* defs.h (XMALLOC): Define.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
419 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
420 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
425 #
426 M:::void:register_read:int regnum, char *buf:regnum, buf:
427 M:::void:register_write:int regnum, char *buf:regnum, buf:
428 #
429 v:2:NUM_REGS:int:num_regs::::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
435 v:2:SP_REGNUM:int:sp_regnum::::0:-1
436 v:2:FP_REGNUM:int:fp_regnum::::0:-1
437 v:2:PC_REGNUM:int:pc_regnum::::0:-1
438 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
439 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
440 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
441 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
442 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
443 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
444 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
445 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
446 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
447 # Convert from an sdb register number to an internal gdb register number.
448 # This should be defined in tm.h, if REGISTER_NAMES is not set up
449 # to map one to one onto the sdb register numbers.
450 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
451 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
452 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
453 v:2:REGISTER_SIZE:int:register_size::::0:-1
454 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
455 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
456 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
457 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
458 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
459 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
460 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
461 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
462 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
463 # MAP a GDB RAW register number onto a simulator register number. See
464 # also include/...-sim.h.
465 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
466 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
467 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
468 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
469 # setjmp/longjmp support.
470 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
471 #
472 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
473 # much better but at least they are vaguely consistent). The headers
474 # and body contain convoluted #if/#else sequences for determine how
475 # things should be compiled. Instead of trying to mimic that
476 # behaviour here (and hence entrench it further) gdbarch simply
477 # reqires that these methods be set up from the word go. This also
478 # avoids any potential problems with moving beyond multi-arch partial.
479 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
480 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
481 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
482 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
483 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
484 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
485 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
486 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
487 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
488 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
489 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
490 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
491 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
492 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
493 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
494 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
495 #
496 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
497 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
498 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
499 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
500 # old code has strange #ifdef interaction. So far no one has found
501 # that default_get_saved_register() is the default they are after.
502 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
503 #
504 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
505 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
506 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
507 # This function is called when the value of a pseudo-register needs to
508 # be updated. Typically it will be defined on a per-architecture
509 # basis.
510 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
511 # This function is called when the value of a pseudo-register needs to
512 # be set or stored. Typically it will be defined on a
513 # per-architecture basis.
514 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
515 #
516 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
517 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
518 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
519 #
520 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
521 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
522 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
523 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
524 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
525 f:2:POP_FRAME:void:pop_frame:void:-:::0
526 #
527 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
528 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
529 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
530 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
531 #
532 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
533 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
534 #
535 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
536 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
537 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
538 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
539 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
540 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
541 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
542 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
543 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
544 #
545 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
546 #
547 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
548 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
549 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
550 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
551 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
552 # given frame is the outermost one and has no caller.
553 #
554 # XXXX - both default and alternate frame_chain_valid functions are
555 # deprecated. New code should use dummy frames and one of the generic
556 # functions.
557 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
558 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
559 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
560 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
561 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
562 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
563 #
564 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
565 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
566 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
567 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
568 v:2:PARM_BOUNDARY:int:parm_boundary
569 #
570 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
571 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
572 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
573 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
574 # On some machines there are bits in addresses which are not really
575 # part of the address, but are used by the kernel, the hardware, etc.
576 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
577 # we get a "real" address such as one would find in a symbol table.
578 # This is used only for addresses of instructions, and even then I'm
579 # not sure it's used in all contexts. It exists to deal with there
580 # being a few stray bits in the PC which would mislead us, not as some
581 # sort of generic thing to handle alignment or segmentation (it's
582 # possible it should be in TARGET_READ_PC instead).
583 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
584 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
585 # ADDR_BITS_REMOVE.
586 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
587 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
588 # the target needs software single step. An ISA method to implement it.
589 #
590 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
591 # using the breakpoint system instead of blatting memory directly (as with rs6000).
592 #
593 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
594 # single step. If not, then implement single step using breakpoints.
595 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
596 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
597 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
598 # For SVR4 shared libraries, each call goes through a small piece of
599 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
600 # to nonzero if we are current stopped in one of these.
601 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
602 # A target might have problems with watchpoints as soon as the stack
603 # frame of the current function has been destroyed. This mostly happens
604 # as the first action in a funtion's epilogue. in_function_epilogue_p()
605 # is defined to return a non-zero value if either the given addr is one
606 # instruction after the stack destroying instruction up to the trailing
607 # return instruction or if we can figure out that the stack frame has
608 # already been invalidated regardless of the value of addr. Targets
609 # which don't suffer from that problem could just let this functionality
610 # untouched.
611 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
612 # Given a vector of command-line arguments, return a newly allocated
613 # string which, when passed to the create_inferior function, will be
614 # parsed (on Unix systems, by the shell) to yield the same vector.
615 # This function should call error() if the argument vector is not
616 # representable for this target or if this target does not support
617 # command-line arguments.
618 # ARGC is the number of elements in the vector.
619 # ARGV is an array of strings, one per argument.
620 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
621 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
622 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
623 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
624 EOF
625 }
626
627 #
628 # The .log file
629 #
630 exec > new-gdbarch.log
631 function_list | while do_read
632 do
633 cat <<EOF
634 ${class} ${macro}(${actual})
635 ${returntype} ${function} ($formal)${attrib}
636 EOF
637 for r in ${read}
638 do
639 eval echo \"\ \ \ \ ${r}=\${${r}}\"
640 done
641 # #fallbackdefault=${fallbackdefault}
642 # #valid_p=${valid_p}
643 #EOF
644 if class_is_predicate_p && fallback_default_p
645 then
646 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
647 kill $$
648 exit 1
649 fi
650 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
651 then
652 echo "Error: postdefault is useless when invalid_p=0" 1>&2
653 kill $$
654 exit 1
655 fi
656 if class_is_multiarch_p
657 then
658 if class_is_predicate_p ; then :
659 elif test "x${predefault}" = "x"
660 then
661 echo "Error: pure multi-arch function must have a predefault" 1>&2
662 kill $$
663 exit 1
664 fi
665 fi
666 echo ""
667 done
668
669 exec 1>&2
670 compare_new gdbarch.log
671
672
673 copyright ()
674 {
675 cat <<EOF
676 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
677
678 /* Dynamic architecture support for GDB, the GNU debugger.
679 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
680
681 This file is part of GDB.
682
683 This program is free software; you can redistribute it and/or modify
684 it under the terms of the GNU General Public License as published by
685 the Free Software Foundation; either version 2 of the License, or
686 (at your option) any later version.
