2004-10-31 Orjan Friberg <organ.friberg@axis.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 #
495 v:=:int:believe_pcc_promotion:::::::
496 #
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 #
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
504 #
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
511
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
515
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
521 # RETURN_VALUE.
522
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
536 # function call.
537
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
545 # function is used.
546
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
549
550 #
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
566
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # Return non-zero if the processor is executing a delay slot and a
615 # further single-step is needed before the instruction finishes.
616 M::int:single_step_through_delay:struct frame_info *frame:frame
617 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
618 # disassembler. Perhaps objdump can handle it?
619 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
620 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
621
622
623 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
624 # evaluates non-zero, this is the address where the debugger will place
625 # a step-resume breakpoint to get us past the dynamic linker.
626 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
627 # For SVR4 shared libraries, each call goes through a small piece of
628 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
629 # to nonzero if we are currently stopped in one of these.
630 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_call_trampoline::0
631
632 # Some systems also have trampoline code for returning from shared libs.
633 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
634
635 # A target might have problems with watchpoints as soon as the stack
636 # frame of the current function has been destroyed. This mostly happens
637 # as the first action in a funtion's epilogue. in_function_epilogue_p()
638 # is defined to return a non-zero value if either the given addr is one
639 # instruction after the stack destroying instruction up to the trailing
640 # return instruction or if we can figure out that the stack frame has
641 # already been invalidated regardless of the value of addr. Targets
642 # which don't suffer from that problem could just let this functionality
643 # untouched.
644 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
645 # Given a vector of command-line arguments, return a newly allocated
646 # string which, when passed to the create_inferior function, will be
647 # parsed (on Unix systems, by the shell) to yield the same vector.
648 # This function should call error() if the argument vector is not
649 # representable for this target or if this target does not support
650 # command-line arguments.
651 # ARGC is the number of elements in the vector.
652 # ARGV is an array of strings, one per argument.
653 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
654 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
655 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
656 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
657 v:=:int:cannot_step_breakpoint:::0:0::0
658 v:=:int:have_nonsteppable_watchpoint:::0:0::0
659 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
660 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
661 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
662 # Is a register in a group
663 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
664 # Fetch the pointer to the ith function argument.
665 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
666
667 # Return the appropriate register set for a core file section with
668 # name SECT_NAME and size SECT_SIZE.
669 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
670 EOF
671 }
672
673 #
674 # The .log file
675 #
676 exec > new-gdbarch.log
677 function_list | while do_read
678 do
679 cat <<EOF
680 ${class} ${returntype} ${function} ($formal)
681 EOF
682 for r in ${read}
683 do
684 eval echo \"\ \ \ \ ${r}=\${${r}}\"
685 done
686 if class_is_predicate_p && fallback_default_p
687 then
688 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
689 kill $$
690 exit 1
691 fi
692 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
693 then
694 echo "Error: postdefault is useless when invalid_p=0" 1>&2
695 kill $$
696 exit 1
697 fi
698 if class_is_multiarch_p
699 then
700 if class_is_predicate_p ; then :
701 elif test "x${predefault}" = "x"
702 then
703 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
704 kill $$
705 exit 1
706 fi
707 fi
708 echo ""
709 done
710
711 exec 1>&2
712 compare_new gdbarch.log
713
714
715 copyright ()
716 {
717 cat <<EOF
718 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
719
720 /* Dynamic architecture support for GDB, the GNU debugger.
721
722 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
723 Software Foundation, Inc.
724
725 This file is part of GDB.
726
727 This program is free software; you can redistribute it and/or modify
728 it under the terms of the GNU General Public License as published by
729 the Free Software Foundation; either version 2 of the License, or
730 (at your option) any later version.
731
732 This program is distributed in the hope that it will be useful,
733 but WITHOUT ANY WARRANTY; without even the implied warranty of
734 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
735 GNU General Public License for more details.
736
737 You should have received a copy of the GNU General Public License
738 along with this program; if not, write to the Free Software
739 Foundation, Inc., 59 Temple Place - Suite 330,
740 Boston, MA 02111-1307, USA. */
741
742 /* This file was created with the aid of \`\`gdbarch.sh''.
743
744 The Bourne shell script \`\`gdbarch.sh'' creates the files
745 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
746 against the existing \`\`gdbarch.[hc]''. Any differences found
747 being reported.
