current architecture. */
1449
1450 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1451 just happens to match the global variable \`\`current_gdbarch''. That
1452 way macros refering to that variable get the local and not the global
1453 version - ulgh. Once everything is parameterised with gdbarch, this
1454 will go away. */
1455
1456 void
1457 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1458 {
1459 const char *gdb_xm_file = "<not-defined>";
1460 const char *gdb_nm_file = "<not-defined>";
1461 const char *gdb_tm_file = "<not-defined>";
1462 #if defined (GDB_XM_FILE)
1463 gdb_xm_file = GDB_XM_FILE;
1464 #endif
1465 fprintf_unfiltered (file,
1466 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1467 gdb_xm_file);
1468 #if defined (GDB_NM_FILE)
1469 gdb_nm_file = GDB_NM_FILE;
1470 #endif
1471 fprintf_unfiltered (file,
1472 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1473 gdb_nm_file);
1474 #if defined (GDB_TM_FILE)
1475 gdb_tm_file = GDB_TM_FILE;
1476 #endif
1477 fprintf_unfiltered (file,
1478 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1479 gdb_tm_file);
1480 EOF
1481 function_list | sort -t: -k 4 | while do_read
1482 do
1483 # First the predicate
1484 if class_is_predicate_p
1485 then
1486 if test -n "${macro}"
1487 then
1488 printf "#ifdef ${macro}_P\n"
1489 printf " fprintf_unfiltered (file,\n"
1490 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1491 printf " \"${macro}_P()\",\n"
1492 printf " XSTRING (${macro}_P ()));\n"
1493 printf "#endif\n"
1494 fi
1495 printf " fprintf_unfiltered (file,\n"
1496 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1497 printf " gdbarch_${function}_p (current_gdbarch));\n"
1498 fi
1499 # Print the macro definition.
1500 if test -n "${macro}"
1501 then
1502 printf "#ifdef ${macro}\n"
1503 if class_is_function_p
1504 then
1505 printf " fprintf_unfiltered (file,\n"
1506 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1507 printf " \"${macro}(${actual})\",\n"
1508 printf " XSTRING (${macro} (${actual})));\n"
1509 else
1510 printf " fprintf_unfiltered (file,\n"
1511 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1512 printf " XSTRING (${macro}));\n"
1513 fi
1514 printf "#endif\n"
1515 fi
1516 # Print the corresponding value.
1517 if class_is_function_p
1518 then
1519 printf " fprintf_unfiltered (file,\n"
1520 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1521 printf " (long) current_gdbarch->${function});\n"
1522 else
1523 # It is a variable
1524 case "${print}:${returntype}" in
1525 :CORE_ADDR )
1526 fmt="0x%s"
1527 print="paddr_nz (current_gdbarch->${function})"
1528 ;;
1529 :* )
1530 fmt="%s"
1531 print="paddr_d (current_gdbarch->${function})"
1532 ;;
1533 * )
1534 fmt="%s"
1535 ;;
1536 esac
1537 printf " fprintf_unfiltered (file,\n"
1538 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1539 printf " ${print});\n"
1540 fi
1541 done
1542 cat <<EOF
1543 if (current_gdbarch->dump_tdep != NULL)
1544 current_gdbarch->dump_tdep (current_gdbarch, file);
1545 }
1546 EOF
1547
1548
1549 # GET/SET
1550 printf "\n"
1551 cat <<EOF
1552 struct gdbarch_tdep *
1553 gdbarch_tdep (struct gdbarch *gdbarch)
1554 {
1555 if (gdbarch_debug >= 2)
1556 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1557 return gdbarch->tdep;
1558 }
1559 EOF
1560 printf "\n"
1561 function_list | while do_read
1562 do
1563 if class_is_predicate_p
1564 then
1565 printf "\n"
1566 printf "int\n"
1567 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1568 printf "{\n"
1569 printf " gdb_assert (gdbarch != NULL);\n"
1570 printf " return ${predicate};\n"
1571 printf "}\n"
1572 fi
1573 if class_is_function_p
1574 then
1575 printf "\n"
1576 printf "${returntype}\n"
1577 if [ "x${formal}" = "xvoid" ]
1578 then
1579 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1580 else
1581 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1582 fi
1583 printf "{\n"
1584 printf " gdb_assert (gdbarch != NULL);\n"
1585 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1586 if class_is_predicate_p && test -n "${predefault}"
1587 then
1588 # Allow a call to a function with a predicate.