687
688 This program is distributed in the hope that it will be useful,
689 but WITHOUT ANY WARRANTY; without even the implied warranty of
690 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
691 GNU General Public License for more details.
692
693 You should have received a copy of the GNU General Public License
694 along with this program; if not, write to the Free Software
695 Foundation, Inc., 59 Temple Place - Suite 330,
696 Boston, MA 02111-1307, USA. */
697
698 /* This file was created with the aid of \`\`gdbarch.sh''.
699
700 The Bourne shell script \`\`gdbarch.sh'' creates the files
701 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
702 against the existing \`\`gdbarch.[hc]''. Any differences found
703 being reported.
704
705 If editing this file, please also run gdbarch.sh and merge any
706 changes into that script. Conversely, when making sweeping changes
707 to this file, modifying gdbarch.sh and using its output may prove
708 easier. */
709
710 EOF
711 }
712
713 #
714 # The .h file
715 #
716
717 exec > new-gdbarch.h
718 copyright
719 cat <<EOF
720 #ifndef GDBARCH_H
721 #define GDBARCH_H
722
723 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
724 #if !GDB_MULTI_ARCH
725 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
726 #endif
727
728 struct frame_info;
729 struct value;
730 struct objfile;
731 struct minimal_symbol;
732
733 extern struct gdbarch *current_gdbarch;
734
735
736 /* If any of the following are defined, the target wasn't correctly
737 converted. */
738
739 #if GDB_MULTI_ARCH
740 #if defined (EXTRA_FRAME_INFO)
741 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
742 #endif
743 #endif
744
745 #if GDB_MULTI_ARCH
746 #if defined (FRAME_FIND_SAVED_REGS)
747 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
748 #endif
749 #endif
750
751 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
752 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
753 #endif
754 EOF
755
756 # function typedef's
757 printf "\n"
758 printf "\n"
759 printf "/* The following are pre-initialized by GDBARCH. */\n"
760 function_list | while do_read
761 do
762 if class_is_info_p
763 then
764 printf "\n"
765 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
766 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
767 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
768 printf "#error \"Non multi-arch definition of ${macro}\"\n"
769 printf "#endif\n"
770 printf "#if GDB_MULTI_ARCH\n"
771 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
772 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
773 printf "#endif\n"
774 printf "#endif\n"
775 fi
776 done
777
778 # function typedef's
779 printf "\n"
780 printf "\n"
781 printf "/* The following are initialized by the target dependent code. */\n"
782 function_list | while do_read
783 do
784 if [ -n "${comment}" ]
785 then
786 echo "${comment}" | sed \
787 -e '2 s,#,/*,' \
788 -e '3,$ s,#, ,' \
789 -e '$ s,$, */,'
790 fi
791 if class_is_multiarch_p
792 then
793 if class_is_predicate_p
794 then
795 printf "\n"
796 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
797 fi
798 else
799 if class_is_predicate_p
800 then
801 printf "\n"
802 printf "#if defined (${macro})\n"
803 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
804 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
805 printf "#if !defined (${macro}_P)\n"
806 printf "#define ${macro}_P() (1)\n"
807 printf "#endif\n"
808 printf "#endif\n"
809 printf "\n"
810 printf "/* Default predicate for non- multi-arch targets. */\n"
811 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
812 printf "#define ${macro}_P() (0)\n"
813 printf "#endif\n"
814 printf "\n"
815 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
816 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
817 printf "#error \"Non multi-arch definition of ${macro}\"\n"
818 printf "#endif\n"
819 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
820 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
821 printf "#endif\n"
822 fi
823 fi
824 if class_is_variable_p
825 then
826 if fallback_default_p || class_is_predicate_p
827 then
828 printf "\n"
829 printf "/* Default (value) for non- multi-arch platforms. */\n"
830 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
831 echo "#define ${macro} (${fallbackdefault})" \
832 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
833 printf "#endif\n"
834 fi
835 printf "\n"
836 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
837 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
838 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
839 printf "#error \"Non multi-arch definition of ${macro}\"\n"
840 printf "#endif\n"
841 printf "#if GDB_MULTI_ARCH\n"
842 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
843 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
844 printf "#endif\n"
845 printf "#endif\n"
846 fi
847 if class_is_function_p
848 then
849 if class_is_multiarch_p ; then :
850 elif fallback_default_p || class_is_predicate_p
851 then
852 printf "\n"
853 printf "/* Default (function) for non- multi-arch platforms. */\n"
854 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
855 if [ "x${fallbackdefault}" = "x0" ]
856 then
857 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
858 else
859 # FIXME: Should be passing current_gdbarch through!
860 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
861 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
862 fi
863 printf "#endif\n"
864 fi
865 printf "\n"
866 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
867 then
868 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
869 elif class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
872 else
873 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
874 fi
875 if [ "x${formal}" = "xvoid" ]
876 then
877 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
878 else
879 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
880 fi
881 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
882 if class_is_multiarch_p ; then :
883 else
884 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
885 printf "#error \"Non multi-arch definition of ${macro}\"\n"
886 printf "#endif\n"
887 printf "#if GDB_MULTI_ARCH\n"
888 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
889 if [ "x${actual}" = "x" ]
890 then
891 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
892 elif [ "x${actual}" = "x-" ]
893 then
894 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
895 else
896 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
897 fi
898 printf "#endif\n"
899 printf "#endif\n"
900 fi
901 fi
902 done
903
904 # close it off
905 cat <<EOF
906
907 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
908
909
910 /* Mechanism for co-ordinating the selection of a specific
911 architecture.
912
913 GDB targets (*-tdep.c) can register an interest in a specific
914 architecture. Other GDB components can register a need to maintain
915 per-architecture data.
916
917 The mechanisms below ensures that there is only a loose connection
918 between the set-architecture command and the various GDB
919 components. Each component can independently register their need
920 to maintain architecture specific data with gdbarch.
921
922 Pragmatics:
923
924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
925 didn't scale.
926
927 The more traditional mega-struct containing architecture specific
928 data for all the various GDB components was also considered. Since
929 GDB is built from a variable number of (fairly independent)
930 components it was determined that the global aproach was not
931 applicable. */
932
933
934 /* Register a new architectural family with GDB.
935
936 Register support for the specified ARCHITECTURE with GDB. When
937 gdbarch determines that the specified architecture has been
938 selected, the corresponding INIT function is called.
939
940 --
941
942 The INIT function takes two parameters: INFO which contains the
943 information available to gdbarch about the (possibly new)
944 architecture; ARCHES which is a list of the previously created
945 \`\`struct gdbarch'' for this architecture.
946
947 The INIT function parameter INFO shall, as far as possible, be
948 pre-initialized with information obtained from INFO.ABFD or
949 previously selected architecture (if similar).
