* breakpoint.c (insert_breakpoints, breakpoint_init_inferior)
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # When creating core dumps, some systems encode the PID in addition
604 # to the LWP id in core file register section names. In those cases, the
605 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
606 # is set to true for such architectures; false if "XXX" represents an LWP
607 # or thread id with no special encoding.
608 v:int:core_reg_section_encodes_pid:::0:0::0
609
610 # Supported register notes in a core file.
611 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
612
613 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
614 # core file into buffer READBUF with length LEN.
615 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
616
617 # How the core_stratum layer converts a PTID from a core file to a
618 # string.
619 M:char *:core_pid_to_str:ptid_t ptid:ptid
620
621 # If the elements of C++ vtables are in-place function descriptors rather
622 # than normal function pointers (which may point to code or a descriptor),
623 # set this to one.
624 v:int:vtable_function_descriptors:::0:0::0
625
626 # Set if the least significant bit of the delta is used instead of the least
627 # significant bit of the pfn for pointers to virtual member functions.
628 v:int:vbit_in_delta:::0:0::0
629
630 # Advance PC to next instruction in order to skip a permanent breakpoint.
631 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
632
633 # The maximum length of an instruction on this architecture.
634 V:ULONGEST:max_insn_length:::0:0
635
636 # Copy the instruction at FROM to TO, and make any adjustments
637 # necessary to single-step it at that address.
638 #
639 # REGS holds the state the thread's registers will have before
640 # executing the copied instruction; the PC in REGS will refer to FROM,
641 # not the copy at TO. The caller should update it to point at TO later.
642 #
643 # Return a pointer to data of the architecture's choice to be passed
644 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
645 # the instruction's effects have been completely simulated, with the
646 # resulting state written back to REGS.
647 #
648 # For a general explanation of displaced stepping and how GDB uses it,
649 # see the comments in infrun.c.
650 #
651 # The TO area is only guaranteed to have space for
652 # gdbarch_max_insn_length (arch) bytes, so this function must not
653 # write more bytes than that to that area.
654 #
655 # If you do not provide this function, GDB assumes that the
656 # architecture does not support displaced stepping.
657 #
658 # If your architecture doesn't need to adjust instructions before
659 # single-stepping them, consider using simple_displaced_step_copy_insn
660 # here.
661 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
662
663 # Fix up the state resulting from successfully single-stepping a
664 # displaced instruction, to give the result we would have gotten from
665 # stepping the instruction in its original location.
666 #
667 # REGS is the register state resulting from single-stepping the
668 # displaced instruction.
669 #
670 # CLOSURE is the result from the matching call to
671 # gdbarch_displaced_step_copy_insn.
672 #
673 # If you provide gdbarch_displaced_step_copy_insn.but not this
674 # function, then GDB assumes that no fixup is needed after
675 # single-stepping the instruction.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
680
681 # Free a closure returned by gdbarch_displaced_step_copy_insn.
682 #
683 # If you provide gdbarch_displaced_step_copy_insn, you must provide
684 # this function as well.
685 #
686 # If your architecture uses closures that don't need to be freed, then
687 # you can use simple_displaced_step_free_closure here.
688 #
689 # For a general explanation of displaced stepping and how GDB uses it,
690 # see the comments in infrun.c.
691 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
692
693 # Return the address of an appropriate place to put displaced
694 # instructions while we step over them. There need only be one such
695 # place, since we're only stepping one thread over a breakpoint at a
696 # time.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
701
702 # Refresh overlay mapped state for section OSECT.
703 F:void:overlay_update:struct obj_section *osect:osect
704
705 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
706
707 # Handle special encoding of static variables in stabs debug info.
708 F:char *:static_transform_name:char *name:name
709 # Set if the address in N_SO or N_FUN stabs may be zero.
710 v:int:sofun_address_maybe_missing:::0:0::0
711
712 # Parse the instruction at ADDR storing in the record execution log
713 # the registers REGCACHE and memory ranges that will be affected when
714 # the instruction executes, along with their current values.
715 # Return -1 if something goes wrong, 0 otherwise.
716 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
717
718 # Signal translation: translate inferior's signal (host's) number into
719 # GDB's representation.
720 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
721 # Signal translation: translate GDB's signal number into inferior's host
722 # signal number.
723 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
724
725 # Extra signal info inspection.
726 #
727 # Return a type suitable to inspect extra signal information.
728 M:struct type *:get_siginfo_type:void:
729
730 # Record architecture-specific information from the symbol table.
731 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
732
733 # True if the list of shared libraries is one and only for all
734 # processes, as opposed to a list of shared libraries per inferior.
735 # This usually means that all processes, although may or may not share
736 # an address space, will see the same set of symbols at the same
737 # addresses.
738 v:int:has_global_solist:::0:0::0
739
740 # On some targets, even though each inferior has its own private
741 # address space, the debug interface takes care of making breakpoints
742 # visible to all address spaces automatically. For such cases,
743 # this property should be set to true.
744 v:int:has_global_breakpoints:::0:0::0
745 EOF
746 }
747
748 #
749 # The .log file
750 #
751 exec > new-gdbarch.log
752 function_list | while do_read
753 do
754 cat <<EOF
755 ${class} ${returntype} ${function} ($formal)
756 EOF
757 for r in ${read}
758 do
759 eval echo \"\ \ \ \ ${r}=\${${r}}\"
760 done
761 if class_is_predicate_p && fallback_default_p
762 then
763 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
764 kill $$
765 exit 1
766 fi
767 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
768 then
769 echo "Error: postdefault is useless when invalid_p=0" 1>&2
770 kill $$
771 exit 1
772 fi
773 if class_is_multiarch_p
774 then
775 if class_is_predicate_p ; then :
776 elif test "x${predefault}" = "x"
777 then
778 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
779 kill $$
780 exit 1
781 fi
782 fi
783 echo ""
784 done
785
786 exec 1>&2
787 compare_new gdbarch.log
788
789
790 copyright ()
791 {
792 cat <<EOF
793 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
794
795 /* Dynamic architecture support for GDB, the GNU debugger.
