2003-06-26 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr::0:0
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 f:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 f:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
646 v:2:PARM_BOUNDARY:int:parm_boundary
647 #
648 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
649 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
650 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
651 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
652 # On some machines there are bits in addresses which are not really
653 # part of the address, but are used by the kernel, the hardware, etc.
654 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
655 # we get a "real" address such as one would find in a symbol table.
656 # This is used only for addresses of instructions, and even then I'm
657 # not sure it's used in all contexts. It exists to deal with there
658 # being a few stray bits in the PC which would mislead us, not as some
659 # sort of generic thing to handle alignment or segmentation (it's
660 # possible it should be in TARGET_READ_PC instead).
661 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
662 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
663 # ADDR_BITS_REMOVE.
664 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
665 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
666 # the target needs software single step. An ISA method to implement it.
667 #
668 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
669 # using the breakpoint system instead of blatting memory directly (as with rs6000).
670 #
671 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
672 # single step. If not, then implement single step using breakpoints.
673 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
674 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
675 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
676
677
678 # For SVR4 shared libraries, each call goes through a small piece of
679 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
680 # to nonzero if we are currently stopped in one of these.
681 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
682
683 # Some systems also have trampoline code for returning from shared libs.
684 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
685
686 # Sigtramp is a routine that the kernel calls (which then calls the
687 # signal handler). On most machines it is a library routine that is
688 # linked into the executable.
689 #
690 # This macro, given a program counter value and the name of the
691 # function in which that PC resides (which can be null if the name is
692 # not known), returns nonzero if the PC and name show that we are in
693 # sigtramp.
694 #
695 # On most machines just see if the name is sigtramp (and if we have
696 # no name, assume we are not in sigtramp).
697 #
698 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
699 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
700 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
701 # own local NAME lookup.
702 #
703 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
704 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
705 # does not.
706 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
707 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
708 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
709 # A target might have problems with watchpoints as soon as the stack
710 # frame of the current function has been destroyed. This mostly happens
711 # as the first action in a funtion's epilogue. in_function_epilogue_p()
712 # is defined to return a non-zero value if either the given addr is one
713 # instruction after the stack destroying instruction up to the trailing
714 # return instruction or if we can figure out that the stack frame has
715 # already been invalidated regardless of the value of addr. Targets
716 # which don't suffer from that problem could just let this functionality
717 # untouched.
718 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
719 # Given a vector of command-line arguments, return a newly allocated
720 # string which, when passed to the create_inferior function, will be
721 # parsed (on Unix systems, by the shell) to yield the same vector.
722 # This function should call error() if the argument vector is not
723 # representable for this target or if this target does not support
724 # command-line arguments.
725 # ARGC is the number of elements in the vector.
726 # ARGV is an array of strings, one per argument.
727 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
728 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
729 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
730 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
731 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
732 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
733 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
734 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
735 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
736 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
737 # Is a register in a group
738 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
739 # Fetch the pointer to the ith function argument.
740 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
741 EOF
742 }
743
744 #
745 # The .log file
746 #
747 exec > new-gdbarch.log
748 function_list | while do_read
749 do
750 cat <<EOF
751 ${class} ${macro}(${actual})
752 ${returntype} ${function} ($formal)${attrib}
753 EOF
754 for r in ${read}
755 do
756 eval echo \"\ \ \ \ ${r}=\${${r}}\"
757 done
758 if class_is_predicate_p && fallback_default_p
759 then
760 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
761 kill $$
762 exit 1
763 fi
764 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
765 then
766 echo "Error: postdefault is useless when invalid_p=0" 1>&2
767 kill $$
768 exit 1
769 fi
770 if class_is_multiarch_p
771 then
772 if class_is_predicate_p ; then :
773 elif test "x${predefault}" = "x"
774 then
775 echo "Error: pure multi-arch function must have a predefault" 1>&2
776 kill $$
777 exit 1
778 fi
779 fi
780 echo ""
781 done
782
783 exec 1>&2
784 compare_new gdbarch.log
785
786
787 copyright ()
788 {
789 cat <<EOF
790 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
791
792 /* Dynamic architecture support for GDB, the GNU debugger.