950
951 The INIT function shall return any of: NULL - indicating that it
952 doesn't recognize the selected architecture; an existing \`\`struct
953 gdbarch'' from the ARCHES list - indicating that the new
954 architecture is just a synonym for an earlier architecture (see
955 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
956 - that describes the selected architecture (see gdbarch_alloc()).
957
958 The DUMP_TDEP function shall print out all target specific values.
959 Care should be taken to ensure that the function works in both the
960 multi-arch and non- multi-arch cases. */
961
962 struct gdbarch_list
963 {
964 struct gdbarch *gdbarch;
965 struct gdbarch_list *next;
966 };
967
968 struct gdbarch_info
969 {
970 /* Use default: NULL (ZERO). */
971 const struct bfd_arch_info *bfd_arch_info;
972
973 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
974 int byte_order;
975
976 /* Use default: NULL (ZERO). */
977 bfd *abfd;
978
979 /* Use default: NULL (ZERO). */
980 struct gdbarch_tdep_info *tdep_info;
981 };
982
983 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
984 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
985
986 /* DEPRECATED - use gdbarch_register() */
987 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
988
989 extern void gdbarch_register (enum bfd_architecture architecture,
990 gdbarch_init_ftype *,
991 gdbarch_dump_tdep_ftype *);
992
993
994 /* Return a freshly allocated, NULL terminated, array of the valid
995 architecture names. Since architectures are registered during the
996 _initialize phase this function only returns useful information
997 once initialization has been completed. */
998
999 extern const char **gdbarch_printable_names (void);
1000
1001
1002 /* Helper function. Search the list of ARCHES for a GDBARCH that
1003 matches the information provided by INFO. */
1004
1005 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1006
1007
1008 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1009 basic initialization using values obtained from the INFO andTDEP
1010 parameters. set_gdbarch_*() functions are called to complete the
1011 initialization of the object. */
1012
1013 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1014
1015
1016 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1017 It is assumed that the caller freeds the \`\`struct
1018 gdbarch_tdep''. */
1019
1020 extern void gdbarch_free (struct gdbarch *);
1021
1022
1023 /* Helper function. Force an update of the current architecture.
1024
1025 The actual architecture selected is determined by INFO, \`\`(gdb) set
1026 architecture'' et.al., the existing architecture and BFD's default
1027 architecture. INFO should be initialized to zero and then selected
1028 fields should be updated.
1029
1030 Returns non-zero if the update succeeds */
1031
1032 extern int gdbarch_update_p (struct gdbarch_info info);
1033
1034
1035
1036 /* Register per-architecture data-pointer.
1037
1038 Reserve space for a per-architecture data-pointer. An identifier
1039 for the reserved data-pointer is returned. That identifer should
1040 be saved in a local static variable.
1041
1042 The per-architecture data-pointer can be initialized in one of two
1043 ways: The value can be set explicitly using a call to
1044 set_gdbarch_data(); the value can be set implicitly using the value
1045 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1046 called after the basic architecture vector has been created.
1047
1048 When a previously created architecture is re-selected, the
1049 per-architecture data-pointer for that previous architecture is
1050 restored. INIT() is not called.
1051
1052 During initialization, multiple assignments of the data-pointer are
1053 allowed, non-NULL values are deleted by calling FREE(). If the
1054 architecture is deleted using gdbarch_free() all non-NULL data
1055 pointers are also deleted using FREE().
1056
1057 Multiple registrarants for any architecture are allowed (and
1058 strongly encouraged). */
1059
1060 struct gdbarch_data;
1061
1062 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1063 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1064 void *pointer);
1065 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1066 gdbarch_data_free_ftype *free);
1067 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1068 struct gdbarch_data *data,
1069 void *pointer);
1070
1071 extern void *gdbarch_data (struct gdbarch_data*);
1072
1073
1074 /* Register per-architecture memory region.
1075
1076 Provide a memory-region swap mechanism. Per-architecture memory
1077 region are created. These memory regions are swapped whenever the
1078 architecture is changed. For a new architecture, the memory region
1079 is initialized with zero (0) and the INIT function is called.
1080
1081 Memory regions are swapped / initialized in the order that they are
1082 registered. NULL DATA and/or INIT values can be specified.
1083
1084 New code should use register_gdbarch_data(). */
1085
1086 typedef void (gdbarch_swap_ftype) (void);
1087 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1088 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1089
1090
1091
1092 /* The target-system-dependent byte order is dynamic */
1093
1094 extern int target_byte_order;
1095 #ifndef TARGET_BYTE_ORDER
1096 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1097 #endif
1098
1099 extern int target_byte_order_auto;
1100 #ifndef TARGET_BYTE_ORDER_AUTO
1101 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1102 #endif
1103
1104
1105
1106 /* The target-system-dependent BFD architecture is dynamic */
1107
1108 extern int target_architecture_auto;
1109 #ifndef TARGET_ARCHITECTURE_AUTO
1110 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1111 #endif
1112
1113 extern const struct bfd_arch_info *target_architecture;
1114 #ifndef TARGET_ARCHITECTURE
1115 #define TARGET_ARCHITECTURE (target_architecture + 0)
1116 #endif
1117
1118
1119 /* The target-system-dependent disassembler is semi-dynamic */
1120
1121 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1122 unsigned int len, disassemble_info *info);
1123
1124 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1125 disassemble_info *info);
1126
1127 extern void dis_asm_print_address (bfd_vma addr,
1128 disassemble_info *info);
1129
1130 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1131 extern disassemble_info tm_print_insn_info;
1132 #ifndef TARGET_PRINT_INSN_INFO
1133 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1134 #endif
1135
1136
1137
1138 /* Set the dynamic target-system-dependent parameters (architecture,
1139 byte-order, ...) using information found in the BFD */
1140
1141 extern void set_gdbarch_from_file (bfd *);
1142
1143
1144 /* Initialize the current architecture to the "first" one we find on
1145 our list. */