796
797 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
798 Free Software Foundation, Inc.
799
800 This file is part of GDB.
801
802 This program is free software; you can redistribute it and/or modify
803 it under the terms of the GNU General Public License as published by
804 the Free Software Foundation; either version 3 of the License, or
805 (at your option) any later version.
806
807 This program is distributed in the hope that it will be useful,
808 but WITHOUT ANY WARRANTY; without even the implied warranty of
809 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
810 GNU General Public License for more details.
811
812 You should have received a copy of the GNU General Public License
813 along with this program. If not, see <http://www.gnu.org/licenses/>. */
814
815 /* This file was created with the aid of \`\`gdbarch.sh''.
816
817 The Bourne shell script \`\`gdbarch.sh'' creates the files
818 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
819 against the existing \`\`gdbarch.[hc]''. Any differences found
820 being reported.
821
822 If editing this file, please also run gdbarch.sh and merge any
823 changes into that script. Conversely, when making sweeping changes
824 to this file, modifying gdbarch.sh and using its output may prove
825 easier. */
826
827 EOF
828 }
829
830 #
831 # The .h file
832 #
833
834 exec > new-gdbarch.h
835 copyright
836 cat <<EOF
837 #ifndef GDBARCH_H
838 #define GDBARCH_H
839
840 struct floatformat;
841 struct ui_file;
842 struct frame_info;
843 struct value;
844 struct objfile;
845 struct obj_section;
846 struct minimal_symbol;
847 struct regcache;
848 struct reggroup;
849 struct regset;
850 struct disassemble_info;
851 struct target_ops;
852 struct obstack;
853 struct bp_target_info;
854 struct target_desc;
855 struct displaced_step_closure;
856 struct core_regset_section;
857
858 extern struct gdbarch *current_gdbarch;
859
860 /* The architecture associated with the connection to the target.
861
862 The architecture vector provides some information that is really
863 a property of the target: The layout of certain packets, for instance;
864 or the solib_ops vector. Etc. To differentiate architecture accesses
865 to per-target properties from per-thread/per-frame/per-objfile properties,
866 accesses to per-target properties should be made through target_gdbarch.
867
868 Eventually, when support for multiple targets is implemented in
869 GDB, this global should be made target-specific. */
870 extern struct gdbarch *target_gdbarch;
871 EOF
872
873 # function typedef's
874 printf "\n"
875 printf "\n"
876 printf "/* The following are pre-initialized by GDBARCH. */\n"
877 function_list | while do_read
878 do
879 if class_is_info_p
880 then
881 printf "\n"
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
883 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
884 fi
885 done
886
887 # function typedef's
888 printf "\n"
889 printf "\n"
890 printf "/* The following are initialized by the target dependent code. */\n"
891 function_list | while do_read
892 do
893 if [ -n "${comment}" ]
894 then
895 echo "${comment}" | sed \
896 -e '2 s,#,/*,' \
897 -e '3,$ s,#, ,' \
898 -e '$ s,$, */,'
899 fi
900
901 if class_is_predicate_p
902 then
903 printf "\n"
904 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
905 fi
906 if class_is_variable_p
907 then
908 printf "\n"
909 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
910 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
911 fi
912 if class_is_function_p
913 then
914 printf "\n"
915 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
916 then
917 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
918 elif class_is_multiarch_p
919 then
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
921 else
922 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
923 fi
924 if [ "x${formal}" = "xvoid" ]
925 then
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
927 else
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
929 fi
930 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
931 fi
932 done
933
934 # close it off
935 cat <<EOF
936
937 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
938
939
940 /* Mechanism for co-ordinating the selection of a specific
941 architecture.
942
943 GDB targets (*-tdep.c) can register an interest in a specific
944 architecture. Other GDB components can register a need to maintain
945 per-architecture data.
946
947 The mechanisms below ensures that there is only a loose connection
948 between the set-architecture command and the various GDB
949 components. Each component can independently register their need
950 to maintain architecture specific data with gdbarch.
951
952 Pragmatics:
953
954 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
955 didn't scale.
956
957 The more traditional mega-struct containing architecture specific
958 data for all the various GDB components was also considered. Since
959 GDB is built from a variable number of (fairly independent)
960 components it was determined that the global aproach was not
961 applicable. */
962
963
964 /* Register a new architectural family with GDB.
965
966 Register support for the specified ARCHITECTURE with GDB. When
967 gdbarch determines that the specified architecture has been
968 selected, the corresponding INIT function is called.
969
970 --
971
972 The INIT function takes two parameters: INFO which contains the
973 information available to gdbarch about the (possibly new)
974 architecture; ARCHES which is a list of the previously created
975 \`\`struct gdbarch'' for this architecture.
976
977 The INFO parameter is, as far as possible, be pre-initialized with
978 information obtained from INFO.ABFD or the global defaults.