748
749 If editing this file, please also run gdbarch.sh and merge any
750 changes into that script. Conversely, when making sweeping changes
751 to this file, modifying gdbarch.sh and using its output may prove
752 easier. */
753
754 EOF
755 }
756
757 #
758 # The .h file
759 #
760
761 exec > new-gdbarch.h
762 copyright
763 cat <<EOF
764 #ifndef GDBARCH_H
765 #define GDBARCH_H
766
767 struct floatformat;
768 struct ui_file;
769 struct frame_info;
770 struct value;
771 struct objfile;
772 struct minimal_symbol;
773 struct regcache;
774 struct reggroup;
775 struct regset;
776 struct disassemble_info;
777 struct target_ops;
778 struct obstack;
779
780 extern struct gdbarch *current_gdbarch;
781 EOF
782
783 # function typedef's
784 printf "\n"
785 printf "\n"
786 printf "/* The following are pre-initialized by GDBARCH. */\n"
787 function_list | while do_read
788 do
789 if class_is_info_p
790 then
791 printf "\n"
792 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
793 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
794 if test -n "${macro}"
795 then
796 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
797 printf "#error \"Non multi-arch definition of ${macro}\"\n"
798 printf "#endif\n"
799 printf "#if !defined (${macro})\n"
800 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
801 printf "#endif\n"
802 fi
803 fi
804 done
805
806 # function typedef's
807 printf "\n"
808 printf "\n"
809 printf "/* The following are initialized by the target dependent code. */\n"
810 function_list | while do_read
811 do
812 if [ -n "${comment}" ]
813 then
814 echo "${comment}" | sed \
815 -e '2 s,#,/*,' \
816 -e '3,$ s,#, ,' \
817 -e '$ s,$, */,'
818 fi
819
820 if class_is_predicate_p
821 then
822 if test -n "${macro}"
823 then
824 printf "\n"
825 printf "#if defined (${macro})\n"
826 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
827 printf "#if !defined (${macro}_P)\n"
828 printf "#define ${macro}_P() (1)\n"
829 printf "#endif\n"
830 printf "#endif\n"
831 fi
832 printf "\n"
833 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
834 if test -n "${macro}"
835 then
836 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
837 printf "#error \"Non multi-arch definition of ${macro}\"\n"
838 printf "#endif\n"
839 printf "#if !defined (${macro}_P)\n"
840 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
841 printf "#endif\n"
842 fi
843 fi
844 if class_is_variable_p
845 then
846 printf "\n"
847 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
848 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
849 if test -n "${macro}"
850 then
851 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
852 printf "#error \"Non multi-arch definition of ${macro}\"\n"
853 printf "#endif\n"
854 printf "#if !defined (${macro})\n"
855 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
856 printf "#endif\n"
857 fi
858 fi
859 if class_is_function_p
860 then
861 printf "\n"
862 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
863 then
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
865 elif class_is_multiarch_p
866 then
867 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
868 else
869 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
870 fi
871 if [ "x${formal}" = "xvoid" ]
872 then
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 else
875 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
876 fi
877 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
878 if test -n "${macro}"
879 then
880 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
881 printf "#error \"Non multi-arch definition of ${macro}\"\n"
882 printf "#endif\n"
883 if [ "x${actual}" = "x" ]
884 then
885 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
886 elif [ "x${actual}" = "x-" ]
887 then
888 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
889 else
890 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
891 fi
892 printf "#if !defined (${macro})\n"
893 if [ "x${actual}" = "x" ]
894 then
895 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
896 elif [ "x${actual}" = "x-" ]
897 then
898 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
899 else
900 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
901 fi
902 printf "#endif\n"
903 fi
904 fi
905 done
906
907 # close it off
908 cat <<EOF
909
910 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
911
912
913 /* Mechanism for co-ordinating the selection of a specific
914 architecture.
915
916 GDB targets (*-tdep.c) can register an interest in a specific
917 architecture. Other GDB components can register a need to maintain
918 per-architecture data.
919
920 The mechanisms below ensures that there is only a loose connection
921 between the set-architecture command and the various GDB
922 components. Each component can independently register their need
923 to maintain architecture specific data with gdbarch.
924
925 Pragmatics:
926
927 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
928 didn't scale.
929
930 The more traditional mega-struct containing architecture specific
931 data for all the various GDB components was also considered. Since
932 GDB is built from a variable number of (fairly independent)
933 components it was determined that the global aproach was not
934 applicable. */
935
936
937 /* Register a new architectural family with GDB.
938
939 Register support for the specified ARCHITECTURE with GDB. When
940 gdbarch determines that the specified architecture has been
941 selected, the corresponding INIT function is called.
942
943 --
944
945 The INIT function takes two parameters: INFO which contains the
946 information available to gdbarch about the (possibly new)
947 architecture; ARCHES which is a list of the previously created
948 \`\`struct gdbarch'' for this architecture.
949
950 The INFO parameter is, as far as possible, be pre-initialized with
951 information obtained from INFO.ABFD or the previously selected
952 architecture.
953
954 The ARCHES parameter is a linked list (sorted most recently used)
955 of all the previously created architures for this architecture
956 family. The (possibly NULL) ARCHES->gdbarch can used to access
957 values from the previously selected architecture for this
958 architecture family. The global \`\`current_gdbarch'' shall not be
959 used.
960
961 The INIT function shall return any of: NULL - indicating that it
962 doesn't recognize the selected architecture; an existing \`\`struct
963 gdbarch'' from the ARCHES list - indicating that the new
964 architecture is just a synonym for an earlier architecture (see
965 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
966 - that describes the selected architecture (see gdbarch_alloc()).
967
968 The DUMP_TDEP function shall print out all target specific values.
969 Care should be taken to ensure that the function works in both the
970 multi-arch and non- multi-arch cases. */
971
972 struct gdbarch_list
973 {
974 struct gdbarch *gdbarch;
975 struct gdbarch_list *next;
976 };
977
978 struct gdbarch_info
979 {
980 /* Use default: NULL (ZERO). */
981 const struct bfd_arch_info *bfd_arch_info;
982
983 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
984 int byte_order;
985
986 /* Use default: NULL (ZERO). */
987 bfd *abfd;
988
989 /* Use default: NULL (ZERO). */
990 struct gdbarch_tdep_info *tdep_info;
991
992 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
993 enum gdb_osabi osabi;
994 };
995
996 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
997 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
998
999 /* DEPRECATED - use gdbarch_register() */
1000 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1001
1002 extern void gdbarch_register (enum bfd_architecture architecture,
1003 gdbarch_init_ftype *,
1004 gdbarch_dump_tdep_ftype *);
1005
1006
1007 /* Return a freshly allocated, NULL terminated, array of the valid
1008 architecture names. Since architectures are registered during the
1009 _initialize phase this function only returns useful information
1010 once initialization has been completed. */
1011
1012 extern const char **gdbarch_printable_names (void);
1013
1014
1015 /* Helper function. Search the list of ARCHES for a GDBARCH that
1016 matches the information provided by INFO. */
1017
1018 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1019
1020
1021 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1022 basic initialization using values obtained from the INFO andTDEP
1023 parameters. set_gdbarch_*() functions are called to complete the
1024 initialization of the object. */
1025
1026 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1027
1028
1029 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1030 It is assumed that the caller freeds the \`\`struct
1031 gdbarch_tdep''. */
1032
1033 extern void gdbarch_free (struct gdbarch *);
1034
1035
1036 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1037 obstack. The memory is freed when the corresponding architecture
1038 is also freed. */
1039
1040 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1041 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1042 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1043
1044
1045 /* Helper function. Force an update of the current architecture.
1046
1047 The actual architecture selected is determined by INFO, \`\`(gdb) set
1048 architecture'' et.al., the existing architecture and BFD's default
1049 architecture. INFO should be initialized to zero and then selected
1050 fields should be updated.