1146
1147 extern void initialize_current_architecture (void);
1148
1149 /* For non-multiarched targets, do any initialization of the default
1150 gdbarch object necessary after the _initialize_MODULE functions
1151 have run. */
1152 extern void initialize_non_multiarch ();
1153
1154 /* gdbarch trace variable */
1155 extern int gdbarch_debug;
1156
1157 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1158
1159 #endif
1160 EOF
1161 exec 1>&2
1162 #../move-if-change new-gdbarch.h gdbarch.h
1163 compare_new gdbarch.h
1164
1165
1166 #
1167 # C file
1168 #
1169
1170 exec > new-gdbarch.c
1171 copyright
1172 cat <<EOF
1173
1174 #include "defs.h"
1175 #include "arch-utils.h"
1176
1177 #if GDB_MULTI_ARCH
1178 #include "gdbcmd.h"
1179 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1180 #else
1181 /* Just include everything in sight so that the every old definition
1182 of macro is visible. */
1183 #include "gdb_string.h"
1184 #include <ctype.h>
1185 #include "symtab.h"
1186 #include "frame.h"
1187 #include "inferior.h"
1188 #include "breakpoint.h"
1189 #include "gdb_wait.h"
1190 #include "gdbcore.h"
1191 #include "gdbcmd.h"
1192 #include "target.h"
1193 #include "gdbthread.h"
1194 #include "annotate.h"
1195 #include "symfile.h" /* for overlay functions */
1196 #include "value.h" /* For old tm.h/nm.h macros. */
1197 #endif
1198 #include "symcat.h"
1199
1200 #include "floatformat.h"
1201
1202 #include "gdb_assert.h"
1203 #include "gdb-events.h"
1204
1205 /* Static function declarations */
1206
1207 static void verify_gdbarch (struct gdbarch *gdbarch);
1208 static void alloc_gdbarch_data (struct gdbarch *);
1209 static void init_gdbarch_data (struct gdbarch *);
1210 static void free_gdbarch_data (struct gdbarch *);
1211 static void init_gdbarch_swap (struct gdbarch *);
1212 static void swapout_gdbarch_swap (struct gdbarch *);
1213 static void swapin_gdbarch_swap (struct gdbarch *);
1214
1215 /* Non-zero if we want to trace architecture code. */
1216
1217 #ifndef GDBARCH_DEBUG
1218 #define GDBARCH_DEBUG 0
1219 #endif
1220 int gdbarch_debug = GDBARCH_DEBUG;
1221
1222 EOF
1223
1224 # gdbarch open the gdbarch object
1225 printf "\n"
1226 printf "/* Maintain the struct gdbarch object */\n"
1227 printf "\n"
1228 printf "struct gdbarch\n"
1229 printf "{\n"
1230 printf " /* basic architectural information */\n"
1231 function_list | while do_read
1232 do
1233 if class_is_info_p
1234 then
1235 printf " ${returntype} ${function};\n"
1236 fi
1237 done
1238 printf "\n"
1239 printf " /* target specific vector. */\n"
1240 printf " struct gdbarch_tdep *tdep;\n"
1241 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1242 printf "\n"
1243 printf " /* per-architecture data-pointers */\n"
1244 printf " unsigned nr_data;\n"
1245 printf " void **data;\n"
1246 printf "\n"
1247 printf " /* per-architecture swap-regions */\n"
1248 printf " struct gdbarch_swap *swap;\n"
1249 printf "\n"
1250 cat <<EOF
1251 /* Multi-arch values.
1252
1253 When extending this structure you must:
1254
1255 Add the field below.
1256
1257 Declare set/get functions and define the corresponding
1258 macro in gdbarch.h.
1259
1260 gdbarch_alloc(): If zero/NULL is not a suitable default,
1261 initialize the new field.
1262
1263 verify_gdbarch(): Confirm that the target updated the field
1264 correctly.
1265
1266 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1267 field is dumped out
1268
1269 \`\`startup_gdbarch()'': Append an initial value to the static
1270 variable (base values on the host's c-type system).
1271
1272 get_gdbarch(): Implement the set/get functions (probably using
1273 the macro's as shortcuts).
1274
1275 */
1276
1277 EOF
1278 function_list | while do_read
1279 do
1280 if class_is_variable_p
1281 then
1282 printf " ${returntype} ${function};\n"
1283 elif class_is_function_p
1284 then
1285 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1286 fi
1287 done
1288 printf "};\n"
1289
1290 # A pre-initialized vector
1291 printf "\n"
1292 printf "\n"
1293 cat <<EOF
1294 /* The default architecture uses host values (for want of a better
1295 choice). */
1296 EOF
1297 printf "\n"
1298 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1299 printf "\n"
1300 printf "struct gdbarch startup_gdbarch =\n"
1301 printf "{\n"
1302 printf " /* basic architecture information */\n"
1303 function_list | while do_read
1304 do
1305 if class_is_info_p
1306 then
1307 printf " ${staticdefault},\n"
1308 fi
1309 done
1310 cat <<EOF
1311 /* target specific vector and its dump routine */
1312 NULL, NULL,
1313 /*per-architecture data-pointers and swap regions */
1314 0, NULL, NULL,
1315 /* Multi-arch values */
1316 EOF
1317 function_list | while do_read
1318 do
1319 if class_is_function_p || class_is_variable_p
1320 then
1321 printf " ${staticdefault},\n"
1322 fi
1323 done
1324 cat <<EOF
1325 /* startup_gdbarch() */
1326 };
1327
1328 struct gdbarch *current_gdbarch = &startup_gdbarch;
1329
1330 /* Do any initialization needed for a non-multiarch configuration
1331 after the _initialize_MODULE functions have been run. */
1332 void
1333 initialize_non_multiarch ()
1334 {
1335 alloc_gdbarch_data (&startup_gdbarch);
1336 init_gdbarch_data (&startup_gdbarch);
1337 }
1338 EOF
1339
1340 # Create a new gdbarch struct
1341 printf "\n"
1342 printf "\n"
1343 cat <<EOF
1344 /* Create a new \`\`struct gdbarch'' based on information provided by
1345 \`\`struct gdbarch_info''. */
1346 EOF
1347 printf "\n"
1348 cat <<EOF
1349 struct gdbarch *
1350 gdbarch_alloc (const struct gdbarch_info *info,
1351 struct gdbarch_tdep *tdep)
1352 {
1353 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1354 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1355 the current local architecture and not the previous global
1356 architecture. This ensures that the new architectures initial
1357 values are not influenced by the previous architecture. Once
1358 everything is parameterised with gdbarch, this will go away. */
1359 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1360 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1361
1362 alloc_gdbarch_data (current_gdbarch);
1363
1364 current_gdbarch->tdep = tdep;
1365 EOF
1366 printf "\n"
1367 function_list | while do_read
1368 do
1369 if class_is_info_p
1370 then
1371 printf " current_gdbarch->${function} = info->${function};\n"
1372 fi
1373 done
1374 printf "\n"
1375 printf " /* Force the explicit initialization of these. */\n"
1376 function_list | while do_read
1377 do
1378 if class_is_function_p || class_is_variable_p
1379 then
1380 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1381 then
1382 printf " current_gdbarch->${function} = ${predefault};\n"
1383 fi
1384 fi
1385 done
1386 cat <<EOF
1387 /* gdbarch_alloc() */
1388
1389 return current_gdbarch;
1390 }
1391 EOF
1392
1393 # Free a gdbarch struct.