979
980 The ARCHES parameter is a linked list (sorted most recently used)
981 of all the previously created architures for this architecture
982 family. The (possibly NULL) ARCHES->gdbarch can used to access
983 values from the previously selected architecture for this
984 architecture family. The global \`\`current_gdbarch'' shall not be
985 used.
986
987 The INIT function shall return any of: NULL - indicating that it
988 doesn't recognize the selected architecture; an existing \`\`struct
989 gdbarch'' from the ARCHES list - indicating that the new
990 architecture is just a synonym for an earlier architecture (see
991 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
992 - that describes the selected architecture (see gdbarch_alloc()).
993
994 The DUMP_TDEP function shall print out all target specific values.
995 Care should be taken to ensure that the function works in both the
996 multi-arch and non- multi-arch cases. */
997
998 struct gdbarch_list
999 {
1000 struct gdbarch *gdbarch;
1001 struct gdbarch_list *next;
1002 };
1003
1004 struct gdbarch_info
1005 {
1006 /* Use default: NULL (ZERO). */
1007 const struct bfd_arch_info *bfd_arch_info;
1008
1009 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1010 int byte_order;
1011
1012 int byte_order_for_code;
1013
1014 /* Use default: NULL (ZERO). */
1015 bfd *abfd;
1016
1017 /* Use default: NULL (ZERO). */
1018 struct gdbarch_tdep_info *tdep_info;
1019
1020 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1021 enum gdb_osabi osabi;
1022
1023 /* Use default: NULL (ZERO). */
1024 const struct target_desc *target_desc;
1025 };
1026
1027 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1028 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1029
1030 /* DEPRECATED - use gdbarch_register() */
1031 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
1033 extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
1037
1038 /* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043 extern const char **gdbarch_printable_names (void);
1044
1045
1046 /* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
1049 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1050
1051
1052 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1053 basic initialization using values obtained from the INFO and TDEP
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
1060 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
1064 extern void gdbarch_free (struct gdbarch *);
1065
1066
1067 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1068 obstack. The memory is freed when the corresponding architecture
1069 is also freed. */
1070
1071 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1072 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1073 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1074
1075
1076 /* Helper function. Force an update of the current architecture.
1077
1078 The actual architecture selected is determined by INFO, \`\`(gdb) set
1079 architecture'' et.al., the existing architecture and BFD's default
1080 architecture. INFO should be initialized to zero and then selected
1081 fields should be updated.
1082
1083 Returns non-zero if the update succeeds */
1084
1085 extern int gdbarch_update_p (struct gdbarch_info info);
1086
1087
1088 /* Helper function. Find an architecture matching info.
1089
1090 INFO should be initialized using gdbarch_info_init, relevant fields
1091 set, and then finished using gdbarch_info_fill.
1092
1093 Returns the corresponding architecture, or NULL if no matching
1094 architecture was found. "current_gdbarch" is not updated. */
1095
1096 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1097
1098
1099 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1100
1101 FIXME: kettenis/20031124: Of the functions that follow, only
1102 gdbarch_from_bfd is supposed to survive. The others will
1103 dissappear since in the future GDB will (hopefully) be truly
1104 multi-arch. However, for now we're still stuck with the concept of
1105 a single active architecture. */
1106
1107 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1108
1109
1110 /* Register per-architecture data-pointer.
1111
1112 Reserve space for a per-architecture data-pointer. An identifier
1113 for the reserved data-pointer is returned. That identifer should
1114 be saved in a local static variable.
1115
1116 Memory for the per-architecture data shall be allocated using
1117 gdbarch_obstack_zalloc. That memory will be deleted when the
1118 corresponding architecture object is deleted.
1119
1120 When a previously created architecture is re-selected, the
1121 per-architecture data-pointer for that previous architecture is
1122 restored. INIT() is not re-called.
1123
1124 Multiple registrarants for any architecture are allowed (and
1125 strongly encouraged). */
1126
1127 struct gdbarch_data;
1128
1129 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1130 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1131 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1132 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1133 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1134 struct gdbarch_data *data,
1135 void *pointer);
1136
1137 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1138
1139
1140 /* Set the dynamic target-system-dependent parameters (architecture,
1141 byte-order, ...) using information found in the BFD */
1142
1143 extern void set_gdbarch_from_file (bfd *);
1144
1145
1146 /* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149 extern void initialize_current_architecture (void);
1150
1151 /* gdbarch trace variable */
1152 extern int gdbarch_debug;
1153
1154 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1155
1156 #endif
1157 EOF