1589 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1590 fi
1591 printf " if (gdbarch_debug >= 2)\n"
1592 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1593 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1594 then
1595 if class_is_multiarch_p
1596 then
1597 params="gdbarch"
1598 else
1599 params=""
1600 fi
1601 else
1602 if class_is_multiarch_p
1603 then
1604 params="gdbarch, ${actual}"
1605 else
1606 params="${actual}"
1607 fi
1608 fi
1609 if [ "x${returntype}" = "xvoid" ]
1610 then
1611 printf " gdbarch->${function} (${params});\n"
1612 else
1613 printf " return gdbarch->${function} (${params});\n"
1614 fi
1615 printf "}\n"
1616 printf "\n"
1617 printf "void\n"
1618 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1619 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1620 printf "{\n"
1621 printf " gdbarch->${function} = ${function};\n"
1622 printf "}\n"
1623 elif class_is_variable_p
1624 then
1625 printf "\n"
1626 printf "${returntype}\n"
1627 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1628 printf "{\n"
1629 printf " gdb_assert (gdbarch != NULL);\n"
1630 if [ "x${invalid_p}" = "x0" ]
1631 then
1632 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1633 elif [ -n "${invalid_p}" ]
1634 then
1635 printf " /* Check variable is valid. */\n"
1636 printf " gdb_assert (!(${invalid_p}));\n"
1637 elif [ -n "${predefault}" ]
1638 then
1639 printf " /* Check variable changed from pre-default. */\n"
1640 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1641 fi
1642 printf " if (gdbarch_debug >= 2)\n"
1643 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1644 printf " return gdbarch->${function};\n"
1645 printf "}\n"
1646 printf "\n"
1647 printf "void\n"
1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1649 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1650 printf "{\n"
1651 printf " gdbarch->${function} = ${function};\n"
1652 printf "}\n"
1653 elif class_is_info_p
1654 then
1655 printf "\n"
1656 printf "${returntype}\n"
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1658 printf "{\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 printf " if (gdbarch_debug >= 2)\n"
1661 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1662 printf " return gdbarch->${function};\n"
1663 printf "}\n"
1664 fi
1665 done
1666
1667 # All the trailing guff
1668 cat <<EOF
1669
1670
1671 /* Keep a registry of per-architecture data-pointers required by GDB
1672 modules. */
1673
1674 struct gdbarch_data
1675 {
1676 unsigned index;
1677 int init_p;
1678 gdbarch_data_pre_init_ftype *pre_init;
1679 gdbarch_data_post_init_ftype *post_init;
1680 };
1681
1682 struct gdbarch_data_registration
1683 {
1684 struct gdbarch_data *data;
1685 struct gdbarch_data_registration *next;
1686 };
1687
1688 struct gdbarch_data_registry
1689 {
1690 unsigned nr;
1691 struct gdbarch_data_registration *registrations;
1692 };
1693
1694 struct gdbarch_data_registry gdbarch_data_registry =
1695 {
1696 0, NULL,
1697 };
1698
1699 static struct gdbarch_data *
1700 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1701 gdbarch_data_post_init_ftype *post_init)
1702 {
1703 struct gdbarch_data_registration **curr;
1704 /* Append the new registraration. */
1705 for (curr = &gdbarch_data_registry.registrations;
1706 (*curr) != NULL;
1707 curr = &(*curr)->next);
1708 (*curr) = XMALLOC (struct gdbarch_data_registration);
1709 (*curr)->next = NULL;
1710 (*curr)->data = XMALLOC (struct gdbarch_data);
1711 (*curr)->data->index = gdbarch_data_registry.nr++;
1712 (*curr)->data->pre_init = pre_init;
1713 (*curr)->data->post_init = post_init;
1714 (*curr)->data->init_p = 1;
1715 return (*curr)->data;
1716 }
1717
1718 struct gdbarch_data *
1719 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1720 {
1721 return gdbarch_data_register (pre_init, NULL);
1722 }
1723
1724 struct gdbarch_data *
1725 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1726 {