1394 printf "\n"
1395 printf "\n"
1396 cat <<EOF
1397 /* Free a gdbarch struct. This should never happen in normal
1398 operation --- once you've created a gdbarch, you keep it around.
1399 However, if an architecture's init function encounters an error
1400 building the structure, it may need to clean up a partially
1401 constructed gdbarch. */
1402
1403 void
1404 gdbarch_free (struct gdbarch *arch)
1405 {
1406 gdb_assert (arch != NULL);
1407 free_gdbarch_data (arch);
1408 xfree (arch);
1409 }
1410 EOF
1411
1412 # verify a new architecture
1413 printf "\n"
1414 printf "\n"
1415 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1416 printf "\n"
1417 cat <<EOF
1418 static void
1419 verify_gdbarch (struct gdbarch *gdbarch)
1420 {
1421 struct ui_file *log;
1422 struct cleanup *cleanups;
1423 long dummy;
1424 char *buf;
1425 /* Only perform sanity checks on a multi-arch target. */
1426 if (!GDB_MULTI_ARCH)
1427 return;
1428 log = mem_fileopen ();
1429 cleanups = make_cleanup_ui_file_delete (log);
1430 /* fundamental */
1431 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1432 fprintf_unfiltered (log, "\n\tbyte-order");
1433 if (gdbarch->bfd_arch_info == NULL)
1434 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1435 /* Check those that need to be defined for the given multi-arch level. */
1436 EOF
1437 function_list | while do_read
1438 do
1439 if class_is_function_p || class_is_variable_p
1440 then
1441 if [ "x${invalid_p}" = "x0" ]
1442 then
1443 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1444 elif class_is_predicate_p
1445 then
1446 printf " /* Skip verify of ${function}, has predicate */\n"
1447 # FIXME: See do_read for potential simplification
1448 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1449 then
1450 printf " if (${invalid_p})\n"
1451 printf " gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1453 then
1454 printf " if (gdbarch->${function} == ${predefault})\n"
1455 printf " gdbarch->${function} = ${postdefault};\n"
1456 elif [ -n "${postdefault}" ]
1457 then
1458 printf " if (gdbarch->${function} == 0)\n"
1459 printf " gdbarch->${function} = ${postdefault};\n"
1460 elif [ -n "${invalid_p}" ]
1461 then
1462 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1463 printf " && (${invalid_p}))\n"
1464 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1465 elif [ -n "${predefault}" ]
1466 then
1467 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1468 printf " && (gdbarch->${function} == ${predefault}))\n"
1469 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1470 fi
1471 fi
1472 done
1473 cat <<EOF
1474 buf = ui_file_xstrdup (log, &dummy);
1475 make_cleanup (xfree, buf);
1476 if (strlen (buf) > 0)
1477 internal_error (__FILE__, __LINE__,
1478 "verify_gdbarch: the following are invalid ...%s",
1479 buf);
1480 do_cleanups (cleanups);
1481 }
1482 EOF
1483
1484 # dump the structure
1485 printf "\n"
1486 printf "\n"
1487 cat <<EOF
1488 /* Print out the details of the current architecture. */
1489
1490 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1491 just happens to match the global variable \`\`current_gdbarch''. That
1492 way macros refering to that variable get the local and not the global
1493 version - ulgh. Once everything is parameterised with gdbarch, this
1494 will go away. */
1495
1496 void
1497 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1498 {
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1501 GDB_MULTI_ARCH);
1502 EOF
1503 function_list | sort -t: +2 | while do_read
1504 do
1505 # multiarch functions don't have macros.
1506 if class_is_multiarch_p
1507 then
1508 printf " if (GDB_MULTI_ARCH)\n"
1509 printf " fprintf_unfiltered (file,\n"
1510 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1511 printf " (long) current_gdbarch->${function});\n"
1512 continue
1513 fi
1514 # Print the macro definition.
1515 printf "#ifdef ${macro}\n"
1516 if [ "x${returntype}" = "xvoid" ]
1517 then
1518 printf "#if GDB_MULTI_ARCH\n"
1519 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1520 fi
1521 if class_is_function_p
1522 then
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1525 printf " \"${macro}(${actual})\",\n"
1526 printf " XSTRING (${macro} (${actual})));\n"
1527 else
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1530 printf " XSTRING (${macro}));\n"
1531 fi
1532 # Print the architecture vector value
1533 if [ "x${returntype}" = "xvoid" ]
1534 then
1535 printf "#endif\n"
1536 fi
1537 if [ "x${print_p}" = "x()" ]
1538 then
1539 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1540 elif [ "x${print_p}" = "x0" ]
1541 then
1542 printf " /* skip print of ${macro}, print_p == 0. */\n"
1543 elif [ -n "${print_p}" ]
1544 then
1545 printf " if (${print_p})\n"
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1548 printf " ${print});\n"
1549 elif class_is_function_p
1550 then
1551 printf " if (GDB_MULTI_ARCH)\n"
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1554 printf " (long) current_gdbarch->${function}\n"
1555 printf " /*${macro} ()*/);\n"
1556 else
1557 printf " fprintf_unfiltered (file,\n"
1558 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1559 printf " ${print});\n"
1560 fi
1561 printf "#endif\n"
1562 done
1563 cat <<EOF
1564 if (current_gdbarch->dump_tdep != NULL)
1565 current_gdbarch->dump_tdep (current_gdbarch, file);
1566 }
1567 EOF
1568
1569
1570 # GET/SET
1571 printf "\n"
1572 cat <<EOF
1573 struct gdbarch_tdep *
1574 gdbarch_tdep (struct gdbarch *gdbarch)
1575 {
1576 if (gdbarch_debug >= 2)
1577 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1578 return gdbarch->tdep;
1579 }
1580 EOF
1581 printf "\n"
1582 function_list | while do_read
1583 do
1584 if class_is_predicate_p
1585 then
1586 printf "\n"
1587 printf "int\n"
1588 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1589 printf "{\n"
1590 if [ -n "${valid_p}" ]
1591 then
1592 printf " return ${valid_p};\n"
1593 else
1594 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1595 fi
1596 printf "}\n"
1597 fi
1598 if class_is_function_p
1599 then
1600 printf "\n"
1601 printf "${returntype}\n"
1602 if [ "x${formal}" = "xvoid" ]
1603 then
1604 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1605 else