1051
1052 Returns non-zero if the update succeeds */
1053
1054 extern int gdbarch_update_p (struct gdbarch_info info);
1055
1056
1057 /* Helper function. Find an architecture matching info.
1058
1059 INFO should be initialized using gdbarch_info_init, relevant fields
1060 set, and then finished using gdbarch_info_fill.
1061
1062 Returns the corresponding architecture, or NULL if no matching
1063 architecture was found. "current_gdbarch" is not updated. */
1064
1065 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1066
1067
1068 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1069
1070 FIXME: kettenis/20031124: Of the functions that follow, only
1071 gdbarch_from_bfd is supposed to survive. The others will
1072 dissappear since in the future GDB will (hopefully) be truly
1073 multi-arch. However, for now we're still stuck with the concept of
1074 a single active architecture. */
1075
1076 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1077
1078
1079 /* Register per-architecture data-pointer.
1080
1081 Reserve space for a per-architecture data-pointer. An identifier
1082 for the reserved data-pointer is returned. That identifer should
1083 be saved in a local static variable.
1084
1085 Memory for the per-architecture data shall be allocated using
1086 gdbarch_obstack_zalloc. That memory will be deleted when the
1087 corresponding architecture object is deleted.
1088
1089 When a previously created architecture is re-selected, the
1090 per-architecture data-pointer for that previous architecture is
1091 restored. INIT() is not re-called.
1092
1093 Multiple registrarants for any architecture are allowed (and
1094 strongly encouraged). */
1095
1096 struct gdbarch_data;
1097
1098 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1099 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1100 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1101 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1102 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1103 struct gdbarch_data *data,
1104 void *pointer);
1105
1106 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1107
1108
1109
1110 /* Register per-architecture memory region.
1111
1112 Provide a memory-region swap mechanism. Per-architecture memory
1113 region are created. These memory regions are swapped whenever the
1114 architecture is changed. For a new architecture, the memory region
1115 is initialized with zero (0) and the INIT function is called.
1116
1117 Memory regions are swapped / initialized in the order that they are
1118 registered. NULL DATA and/or INIT values can be specified.
1119
1120 New code should use gdbarch_data_register_*(). */
1121
1122 typedef void (gdbarch_swap_ftype) (void);
1123 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1124 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1125
1126
1127
1128 /* Set the dynamic target-system-dependent parameters (architecture,
1129 byte-order, ...) using information found in the BFD */
1130
1131 extern void set_gdbarch_from_file (bfd *);
1132
1133
1134 /* Initialize the current architecture to the "first" one we find on
1135 our list. */
1136
1137 extern void initialize_current_architecture (void);
1138
1139 /* gdbarch trace variable */
1140 extern int gdbarch_debug;
1141
1142 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1143
1144 #endif
1145 EOF
1146 exec 1>&2
1147 #../move-if-change new-gdbarch.h gdbarch.h
1148 compare_new gdbarch.h
1149
1150
1151 #
1152 # C file
1153 #
1154
1155 exec > new-gdbarch.c
1156 copyright
1157 cat <<EOF
1158
1159 #include "defs.h"
1160 #include "arch-utils.h"
1161
1162 #include "gdbcmd.h"
1163 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1164 #include "symcat.h"
1165
1166 #include "floatformat.h"
1167
1168 #include "gdb_assert.h"
1169 #include "gdb_string.h"
1170 #include "gdb-events.h"
1171 #include "reggroups.h"
1172 #include "osabi.h"
1173 #include "gdb_obstack.h"
1174
1175 /* Static function declarations */
1176
1177 static void alloc_gdbarch_data (struct gdbarch *);
1178
1179 /* Non-zero if we want to trace architecture code. */
1180
1181 #ifndef GDBARCH_DEBUG
1182 #define GDBARCH_DEBUG 0
1183 #endif
1184 int gdbarch_debug = GDBARCH_DEBUG;
1185
1186 static const char *
1187 pformat (const struct floatformat *format)
1188 {
1189 if (format == NULL)
1190 return "(null)";
1191 else
1192 return format->name;
1193 }
1194
1195 EOF
1196
1197 # gdbarch open the gdbarch object
1198 printf "\n"
1199 printf "/* Maintain the struct gdbarch object */\n"
1200 printf "\n"
1201 printf "struct gdbarch\n"
1202 printf "{\n"
1203 printf " /* Has this architecture been fully initialized? */\n"
1204 printf " int initialized_p;\n"
1205 printf "\n"
1206 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1207 printf " struct obstack *obstack;\n"
1208 printf "\n"
1209 printf " /* basic architectural information */\n"
1210 function_list | while do_read
1211 do
1212 if class_is_info_p
1213 then
1214 printf " ${returntype} ${function};\n"
1215 fi
1216 done
1217 printf "\n"
1218 printf " /* target specific vector. */\n"
1219 printf " struct gdbarch_tdep *tdep;\n"
1220 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1221 printf "\n"
1222 printf " /* per-architecture data-pointers */\n"
1223 printf " unsigned nr_data;\n"
1224 printf " void **data;\n"
1225 printf "\n"
1226 printf " /* per-architecture swap-regions */\n"
1227 printf " struct gdbarch_swap *swap;\n"
1228 printf "\n"
1229 cat <<EOF
1230 /* Multi-arch values.
1231
1232 When extending this structure you must:
1233
1234 Add the field below.
1235
1236 Declare set/get functions and define the corresponding
1237 macro in gdbarch.h.
1238
1239 gdbarch_alloc(): If zero/NULL is not a suitable default,
1240 initialize the new field.
1241
1242 verify_gdbarch(): Confirm that the target updated the field
1243 correctly.
1244
1245 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1246 field is dumped out
1247
1248 \`\`startup_gdbarch()'': Append an initial value to the static
1249 variable (base values on the host's c-type system).
1250
1251 get_gdbarch(): Implement the set/get functions (probably using
1252 the macro's as shortcuts).
