2004-03-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
544 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
545 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
546 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
547
548 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
549 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
550 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
551 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
552 # MAP a GDB RAW register number onto a simulator register number. See
553 # also include/...-sim.h.
554 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
555 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
556 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
558 # setjmp/longjmp support.
559 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
560 # NOTE: cagney/2002-11-24: This function with predicate has a valid
561 # (callable) initial value. As a consequence, even when the predicate
562 # is false, the corresponding function works. This simplifies the
563 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564 # doesn't need to be modified.
565 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
566 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
567 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
568 #
569 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
570 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
571 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
572 #
573 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574 # For raw <-> cooked register conversions, replaced by pseudo registers.
575 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
576 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
577 # For raw <-> cooked register conversions, replaced by pseudo registers.
578 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
582 #
583 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
584 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
585 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
586 #
587 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
588 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
589 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
590 #
591 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
592 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
593 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
594
595 # It has been suggested that this, well actually its predecessor,
596 # should take the type/value of the function to be called and not the
597 # return type. This is left as an exercise for the reader.
598
599 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
600
601 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
602 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
603 # into RETURN_VALUE.
604
605 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
606 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
607 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
608 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
609 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
610 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
611
612 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
613 # ABI suitable for the implementation of a robust extract
614 # struct-convention return-value address method (the sparc saves the
615 # address in the callers frame). All the other cases so far examined,
616 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
617 # erreneous - the code was incorrectly assuming that the return-value
618 # address, stored in a register, was preserved across the entire
619 # function call.
620
621 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
622 # the ABIs that are still to be analyzed - perhaps this should simply
623 # be deleted. The commented out extract_returned_value_address method
624 # is provided as a starting point for the 32-bit SPARC. It, or
625 # something like it, along with changes to both infcmd.c and stack.c
626 # will be needed for that case to work. NB: It is passed the callers
627 # frame since it is only after the callee has returned that this
628 # function is used.
629
630 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
631 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
632
633 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
634 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
635 #
636 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
637 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
638 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
639 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
640 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
641 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
642 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
643 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
644 #
645 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
646 #
647 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
648 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
649 # frame code works regardless of the type of frame - frameless,
650 # stackless, or normal.
651 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
652 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
653 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
654 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
655 # note, per UNWIND_PC's doco, that while the two have similar
656 # interfaces they have very different underlying implementations.
657 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
658 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
659 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
660 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
661 # frame-base. Enable frame-base before frame-unwind.
662 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
663 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
667 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
668 #
669 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
670 # to frame_align and the requirement that methods such as
671 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
672 # alignment.
673 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
674 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
675 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
676 # stabs_argument_has_addr.
677 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
678 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
679 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
680 v:2:PARM_BOUNDARY:int:parm_boundary
681 #
682 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
683 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
684 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
685 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
686 # On some machines there are bits in addresses which are not really
687 # part of the address, but are used by the kernel, the hardware, etc.
688 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
689 # we get a "real" address such as one would find in a symbol table.
690 # This is used only for addresses of instructions, and even then I'm
691 # not sure it's used in all contexts. It exists to deal with there
692 # being a few stray bits in the PC which would mislead us, not as some
693 # sort of generic thing to handle alignment or segmentation (it's
694 # possible it should be in TARGET_READ_PC instead).
695 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
696 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
697 # ADDR_BITS_REMOVE.
698 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
699 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
700 # the target needs software single step. An ISA method to implement it.
701 #
702 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
703 # using the breakpoint system instead of blatting memory directly (as with rs6000).
704 #
705 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
706 # single step. If not, then implement single step using breakpoints.
707 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
708 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
709 # disassembler. Perhaphs objdump can handle it?
710 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
711 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
712
713
714 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
715 # evaluates non-zero, this is the address where the debugger will place
716 # a step-resume breakpoint to get us past the dynamic linker.
717 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
718 # For SVR4 shared libraries, each call goes through a small piece of
719 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
720 # to nonzero if we are currently stopped in one of these.
721 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
722
723 # Some systems also have trampoline code for returning from shared libs.
724 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
725
726 # Sigtramp is a routine that the kernel calls (which then calls the
727 # signal handler). On most machines it is a library routine that is
728 # linked into the executable.
729 #
730 # This macro, given a program counter value and the name of the
731 # function in which that PC resides (which can be null if the name is
732 # not known), returns nonzero if the PC and name show that we are in
733 # sigtramp.
734 #
735 # On most machines just see if the name is sigtramp (and if we have
736 # no name, assume we are not in sigtramp).
737 #
738 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
739 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
740 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
741 # own local NAME lookup.
742 #
743 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
744 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
745 # does not.
746 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
747 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
748 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
749 # A target might have problems with watchpoints as soon as the stack
750 # frame of the current function has been destroyed. This mostly happens
751 # as the first action in a funtion's epilogue. in_function_epilogue_p()
752 # is defined to return a non-zero value if either the given addr is one
753 # instruction after the stack destroying instruction up to the trailing
754 # return instruction or if we can figure out that the stack frame has
755 # already been invalidated regardless of the value of addr. Targets
756 # which don't suffer from that problem could just let this functionality
757 # untouched.
758 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
759 # Given a vector of command-line arguments, return a newly allocated
760 # string which, when passed to the create_inferior function, will be
761 # parsed (on Unix systems, by the shell) to yield the same vector.
762 # This function should call error() if the argument vector is not
763 # representable for this target or if this target does not support
764 # command-line arguments.
765 # ARGC is the number of elements in the vector.
766 # ARGV is an array of strings, one per argument.
767 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
768 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
769 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
770 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
771 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
772 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
773 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
774 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
775 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
776 # Is a register in a group
777 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
778 # Fetch the pointer to the ith function argument.
779 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
780
781 # Return the appropriate register set for a core file section with
782 # name SECT_NAME and size SECT_SIZE.
783 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
784 EOF
785 }
786
787 #
788 # The .log file
789 #
790 exec > new-gdbarch.log
791 function_list | while do_read
792 do
793 cat <<EOF
794 ${class} ${macro}(${actual})
795 ${returntype} ${function} ($formal)${attrib}
796 EOF
797 for r in ${read}
798 do
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
800 done
801 if class_is_predicate_p && fallback_default_p
802 then
803 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
804 kill $$
805 exit 1
806 fi
807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
808 then
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
810 kill $$
811 exit 1
812 fi
813 if class_is_multiarch_p
814 then
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
817 then
818 echo "Error: pure multi-arch function must have a predefault" 1>&2
819 kill $$
820 exit 1
821 fi
822 fi
823 echo ""
824 done
825
826 exec 1>&2
827 compare_new gdbarch.log
828
829
830 copyright ()
831 {
832 cat <<EOF
833 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
834
835 /* Dynamic architecture support for GDB, the GNU debugger.