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1607 fi
1608 printf "{\n"
1609 printf " if (gdbarch->${function} == 0)\n"
1610 printf " internal_error (__FILE__, __LINE__,\n"
1611 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1612 printf " if (gdbarch_debug >= 2)\n"
1613 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1614 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1615 then
1616 if class_is_multiarch_p
1617 then
1618 params="gdbarch"
1619 else
1620 params=""
1621 fi
1622 else
1623 if class_is_multiarch_p
1624 then
1625 params="gdbarch, ${actual}"
1626 else
1627 params="${actual}"
1628 fi
1629 fi
1630 if [ "x${returntype}" = "xvoid" ]
1631 then
1632 printf " gdbarch->${function} (${params});\n"
1633 else
1634 printf " return gdbarch->${function} (${params});\n"
1635 fi
1636 printf "}\n"
1637 printf "\n"
1638 printf "void\n"
1639 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1640 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1641 printf "{\n"
1642 printf " gdbarch->${function} = ${function};\n"
1643 printf "}\n"
1644 elif class_is_variable_p
1645 then
1646 printf "\n"
1647 printf "${returntype}\n"
1648 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1649 printf "{\n"
1650 if [ "x${invalid_p}" = "x0" ]
1651 then
1652 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1653 elif [ -n "${invalid_p}" ]
1654 then
1655 printf " if (${invalid_p})\n"
1656 printf " internal_error (__FILE__, __LINE__,\n"
1657 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1658 elif [ -n "${predefault}" ]
1659 then
1660 printf " if (gdbarch->${function} == ${predefault})\n"
1661 printf " internal_error (__FILE__, __LINE__,\n"
1662 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1663 fi
1664 printf " if (gdbarch_debug >= 2)\n"
1665 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1666 printf " return gdbarch->${function};\n"
1667 printf "}\n"
1668 printf "\n"
1669 printf "void\n"
1670 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1671 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1672 printf "{\n"
1673 printf " gdbarch->${function} = ${function};\n"
1674 printf "}\n"
1675 elif class_is_info_p
1676 then
1677 printf "\n"
1678 printf "${returntype}\n"
1679 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1680 printf "{\n"
1681 printf " if (gdbarch_debug >= 2)\n"
1682 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1683 printf " return gdbarch->${function};\n"
1684 printf "}\n"
1685 fi
1686 done
1687
1688 # All the trailing guff
1689 cat <<EOF
1690
1691
1692 /* Keep a registry of per-architecture data-pointers required by GDB
1693 modules. */
1694
1695 struct gdbarch_data
1696 {
1697 unsigned index;
1698 gdbarch_data_init_ftype *init;
1699 gdbarch_data_free_ftype *free;
1700 };
1701
1702 struct gdbarch_data_registration
1703 {
1704 struct gdbarch_data *data;
1705 struct gdbarch_data_registration *next;
1706 };
1707
1708 struct gdbarch_data_registry
1709 {
1710 unsigned nr;
1711 struct gdbarch_data_registration *registrations;
1712 };
1713
1714 struct gdbarch_data_registry gdbarch_data_registry =
1715 {
1716 0, NULL,
1717 };
1718
1719 struct gdbarch_data *
1720 register_gdbarch_data (gdbarch_data_init_ftype *init,
1721 gdbarch_data_free_ftype *free)
1722 {
1723 struct gdbarch_data_registration **curr;
1724 for (curr = &gdbarch_data_registry.registrations;
1725 (*curr) != NULL;
1726 curr = &(*curr)->next);
1727 (*curr) = XMALLOC (struct gdbarch_data_registration);
1728 (*curr)->next = NULL;
1729 (*curr)->data = XMALLOC (struct gdbarch_data);
1730 (*curr)->data->index = gdbarch_data_registry.nr++;
1731 (*curr)->data->init = init;
1732 (*curr)->data->free = free;
1733 return (*curr)->data;
1734 }
1735
1736
1737 /* Walk through all the registered users initializing each in turn. */
1738
1739 static void
1740 init_gdbarch_data (struct gdbarch *gdbarch)
1741 {
1742 struct gdbarch_data_registration *rego;
1743 for (rego = gdbarch_data_registry.registrations;
1744 rego != NULL;
1745 rego = rego->next)
1746 {
1747 struct gdbarch_data *data = rego->data;
1748 gdb_assert (data->index < gdbarch->nr_data);
1749 if (data->init != NULL)
1750 {
1751 void *pointer = data->init (gdbarch);
1752 set_gdbarch_data (gdbarch, data, pointer);
1753 }
1754 }
1755 }
1756
1757 /* Create/delete the gdbarch data vector. */
1758
1759 static void
1760 alloc_gdbarch_data (struct gdbarch *gdbarch)
1761 {
1762 gdb_assert (gdbarch->data == NULL);
1763 gdbarch->nr_data = gdbarch_data_registry.nr;
1764 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1765 }
1766
1767 static void
1768 free_gdbarch_data (struct gdbarch *gdbarch)
1769 {
1770 struct gdbarch_data_registration *rego;
1771 gdb_assert (gdbarch->data != NULL);
1772 for (rego = gdbarch_data_registry.registrations;
1773 rego != NULL;
1774 rego = rego->next)
1775 {
1776 struct gdbarch_data *data = rego->data;
1777 gdb_assert (data->index < gdbarch->nr_data);
1778 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1779 {
1780 data->free (gdbarch, gdbarch->data[data->index]);
1781 gdbarch->data[data->index] = NULL;
1782 }
1783 }
1784 xfree (gdbarch->data);
1785 gdbarch->data = NULL;
1786 }
1787
1788
1789 /* Initialize the current value of thee specified per-architecture
1790 data-pointer. */
1791
1792 void
1793 set_gdbarch_data (struct gdbarch *gdbarch,
1794 struct gdbarch_data *data,
1795 void *pointer)
1796 {
1797 gdb_assert (data->index < gdbarch->nr_data);
1798 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1799 data->free (gdbarch, gdbarch->data[data->index]);
1800 gdbarch->data[data->index] = pointer;
1801 }
1802
1803 /* Return the current value of the specified per-architecture
1804 data-pointer. */
1805
1806 void *
1807 gdbarch_data (struct gdbarch_data *data)
1808 {
1809 gdb_assert (data->index < current_gdbarch->nr_data);
1810 return current_gdbarch->data[data->index];
1811 }
1812
1813
1814
1815 /* Keep a registry of swapped data required by GDB modules. */
1816
1817 struct gdbarch_swap
1818 {
1819 void *swap;
1820 struct gdbarch_swap_registration *source;
1821 struct gdbarch_swap *next;
1822 };
1823
1824 struct gdbarch_swap_registration
1825 {
1826 void *data;