1253
1254 */
1255
1256 EOF
1257 function_list | while do_read
1258 do
1259 if class_is_variable_p
1260 then
1261 printf " ${returntype} ${function};\n"
1262 elif class_is_function_p
1263 then
1264 printf " gdbarch_${function}_ftype *${function};\n"
1265 fi
1266 done
1267 printf "};\n"
1268
1269 # A pre-initialized vector
1270 printf "\n"
1271 printf "\n"
1272 cat <<EOF
1273 /* The default architecture uses host values (for want of a better
1274 choice). */
1275 EOF
1276 printf "\n"
1277 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1278 printf "\n"
1279 printf "struct gdbarch startup_gdbarch =\n"
1280 printf "{\n"
1281 printf " 1, /* Always initialized. */\n"
1282 printf " NULL, /* The obstack. */\n"
1283 printf " /* basic architecture information */\n"
1284 function_list | while do_read
1285 do
1286 if class_is_info_p
1287 then
1288 printf " ${staticdefault}, /* ${function} */\n"
1289 fi
1290 done
1291 cat <<EOF
1292 /* target specific vector and its dump routine */
1293 NULL, NULL,
1294 /*per-architecture data-pointers and swap regions */
1295 0, NULL, NULL,
1296 /* Multi-arch values */
1297 EOF
1298 function_list | while do_read
1299 do
1300 if class_is_function_p || class_is_variable_p
1301 then
1302 printf " ${staticdefault}, /* ${function} */\n"
1303 fi
1304 done
1305 cat <<EOF
1306 /* startup_gdbarch() */
1307 };
1308
1309 struct gdbarch *current_gdbarch = &startup_gdbarch;
1310 EOF
1311
1312 # Create a new gdbarch struct
1313 cat <<EOF
1314
1315 /* Create a new \`\`struct gdbarch'' based on information provided by
1316 \`\`struct gdbarch_info''. */
1317 EOF
1318 printf "\n"
1319 cat <<EOF
1320 struct gdbarch *
1321 gdbarch_alloc (const struct gdbarch_info *info,
1322 struct gdbarch_tdep *tdep)
1323 {
1324 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1325 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1326 the current local architecture and not the previous global
1327 architecture. This ensures that the new architectures initial
1328 values are not influenced by the previous architecture. Once
1329 everything is parameterised with gdbarch, this will go away. */
1330 struct gdbarch *current_gdbarch;
1331
1332 /* Create an obstack for allocating all the per-architecture memory,
1333 then use that to allocate the architecture vector. */
1334 struct obstack *obstack = XMALLOC (struct obstack);
1335 obstack_init (obstack);
1336 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1337 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1338 current_gdbarch->obstack = obstack;
1339
1340 alloc_gdbarch_data (current_gdbarch);
1341
1342 current_gdbarch->tdep = tdep;
1343 EOF
1344 printf "\n"
1345 function_list | while do_read
1346 do
1347 if class_is_info_p
1348 then
1349 printf " current_gdbarch->${function} = info->${function};\n"
1350 fi
1351 done
1352 printf "\n"
1353 printf " /* Force the explicit initialization of these. */\n"
1354 function_list | while do_read
1355 do
1356 if class_is_function_p || class_is_variable_p
1357 then
1358 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1359 then
1360 printf " current_gdbarch->${function} = ${predefault};\n"
1361 fi
1362 fi
1363 done
1364 cat <<EOF
1365 /* gdbarch_alloc() */
1366
1367 return current_gdbarch;
1368 }
1369 EOF
1370
1371 # Free a gdbarch struct.
1372 printf "\n"
1373 printf "\n"
1374 cat <<EOF
1375 /* Allocate extra space using the per-architecture obstack. */
1376
1377 void *
1378 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1379 {
1380 void *data = obstack_alloc (arch->obstack, size);
1381 memset (data, 0, size);
1382 return data;
1383 }
1384
1385
1386 /* Free a gdbarch struct. This should never happen in normal
1387 operation --- once you've created a gdbarch, you keep it around.
1388 However, if an architecture's init function encounters an error
1389 building the structure, it may need to clean up a partially
1390 constructed gdbarch. */
1391
1392 void
1393 gdbarch_free (struct gdbarch *arch)
1394 {
1395 struct obstack *obstack;
1396 gdb_assert (arch != NULL);
1397 gdb_assert (!arch->initialized_p);
1398 obstack = arch->obstack;
1399 obstack_free (obstack, 0); /* Includes the ARCH. */
1400 xfree (obstack);
1401 }
1402 EOF
1403
1404 # verify a new architecture
1405 cat <<EOF
1406
1407
1408 /* Ensure that all values in a GDBARCH are reasonable. */
1409
1410 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1411 just happens to match the global variable \`\`current_gdbarch''. That
1412 way macros refering to that variable get the local and not the global
1413 version - ulgh. Once everything is parameterised with gdbarch, this
1414 will go away. */
1415
1416 static void
1417 verify_gdbarch (struct gdbarch *current_gdbarch)
1418 {
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1421 long dummy;
1422 char *buf;
1423 log = mem_fileopen ();
1424 cleanups = make_cleanup_ui_file_delete (log);
1425 /* fundamental */
1426 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1427 fprintf_unfiltered (log, "\n\tbyte-order");
1428 if (current_gdbarch->bfd_arch_info == NULL)
1429 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1430 /* Check those that need to be defined for the given multi-arch level. */
1431 EOF
1432 function_list | while do_read
1433 do