836
837 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
838 Software Foundation, Inc.
839
840 This file is part of GDB.
841
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
844 the Free Software Foundation; either version 2 of the License, or
845 (at your option) any later version.
846
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
851
852 You should have received a copy of the GNU General Public License
853 along with this program; if not, write to the Free Software
854 Foundation, Inc., 59 Temple Place - Suite 330,
855 Boston, MA 02111-1307, USA. */
856
857 /* This file was created with the aid of \`\`gdbarch.sh''.
858
859 The Bourne shell script \`\`gdbarch.sh'' creates the files
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
862 being reported.
863
864 If editing this file, please also run gdbarch.sh and merge any
865 changes into that script. Conversely, when making sweeping changes
866 to this file, modifying gdbarch.sh and using its output may prove
867 easier. */
868
869 EOF
870 }
871
872 #
873 # The .h file
874 #
875
876 exec > new-gdbarch.h
877 copyright
878 cat <<EOF
879 #ifndef GDBARCH_H
880 #define GDBARCH_H
881
882 struct floatformat;
883 struct ui_file;
884 struct frame_info;
885 struct value;
886 struct objfile;
887 struct minimal_symbol;
888 struct regcache;
889 struct reggroup;
890 struct regset;
891 struct disassemble_info;
892 struct target_ops;
893
894 extern struct gdbarch *current_gdbarch;
895
896
897 /* If any of the following are defined, the target wasn't correctly
898 converted. */
899
900 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
901 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
902 #endif
903 EOF
904
905 # function typedef's
906 printf "\n"
907 printf "\n"
908 printf "/* The following are pre-initialized by GDBARCH. */\n"
909 function_list | while do_read
910 do
911 if class_is_info_p
912 then
913 printf "\n"
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
917 printf "#error \"Non multi-arch definition of ${macro}\"\n"
918 printf "#endif\n"
919 printf "#if !defined (${macro})\n"
920 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
921 printf "#endif\n"
922 fi
923 done
924
925 # function typedef's
926 printf "\n"
927 printf "\n"
928 printf "/* The following are initialized by the target dependent code. */\n"
929 function_list | while do_read
930 do
931 if [ -n "${comment}" ]
932 then
933 echo "${comment}" | sed \
934 -e '2 s,#,/*,' \
935 -e '3,$ s,#, ,' \
936 -e '$ s,$, */,'
937 fi
938 if class_is_multiarch_p
939 then
940 if class_is_predicate_p
941 then
942 printf "\n"
943 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
944 fi
945 else
946 if class_is_predicate_p
947 then
948 printf "\n"
949 printf "#if defined (${macro})\n"
950 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
951 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
952 printf "#if !defined (${macro}_P)\n"
953 printf "#define ${macro}_P() (1)\n"
954 printf "#endif\n"
955 printf "#endif\n"
956 printf "\n"
957 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
958 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
959 printf "#error \"Non multi-arch definition of ${macro}\"\n"
960 printf "#endif\n"
961 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
962 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
963 printf "#endif\n"
964 fi
965 fi
966 if class_is_variable_p
967 then
968 printf "\n"
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
970 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
971 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
972 printf "#error \"Non multi-arch definition of ${macro}\"\n"
973 printf "#endif\n"
974 printf "#if !defined (${macro})\n"
975 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
976 printf "#endif\n"
977 fi
978 if class_is_function_p
979 then
980 printf "\n"
981 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
982 then
983 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
984 elif class_is_multiarch_p
985 then
986 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
987 else
988 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
989 fi
990 if [ "x${formal}" = "xvoid" ]
991 then
992 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
993 else
994 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
995 fi
996 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
997 if class_is_multiarch_p ; then :
998 else
999 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1000 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1001 printf "#endif\n"
1002 if [ "x${actual}" = "x" ]
1003 then
1004 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1005 elif [ "x${actual}" = "x-" ]
1006 then
1007 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1008 else
1009 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1010 fi
1011 printf "#if !defined (${macro})\n"
1012 if [ "x${actual}" = "x" ]
1013 then
1014 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1015 elif [ "x${actual}" = "x-" ]
1016 then
1017 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1018 else
1019 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1020 fi
1021 printf "#endif\n"
1022 fi
1023 fi
1024 done
1025
1026 # close it off
1027 cat <<EOF
1028
1029 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1030
1031
1032 /* Mechanism for co-ordinating the selection of a specific
1033 architecture.
1034
1035 GDB targets (*-tdep.c) can register an interest in a specific
1036 architecture. Other GDB components can register a need to maintain
1037 per-architecture data.
1038
1039 The mechanisms below ensures that there is only a loose connection
1040 between the set-architecture command and the various GDB
1041 components. Each component can independently register their need
1042 to maintain architecture specific data with gdbarch.
1043
1044 Pragmatics:
1045
1046 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1047 didn't scale.
1048
1049 The more traditional mega-struct containing architecture specific
1050 data for all the various GDB components was also considered. Since
1051 GDB is built from a variable number of (fairly independent)
1052 components it was determined that the global aproach was not
1053 applicable. */
1054
1055
1056 /* Register a new architectural family with GDB.
1057
1058 Register support for the specified ARCHITECTURE with GDB. When
1059 gdbarch determines that the specified architecture has been
1060 selected, the corresponding INIT function is called.
1061
1062 --
1063
1064 The INIT function takes two parameters: INFO which contains the
1065 information available to gdbarch about the (possibly new)
1066 architecture; ARCHES which is a list of the previously created
1067 \`\`struct gdbarch'' for this architecture.
1068
1069 The INFO parameter is, as far as possible, be pre-initialized with
1070 information obtained from INFO.ABFD or the previously selected
1071 architecture.
1072
1073 The ARCHES parameter is a linked list (sorted most recently used)
1074 of all the previously created architures for this architecture
1075 family. The (possibly NULL) ARCHES->gdbarch can used to access
1076 values from the previously selected architecture for this
1077 architecture family. The global \`\`current_gdbarch'' shall not be
1078 used.