1158 exec 1>&2
1159 #../move-if-change new-gdbarch.h gdbarch.h
1160 compare_new gdbarch.h
1161
1162
1163 #
1164 # C file
1165 #
1166
1167 exec > new-gdbarch.c
1168 copyright
1169 cat <<EOF
1170
1171 #include "defs.h"
1172 #include "arch-utils.h"
1173
1174 #include "gdbcmd.h"
1175 #include "inferior.h"
1176 #include "symcat.h"
1177
1178 #include "floatformat.h"
1179
1180 #include "gdb_assert.h"
1181 #include "gdb_string.h"
1182 #include "reggroups.h"
1183 #include "osabi.h"
1184 #include "gdb_obstack.h"
1185 #include "observer.h"
1186 #include "regcache.h"
1187
1188 /* Static function declarations */
1189
1190 static void alloc_gdbarch_data (struct gdbarch *);
1191
1192 /* Non-zero if we want to trace architecture code. */
1193
1194 #ifndef GDBARCH_DEBUG
1195 #define GDBARCH_DEBUG 0
1196 #endif
1197 int gdbarch_debug = GDBARCH_DEBUG;
1198 static void
1199 show_gdbarch_debug (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c, const char *value)
1201 {
1202 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1203 }
1204
1205 static const char *
1206 pformat (const struct floatformat **format)
1207 {
1208 if (format == NULL)
1209 return "(null)";
1210 else
1211 /* Just print out one of them - this is only for diagnostics. */
1212 return format[0]->name;
1213 }
1214
1215 EOF
1216
1217 # gdbarch open the gdbarch object
1218 printf "\n"
1219 printf "/* Maintain the struct gdbarch object */\n"
1220 printf "\n"
1221 printf "struct gdbarch\n"
1222 printf "{\n"
1223 printf " /* Has this architecture been fully initialized? */\n"
1224 printf " int initialized_p;\n"
1225 printf "\n"
1226 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1227 printf " struct obstack *obstack;\n"
1228 printf "\n"
1229 printf " /* basic architectural information */\n"
1230 function_list | while do_read
1231 do
1232 if class_is_info_p
1233 then
1234 printf " ${returntype} ${function};\n"
1235 fi
1236 done
1237 printf "\n"
1238 printf " /* target specific vector. */\n"
1239 printf " struct gdbarch_tdep *tdep;\n"
1240 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241 printf "\n"
1242 printf " /* per-architecture data-pointers */\n"
1243 printf " unsigned nr_data;\n"
1244 printf " void **data;\n"
1245 printf "\n"
1246 printf " /* per-architecture swap-regions */\n"
1247 printf " struct gdbarch_swap *swap;\n"
1248 printf "\n"
1249 cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1266 field is dumped out
1267
1268 \`\`startup_gdbarch()'': Append an initial value to the static
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276 EOF
1277 function_list | while do_read
1278 do
1279 if class_is_variable_p
1280 then
1281 printf " ${returntype} ${function};\n"
1282 elif class_is_function_p
1283 then
1284 printf " gdbarch_${function}_ftype *${function};\n"
1285 fi
1286 done
1287 printf "};\n"
1288
1289 # A pre-initialized vector
1290 printf "\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* The default architecture uses host values (for want of a better
1294 choice). */
1295 EOF
1296 printf "\n"
1297 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298 printf "\n"
1299 printf "struct gdbarch startup_gdbarch =\n"
1300 printf "{\n"
1301 printf " 1, /* Always initialized. */\n"
1302 printf " NULL, /* The obstack. */\n"
1303 printf " /* basic architecture information */\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " ${staticdefault}, /* ${function} */\n"
1309 fi
1310 done
1311 cat <<EOF
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317 EOF
1318 function_list | while do_read
1319 do
1320 if class_is_function_p || class_is_variable_p
1321 then
1322 printf " ${staticdefault}, /* ${function} */\n"
1323 fi
1324 done
1325 cat <<EOF
1326 /* startup_gdbarch() */
1327 };
1328
1329 struct gdbarch *current_gdbarch = &startup_gdbarch;
1330 struct gdbarch *target_gdbarch = &startup_gdbarch;
1331 EOF
1332
1333 # Create a new gdbarch struct
1334 cat <<EOF
1335
1336 /* Create a new \`\`struct gdbarch'' based on information provided by
1337 \`\`struct gdbarch_info''. */
1338 EOF
1339 printf "\n"
1340 cat <<EOF
1341 struct gdbarch *
1342 gdbarch_alloc (const struct gdbarch_info *info,
1343 struct gdbarch_tdep *tdep)
1344 {
1345 struct gdbarch *gdbarch;
1346
1347 /* Create an obstack for allocating all the per-architecture memory,
1348 then use that to allocate the architecture vector. */
1349 struct obstack *obstack = XMALLOC (struct obstack);
1350 obstack_init (obstack);
1351 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1352 memset (gdbarch, 0, sizeof (*gdbarch));
1353 gdbarch->obstack = obstack;
1354
1355 alloc_gdbarch_data (gdbarch);
1356
1357 gdbarch->tdep = tdep;
1358 EOF
1359 printf "\n"
1360 function_list | while do_read
1361 do
1362 if class_is_info_p
1363 then
1364 printf " gdbarch->${function} = info->${function};\n"
1365 fi
1366 done
1367 printf "\n"
1368 printf " /* Force the explicit initialization of these. */\n"
1369 function_list | while do_read
1370 do
1371 if class_is_function_p || class_is_variable_p
1372 then
1373 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1374 then
1375 printf " gdbarch->${function} = ${predefault};\n"
1376 fi
1377 fi
1378 done
1379 cat <<EOF
1380 /* gdbarch_alloc() */
1381
1382 return gdbarch;
1383 }
1384 EOF
1385
1386 # Free a gdbarch struct.
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* Allocate extra space using the per-architecture obstack. */
1391
1392 void *
1393 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1394 {
1395 void *data = obstack_alloc (arch->obstack, size);
1396 memset (data, 0, size);
1397 return data;
1398 }
1399
1400
1401 /* Free a gdbarch struct. This should never happen in normal
1402 operation --- once you've created a gdbarch, you keep it around.