1827 unsigned long sizeof_data;
1828 gdbarch_swap_ftype *init;
1829 struct gdbarch_swap_registration *next;
1830 };
1831
1832 struct gdbarch_swap_registry
1833 {
1834 int nr;
1835 struct gdbarch_swap_registration *registrations;
1836 };
1837
1838 struct gdbarch_swap_registry gdbarch_swap_registry =
1839 {
1840 0, NULL,
1841 };
1842
1843 void
1844 register_gdbarch_swap (void *data,
1845 unsigned long sizeof_data,
1846 gdbarch_swap_ftype *init)
1847 {
1848 struct gdbarch_swap_registration **rego;
1849 for (rego = &gdbarch_swap_registry.registrations;
1850 (*rego) != NULL;
1851 rego = &(*rego)->next);
1852 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1853 (*rego)->next = NULL;
1854 (*rego)->init = init;
1855 (*rego)->data = data;
1856 (*rego)->sizeof_data = sizeof_data;
1857 }
1858
1859
1860 static void
1861 init_gdbarch_swap (struct gdbarch *gdbarch)
1862 {
1863 struct gdbarch_swap_registration *rego;
1864 struct gdbarch_swap **curr = &gdbarch->swap;
1865 for (rego = gdbarch_swap_registry.registrations;
1866 rego != NULL;
1867 rego = rego->next)
1868 {
1869 if (rego->data != NULL)
1870 {
1871 (*curr) = XMALLOC (struct gdbarch_swap);
1872 (*curr)->source = rego;
1873 (*curr)->swap = xmalloc (rego->sizeof_data);
1874 (*curr)->next = NULL;
1875 memset (rego->data, 0, rego->sizeof_data);
1876 curr = &(*curr)->next;
1877 }
1878 if (rego->init != NULL)
1879 rego->init ();
1880 }
1881 }
1882
1883 static void
1884 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1885 {
1886 struct gdbarch_swap *curr;
1887 for (curr = gdbarch->swap;
1888 curr != NULL;
1889 curr = curr->next)
1890 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1891 }
1892
1893 static void
1894 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1895 {
1896 struct gdbarch_swap *curr;
1897 for (curr = gdbarch->swap;
1898 curr != NULL;
1899 curr = curr->next)
1900 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1901 }
1902
1903
1904 /* Keep a registry of the architectures known by GDB. */
1905
1906 struct gdbarch_registration
1907 {
1908 enum bfd_architecture bfd_architecture;
1909 gdbarch_init_ftype *init;
1910 gdbarch_dump_tdep_ftype *dump_tdep;
1911 struct gdbarch_list *arches;
1912 struct gdbarch_registration *next;
1913 };
1914
1915 static struct gdbarch_registration *gdbarch_registry = NULL;
1916
1917 static void
1918 append_name (const char ***buf, int *nr, const char *name)
1919 {
1920 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1921 (*buf)[*nr] = name;
1922 *nr += 1;
1923 }
1924
1925 const char **
1926 gdbarch_printable_names (void)
1927 {
1928 if (GDB_MULTI_ARCH)
1929 {
1930 /* Accumulate a list of names based on the registed list of
1931 architectures. */
1932 enum bfd_architecture a;
1933 int nr_arches = 0;
1934 const char **arches = NULL;
1935 struct gdbarch_registration *rego;
1936 for (rego = gdbarch_registry;
1937 rego != NULL;
1938 rego = rego->next)
1939 {
1940 const struct bfd_arch_info *ap;
1941 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1942 if (ap == NULL)
1943 internal_error (__FILE__, __LINE__,
1944 "gdbarch_architecture_names: multi-arch unknown");
1945 do
1946 {
1947 append_name (&arches, &nr_arches, ap->printable_name);
1948 ap = ap->next;
1949 }
1950 while (ap != NULL);
1951 }
1952 append_name (&arches, &nr_arches, NULL);
1953 return arches;
1954 }
1955 else
1956 /* Just return all the architectures that BFD knows. Assume that
1957 the legacy architecture framework supports them. */
1958 return bfd_arch_list ();
1959 }
1960
1961
1962 void
1963 gdbarch_register (enum bfd_architecture bfd_architecture,
1964 gdbarch_init_ftype *init,
1965 gdbarch_dump_tdep_ftype *dump_tdep)
1966 {
1967 struct gdbarch_registration **curr;
1968 const struct bfd_arch_info *bfd_arch_info;
1969 /* Check that BFD recognizes this architecture */
1970 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1971 if (bfd_arch_info == NULL)
1972 {
1973 internal_error (__FILE__, __LINE__,
1974 "gdbarch: Attempt to register unknown architecture (%d)",
1975 bfd_architecture);
1976 }
1977 /* Check that we haven't seen this architecture before */
1978 for (curr = &gdbarch_registry;
1979 (*curr) != NULL;
1980 curr = &(*curr)->next)
1981 {
1982 if (bfd_architecture == (*curr)->bfd_architecture)
1983 internal_error (__FILE__, __LINE__,
1984 "gdbarch: Duplicate registraration of architecture (%s)",
1985 bfd_arch_info->printable_name);
1986 }
1987 /* log it */
1988 if (gdbarch_debug)
1989 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1990 bfd_arch_info->printable_name,
1991 (long) init);
1992 /* Append it */
1993 (*curr) = XMALLOC (struct gdbarch_registration);
1994 (*curr)->bfd_architecture = bfd_architecture;
1995 (*curr)->init = init;
1996 (*curr)->dump_tdep = dump_tdep;
1997 (*curr)->arches = NULL;
1998 (*curr)->next = NULL;
1999 /* When non- multi-arch, install whatever target dump routine we've
2000 been provided - hopefully that routine has been written correctly
2001 and works regardless of multi-arch. */
2002 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2003 && startup_gdbarch.dump_tdep == NULL)
2004 startup_gdbarch.dump_tdep = dump_tdep;
2005 }
2006
2007 void
2008 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2009 gdbarch_init_ftype *init)
2010 {
2011 gdbarch_register (bfd_architecture, init, NULL);
2012 }
2013
2014
2015 /* Look for an architecture using gdbarch_info. Base search on only
2016 BFD_ARCH_INFO and BYTE_ORDER. */
2017
2018 struct gdbarch_list *
2019 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2020 const struct gdbarch_info *info)
2021 {
2022 for (; arches != NULL; arches = arches->next)
2023 {
2024 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2025 continue;
2026 if (info->byte_order != arches->gdbarch->byte_order)
2027 continue;
2028 return arches;
2029 }
2030 return NULL;
2031 }
2032
2033
2034 /* Update the current architecture. Return ZERO if the update request
2035 failed. */
2036
2037 int
2038 gdbarch_update_p (struct gdbarch_info info)
2039 {
2040 struct gdbarch *new_gdbarch;
2041 struct gdbarch_list **list;
2042 struct gdbarch_registration *rego;
2043
2044 /* Fill in missing parts of the INFO struct using a number of