1079
1080 The INIT function shall return any of: NULL - indicating that it
1081 doesn't recognize the selected architecture; an existing \`\`struct
1082 gdbarch'' from the ARCHES list - indicating that the new
1083 architecture is just a synonym for an earlier architecture (see
1084 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1085 - that describes the selected architecture (see gdbarch_alloc()).
1086
1087 The DUMP_TDEP function shall print out all target specific values.
1088 Care should be taken to ensure that the function works in both the
1089 multi-arch and non- multi-arch cases. */
1090
1091 struct gdbarch_list
1092 {
1093 struct gdbarch *gdbarch;
1094 struct gdbarch_list *next;
1095 };
1096
1097 struct gdbarch_info
1098 {
1099 /* Use default: NULL (ZERO). */
1100 const struct bfd_arch_info *bfd_arch_info;
1101
1102 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1103 int byte_order;
1104
1105 /* Use default: NULL (ZERO). */
1106 bfd *abfd;
1107
1108 /* Use default: NULL (ZERO). */
1109 struct gdbarch_tdep_info *tdep_info;
1110
1111 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1112 enum gdb_osabi osabi;
1113 };
1114
1115 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1116 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1117
1118 /* DEPRECATED - use gdbarch_register() */
1119 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1120
1121 extern void gdbarch_register (enum bfd_architecture architecture,
1122 gdbarch_init_ftype *,
1123 gdbarch_dump_tdep_ftype *);
1124
1125
1126 /* Return a freshly allocated, NULL terminated, array of the valid
1127 architecture names. Since architectures are registered during the
1128 _initialize phase this function only returns useful information
1129 once initialization has been completed. */
1130
1131 extern const char **gdbarch_printable_names (void);
1132
1133
1134 /* Helper function. Search the list of ARCHES for a GDBARCH that
1135 matches the information provided by INFO. */
1136
1137 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1138
1139
1140 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1141 basic initialization using values obtained from the INFO andTDEP
1142 parameters. set_gdbarch_*() functions are called to complete the
1143 initialization of the object. */
1144
1145 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1146
1147
1148 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1149 It is assumed that the caller freeds the \`\`struct
1150 gdbarch_tdep''. */
1151
1152 extern void gdbarch_free (struct gdbarch *);
1153
1154
1155 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1156 obstack. The memory is freed when the corresponding architecture
1157 is also freed. */
1158
1159 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1160 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1161 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1162
1163
1164 /* Helper function. Force an update of the current architecture.
1165
1166 The actual architecture selected is determined by INFO, \`\`(gdb) set
1167 architecture'' et.al., the existing architecture and BFD's default
1168 architecture. INFO should be initialized to zero and then selected
1169 fields should be updated.
1170
1171 Returns non-zero if the update succeeds */
1172
1173 extern int gdbarch_update_p (struct gdbarch_info info);
1174
1175
1176 /* Helper function. Find an architecture matching info.
1177
1178 INFO should be initialized using gdbarch_info_init, relevant fields
1179 set, and then finished using gdbarch_info_fill.
1180
1181 Returns the corresponding architecture, or NULL if no matching
1182 architecture was found. "current_gdbarch" is not updated. */
1183
1184 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1185
1186
1187 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1188
1189 FIXME: kettenis/20031124: Of the functions that follow, only
1190 gdbarch_from_bfd is supposed to survive. The others will
1191 dissappear since in the future GDB will (hopefully) be truly
1192 multi-arch. However, for now we're still stuck with the concept of
1193 a single active architecture. */
1194
1195 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1196
1197
1198 /* Register per-architecture data-pointer.
1199
1200 Reserve space for a per-architecture data-pointer. An identifier
1201 for the reserved data-pointer is returned. That identifer should
1202 be saved in a local static variable.
1203
1204 The per-architecture data-pointer is either initialized explicitly
1205 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1206 gdbarch_data()).
1207
1208 Memory for the per-architecture data shall be allocated using
1209 gdbarch_obstack_zalloc. That memory will be deleted when the
1210 corresponding architecture object is deleted.
1211
1212 When a previously created architecture is re-selected, the
1213 per-architecture data-pointer for that previous architecture is
1214 restored. INIT() is not re-called.
1215
1216 Multiple registrarants for any architecture are allowed (and
1217 strongly encouraged). */
1218
1219 struct gdbarch_data;
1220
1221 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1222 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1223 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1224 struct gdbarch_data *data,
1225 void *pointer);
1226
1227 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1228
1229
1230
1231 /* Register per-architecture memory region.
1232
1233 Provide a memory-region swap mechanism. Per-architecture memory
1234 region are created. These memory regions are swapped whenever the
1235 architecture is changed. For a new architecture, the memory region
1236 is initialized with zero (0) and the INIT function is called.
1237
1238 Memory regions are swapped / initialized in the order that they are
1239 registered. NULL DATA and/or INIT values can be specified.