1403 However, if an architecture's init function encounters an error
1404 building the structure, it may need to clean up a partially
1405 constructed gdbarch. */
1406
1407 void
1408 gdbarch_free (struct gdbarch *arch)
1409 {
1410 struct obstack *obstack;
1411 gdb_assert (arch != NULL);
1412 gdb_assert (!arch->initialized_p);
1413 obstack = arch->obstack;
1414 obstack_free (obstack, 0); /* Includes the ARCH. */
1415 xfree (obstack);
1416 }
1417 EOF
1418
1419 # verify a new architecture
1420 cat <<EOF
1421
1422
1423 /* Ensure that all values in a GDBARCH are reasonable. */
1424
1425 static void
1426 verify_gdbarch (struct gdbarch *gdbarch)
1427 {
1428 struct ui_file *log;
1429 struct cleanup *cleanups;
1430 long dummy;
1431 char *buf;
1432 log = mem_fileopen ();
1433 cleanups = make_cleanup_ui_file_delete (log);
1434 /* fundamental */
1435 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1436 fprintf_unfiltered (log, "\n\tbyte-order");
1437 if (gdbarch->bfd_arch_info == NULL)
1438 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1439 /* Check those that need to be defined for the given multi-arch level. */
1440 EOF
1441 function_list | while do_read
1442 do
1443 if class_is_function_p || class_is_variable_p
1444 then
1445 if [ "x${invalid_p}" = "x0" ]
1446 then
1447 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1448 elif class_is_predicate_p
1449 then
1450 printf " /* Skip verify of ${function}, has predicate */\n"
1451 # FIXME: See do_read for potential simplification
1452 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1453 then
1454 printf " if (${invalid_p})\n"
1455 printf " gdbarch->${function} = ${postdefault};\n"
1456 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1457 then
1458 printf " if (gdbarch->${function} == ${predefault})\n"
1459 printf " gdbarch->${function} = ${postdefault};\n"
1460 elif [ -n "${postdefault}" ]
1461 then
1462 printf " if (gdbarch->${function} == 0)\n"
1463 printf " gdbarch->${function} = ${postdefault};\n"
1464 elif [ -n "${invalid_p}" ]
1465 then
1466 printf " if (${invalid_p})\n"
1467 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1468 elif [ -n "${predefault}" ]
1469 then
1470 printf " if (gdbarch->${function} == ${predefault})\n"
1471 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1472 fi
1473 fi
1474 done
1475 cat <<EOF
1476 buf = ui_file_xstrdup (log, &dummy);
1477 make_cleanup (xfree, buf);
1478 if (strlen (buf) > 0)
1479 internal_error (__FILE__, __LINE__,
1480 _("verify_gdbarch: the following are invalid ...%s"),
1481 buf);
1482 do_cleanups (cleanups);
1483 }
1484 EOF
1485
1486 # dump the structure
1487 printf "\n"
1488 printf "\n"
1489 cat <<EOF
1490 /* Print out the details of the current architecture. */
1491
1492 void
1493 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1494 {
1495 const char *gdb_nm_file = "<not-defined>";
1496 #if defined (GDB_NM_FILE)
1497 gdb_nm_file = GDB_NM_FILE;
1498 #endif
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1501 gdb_nm_file);
1502 EOF
1503 function_list | sort -t: -k 3 | while do_read
1504 do
1505 # First the predicate
1506 if class_is_predicate_p
1507 then
1508 printf " fprintf_unfiltered (file,\n"
1509 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1510 printf " gdbarch_${function}_p (gdbarch));\n"
1511 fi
1512 # Print the corresponding value.
1513 if class_is_function_p
1514 then
1515 printf " fprintf_unfiltered (file,\n"
1516 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1517 printf " host_address_to_string (gdbarch->${function}));\n"
1518 else
1519 # It is a variable
1520 case "${print}:${returntype}" in
1521 :CORE_ADDR )
1522 fmt="%s"
1523 print="core_addr_to_string_nz (gdbarch->${function})"
1524 ;;
1525 :* )
1526 fmt="%s"
1527 print="plongest (gdbarch->${function})"
1528 ;;
1529 * )
1530 fmt="%s"
1531 ;;
1532 esac
1533 printf " fprintf_unfiltered (file,\n"
1534 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1535 printf " ${print});\n"
1536 fi
1537 done
1538 cat <<EOF
1539 if (gdbarch->dump_tdep != NULL)
1540 gdbarch->dump_tdep (gdbarch, file);
1541 }
1542 EOF
1543
1544
1545 # GET/SET
1546 printf "\n"
1547 cat <<EOF
1548 struct gdbarch_tdep *
1549 gdbarch_tdep (struct gdbarch *gdbarch)
1550 {
1551 if (gdbarch_debug >= 2)
1552 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1553 return gdbarch->tdep;
1554 }
1555 EOF
1556 printf "\n"
1557 function_list | while do_read
1558 do
1559 if class_is_predicate_p
1560 then
1561 printf "\n"
1562 printf "int\n"
1563 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1564 printf "{\n"
1565 printf " gdb_assert (gdbarch != NULL);\n"
1566 printf " return ${predicate};\n"
1567 printf "}\n"
1568 fi
1569 if class_is_function_p
1570 then
1571 printf "\n"
1572 printf "${returntype}\n"
1573 if [ "x${formal}" = "xvoid" ]
1574 then
1575 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1576 else
1577 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1578 fi
1579 printf "{\n"
1580 printf " gdb_assert (gdbarch != NULL);\n"
1581 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1582 if class_is_predicate_p && test -n "${predefault}"
1583 then
1584 # Allow a call to a function with a predicate.