1727 return gdbarch_data_register (NULL, post_init);
1728 }
1729
1730 /* Create/delete the gdbarch data vector. */
1731
1732 static void
1733 alloc_gdbarch_data (struct gdbarch *gdbarch)
1734 {
1735 gdb_assert (gdbarch->data == NULL);
1736 gdbarch->nr_data = gdbarch_data_registry.nr;
1737 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1738 }
1739
1740 /* Initialize the current value of the specified per-architecture
1741 data-pointer. */
1742
1743 void
1744 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1745 struct gdbarch_data *data,
1746 void *pointer)
1747 {
1748 gdb_assert (data->index < gdbarch->nr_data);
1749 gdb_assert (gdbarch->data[data->index] == NULL);
1750 gdb_assert (data->pre_init == NULL);
1751 gdbarch->data[data->index] = pointer;
1752 }
1753
1754 /* Return the current value of the specified per-architecture
1755 data-pointer. */
1756
1757 void *
1758 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1759 {
1760 gdb_assert (data->index < gdbarch->nr_data);
1761 if (gdbarch->data[data->index] == NULL)
1762 {
1763 /* The data-pointer isn't initialized, call init() to get a
1764 value. */
1765 if (data->pre_init != NULL)
1766 /* Mid architecture creation: pass just the obstack, and not
1767 the entire architecture, as that way it isn't possible for
1768 pre-init code to refer to undefined architecture
1769 fields. */
1770 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1771 else if (gdbarch->initialized_p
1772 && data->post_init != NULL)
1773 /* Post architecture creation: pass the entire architecture
1774 (as all fields are valid), but be careful to also detect
1775 recursive references. */
1776 {
1777 gdb_assert (data->init_p);
1778 data->init_p = 0;
1779 gdbarch->data[data->index] = data->post_init (gdbarch);
1780 data->init_p = 1;
1781 }
1782 else
1783 /* The architecture initialization hasn't completed - punt -
1784 hope that the caller knows what they are doing. Once
1785 deprecated_set_gdbarch_data has been initialized, this can be
1786 changed to an internal error. */
1787 return NULL;
1788 gdb_assert (gdbarch->data[data->index] != NULL);
1789 }
1790 return gdbarch->data[data->index];
1791 }
1792
1793
1794 /* Keep a registry of the architectures known by GDB. */
1795
1796 struct gdbarch_registration
1797 {
1798 enum bfd_architecture bfd_architecture;
1799 gdbarch_init_ftype *init;
1800 gdbarch_dump_tdep_ftype *dump_tdep;
1801 struct gdbarch_list *arches;
1802 struct gdbarch_registration *next;
1803 };
1804
1805 static struct gdbarch_registration *gdbarch_registry = NULL;
1806
1807 static void
1808 append_name (const char ***buf, int *nr, const char *name)
1809 {
1810 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1811 (*buf)[*nr] = name;
1812 *nr += 1;
1813 }
1814
1815 const char **
1816 gdbarch_printable_names (void)
1817 {
1818 /* Accumulate a list of names based on the registed list of
1819 architectures. */
1820 enum bfd_architecture a;
1821 int nr_arches = 0;
1822 const char **arches = NULL;
1823 struct gdbarch_registration *rego;
1824 for (rego = gdbarch_registry;
1825 rego != NULL;
1826 rego = rego->next)
1827 {
1828 const struct bfd_arch_info *ap;
1829 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1830 if (ap == NULL)
1831 internal_error (__FILE__, __LINE__,
1832 _("gdbarch_architecture_names: multi-arch unknown"));
1833 do
1834 {
1835 append_name (&arches, &nr_arches, ap->printable_name);
1836 ap = ap->next;
1837 }
1838 while (ap != NULL);
1839 }
1840 append_name (&arches, &nr_arches, NULL);
1841 return arches;
1842 }
1843
1844
1845 void
1846 gdbarch_register (enum bfd_architecture bfd_architecture,
1847 gdbarch_init_ftype *init,
1848 gdbarch_dump_tdep_ftype *dump_tdep)
1849 {
1850 struct gdbarch_registration **curr;
1851 const struct bfd_arch_info *bfd_arch_info;
1852 /* Check that BFD recognizes this architecture */
1853 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1854 if (bfd_arch_info == NULL)