1240
1241 New code should use register_gdbarch_data(). */
1242
1243 typedef void (gdbarch_swap_ftype) (void);
1244 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1245 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1246
1247
1248
1249 /* Set the dynamic target-system-dependent parameters (architecture,
1250 byte-order, ...) using information found in the BFD */
1251
1252 extern void set_gdbarch_from_file (bfd *);
1253
1254
1255 /* Initialize the current architecture to the "first" one we find on
1256 our list. */
1257
1258 extern void initialize_current_architecture (void);
1259
1260 /* gdbarch trace variable */
1261 extern int gdbarch_debug;
1262
1263 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1264
1265 #endif
1266 EOF
1267 exec 1>&2
1268 #../move-if-change new-gdbarch.h gdbarch.h
1269 compare_new gdbarch.h
1270
1271
1272 #
1273 # C file
1274 #
1275
1276 exec > new-gdbarch.c
1277 copyright
1278 cat <<EOF
1279
1280 #include "defs.h"
1281 #include "arch-utils.h"
1282
1283 #include "gdbcmd.h"
1284 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1285 #include "symcat.h"
1286
1287 #include "floatformat.h"
1288
1289 #include "gdb_assert.h"
1290 #include "gdb_string.h"
1291 #include "gdb-events.h"
1292 #include "reggroups.h"
1293 #include "osabi.h"
1294 #include "gdb_obstack.h"
1295
1296 /* Static function declarations */
1297
1298 static void alloc_gdbarch_data (struct gdbarch *);
1299
1300 /* Non-zero if we want to trace architecture code. */
1301
1302 #ifndef GDBARCH_DEBUG
1303 #define GDBARCH_DEBUG 0
1304 #endif
1305 int gdbarch_debug = GDBARCH_DEBUG;
1306
1307 EOF
1308
1309 # gdbarch open the gdbarch object
1310 printf "\n"
1311 printf "/* Maintain the struct gdbarch object */\n"
1312 printf "\n"
1313 printf "struct gdbarch\n"
1314 printf "{\n"
1315 printf " /* Has this architecture been fully initialized? */\n"
1316 printf " int initialized_p;\n"
1317 printf "\n"
1318 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1319 printf " struct obstack *obstack;\n"
1320 printf "\n"
1321 printf " /* basic architectural information */\n"
1322 function_list | while do_read
1323 do
1324 if class_is_info_p
1325 then
1326 printf " ${returntype} ${function};\n"
1327 fi
1328 done
1329 printf "\n"
1330 printf " /* target specific vector. */\n"
1331 printf " struct gdbarch_tdep *tdep;\n"
1332 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1333 printf "\n"
1334 printf " /* per-architecture data-pointers */\n"
1335 printf " unsigned nr_data;\n"
1336 printf " void **data;\n"
1337 printf "\n"
1338 printf " /* per-architecture swap-regions */\n"
1339 printf " struct gdbarch_swap *swap;\n"
1340 printf "\n"
1341 cat <<EOF
1342 /* Multi-arch values.
1343
1344 When extending this structure you must:
1345
1346 Add the field below.
1347
1348 Declare set/get functions and define the corresponding
1349 macro in gdbarch.h.
1350
1351 gdbarch_alloc(): If zero/NULL is not a suitable default,
1352 initialize the new field.
1353
1354 verify_gdbarch(): Confirm that the target updated the field
1355 correctly.
1356
1357 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1358 field is dumped out
1359
1360 \`\`startup_gdbarch()'': Append an initial value to the static
1361 variable (base values on the host's c-type system).
1362
1363 get_gdbarch(): Implement the set/get functions (probably using
1364 the macro's as shortcuts).
1365
1366 */
1367
1368 EOF
1369 function_list | while do_read
1370 do
1371 if class_is_variable_p
1372 then
1373 printf " ${returntype} ${function};\n"
1374 elif class_is_function_p
1375 then
1376 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1377 fi
1378 done
1379 printf "};\n"
1380
1381 # A pre-initialized vector
1382 printf "\n"
1383 printf "\n"
1384 cat <<EOF
1385 /* The default architecture uses host values (for want of a better
1386 choice). */
1387 EOF
1388 printf "\n"
1389 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1390 printf "\n"
1391 printf "struct gdbarch startup_gdbarch =\n"
1392 printf "{\n"
1393 printf " 1, /* Always initialized. */\n"
1394 printf " NULL, /* The obstack. */\n"
1395 printf " /* basic architecture information */\n"
1396 function_list | while do_read
1397 do
1398 if class_is_info_p
1399 then
1400 printf " ${staticdefault}, /* ${function} */\n"
1401 fi
1402 done
1403 cat <<EOF
1404 /* target specific vector and its dump routine */
1405 NULL, NULL,
1406 /*per-architecture data-pointers and swap regions */
1407 0, NULL, NULL,
1408 /* Multi-arch values */
1409 EOF
1410 function_list | while do_read
1411 do
1412 if class_is_function_p || class_is_variable_p
1413 then
1414 printf " ${staticdefault}, /* ${function} */\n"
1415 fi
1416 done
1417 cat <<EOF
1418 /* startup_gdbarch() */
1419 };
1420
1421 struct gdbarch *current_gdbarch = &startup_gdbarch;
1422 EOF
1423
1424 # Create a new gdbarch struct
1425 cat <<EOF
1426
1427 /* Create a new \`\`struct gdbarch'' based on information provided by
1428 \`\`struct gdbarch_info''. */
1429 EOF
1430 printf "\n"
1431 cat <<EOF
1432 struct gdbarch *
1433 gdbarch_alloc (const struct gdbarch_info *info,
1434 struct gdbarch_tdep *tdep)
1435 {
1436 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1437 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1438 the current local architecture and not the previous global
1439 architecture. This ensures that the new architectures initial
1440 values are not influenced by the previous architecture. Once
1441 everything is parameterised with gdbarch, this will go away. */
1442 struct gdbarch *current_gdbarch;
1443
1444 /* Create an obstack for allocating all the per-architecture memory,
1445 then use that to allocate the architecture vector. */
1446 struct obstack *obstack = XMALLOC (struct obstack);
1447 obstack_init (obstack);
1448 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1449 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1450 current_gdbarch->obstack = obstack;
1451
1452 alloc_gdbarch_data (current_gdbarch);
1453
1454 current_gdbarch->tdep = tdep;
1455 EOF
1456 printf "\n"
1457 function_list | while do_read
1458 do
1459 if class_is_info_p
1460 then
1461 printf " current_gdbarch->${function} = info->${function};\n"
1462 fi
1463 done
1464 printf "\n"
1465 printf " /* Force the explicit initialization of these. */\n"
1466 function_list | while do_read
1467 do
1468 if class_is_function_p || class_is_variable_p
1469 then
1470 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1471 then
1472 printf " current_gdbarch->${function} = ${predefault};\n"
1473 fi
1474 fi
1475 done
1476 cat <<EOF
1477 /* gdbarch_alloc() */
1478
1479 return current_gdbarch;
1480 }
1481 EOF
1482
1483 # Free a gdbarch struct.
1484 printf "\n"
1485 printf "\n"
1486 cat <<EOF
1487 /* Allocate extra space using the per-architecture obstack. */
1488
1489 void *
1490 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1491 {
1492 void *data = obstack_alloc (arch->obstack, size);
1493 memset (data, 0, size);
1494 return data;
1495 }
1496
1497
1498 /* Free a gdbarch struct. This should never happen in normal
1499 operation --- once you've created a gdbarch, you keep it around.