1585 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1586 fi
1587 printf " if (gdbarch_debug >= 2)\n"
1588 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1589 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1590 then
1591 if class_is_multiarch_p
1592 then
1593 params="gdbarch"
1594 else
1595 params=""
1596 fi
1597 else
1598 if class_is_multiarch_p
1599 then
1600 params="gdbarch, ${actual}"
1601 else
1602 params="${actual}"
1603 fi
1604 fi
1605 if [ "x${returntype}" = "xvoid" ]
1606 then
1607 printf " gdbarch->${function} (${params});\n"
1608 else
1609 printf " return gdbarch->${function} (${params});\n"
1610 fi
1611 printf "}\n"
1612 printf "\n"
1613 printf "void\n"
1614 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1615 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1616 printf "{\n"
1617 printf " gdbarch->${function} = ${function};\n"
1618 printf "}\n"
1619 elif class_is_variable_p
1620 then
1621 printf "\n"
1622 printf "${returntype}\n"
1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1624 printf "{\n"
1625 printf " gdb_assert (gdbarch != NULL);\n"
1626 if [ "x${invalid_p}" = "x0" ]
1627 then
1628 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1629 elif [ -n "${invalid_p}" ]
1630 then
1631 printf " /* Check variable is valid. */\n"
1632 printf " gdb_assert (!(${invalid_p}));\n"
1633 elif [ -n "${predefault}" ]
1634 then
1635 printf " /* Check variable changed from pre-default. */\n"
1636 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1637 fi
1638 printf " if (gdbarch_debug >= 2)\n"
1639 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1640 printf " return gdbarch->${function};\n"
1641 printf "}\n"
1642 printf "\n"
1643 printf "void\n"
1644 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1645 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1646 printf "{\n"
1647 printf " gdbarch->${function} = ${function};\n"
1648 printf "}\n"
1649 elif class_is_info_p
1650 then
1651 printf "\n"
1652 printf "${returntype}\n"
1653 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1654 printf "{\n"
1655 printf " gdb_assert (gdbarch != NULL);\n"
1656 printf " if (gdbarch_debug >= 2)\n"
1657 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1658 printf " return gdbarch->${function};\n"
1659 printf "}\n"
1660 fi
1661 done
1662
1663 # All the trailing guff
1664 cat <<EOF
1665
1666
1667 /* Keep a registry of per-architecture data-pointers required by GDB
1668 modules. */
1669
1670 struct gdbarch_data
1671 {
1672 unsigned index;
1673 int init_p;
1674 gdbarch_data_pre_init_ftype *pre_init;
1675 gdbarch_data_post_init_ftype *post_init;
1676 };
1677
1678 struct gdbarch_data_registration
1679 {
1680 struct gdbarch_data *data;
1681 struct gdbarch_data_registration *next;
1682 };
1683
1684 struct gdbarch_data_registry
1685 {
1686 unsigned nr;
1687 struct gdbarch_data_registration *registrations;
1688 };
1689
1690 struct gdbarch_data_registry gdbarch_data_registry =
1691 {
1692 0, NULL,
1693 };
1694
1695 static struct gdbarch_data *
1696 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1697 gdbarch_data_post_init_ftype *post_init)
1698 {
1699 struct gdbarch_data_registration **curr;
1700 /* Append the new registraration. */
1701 for (curr = &gdbarch_data_registry.registrations;
1702 (*curr) != NULL;
1703 curr = &(*curr)->next);
1704 (*curr) = XMALLOC (struct gdbarch_data_registration);
1705 (*curr)->next = NULL;
1706 (*curr)->data = XMALLOC (struct gdbarch_data);
1707 (*curr)->data->index = gdbarch_data_registry.nr++;
1708 (*curr)->data->pre_init = pre_init;
1709 (*curr)->data->post_init = post_init;
1710 (*curr)->data->init_p = 1;
1711 return (*curr)->data;
1712 }
1713
1714 struct gdbarch_data *
1715 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1716 {
1717 return gdbarch_data_register (pre_init, NULL);
1718 }
1719
1720 struct gdbarch_data *
1721 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1722 {
1723 return gdbarch_data_register (NULL, post_init);
1724 }
1725
1726 /* Create/delete the gdbarch data vector. */
1727
1728 static void
1729 alloc_gdbarch_data (struct gdbarch *gdbarch)
1730 {
1731 gdb_assert (gdbarch->data == NULL);
1732 gdbarch->nr_data = gdbarch_data_registry.nr;
1733 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1734 }
1735
1736 /* Initialize the current value of the specified per-architecture
1737 data-pointer. */
1738
1739 void
1740 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1741 struct gdbarch_data *data,
1742 void *pointer)
1743 {
1744 gdb_assert (data->index < gdbarch->nr_data);
1745 gdb_assert (gdbarch->data[data->index] == NULL);
1746 gdb_assert (data->pre_init == NULL);
1747 gdbarch->data[data->index] = pointer;
1748 }
1749
1750 /* Return the current value of the specified per-architecture
1751 data-pointer. */
1752
1753 void *
1754 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1755 {
1756 gdb_assert (data->index < gdbarch->nr_data);
1757 if (gdbarch->data[data->index] == NULL)
1758 {
1759 /* The data-pointer isn't initialized, call init() to get a
1760 value. */
1761 if (data->pre_init != NULL)
1762 /* Mid architecture creation: pass just the obstack, and not
1763 the entire architecture, as that way it isn't possible for
1764 pre-init code to refer to undefined architecture