1855 {
1856 internal_error (__FILE__, __LINE__,
1857 _("gdbarch: Attempt to register unknown architecture (%d)"),
1858 bfd_architecture);
1859 }
1860 /* Check that we haven't seen this architecture before */
1861 for (curr = &gdbarch_registry;
1862 (*curr) != NULL;
1863 curr = &(*curr)->next)
1864 {
1865 if (bfd_architecture == (*curr)->bfd_architecture)
1866 internal_error (__FILE__, __LINE__,
1867 _("gdbarch: Duplicate registraration of architecture (%s)"),
1868 bfd_arch_info->printable_name);
1869 }
1870 /* log it */
1871 if (gdbarch_debug)
1872 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1873 bfd_arch_info->printable_name,
1874 (long) init);
1875 /* Append it */
1876 (*curr) = XMALLOC (struct gdbarch_registration);
1877 (*curr)->bfd_architecture = bfd_architecture;
1878 (*curr)->init = init;
1879 (*curr)->dump_tdep = dump_tdep;
1880 (*curr)->arches = NULL;
1881 (*curr)->next = NULL;
1882 }
1883
1884 void
1885 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1886 gdbarch_init_ftype *init)
1887 {
1888 gdbarch_register (bfd_architecture, init, NULL);
1889 }
1890
1891
1892 /* Look for an architecture using gdbarch_info. */
1893
1894 struct gdbarch_list *
1895 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1896 const struct gdbarch_info *info)
1897 {
1898 for (; arches != NULL; arches = arches->next)
1899 {
1900 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1901 continue;
1902 if (info->byte_order != arches->gdbarch->byte_order)
1903 continue;
1904 if (info->osabi != arches->gdbarch->osabi)
1905 continue;
1906 if (info->target_desc != arches->gdbarch->target_desc)
1907 continue;
1908 return arches;
1909 }
1910 return NULL;
1911 }
1912
1913
1914 /* Find an architecture that matches the specified INFO. Create a new
1915 architecture if needed. Return that new architecture. Assumes
1916 that there is no current architecture. */
1917
1918 static struct gdbarch *
1919 find_arch_by_info (struct gdbarch_info info)
1920 {
1921 struct gdbarch *new_gdbarch;
1922 struct gdbarch_registration *rego;
1923
1924 /* The existing architecture has been swapped out - all this code
1925 works from a clean slate. */
1926 gdb_assert (current_gdbarch == NULL);
1927
1928 /* Fill in missing parts of the INFO struct using a number of
1929 sources: "set ..."; INFOabfd supplied; and the global
1930 defaults. */
1931 gdbarch_info_fill (&info);
1932
1933 /* Must have found some sort of architecture. */
1934 gdb_assert (info.bfd_arch_info != NULL);
1935
1936 if (gdbarch_debug)
1937 {
1938 fprintf_unfiltered (gdb_stdlog,
1939 "find_arch_by_info: info.bfd_arch_info %s\n",
1940 (info.bfd_arch_info != NULL
1941 ? info.bfd_arch_info->printable_name
1942 : "(null)"));
1943 fprintf_unfiltered (gdb_stdlog,
1944 "find_arch_by_info: info.byte_order %d (%s)\n",
1945 info.byte_order,
1946 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1947 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1948 : "default"));
1949 fprintf_unfiltered (gdb_stdlog,
1950 "find_arch_by_info: info.osabi %d (%s)\n",
1951 info.osabi, gdbarch_osabi_name (info.osabi));
1952 fprintf_unfiltered (gdb_stdlog,
1953 "find_arch_by_info: info.abfd 0x%lx\n",
1954 (long) info.abfd);
1955 fprintf_unfiltered (gdb_stdlog,
1956 "find_arch_by_info: info.tdep_info 0x%lx\n",
1957 (long) info.tdep_info);
1958 }
1959
1960 /* Find the tdep code that knows about this architecture. */
1961 for (rego = gdbarch_registry;
1962 rego != NULL;
1963 rego = rego->next)
1964 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1965 break;
1966 if (rego == NULL)
1967 {
1968 if (gdbarch_debug)
1969 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1970 "No matching architecture\n");
1971 return 0;
1972 }
1973
1974 /* Ask the tdep code for an architecture that matches "info". */
1975 new_gdbarch = rego->init (info, rego->arches);
1976
1977 /* Did the tdep code like it? No. Reject the change and revert to