1500 However, if an architecture's init function encounters an error
1501 building the structure, it may need to clean up a partially
1502 constructed gdbarch. */
1503
1504 void
1505 gdbarch_free (struct gdbarch *arch)
1506 {
1507 struct obstack *obstack;
1508 gdb_assert (arch != NULL);
1509 gdb_assert (!arch->initialized_p);
1510 obstack = arch->obstack;
1511 obstack_free (obstack, 0); /* Includes the ARCH. */
1512 xfree (obstack);
1513 }
1514 EOF
1515
1516 # verify a new architecture
1517 cat <<EOF
1518
1519
1520 /* Ensure that all values in a GDBARCH are reasonable. */
1521
1522 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1523 just happens to match the global variable \`\`current_gdbarch''. That
1524 way macros refering to that variable get the local and not the global
1525 version - ulgh. Once everything is parameterised with gdbarch, this
1526 will go away. */
1527
1528 static void
1529 verify_gdbarch (struct gdbarch *current_gdbarch)
1530 {
1531 struct ui_file *log;
1532 struct cleanup *cleanups;
1533 long dummy;
1534 char *buf;
1535 log = mem_fileopen ();
1536 cleanups = make_cleanup_ui_file_delete (log);
1537 /* fundamental */
1538 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1539 fprintf_unfiltered (log, "\n\tbyte-order");
1540 if (current_gdbarch->bfd_arch_info == NULL)
1541 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1542 /* Check those that need to be defined for the given multi-arch level. */
1543 EOF
1544 function_list | while do_read
1545 do
1546 if class_is_function_p || class_is_variable_p
1547 then
1548 if [ "x${invalid_p}" = "x0" ]
1549 then
1550 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1551 elif class_is_predicate_p
1552 then
1553 printf " /* Skip verify of ${function}, has predicate */\n"
1554 # FIXME: See do_read for potential simplification
1555 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1556 then
1557 printf " if (${invalid_p})\n"
1558 printf " current_gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1560 then
1561 printf " if (current_gdbarch->${function} == ${predefault})\n"
1562 printf " current_gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${postdefault}" ]
1564 then
1565 printf " if (current_gdbarch->${function} == 0)\n"
1566 printf " current_gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${invalid_p}" ]
1568 then
1569 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1570 printf " && (${invalid_p}))\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 elif [ -n "${predefault}" ]
1573 then
1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1575 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1577 fi
1578 fi
1579 done
1580 cat <<EOF
1581 buf = ui_file_xstrdup (log, &dummy);
1582 make_cleanup (xfree, buf);
1583 if (strlen (buf) > 0)
1584 internal_error (__FILE__, __LINE__,
1585 "verify_gdbarch: the following are invalid ...%s",
1586 buf);
1587 do_cleanups (cleanups);
1588 }
1589 EOF
1590
1591 # dump the structure
1592 printf "\n"
1593 printf "\n"
1594 cat <<EOF
1595 /* Print out the details of the current architecture. */
1596
1597 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1598 just happens to match the global variable \`\`current_gdbarch''. That
1599 way macros refering to that variable get the local and not the global
1600 version - ulgh. Once everything is parameterised with gdbarch, this
1601 will go away. */
1602
1603 void
1604 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1605 {
1606 fprintf_unfiltered (file,
1607 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1608 GDB_MULTI_ARCH);
1609 EOF
1610 function_list | sort -t: -k 3 | while do_read
1611 do
1612 # First the predicate
1613 if class_is_predicate_p
1614 then
1615 if class_is_multiarch_p
1616 then
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1619 printf " gdbarch_${function}_p (current_gdbarch));\n"
1620 else
1621 printf "#ifdef ${macro}_P\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1624 printf " \"${macro}_P()\",\n"
1625 printf " XSTRING (${macro}_P ()));\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1628 printf " ${macro}_P ());\n"
1629 printf "#endif\n"
1630 fi
1631 fi
1632 # multiarch functions don't have macros.
1633 if class_is_multiarch_p
1634 then
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1637 printf " (long) current_gdbarch->${function});\n"
1638 continue
1639 fi
1640 # Print the macro definition.
1641 printf "#ifdef ${macro}\n"
1642 if class_is_function_p
1643 then
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1646 printf " \"${macro}(${actual})\",\n"
1647 printf " XSTRING (${macro} (${actual})));\n"
1648 else
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1651 printf " XSTRING (${macro}));\n"
1652 fi
1653 if [ "x${print_p}" = "x()" ]
1654 then
1655 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1656 elif [ "x${print_p}" = "x0" ]
1657 then
1658 printf " /* skip print of ${macro}, print_p == 0. */\n"
1659 elif [ -n "${print_p}" ]
1660 then
1661 printf " if (${print_p})\n"
1662 printf " fprintf_unfiltered (file,\n"
1663 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1664 printf " ${print});\n"
1665 elif class_is_function_p
1666 then
1667 printf " fprintf_unfiltered (file,\n"
1668 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1669 printf " (long) current_gdbarch->${function}\n"
1670 printf " /*${macro} ()*/);\n"
1671 else
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1674 printf " ${print});\n"
1675 fi
1676 printf "#endif\n"
1677 done
1678 cat <<EOF
1679 if (current_gdbarch->dump_tdep != NULL)
1680 current_gdbarch->dump_tdep (current_gdbarch, file);
1681 }
1682 EOF
1683
1684
1685 # GET/SET
1686 printf "\n"
1687 cat <<EOF
1688 struct gdbarch_tdep *
1689 gdbarch_tdep (struct gdbarch *gdbarch)
1690 {
1691 if (gdbarch_debug >= 2)
1692 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1693 return gdbarch->tdep;
1694 }
1695 EOF
1696 printf "\n"
1697 function_list | while do_read
1698 do
1699 if class_is_predicate_p
1700 then
1701 printf "\n"
1702 printf "int\n"
1703 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1704 printf "{\n"
1705 printf " gdb_assert (gdbarch != NULL);\n"
1706 printf " return ${predicate};\n"
1707 printf "}\n"
1708 fi
1709 if class_is_function_p
1710 then
1711 printf "\n"
1712 printf "${returntype}\n"
1713 if [ "x${formal}" = "xvoid" ]
1714 then
1715 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1716 else
1717 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1718 fi
1719 printf "{\n"
1720 printf " gdb_assert (gdbarch != NULL);\n"
1721 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1722 if class_is_predicate_p && test -n "${predefault}"
1723 then
1724 # Allow a call to a function with a predicate.