1765 fields. */
1766 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1767 else if (gdbarch->initialized_p
1768 && data->post_init != NULL)
1769 /* Post architecture creation: pass the entire architecture
1770 (as all fields are valid), but be careful to also detect
1771 recursive references. */
1772 {
1773 gdb_assert (data->init_p);
1774 data->init_p = 0;
1775 gdbarch->data[data->index] = data->post_init (gdbarch);
1776 data->init_p = 1;
1777 }
1778 else
1779 /* The architecture initialization hasn't completed - punt -
1780 hope that the caller knows what they are doing. Once
1781 deprecated_set_gdbarch_data has been initialized, this can be
1782 changed to an internal error. */
1783 return NULL;
1784 gdb_assert (gdbarch->data[data->index] != NULL);
1785 }
1786 return gdbarch->data[data->index];
1787 }
1788
1789
1790 /* Keep a registry of the architectures known by GDB. */
1791
1792 struct gdbarch_registration
1793 {
1794 enum bfd_architecture bfd_architecture;
1795 gdbarch_init_ftype *init;
1796 gdbarch_dump_tdep_ftype *dump_tdep;
1797 struct gdbarch_list *arches;
1798 struct gdbarch_registration *next;
1799 };
1800
1801 static struct gdbarch_registration *gdbarch_registry = NULL;
1802
1803 static void
1804 append_name (const char ***buf, int *nr, const char *name)
1805 {
1806 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1807 (*buf)[*nr] = name;
1808 *nr += 1;
1809 }
1810
1811 const char **
1812 gdbarch_printable_names (void)
1813 {
1814 /* Accumulate a list of names based on the registed list of
1815 architectures. */
1816 enum bfd_architecture a;
1817 int nr_arches = 0;
1818 const char **arches = NULL;
1819 struct gdbarch_registration *rego;
1820 for (rego = gdbarch_registry;
1821 rego != NULL;
1822 rego = rego->next)
1823 {
1824 const struct bfd_arch_info *ap;
1825 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1826 if (ap == NULL)
1827 internal_error (__FILE__, __LINE__,
1828 _("gdbarch_architecture_names: multi-arch unknown"));
1829 do
1830 {
1831 append_name (&arches, &nr_arches, ap->printable_name);
1832 ap = ap->next;
1833 }
1834 while (ap != NULL);
1835 }
1836 append_name (&arches, &nr_arches, NULL);
1837 return arches;
1838 }
1839
1840
1841 void
1842 gdbarch_register (enum bfd_architecture bfd_architecture,
1843 gdbarch_init_ftype *init,
1844 gdbarch_dump_tdep_ftype *dump_tdep)
1845 {
1846 struct gdbarch_registration **curr;
1847 const struct bfd_arch_info *bfd_arch_info;
1848 /* Check that BFD recognizes this architecture */
1849 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1850 if (bfd_arch_info == NULL)
1851 {
1852 internal_error (__FILE__, __LINE__,
1853 _("gdbarch: Attempt to register unknown architecture (%d)"),
1854 bfd_architecture);
1855 }
1856 /* Check that we haven't seen this architecture before */
1857 for (curr = &gdbarch_registry;
1858 (*curr) != NULL;
1859 curr = &(*curr)->next)
1860 {
1861 if (bfd_architecture == (*curr)->bfd_architecture)
1862 internal_error (__FILE__, __LINE__,
1863 _("gdbarch: Duplicate registraration of architecture (%s)"),
1864 bfd_arch_info->printable_name);
1865 }
1866 /* log it */
1867 if (gdbarch_debug)
1868 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1869 bfd_arch_info->printable_name,
1870 host_address_to_string (init));
1871 /* Append it */
1872 (*curr) = XMALLOC (struct gdbarch_registration);
1873 (*curr)->bfd_architecture = bfd_architecture;
1874 (*curr)->init = init;
1875 (*curr)->dump_tdep = dump_tdep;
1876 (*curr)->arches = NULL;
1877 (*curr)->next = NULL;
1878 }
1879
1880 void
1881 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1882 gdbarch_init_ftype *init)
1883 {
1884 gdbarch_register (bfd_architecture, init, NULL);
1885 }
1886
1887
1888 /* Look for an architecture using gdbarch_info. */
1889
1890 struct gdbarch_list *
1891 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1892 const struct gdbarch_info *info)
1893 {
1894 for (; arches != NULL; arches = arches->next)
1895 {
1896 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1897 continue;
1898 if (info->byte_order != arches->gdbarch->byte_order)
1899 continue;
1900 if (info->osabi != arches->gdbarch->osabi)
1901 continue;
1902 if (info->target_desc != arches->gdbarch->target_desc)
1903 continue;
1904 return arches;
1905 }
1906 return NULL;
1907 }
1908
1909
1910 /* Find an architecture that matches the specified INFO. Create a new
1911 architecture if needed. Return that new architecture. Assumes
1912 that there is no current architecture. */
1913
1914 static struct gdbarch *
1915 find_arch_by_info (struct gdbarch_info info)
1916 {
1917 struct gdbarch *new_gdbarch;
1918 struct gdbarch_registration *rego;
1919
1920 /* The existing architecture has been swapped out - all this code
1921 works from a clean slate. */
1922 gdb_assert (current_gdbarch == NULL);
1923
1924 /* Fill in missing parts of the INFO struct using a number of
1925 sources: "set ..."; INFOabfd supplied; and the global
1926 defaults. */
1927 gdbarch_info_fill (&info);
1928
1929 /* Must have found some sort of architecture. */
1930 gdb_assert (info.bfd_arch_info != NULL);
1931
1932 if (gdbarch_debug)
1933 {
1934 fprintf_unfiltered (gdb_stdlog,
1935 "find_arch_by_info: info.bfd_arch_info %s\n",
1936 (info.bfd_arch_info != NULL
1937 ? info.bfd_arch_info->printable_name