1434 if class_is_function_p || class_is_variable_p
1435 then
1436 if [ "x${invalid_p}" = "x0" ]
1437 then
1438 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1439 elif class_is_predicate_p
1440 then
1441 printf " /* Skip verify of ${function}, has predicate */\n"
1442 # FIXME: See do_read for potential simplification
1443 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1444 then
1445 printf " if (${invalid_p})\n"
1446 printf " current_gdbarch->${function} = ${postdefault};\n"
1447 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1448 then
1449 printf " if (current_gdbarch->${function} == ${predefault})\n"
1450 printf " current_gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${postdefault}" ]
1452 then
1453 printf " if (current_gdbarch->${function} == 0)\n"
1454 printf " current_gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${invalid_p}" ]
1456 then
1457 printf " if (${invalid_p})\n"
1458 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1459 elif [ -n "${predefault}" ]
1460 then
1461 printf " if (current_gdbarch->${function} == ${predefault})\n"
1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1463 fi
1464 fi
1465 done
1466 cat <<EOF
1467 buf = ui_file_xstrdup (log, &dummy);
1468 make_cleanup (xfree, buf);
1469 if (strlen (buf) > 0)
1470 internal_error (__FILE__, __LINE__,
1471 "verify_gdbarch: the following are invalid ...%s",
1472 buf);
1473 do_cleanups (cleanups);
1474 }
1475 EOF
1476
1477 # dump the structure
1478 printf "\n"
1479 printf "\n"
1480 cat <<EOF
1481 /* Print out the details of the current architecture. */
1482
1483 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1484 just happens to match the global variable \`\`current_gdbarch''. That
1485 way macros refering to that variable get the local and not the global
1486 version - ulgh. Once everything is parameterised with gdbarch, this
1487 will go away. */
1488
1489 void
1490 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1491 {
1492 const char *gdb_xm_file = "<not-defined>";
1493 const char *gdb_nm_file = "<not-defined>";
1494 const char *gdb_tm_file = "<not-defined>";
1495 #if defined (GDB_XM_FILE)
1496 gdb_xm_file = GDB_XM_FILE;
1497 #endif
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1500 gdb_xm_file);
1501 #if defined (GDB_NM_FILE)
1502 gdb_nm_file = GDB_NM_FILE;
1503 #endif
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1506 gdb_nm_file);
1507 #if defined (GDB_TM_FILE)
1508 gdb_tm_file = GDB_TM_FILE;
1509 #endif
1510 fprintf_unfiltered (file,
1511 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1512 gdb_tm_file);
1513 EOF
1514 function_list | sort -t: -k 4 | while do_read
1515 do
1516 # First the predicate
1517 if class_is_predicate_p
1518 then
1519 if test -n "${macro}"
1520 then
1521 printf "#ifdef ${macro}_P\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}_P()\",\n"
1525 printf " XSTRING (${macro}_P ()));\n"
1526 printf "#endif\n"
1527 fi
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1530 printf " gdbarch_${function}_p (current_gdbarch));\n"
1531 fi
1532 # Print the macro definition.
1533 if test -n "${macro}"
1534 then
1535 printf "#ifdef ${macro}\n"
1536 if class_is_function_p
1537 then
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1540 printf " \"${macro}(${actual})\",\n"
1541 printf " XSTRING (${macro} (${actual})));\n"
1542 else
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1545 printf " XSTRING (${macro}));\n"
1546 fi
1547 printf "#endif\n"
1548 fi
1549 # Print the corresponding value.
1550 if class_is_function_p
1551 then
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1554 printf " (long) current_gdbarch->${function});\n"
1555 else
1556 # It is a variable
1557 case "${print}:${returntype}" in
1558 :CORE_ADDR )
1559 fmt="0x%s"
1560 print="paddr_nz (current_gdbarch->${function})"
1561 ;;
1562 :* )
1563 fmt="%s"
1564 print="paddr_d (current_gdbarch->${function})"
1565 ;;
1566 * )
1567 fmt="%s"
1568 ;;
1569 esac
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1572 printf " ${print});\n"
1573 fi
1574 done
1575 cat <<EOF
1576 if (current_gdbarch->dump_tdep != NULL)
1577 current_gdbarch->dump_tdep (current_gdbarch, file);
1578 }
1579 EOF
1580
1581
1582 # GET/SET
1583 printf "\n"
1584 cat <<EOF
1585 struct gdbarch_tdep *
1586 gdbarch_tdep (struct gdbarch *gdbarch)
1587 {
1588 if (gdbarch_debug >= 2)
1589 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1590 return gdbarch->tdep;
1591 }
1592 EOF
1593 printf "\n"
1594 function_list | while do_read
1595 do
1596 if class_is_predicate_p
1597 then
1598 printf "\n"
1599 printf "int\n"
1600 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1601 printf "{\n"
1602 printf " gdb_assert (gdbarch != NULL);\n"
1603 printf " return ${predicate};\n"
1604 printf "}\n"
1605 fi
1606 if class_is_function_p
1607 then
1608 printf "\n"
1609 printf "${returntype}\n"
1610 if [ "x${formal}" = "xvoid" ]
1611 then
1612 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1613 else
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1615 fi
1616 printf "{\n"
1617 printf " gdb_assert (gdbarch != NULL);\n"
1618 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1619 if class_is_predicate_p && test -n "${predefault}"
1620 then
1621 # Allow a call to a function with a predicate.