1725 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1726 fi
1727 printf " if (gdbarch_debug >= 2)\n"
1728 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1729 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1730 then
1731 if class_is_multiarch_p
1732 then
1733 params="gdbarch"
1734 else
1735 params=""
1736 fi
1737 else
1738 if class_is_multiarch_p
1739 then
1740 params="gdbarch, ${actual}"
1741 else
1742 params="${actual}"
1743 fi
1744 fi
1745 if [ "x${returntype}" = "xvoid" ]
1746 then
1747 printf " gdbarch->${function} (${params});\n"
1748 else
1749 printf " return gdbarch->${function} (${params});\n"
1750 fi
1751 printf "}\n"
1752 printf "\n"
1753 printf "void\n"
1754 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1755 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1756 printf "{\n"
1757 printf " gdbarch->${function} = ${function};\n"
1758 printf "}\n"
1759 elif class_is_variable_p
1760 then
1761 printf "\n"
1762 printf "${returntype}\n"
1763 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1764 printf "{\n"
1765 printf " gdb_assert (gdbarch != NULL);\n"
1766 if [ "x${invalid_p}" = "x0" ]
1767 then
1768 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1769 elif [ -n "${invalid_p}" ]
1770 then
1771 printf " /* Check variable is valid. */\n"
1772 printf " gdb_assert (!(${invalid_p}));\n"
1773 elif [ -n "${predefault}" ]
1774 then
1775 printf " /* Check variable changed from pre-default. */\n"
1776 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1777 fi
1778 printf " if (gdbarch_debug >= 2)\n"
1779 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1780 printf " return gdbarch->${function};\n"
1781 printf "}\n"
1782 printf "\n"
1783 printf "void\n"
1784 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1785 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1786 printf "{\n"
1787 printf " gdbarch->${function} = ${function};\n"
1788 printf "}\n"
1789 elif class_is_info_p
1790 then
1791 printf "\n"
1792 printf "${returntype}\n"
1793 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1794 printf "{\n"
1795 printf " gdb_assert (gdbarch != NULL);\n"
1796 printf " if (gdbarch_debug >= 2)\n"
1797 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1798 printf " return gdbarch->${function};\n"
1799 printf "}\n"
1800 fi
1801 done
1802
1803 # All the trailing guff
1804 cat <<EOF
1805
1806
1807 /* Keep a registry of per-architecture data-pointers required by GDB
1808 modules. */
1809
1810 struct gdbarch_data
1811 {
1812 unsigned index;
1813 int init_p;
1814 gdbarch_data_init_ftype *init;
1815 };
1816
1817 struct gdbarch_data_registration
1818 {
1819 struct gdbarch_data *data;
1820 struct gdbarch_data_registration *next;
1821 };
1822
1823 struct gdbarch_data_registry
1824 {
1825 unsigned nr;
1826 struct gdbarch_data_registration *registrations;
1827 };
1828
1829 struct gdbarch_data_registry gdbarch_data_registry =
1830 {
1831 0, NULL,
1832 };
1833
1834 struct gdbarch_data *
1835 register_gdbarch_data (gdbarch_data_init_ftype *init)
1836 {
1837 struct gdbarch_data_registration **curr;
1838 /* Append the new registraration. */
1839 for (curr = &gdbarch_data_registry.registrations;
1840 (*curr) != NULL;
1841 curr = &(*curr)->next);
1842 (*curr) = XMALLOC (struct gdbarch_data_registration);
1843 (*curr)->next = NULL;
1844 (*curr)->data = XMALLOC (struct gdbarch_data);
1845 (*curr)->data->index = gdbarch_data_registry.nr++;
1846 (*curr)->data->init = init;
1847 (*curr)->data->init_p = 1;
1848 return (*curr)->data;
1849 }
1850
1851
1852 /* Create/delete the gdbarch data vector. */
1853
1854 static void
1855 alloc_gdbarch_data (struct gdbarch *gdbarch)
1856 {
1857 gdb_assert (gdbarch->data == NULL);
1858 gdbarch->nr_data = gdbarch_data_registry.nr;
1859 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1860 }
1861
1862 /* Initialize the current value of the specified per-architecture
1863 data-pointer. */
1864
1865 void
1866 set_gdbarch_data (struct gdbarch *gdbarch,
1867 struct gdbarch_data *data,
1868 void *pointer)
1869 {
1870 gdb_assert (data->index < gdbarch->nr_data);
1871 gdb_assert (gdbarch->data[data->index] == NULL);
1872 gdbarch->data[data->index] = pointer;
1873 }
1874
1875 /* Return the current value of the specified per-architecture
1876 data-pointer. */
1877
1878 void *
1879 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1880 {
1881 gdb_assert (data->index < gdbarch->nr_data);
1882 /* The data-pointer isn't initialized, call init() to get a value but
1883 only if the architecture initializaiton has completed. Otherwise
1884 punt - hope that the caller knows what they are doing. */
1885 if (gdbarch->data[data->index] == NULL
1886 && gdbarch->initialized_p)
1887 {
1888 /* Be careful to detect an initialization cycle. */
1889 gdb_assert (data->init_p);
1890 data->init_p = 0;
1891 gdb_assert (data->init != NULL);
1892 gdbarch->data[data->index] = data->init (gdbarch);
1893 data->init_p = 1;
1894 gdb_assert (gdbarch->data[data->index] != NULL);
1895 }
1896 return gdbarch->data[data->index];
1897 }
1898
1899
1900
1901 /* Keep a registry of swapped data required by GDB modules. */
1902
1903 struct gdbarch_swap
1904 {
1905 void *swap;
1906 struct gdbarch_swap_registration *source;
1907 struct gdbarch_swap *next;
1908 };
1909
1910 struct gdbarch_swap_registration
1911 {
1912 void *data;
1913 unsigned long sizeof_data;
1914 gdbarch_swap_ftype *init;
1915 struct gdbarch_swap_registration *next;
1916 };
1917
1918 struct gdbarch_swap_registry
1919 {
1920 int nr;
1921 struct gdbarch_swap_registration *registrations;
1922 };
1923
1924 struct gdbarch_swap_registry gdbarch_swap_registry =
1925 {
1926 0, NULL,
1927 };
1928
1929 void
1930 deprecated_register_gdbarch_swap (void *data,
1931 unsigned long sizeof_data,
1932 gdbarch_swap_ftype *init)
1933 {
1934 struct gdbarch_swap_registration **rego;
1935 for (rego = &gdbarch_swap_registry.registrations;
1936 (*rego) != NULL;
1937 rego = &(*rego)->next);