2045 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2046
2047 /* \`\`(gdb) set architecture ...'' */
2048 if (info.bfd_arch_info == NULL
2049 && !TARGET_ARCHITECTURE_AUTO)
2050 info.bfd_arch_info = TARGET_ARCHITECTURE;
2051 if (info.bfd_arch_info == NULL
2052 && info.abfd != NULL
2053 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2054 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2055 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2056 if (info.bfd_arch_info == NULL)
2057 info.bfd_arch_info = TARGET_ARCHITECTURE;
2058
2059 /* \`\`(gdb) set byte-order ...'' */
2060 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2061 && !TARGET_BYTE_ORDER_AUTO)
2062 info.byte_order = TARGET_BYTE_ORDER;
2063 /* From the INFO struct. */
2064 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2065 && info.abfd != NULL)
2066 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2067 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2068 : BFD_ENDIAN_UNKNOWN);
2069 /* From the current target. */
2070 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2071 info.byte_order = TARGET_BYTE_ORDER;
2072
2073 /* Must have found some sort of architecture. */
2074 gdb_assert (info.bfd_arch_info != NULL);
2075
2076 if (gdbarch_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "gdbarch_update: info.bfd_arch_info %s\n",
2080 (info.bfd_arch_info != NULL
2081 ? info.bfd_arch_info->printable_name
2082 : "(null)"));
2083 fprintf_unfiltered (gdb_stdlog,
2084 "gdbarch_update: info.byte_order %d (%s)\n",
2085 info.byte_order,
2086 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2087 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2088 : "default"));
2089 fprintf_unfiltered (gdb_stdlog,
2090 "gdbarch_update: info.abfd 0x%lx\n",
2091 (long) info.abfd);
2092 fprintf_unfiltered (gdb_stdlog,
2093 "gdbarch_update: info.tdep_info 0x%lx\n",
2094 (long) info.tdep_info);
2095 }
2096
2097 /* Find the target that knows about this architecture. */
2098 for (rego = gdbarch_registry;
2099 rego != NULL;
2100 rego = rego->next)
2101 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2102 break;
2103 if (rego == NULL)
2104 {
2105 if (gdbarch_debug)
2106 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2107 return 0;
2108 }
2109
2110 /* Ask the target for a replacement architecture. */
2111 new_gdbarch = rego->init (info, rego->arches);
2112
2113 /* Did the target like it? No. Reject the change. */
2114 if (new_gdbarch == NULL)
2115 {
2116 if (gdbarch_debug)
2117 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2118 return 0;
2119 }
2120
2121 /* Did the architecture change? No. Do nothing. */
2122 if (current_gdbarch == new_gdbarch)
2123 {
2124 if (gdbarch_debug)
2125 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2126 (long) new_gdbarch,
2127 new_gdbarch->bfd_arch_info->printable_name);
2128 return 1;
2129 }
2130
2131 /* Swap all data belonging to the old target out */
2132 swapout_gdbarch_swap (current_gdbarch);
2133
2134 /* Is this a pre-existing architecture? Yes. Swap it in. */
2135 for (list = &rego->arches;
2136 (*list) != NULL;
2137 list = &(*list)->next)
2138 {
2139 if ((*list)->gdbarch == new_gdbarch)
2140 {
2141 if (gdbarch_debug)
2142 fprintf_unfiltered (gdb_stdlog,
2143 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2144 (long) new_gdbarch,
2145 new_gdbarch->bfd_arch_info->printable_name);
2146 current_gdbarch = new_gdbarch;
2147 swapin_gdbarch_swap (new_gdbarch);
2148 architecture_changed_event ();
2149 return 1;
2150 }
2151 }
2152
2153 /* Append this new architecture to this targets list. */
2154 (*list) = XMALLOC (struct gdbarch_list);
2155 (*list)->next = NULL;
2156 (*list)->gdbarch = new_gdbarch;
2157
2158 /* Switch to this new architecture. Dump it out. */
2159 current_gdbarch = new_gdbarch;
2160 if (gdbarch_debug)
2161 {
2162 fprintf_unfiltered (gdb_stdlog,
2163 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2164 (long) new_gdbarch,
2165 new_gdbarch->bfd_arch_info->printable_name);
2166 }
2167
2168 /* Check that the newly installed architecture is valid. Plug in
2169 any post init values. */
2170 new_gdbarch->dump_tdep = rego->dump_tdep;
2171 verify_gdbarch (new_gdbarch);
2172
2173 /* Initialize the per-architecture memory (swap) areas.
2174 CURRENT_GDBARCH must be update before these modules are
2175 called. */
2176 init_gdbarch_swap (new_gdbarch);
2177
2178 /* Initialize the per-architecture data-pointer of all parties that
2179 registered an interest in this architecture. CURRENT_GDBARCH
2180 must be updated before these modules are called. */
2181 init_gdbarch_data (new_gdbarch);
2182 architecture_changed_event ();
2183
2184 if (gdbarch_debug)
2185 gdbarch_dump (current_gdbarch, gdb_stdlog);
2186
2187 return 1;
2188 }
2189
2190
2191 /* Disassembler */
2192
2193 /* Pointer to the target-dependent disassembly function. */
2194 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2195 disassemble_info tm_print_insn_info;
2196
2197
2198 extern void _initialize_gdbarch (void);
2199
2200 void
2201 _initialize_gdbarch (void)
2202 {
2203 struct cmd_list_element *c;
2204
2205 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2206 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2207 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2208 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2209 tm_print_insn_info.print_address_func = dis_asm_print_address;
2210
2211 add_show_from_set (add_set_cmd ("arch",
2212 class_maintenance,
2213 var_zinteger,
2214 (char *)&gdbarch_debug,
2215 "Set architecture debugging.\\n\\
2216 When non-zero, architecture debugging is enabled.", &setdebuglist),
2217 &showdebuglist);
2218 c = add_set_cmd ("archdebug",
2219 class_maintenance,
2220 var_zinteger,
2221 (char *)&gdbarch_debug,
2222 "Set architecture debugging.\\n\\
2223 When non-zero, architecture debugging is enabled.", &setlist);
2224
2225 deprecate_cmd (c, "set debug arch");
2226 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2227 }
2228 EOF
2229
2230 # close things off
2231 exec 1>&2
2232 #../move-if-change new-gdbarch.c gdbarch.c
2233 compare_new gdbarch.c
This page took 0.094679 seconds and 5 git commands to generate.