1938 : "(null)"));
1939 fprintf_unfiltered (gdb_stdlog,
1940 "find_arch_by_info: info.byte_order %d (%s)\n",
1941 info.byte_order,
1942 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1943 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1944 : "default"));
1945 fprintf_unfiltered (gdb_stdlog,
1946 "find_arch_by_info: info.osabi %d (%s)\n",
1947 info.osabi, gdbarch_osabi_name (info.osabi));
1948 fprintf_unfiltered (gdb_stdlog,
1949 "find_arch_by_info: info.abfd %s\n",
1950 host_address_to_string (info.abfd));
1951 fprintf_unfiltered (gdb_stdlog,
1952 "find_arch_by_info: info.tdep_info %s\n",
1953 host_address_to_string (info.tdep_info));
1954 }
1955
1956 /* Find the tdep code that knows about this architecture. */
1957 for (rego = gdbarch_registry;
1958 rego != NULL;
1959 rego = rego->next)
1960 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1961 break;
1962 if (rego == NULL)
1963 {
1964 if (gdbarch_debug)
1965 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1966 "No matching architecture\n");
1967 return 0;
1968 }
1969
1970 /* Ask the tdep code for an architecture that matches "info". */
1971 new_gdbarch = rego->init (info, rego->arches);
1972
1973 /* Did the tdep code like it? No. Reject the change and revert to
1974 the old architecture. */
1975 if (new_gdbarch == NULL)
1976 {
1977 if (gdbarch_debug)
1978 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1979 "Target rejected architecture\n");
1980 return NULL;
1981 }
1982
1983 /* Is this a pre-existing architecture (as determined by already
1984 being initialized)? Move it to the front of the architecture
1985 list (keeping the list sorted Most Recently Used). */
1986 if (new_gdbarch->initialized_p)
1987 {
1988 struct gdbarch_list **list;
1989 struct gdbarch_list *this;
1990 if (gdbarch_debug)
1991 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1992 "Previous architecture %s (%s) selected\n",
1993 host_address_to_string (new_gdbarch),
1994 new_gdbarch->bfd_arch_info->printable_name);
1995 /* Find the existing arch in the list. */
1996 for (list = &rego->arches;
1997 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1998 list = &(*list)->next);
1999 /* It had better be in the list of architectures. */
2000 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2001 /* Unlink THIS. */
2002 this = (*list);
2003 (*list) = this->next;
2004 /* Insert THIS at the front. */
2005 this->next = rego->arches;
2006 rego->arches = this;
2007 /* Return it. */
2008 return new_gdbarch;
2009 }
2010
2011 /* It's a new architecture. */
2012 if (gdbarch_debug)
2013 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2014 "New architecture %s (%s) selected\n",
2015 host_address_to_string (new_gdbarch),
2016 new_gdbarch->bfd_arch_info->printable_name);
2017
2018 /* Insert the new architecture into the front of the architecture
2019 list (keep the list sorted Most Recently Used). */
2020 {
2021 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2022 this->next = rego->arches;
2023 this->gdbarch = new_gdbarch;
2024 rego->arches = this;
2025 }
2026
2027 /* Check that the newly installed architecture is valid. Plug in
2028 any post init values. */
2029 new_gdbarch->dump_tdep = rego->dump_tdep;
2030 verify_gdbarch (new_gdbarch);
2031 new_gdbarch->initialized_p = 1;
2032
2033 if (gdbarch_debug)
2034 gdbarch_dump (new_gdbarch, gdb_stdlog);
2035
2036 return new_gdbarch;
2037 }
2038
2039 struct gdbarch *
2040 gdbarch_find_by_info (struct gdbarch_info info)
2041 {
2042 struct gdbarch *new_gdbarch;
2043
2044 /* Save the previously selected architecture, setting the global to
2045 NULL. This stops things like gdbarch->init() trying to use the
2046 previous architecture's configuration. The previous architecture
2047 may not even be of the same architecture family. The most recent
2048 architecture of the same family is found at the head of the
2049 rego->arches list. */
2050 struct gdbarch *old_gdbarch = current_gdbarch;
2051 current_gdbarch = NULL;
2052
2053 /* Find the specified architecture. */
2054 new_gdbarch = find_arch_by_info (info);
2055
2056 /* Restore the existing architecture. */
2057 gdb_assert (current_gdbarch == NULL);
2058 current_gdbarch = old_gdbarch;
2059
2060 return new_gdbarch;
2061 }
2062
2063 /* Make the specified architecture current. */
2064
2065 void
2066 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2067 {
2068 gdb_assert (new_gdbarch != NULL);
2069 gdb_assert (current_gdbarch != NULL);
2070 gdb_assert (new_gdbarch->initialized_p);
2071 current_gdbarch = new_gdbarch;
2072 target_gdbarch = new_gdbarch;
2073 observer_notify_architecture_changed (new_gdbarch);
2074 registers_changed ();
2075 }
2076
2077 extern void _initialize_gdbarch (void);
2078
2079 void
2080 _initialize_gdbarch (void)
2081 {
2082 struct cmd_list_element *c;
2083
2084 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2085 Set architecture debugging."), _("\\
2086 Show architecture debugging."), _("\\
2087 When non-zero, architecture debugging is enabled."),
2088 NULL,
2089 show_gdbarch_debug,
2090 &setdebuglist, &showdebuglist);
2091 }
2092 EOF
2093
2094 # close things off
2095 exec 1>&2
2096 #../move-if-change new-gdbarch.c gdbarch.c
2097 compare_new gdbarch.c
This page took 0.076164 seconds and 5 git commands to generate.