1938 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1939 (*rego)->next = NULL;
1940 (*rego)->init = init;
1941 (*rego)->data = data;
1942 (*rego)->sizeof_data = sizeof_data;
1943 }
1944
1945 static void
1946 current_gdbarch_swap_init_hack (void)
1947 {
1948 struct gdbarch_swap_registration *rego;
1949 struct gdbarch_swap **curr = &current_gdbarch->swap;
1950 for (rego = gdbarch_swap_registry.registrations;
1951 rego != NULL;
1952 rego = rego->next)
1953 {
1954 if (rego->data != NULL)
1955 {
1956 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1957 struct gdbarch_swap);
1958 (*curr)->source = rego;
1959 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1960 rego->sizeof_data);
1961 (*curr)->next = NULL;
1962 curr = &(*curr)->next;
1963 }
1964 if (rego->init != NULL)
1965 rego->init ();
1966 }
1967 }
1968
1969 static struct gdbarch *
1970 current_gdbarch_swap_out_hack (void)
1971 {
1972 struct gdbarch *old_gdbarch = current_gdbarch;
1973 struct gdbarch_swap *curr;
1974
1975 gdb_assert (old_gdbarch != NULL);
1976 for (curr = old_gdbarch->swap;
1977 curr != NULL;
1978 curr = curr->next)
1979 {
1980 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1981 memset (curr->source->data, 0, curr->source->sizeof_data);
1982 }
1983 current_gdbarch = NULL;
1984 return old_gdbarch;
1985 }
1986
1987 static void
1988 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1989 {
1990 struct gdbarch_swap *curr;
1991
1992 gdb_assert (current_gdbarch == NULL);
1993 for (curr = new_gdbarch->swap;
1994 curr != NULL;
1995 curr = curr->next)
1996 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1997 current_gdbarch = new_gdbarch;
1998 }
1999
2000
2001 /* Keep a registry of the architectures known by GDB. */
2002
2003 struct gdbarch_registration
2004 {
2005 enum bfd_architecture bfd_architecture;
2006 gdbarch_init_ftype *init;
2007 gdbarch_dump_tdep_ftype *dump_tdep;
2008 struct gdbarch_list *arches;
2009 struct gdbarch_registration *next;
2010 };
2011
2012 static struct gdbarch_registration *gdbarch_registry = NULL;
2013
2014 static void
2015 append_name (const char ***buf, int *nr, const char *name)
2016 {
2017 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2018 (*buf)[*nr] = name;
2019 *nr += 1;
2020 }
2021
2022 const char **
2023 gdbarch_printable_names (void)
2024 {
2025 /* Accumulate a list of names based on the registed list of
2026 architectures. */
2027 enum bfd_architecture a;
2028 int nr_arches = 0;
2029 const char **arches = NULL;
2030 struct gdbarch_registration *rego;
2031 for (rego = gdbarch_registry;
2032 rego != NULL;
2033 rego = rego->next)
2034 {
2035 const struct bfd_arch_info *ap;
2036 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2037 if (ap == NULL)
2038 internal_error (__FILE__, __LINE__,
2039 "gdbarch_architecture_names: multi-arch unknown");
2040 do
2041 {
2042 append_name (&arches, &nr_arches, ap->printable_name);
2043 ap = ap->next;
2044 }
2045 while (ap != NULL);
2046 }
2047 append_name (&arches, &nr_arches, NULL);
2048 return arches;
2049 }
2050
2051
2052 void
2053 gdbarch_register (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init,
2055 gdbarch_dump_tdep_ftype *dump_tdep)
2056 {
2057 struct gdbarch_registration **curr;
2058 const struct bfd_arch_info *bfd_arch_info;
2059 /* Check that BFD recognizes this architecture */
2060 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2061 if (bfd_arch_info == NULL)
2062 {
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch: Attempt to register unknown architecture (%d)",
2065 bfd_architecture);
2066 }
2067 /* Check that we haven't seen this architecture before */
2068 for (curr = &gdbarch_registry;
2069 (*curr) != NULL;
2070 curr = &(*curr)->next)
2071 {
2072 if (bfd_architecture == (*curr)->bfd_architecture)
2073 internal_error (__FILE__, __LINE__,
2074 "gdbarch: Duplicate registraration of architecture (%s)",
2075 bfd_arch_info->printable_name);
2076 }
2077 /* log it */
2078 if (gdbarch_debug)
2079 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2080 bfd_arch_info->printable_name,
2081 (long) init);
2082 /* Append it */
2083 (*curr) = XMALLOC (struct gdbarch_registration);
2084 (*curr)->bfd_architecture = bfd_architecture;
2085 (*curr)->init = init;
2086 (*curr)->dump_tdep = dump_tdep;
2087 (*curr)->arches = NULL;
2088 (*curr)->next = NULL;
2089 }
2090
2091 void
2092 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2093 gdbarch_init_ftype *init)
2094 {
2095 gdbarch_register (bfd_architecture, init, NULL);
2096 }
2097
2098
2099 /* Look for an architecture using gdbarch_info. Base search on only
2100 BFD_ARCH_INFO and BYTE_ORDER. */
2101
2102 struct gdbarch_list *
2103 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2104 const struct gdbarch_info *info)
2105 {
2106 for (; arches != NULL; arches = arches->next)
2107 {
2108 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2109 continue;
2110 if (info->byte_order != arches->gdbarch->byte_order)
2111 continue;
2112 if (info->osabi != arches->gdbarch->osabi)
2113 continue;
2114 return arches;
2115 }
2116 return NULL;
2117 }
2118
2119
2120 /* Find an architecture that matches the specified INFO. Create a new
2121 architecture if needed. Return that new architecture. Assumes
2122 that there is no current architecture. */
2123
2124 static struct gdbarch *
2125 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2126 {
2127 struct gdbarch *new_gdbarch;
2128 struct gdbarch_registration *rego;
2129
2130 /* The existing architecture has been swapped out - all this code
2131 works from a clean slate. */
2132 gdb_assert (current_gdbarch == NULL);
2133
2134 /* Fill in missing parts of the INFO struct using a number of
2135 sources: "set ..."; INFOabfd supplied; and the existing
2136 architecture. */
2137 gdbarch_info_fill (old_gdbarch, &info);
2138
2139 /* Must have found some sort of architecture. */
2140 gdb_assert (info.bfd_arch_info != NULL);
2141
2142 if (gdbarch_debug)