1622 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1623 fi
1624 printf " if (gdbarch_debug >= 2)\n"
1625 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1626 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1627 then
1628 if class_is_multiarch_p
1629 then
1630 params="gdbarch"
1631 else
1632 params=""
1633 fi
1634 else
1635 if class_is_multiarch_p
1636 then
1637 params="gdbarch, ${actual}"
1638 else
1639 params="${actual}"
1640 fi
1641 fi
1642 if [ "x${returntype}" = "xvoid" ]
1643 then
1644 printf " gdbarch->${function} (${params});\n"
1645 else
1646 printf " return gdbarch->${function} (${params});\n"
1647 fi
1648 printf "}\n"
1649 printf "\n"
1650 printf "void\n"
1651 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1652 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1653 printf "{\n"
1654 printf " gdbarch->${function} = ${function};\n"
1655 printf "}\n"
1656 elif class_is_variable_p
1657 then
1658 printf "\n"
1659 printf "${returntype}\n"
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1661 printf "{\n"
1662 printf " gdb_assert (gdbarch != NULL);\n"
1663 if [ "x${invalid_p}" = "x0" ]
1664 then
1665 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1666 elif [ -n "${invalid_p}" ]
1667 then
1668 printf " /* Check variable is valid. */\n"
1669 printf " gdb_assert (!(${invalid_p}));\n"
1670 elif [ -n "${predefault}" ]
1671 then
1672 printf " /* Check variable changed from pre-default. */\n"
1673 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1674 fi
1675 printf " if (gdbarch_debug >= 2)\n"
1676 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1677 printf " return gdbarch->${function};\n"
1678 printf "}\n"
1679 printf "\n"
1680 printf "void\n"
1681 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1682 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1683 printf "{\n"
1684 printf " gdbarch->${function} = ${function};\n"
1685 printf "}\n"
1686 elif class_is_info_p
1687 then
1688 printf "\n"
1689 printf "${returntype}\n"
1690 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1691 printf "{\n"
1692 printf " gdb_assert (gdbarch != NULL);\n"
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1696 printf "}\n"
1697 fi
1698 done
1699
1700 # All the trailing guff
1701 cat <<EOF
1702
1703
1704 /* Keep a registry of per-architecture data-pointers required by GDB
1705 modules. */
1706
1707 struct gdbarch_data
1708 {
1709 unsigned index;
1710 int init_p;
1711 gdbarch_data_pre_init_ftype *pre_init;
1712 gdbarch_data_post_init_ftype *post_init;
1713 };
1714
1715 struct gdbarch_data_registration
1716 {
1717 struct gdbarch_data *data;
1718 struct gdbarch_data_registration *next;
1719 };
1720
1721 struct gdbarch_data_registry
1722 {
1723 unsigned nr;
1724 struct gdbarch_data_registration *registrations;
1725 };
1726
1727 struct gdbarch_data_registry gdbarch_data_registry =
1728 {
1729 0, NULL,
1730 };
1731
1732 static struct gdbarch_data *
1733 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1734 gdbarch_data_post_init_ftype *post_init)
1735 {
1736 struct gdbarch_data_registration **curr;
1737 /* Append the new registraration. */
1738 for (curr = &gdbarch_data_registry.registrations;
1739 (*curr) != NULL;
1740 curr = &(*curr)->next);
1741 (*curr) = XMALLOC (struct gdbarch_data_registration);
1742 (*curr)->next = NULL;
1743 (*curr)->data = XMALLOC (struct gdbarch_data);
1744 (*curr)->data->index = gdbarch_data_registry.nr++;
1745 (*curr)->data->pre_init = pre_init;
1746 (*curr)->data->post_init = post_init;
1747 (*curr)->data->init_p = 1;
1748 return (*curr)->data;
1749 }
1750
1751 struct gdbarch_data *
1752 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1753 {
1754 return gdbarch_data_register (pre_init, NULL);
1755 }
1756
1757 struct gdbarch_data *
1758 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1759 {
1760 return gdbarch_data_register (NULL, post_init);
1761 }
1762
1763 /* Create/delete the gdbarch data vector. */
1764
1765 static void
1766 alloc_gdbarch_data (struct gdbarch *gdbarch)
1767 {
1768 gdb_assert (gdbarch->data == NULL);
1769 gdbarch->nr_data = gdbarch_data_registry.nr;
1770 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1771 }
1772
1773 /* Initialize the current value of the specified per-architecture
1774 data-pointer. */
1775
1776 void
1777 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1778 struct gdbarch_data *data,
1779 void *pointer)
1780 {
1781 gdb_assert (data->index < gdbarch->nr_data);
1782 gdb_assert (gdbarch->data[data->index] == NULL);
1783 gdb_assert (data->pre_init == NULL);
1784 gdbarch->data[data->index] = pointer;
1785 }
1786
1787 /* Return the current value of the specified per-architecture
1788 data-pointer. */
1789
1790 void *
1791 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1792 {
1793 gdb_assert (data->index < gdbarch->nr_data);
1794 if (gdbarch->data[data->index] == NULL)
1795 {
1796 /* The data-pointer isn't initialized, call init() to get a
1797 value. */
1798 if (data->pre_init != NULL)
1799 /* Mid architecture creation: pass just the obstack, and not
1800 the entire architecture, as that way it isn't possible for
1801 pre-init code to refer to undefined architecture
1802 fields. */
1803 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1804 else if (gdbarch->initialized_p
1805 && data->post_init != NULL)
1806 /* Post architecture creation: pass the entire architecture
1807 (as all fields are valid), but be careful to also detect
1808 recursive references. */
1809 {
1810 gdb_assert (data->init_p);
1811 data->init_p = 0;
1812 gdbarch->data[data->index] = data->post_init (gdbarch);
1813 data->init_p = 1;
1814 }
1815 else
1816 /* The architecture initialization hasn't completed - punt -
1817 hope that the caller knows what they are doing. Once
1818 deprecated_set_gdbarch_data has been initialized, this can be
1819 changed to an internal error. */
1820 return NULL;
1821 gdb_assert (gdbarch->data[data->index] != NULL);
1822 }
1823 return gdbarch->data[data->index];
1824 }
1825
1826
1827
1828 /* Keep a registry of swapped data required by GDB modules. */
1829
1830 struct gdbarch_swap
1831 {
1832 void *swap;
1833 struct gdbarch_swap_registration *source;
1834 struct gdbarch_swap *next;
1835 };
1836
1837 struct gdbarch_swap_registration