1978 the old architecture. */
1979 if (new_gdbarch == NULL)
1980 {
1981 if (gdbarch_debug)
1982 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1983 "Target rejected architecture\n");
1984 return NULL;
1985 }
1986
1987 /* Is this a pre-existing architecture (as determined by already
1988 being initialized)? Move it to the front of the architecture
1989 list (keeping the list sorted Most Recently Used). */
1990 if (new_gdbarch->initialized_p)
1991 {
1992 struct gdbarch_list **list;
1993 struct gdbarch_list *this;
1994 if (gdbarch_debug)
1995 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1996 "Previous architecture 0x%08lx (%s) selected\n",
1997 (long) new_gdbarch,
1998 new_gdbarch->bfd_arch_info->printable_name);
1999 /* Find the existing arch in the list. */
2000 for (list = &rego->arches;
2001 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2002 list = &(*list)->next);
2003 /* It had better be in the list of architectures. */
2004 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2005 /* Unlink THIS. */
2006 this = (*list);
2007 (*list) = this->next;
2008 /* Insert THIS at the front. */
2009 this->next = rego->arches;
2010 rego->arches = this;
2011 /* Return it. */
2012 return new_gdbarch;
2013 }
2014
2015 /* It's a new architecture. */
2016 if (gdbarch_debug)
2017 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2018 "New architecture 0x%08lx (%s) selected\n",
2019 (long) new_gdbarch,
2020 new_gdbarch->bfd_arch_info->printable_name);
2021
2022 /* Insert the new architecture into the front of the architecture
2023 list (keep the list sorted Most Recently Used). */
2024 {
2025 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2026 this->next = rego->arches;
2027 this->gdbarch = new_gdbarch;
2028 rego->arches = this;
2029 }
2030
2031 /* Check that the newly installed architecture is valid. Plug in
2032 any post init values. */
2033 new_gdbarch->dump_tdep = rego->dump_tdep;
2034 verify_gdbarch (new_gdbarch);
2035 new_gdbarch->initialized_p = 1;
2036
2037 if (gdbarch_debug)
2038 gdbarch_dump (new_gdbarch, gdb_stdlog);
2039
2040 return new_gdbarch;
2041 }
2042
2043 struct gdbarch *
2044 gdbarch_find_by_info (struct gdbarch_info info)
2045 {
2046 struct gdbarch *new_gdbarch;
2047
2048 /* Save the previously selected architecture, setting the global to
2049 NULL. This stops things like gdbarch->init() trying to use the
2050 previous architecture's configuration. The previous architecture
2051 may not even be of the same architecture family. The most recent
2052 architecture of the same family is found at the head of the
2053 rego->arches list. */
2054 struct gdbarch *old_gdbarch = current_gdbarch;
2055 current_gdbarch = NULL;
2056
2057 /* Find the specified architecture. */
2058 new_gdbarch = find_arch_by_info (info);
2059
2060 /* Restore the existing architecture. */
2061 gdb_assert (current_gdbarch == NULL);
2062 current_gdbarch = old_gdbarch;
2063
2064 return new_gdbarch;
2065 }
2066
2067 /* Make the specified architecture current. */
2068
2069 void
2070 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2071 {
2072 gdb_assert (new_gdbarch != NULL);
2073 gdb_assert (current_gdbarch != NULL);
2074 gdb_assert (new_gdbarch->initialized_p);
2075 current_gdbarch = new_gdbarch;
2076 architecture_changed_event ();
2077 reinit_frame_cache ();
2078 }
2079
2080 extern void _initialize_gdbarch (void);
2081
2082 void
2083 _initialize_gdbarch (void)
2084 {
2085 struct cmd_list_element *c;
2086
2087 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2088 Set architecture debugging."), _("\\
2089 Show architecture debugging."), _("\\
2090 When non-zero, architecture debugging is enabled."),
2091 NULL,
2092 show_gdbarch_debug,
2093 &setdebuglist, &showdebuglist);
2094 }
2095 EOF
2096
2097 # close things off
2098 exec 1>&2
2099 #../move-if-change new-gdbarch.c gdbarch.c
2100 compare_new gdbarch.c
This page took 0.07482 seconds and 5 git commands to generate.