2143 {
2144 fprintf_unfiltered (gdb_stdlog,
2145 "find_arch_by_info: info.bfd_arch_info %s\n",
2146 (info.bfd_arch_info != NULL
2147 ? info.bfd_arch_info->printable_name
2148 : "(null)"));
2149 fprintf_unfiltered (gdb_stdlog,
2150 "find_arch_by_info: info.byte_order %d (%s)\n",
2151 info.byte_order,
2152 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2153 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2154 : "default"));
2155 fprintf_unfiltered (gdb_stdlog,
2156 "find_arch_by_info: info.osabi %d (%s)\n",
2157 info.osabi, gdbarch_osabi_name (info.osabi));
2158 fprintf_unfiltered (gdb_stdlog,
2159 "find_arch_by_info: info.abfd 0x%lx\n",
2160 (long) info.abfd);
2161 fprintf_unfiltered (gdb_stdlog,
2162 "find_arch_by_info: info.tdep_info 0x%lx\n",
2163 (long) info.tdep_info);
2164 }
2165
2166 /* Find the tdep code that knows about this architecture. */
2167 for (rego = gdbarch_registry;
2168 rego != NULL;
2169 rego = rego->next)
2170 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2171 break;
2172 if (rego == NULL)
2173 {
2174 if (gdbarch_debug)
2175 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2176 "No matching architecture\n");
2177 return 0;
2178 }
2179
2180 /* Ask the tdep code for an architecture that matches "info". */
2181 new_gdbarch = rego->init (info, rego->arches);
2182
2183 /* Did the tdep code like it? No. Reject the change and revert to
2184 the old architecture. */
2185 if (new_gdbarch == NULL)
2186 {
2187 if (gdbarch_debug)
2188 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2189 "Target rejected architecture\n");
2190 return NULL;
2191 }
2192
2193 /* Is this a pre-existing architecture (as determined by already
2194 being initialized)? Move it to the front of the architecture
2195 list (keeping the list sorted Most Recently Used). */
2196 if (new_gdbarch->initialized_p)
2197 {
2198 struct gdbarch_list **list;
2199 struct gdbarch_list *this;
2200 if (gdbarch_debug)
2201 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2202 "Previous architecture 0x%08lx (%s) selected\n",
2203 (long) new_gdbarch,
2204 new_gdbarch->bfd_arch_info->printable_name);
2205 /* Find the existing arch in the list. */
2206 for (list = &rego->arches;
2207 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2208 list = &(*list)->next);
2209 /* It had better be in the list of architectures. */
2210 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2211 /* Unlink THIS. */
2212 this = (*list);
2213 (*list) = this->next;
2214 /* Insert THIS at the front. */
2215 this->next = rego->arches;
2216 rego->arches = this;
2217 /* Return it. */
2218 return new_gdbarch;
2219 }
2220
2221 /* It's a new architecture. */
2222 if (gdbarch_debug)
2223 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2224 "New architecture 0x%08lx (%s) selected\n",
2225 (long) new_gdbarch,
2226 new_gdbarch->bfd_arch_info->printable_name);
2227
2228 /* Insert the new architecture into the front of the architecture
2229 list (keep the list sorted Most Recently Used). */
2230 {
2231 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2232 this->next = rego->arches;
2233 this->gdbarch = new_gdbarch;
2234 rego->arches = this;
2235 }
2236
2237 /* Check that the newly installed architecture is valid. Plug in
2238 any post init values. */
2239 new_gdbarch->dump_tdep = rego->dump_tdep;
2240 verify_gdbarch (new_gdbarch);
2241 new_gdbarch->initialized_p = 1;
2242
2243 /* Initialize any per-architecture swap areas. This phase requires
2244 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2245 swap the entire architecture out. */
2246 current_gdbarch = new_gdbarch;
2247 current_gdbarch_swap_init_hack ();
2248 current_gdbarch_swap_out_hack ();
2249
2250 if (gdbarch_debug)
2251 gdbarch_dump (new_gdbarch, gdb_stdlog);
2252
2253 return new_gdbarch;
2254 }
2255
2256 struct gdbarch *
2257 gdbarch_find_by_info (struct gdbarch_info info)
2258 {
2259 /* Save the previously selected architecture, setting the global to
2260 NULL. This stops things like gdbarch->init() trying to use the
2261 previous architecture's configuration. The previous architecture
2262 may not even be of the same architecture family. The most recent
2263 architecture of the same family is found at the head of the
2264 rego->arches list. */
2265 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2266
2267 /* Find the specified architecture. */
2268 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2269
2270 /* Restore the existing architecture. */
2271 gdb_assert (current_gdbarch == NULL);
2272 current_gdbarch_swap_in_hack (old_gdbarch);
2273
2274 return new_gdbarch;
2275 }
2276
2277 /* Make the specified architecture current, swapping the existing one
2278 out. */
2279
2280 void
2281 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2282 {
2283 gdb_assert (new_gdbarch != NULL);
2284 gdb_assert (current_gdbarch != NULL);
2285 gdb_assert (new_gdbarch->initialized_p);
2286 current_gdbarch_swap_out_hack ();
2287 current_gdbarch_swap_in_hack (new_gdbarch);
2288 architecture_changed_event ();
2289 }
2290
2291 extern void _initialize_gdbarch (void);
2292
2293 void
2294 _initialize_gdbarch (void)
2295 {
2296 struct cmd_list_element *c;
2297
2298 add_show_from_set (add_set_cmd ("arch",
2299 class_maintenance,
2300 var_zinteger,
2301 (char *)&gdbarch_debug,
2302 "Set architecture debugging.\\n\\
2303 When non-zero, architecture debugging is enabled.", &setdebuglist),
2304 &showdebuglist);
2305 c = add_set_cmd ("archdebug",
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
2309 "Set architecture debugging.\\n\\
2310 When non-zero, architecture debugging is enabled.", &setlist);
2311
2312 deprecate_cmd (c, "set debug arch");
2313 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2314 }
2315 EOF
2316
2317 # close things off
2318 exec 1>&2
2319 #../move-if-change new-gdbarch.c gdbarch.c
2320 compare_new gdbarch.c
This page took 0.118564 seconds and 5 git commands to generate.