1838 {
1839 void *data;
1840 unsigned long sizeof_data;
1841 gdbarch_swap_ftype *init;
1842 struct gdbarch_swap_registration *next;
1843 };
1844
1845 struct gdbarch_swap_registry
1846 {
1847 int nr;
1848 struct gdbarch_swap_registration *registrations;
1849 };
1850
1851 struct gdbarch_swap_registry gdbarch_swap_registry =
1852 {
1853 0, NULL,
1854 };
1855
1856 void
1857 deprecated_register_gdbarch_swap (void *data,
1858 unsigned long sizeof_data,
1859 gdbarch_swap_ftype *init)
1860 {
1861 struct gdbarch_swap_registration **rego;
1862 for (rego = &gdbarch_swap_registry.registrations;
1863 (*rego) != NULL;
1864 rego = &(*rego)->next);
1865 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1866 (*rego)->next = NULL;
1867 (*rego)->init = init;
1868 (*rego)->data = data;
1869 (*rego)->sizeof_data = sizeof_data;
1870 }
1871
1872 static void
1873 current_gdbarch_swap_init_hack (void)
1874 {
1875 struct gdbarch_swap_registration *rego;
1876 struct gdbarch_swap **curr = &current_gdbarch->swap;
1877 for (rego = gdbarch_swap_registry.registrations;
1878 rego != NULL;
1879 rego = rego->next)
1880 {
1881 if (rego->data != NULL)
1882 {
1883 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1884 struct gdbarch_swap);
1885 (*curr)->source = rego;
1886 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1887 rego->sizeof_data);
1888 (*curr)->next = NULL;
1889 curr = &(*curr)->next;
1890 }
1891 if (rego->init != NULL)
1892 rego->init ();
1893 }
1894 }
1895
1896 static struct gdbarch *
1897 current_gdbarch_swap_out_hack (void)
1898 {
1899 struct gdbarch *old_gdbarch = current_gdbarch;
1900 struct gdbarch_swap *curr;
1901
1902 gdb_assert (old_gdbarch != NULL);
1903 for (curr = old_gdbarch->swap;
1904 curr != NULL;
1905 curr = curr->next)
1906 {
1907 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1908 memset (curr->source->data, 0, curr->source->sizeof_data);
1909 }
1910 current_gdbarch = NULL;
1911 return old_gdbarch;
1912 }
1913
1914 static void
1915 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1916 {
1917 struct gdbarch_swap *curr;
1918
1919 gdb_assert (current_gdbarch == NULL);
1920 for (curr = new_gdbarch->swap;
1921 curr != NULL;
1922 curr = curr->next)
1923 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1924 current_gdbarch = new_gdbarch;
1925 }
1926
1927
1928 /* Keep a registry of the architectures known by GDB. */
1929
1930 struct gdbarch_registration
1931 {
1932 enum bfd_architecture bfd_architecture;
1933 gdbarch_init_ftype *init;
1934 gdbarch_dump_tdep_ftype *dump_tdep;
1935 struct gdbarch_list *arches;
1936 struct gdbarch_registration *next;
1937 };
1938
1939 static struct gdbarch_registration *gdbarch_registry = NULL;
1940
1941 static void
1942 append_name (const char ***buf, int *nr, const char *name)
1943 {
1944 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1945 (*buf)[*nr] = name;
1946 *nr += 1;
1947 }
1948
1949 const char **
1950 gdbarch_printable_names (void)
1951 {
1952 /* Accumulate a list of names based on the registed list of
1953 architectures. */
1954 enum bfd_architecture a;
1955 int nr_arches = 0;
1956 const char **arches = NULL;
1957 struct gdbarch_registration *rego;
1958 for (rego = gdbarch_registry;
1959 rego != NULL;
1960 rego = rego->next)
1961 {
1962 const struct bfd_arch_info *ap;
1963 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1964 if (ap == NULL)
1965 internal_error (__FILE__, __LINE__,
1966 "gdbarch_architecture_names: multi-arch unknown");
1967 do
1968 {
1969 append_name (&arches, &nr_arches, ap->printable_name);
1970 ap = ap->next;
1971 }
1972 while (ap != NULL);
1973 }
1974 append_name (&arches, &nr_arches, NULL);
1975 return arches;
1976 }
1977
1978
1979 void
1980 gdbarch_register (enum bfd_architecture bfd_architecture,
1981 gdbarch_init_ftype *init,
1982 gdbarch_dump_tdep_ftype *dump_tdep)
1983 {
1984 struct gdbarch_registration **curr;
1985 const struct bfd_arch_info *bfd_arch_info;
1986 /* Check that BFD recognizes this architecture */
1987 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1988 if (bfd_arch_info == NULL)
1989 {
1990 internal_error (__FILE__, __LINE__,
1991 "gdbarch: Attempt to register unknown architecture (%d)",
1992 bfd_architecture);
1993 }
1994 /* Check that we haven't seen this architecture before */
1995 for (curr = &gdbarch_registry;
1996 (*curr) != NULL;
1997 curr = &(*curr)->next)
1998 {
1999 if (bfd_architecture == (*curr)->bfd_architecture)
2000 internal_error (__FILE__, __LINE__,
2001 "gdbarch: Duplicate registraration of architecture (%s)",
2002 bfd_arch_info->printable_name);
2003 }
2004 /* log it */
2005 if (gdbarch_debug)
2006 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2007 bfd_arch_info->printable_name,
2008 (long) init);
2009 /* Append it */
2010 (*curr) = XMALLOC (struct gdbarch_registration);
2011 (*curr)->bfd_architecture = bfd_architecture;
2012 (*curr)->init = init;
2013 (*curr)->dump_tdep = dump_tdep;
2014 (*curr)->arches = NULL;
2015 (*curr)->next = NULL;
2016 }
2017
2018 void
2019 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2020 gdbarch_init_ftype *init)
2021 {
2022 gdbarch_register (bfd_architecture, init, NULL);
2023 }
2024
2025
2026 /* Look for an architecture using gdbarch_info. Base search on only
2027 BFD_ARCH_INFO and BYTE_ORDER. */
2028
2029 struct gdbarch_list *
2030 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2031 const struct gdbarch_info *info)
2032 {
2033 for (; arches != NULL; arches = arches->next)
2034 {
2035 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2036 continue;
2037 if (info->byte_order != arches->gdbarch->byte_order)
2038 continue;
2039 if (info->osabi != arches->gdbarch->osabi)
2040 continue;
2041 return arches;
2042 }
2043 return NULL;
2044 }
2045
2046
2047 /* Find an architecture that matches the specified INFO. Create a new
2048 architecture if needed. Return that new architecture. Assumes
2049 that there is no current architecture. */
2050
2051 static struct gdbarch *
2052 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2053 {
2054 struct gdbarch *new_gdbarch;
2055 struct gdbarch_registration *rego;
2056
2057 /* The existing architecture has been swapped out - all this code
2058 works from a clean slate. */
2059 gdb_assert (current_gdbarch == NULL);
2060
2061 /* Fill in missing parts of the INFO struct using a number of
2062 sources: "set ..."; INFOabfd supplied; and the existing
2063 architecture. */
2064 gdbarch_info_fill (old_gdbarch, &info);
2065
2066 /* Must have found some sort of architecture. */
2067 gdb_assert (info.bfd_arch_info != NULL);
2068
2069 if (gdbarch_debug)
2070 {
2071 fprintf_unfiltered (gdb_stdlog,
2072 "find_arch_by_info: info.bfd_arch_info %s\n",
2073 (info.bfd_arch_info != NULL
2074 ? info.bfd_arch_info->printable_name
2075 : "(null)"));
2076 fprintf_unfiltered (gdb_stdlog,
2077 "find_arch_by_info: info.byte_order %d (%s)\n",
2078 info.byte_order,
2079 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2080 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2081 : "default"));
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.osabi %d (%s)\n",
2084 info.osabi, gdbarch_osabi_name (info.osabi));
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.abfd 0x%lx\n",
2087 (long) info.abfd);
2088 fprintf_unfiltered (gdb_stdlog,
2089 "find_arch_by_info: info.tdep_info 0x%lx\n",
2090 (long) info.tdep_info);
2091 }
2092
2093 /* Find the tdep code that knows about this architecture. */
2094 for (rego = gdbarch_registry;
2095 rego != NULL;
2096 rego = rego->next)
2097 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2098 break;
2099 if (rego == NULL)
2100 {
2101 if (gdbarch_debug)
2102 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2103 "No matching architecture\n");
2104 return 0;
2105 }
2106
2107 /* Ask the tdep code for an architecture that matches "info". */
2108 new_gdbarch = rego->init (info, rego->arches);
2109
2110 /* Did the tdep code like it? No. Reject the change and revert to
2111 the old architecture. */
2112 if (new_gdbarch == NULL)
2113 {
2114 if (gdbarch_debug)
2115 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2116 "Target rejected architecture\n");
2117 return NULL;
2118 }
2119
2120 /* Is this a pre-existing architecture (as determined by already
2121 being initialized)? Move it to the front of the architecture
2122 list (keeping the list sorted Most Recently Used). */
2123 if (new_gdbarch->initialized_p)
2124 {
2125 struct gdbarch_list **list;
2126 struct gdbarch_list *this;
2127 if (gdbarch_debug)
2128 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2129 "Previous architecture 0x%08lx (%s) selected\n",
2130 (long) new_gdbarch,
2131 new_gdbarch->bfd_arch_info->printable_name);
2132 /* Find the existing arch in the list. */
2133 for (list = &rego->arches;
2134 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2135 list = &(*list)->next);
2136 /* It had better be in the list of architectures. */
2137 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2138 /* Unlink THIS. */
2139 this = (*list);
2140 (*list) = this->next;
2141 /* Insert THIS at the front. */
2142 this->next = rego->arches;
2143 rego->arches = this;
2144 /* Return it. */
2145 return new_gdbarch;
2146 }
2147
2148 /* It's a new architecture. */
2149 if (gdbarch_debug)
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "New architecture 0x%08lx (%s) selected\n",
2152 (long) new_gdbarch,
2153 new_gdbarch->bfd_arch_info->printable_name);
2154
2155 /* Insert the new architecture into the front of the architecture
2156 list (keep the list sorted Most Recently Used). */
2157 {
2158 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2159 this->next = rego->arches;
2160 this->gdbarch = new_gdbarch;
2161 rego->arches = this;
2162 }
2163
2164 /* Check that the newly installed architecture is valid. Plug in
2165 any post init values. */
2166 new_gdbarch->dump_tdep = rego->dump_tdep;
2167 verify_gdbarch (new_gdbarch);
2168 new_gdbarch->initialized_p = 1;
2169
2170 /* Initialize any per-architecture swap areas. This phase requires
2171 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2172 swap the entire architecture out. */
2173 current_gdbarch = new_gdbarch;
2174 current_gdbarch_swap_init_hack ();
2175 current_gdbarch_swap_out_hack ();
2176
2177 if (gdbarch_debug)
2178 gdbarch_dump (new_gdbarch, gdb_stdlog);
2179
2180 return new_gdbarch;
2181 }
2182
2183 struct gdbarch *
2184 gdbarch_find_by_info (struct gdbarch_info info)
2185 {
2186 /* Save the previously selected architecture, setting the global to
2187 NULL. This stops things like gdbarch->init() trying to use the
2188 previous architecture's configuration. The previous architecture
2189 may not even be of the same architecture family. The most recent
2190 architecture of the same family is found at the head of the
2191 rego->arches list. */
2192 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2193
2194 /* Find the specified architecture. */
2195 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2196
2197 /* Restore the existing architecture. */
2198 gdb_assert (current_gdbarch == NULL);
2199 current_gdbarch_swap_in_hack (old_gdbarch);
2200
2201 return new_gdbarch;
2202 }
2203
2204 /* Make the specified architecture current, swapping the existing one
2205 out. */
2206
2207 void
2208 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2209 {
2210 gdb_assert (new_gdbarch != NULL);
2211 gdb_assert (current_gdbarch != NULL);
2212 gdb_assert (new_gdbarch->initialized_p);
2213 current_gdbarch_swap_out_hack ();
2214 current_gdbarch_swap_in_hack (new_gdbarch);
2215 architecture_changed_event ();
2216 }
2217
2218 extern void _initialize_gdbarch (void);
2219
2220 void
2221 _initialize_gdbarch (void)
2222 {
2223 struct cmd_list_element *c;
2224
2225 deprecated_add_show_from_set
2226 (add_set_cmd ("arch",
2227 class_maintenance,
2228 var_zinteger,
2229 (char *)&gdbarch_debug,
2230 "Set architecture debugging.\\n\\
2231 When non-zero, architecture debugging is enabled.", &setdebuglist),
2232 &showdebuglist);
2233 c = add_set_cmd ("archdebug",
2234 class_maintenance,
2235 var_zinteger,
2236 (char *)&gdbarch_debug,
2237 "Set architecture debugging.\\n\\
2238 When non-zero, architecture debugging is enabled.", &setlist);
2239
2240 deprecate_cmd (c, "set debug arch");
2241 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2242 }
2243 EOF
2244
2245 # close things off
2246 exec 1>&2
2247 #../move-if-change new-gdbarch.c gdbarch.c
2248 compare_new gdbarch.c
This page took 0.081921 seconds and 5 git commands to generate.