793 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
794
795 This file is part of GDB.
796
797 This program is free software; you can redistribute it and/or modify
798 it under the terms of the GNU General Public License as published by
799 the Free Software Foundation; either version 2 of the License, or
800 (at your option) any later version.
801
802 This program is distributed in the hope that it will be useful,
803 but WITHOUT ANY WARRANTY; without even the implied warranty of
804 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
805 GNU General Public License for more details.
806
807 You should have received a copy of the GNU General Public License
808 along with this program; if not, write to the Free Software
809 Foundation, Inc., 59 Temple Place - Suite 330,
810 Boston, MA 02111-1307, USA. */
811
812 /* This file was created with the aid of \`\`gdbarch.sh''.
813
814 The Bourne shell script \`\`gdbarch.sh'' creates the files
815 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
816 against the existing \`\`gdbarch.[hc]''. Any differences found
817 being reported.
818
819 If editing this file, please also run gdbarch.sh and merge any
820 changes into that script. Conversely, when making sweeping changes
821 to this file, modifying gdbarch.sh and using its output may prove
822 easier. */
823
824 EOF
825 }
826
827 #
828 # The .h file
829 #
830
831 exec > new-gdbarch.h
832 copyright
833 cat <<EOF
834 #ifndef GDBARCH_H
835 #define GDBARCH_H
836
837 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
838 #if !GDB_MULTI_ARCH
839 /* Pull in function declarations refered to, indirectly, via macros. */
840 #include "inferior.h" /* For unsigned_address_to_pointer(). */
841 #include "symfile.h" /* For entry_point_address(). */
842 #endif
843
844 struct floatformat;
845 struct ui_file;
846 struct frame_info;
847 struct value;
848 struct objfile;
849 struct minimal_symbol;
850 struct regcache;
851 struct reggroup;
852
853 extern struct gdbarch *current_gdbarch;
854
855
856 /* If any of the following are defined, the target wasn't correctly
857 converted. */
858
859 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
860 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
861 #endif
862 EOF
863
864 # function typedef's
865 printf "\n"
866 printf "\n"
867 printf "/* The following are pre-initialized by GDBARCH. */\n"
868 function_list | while do_read
869 do
870 if class_is_info_p
871 then
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 printf "#if !defined (${macro})\n"
879 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
880 printf "#endif\n"
881 fi
882 done
883
884 # function typedef's
885 printf "\n"
886 printf "\n"
887 printf "/* The following are initialized by the target dependent code. */\n"
888 function_list | while do_read
889 do
890 if [ -n "${comment}" ]
891 then
892 echo "${comment}" | sed \
893 -e '2 s,#,/*,' \
894 -e '3,$ s,#, ,' \
895 -e '$ s,$, */,'
896 fi
897 if class_is_multiarch_p
898 then
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
903 fi
904 else
905 if class_is_predicate_p
906 then
907 printf "\n"
908 printf "#if defined (${macro})\n"
909 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
910 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
911 printf "#if !defined (${macro}_P)\n"
912 printf "#define ${macro}_P() (1)\n"
913 printf "#endif\n"
914 printf "#endif\n"
915 printf "\n"
916 printf "/* Default predicate for non- multi-arch targets. */\n"
917 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
918 printf "#define ${macro}_P() (0)\n"
919 printf "#endif\n"
920 printf "\n"
921 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
926 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
929 fi
930 if class_is_variable_p
931 then
932 if fallback_default_p || class_is_predicate_p
933 then
934 printf "\n"
935 printf "/* Default (value) for non- multi-arch platforms. */\n"
936 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
937 echo "#define ${macro} (${fallbackdefault})" \
938 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
939 printf "#endif\n"
940 fi
941 printf "\n"
942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
943 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
947 printf "#if !defined (${macro})\n"
948 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
949 printf "#endif\n"
950 fi
951 if class_is_function_p
952 then
953 if class_is_multiarch_p ; then :
954 elif fallback_default_p || class_is_predicate_p
955 then
956 printf "\n"
957 printf "/* Default (function) for non- multi-arch platforms. */\n"
958 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
959 if [ "x${fallbackdefault}" = "x0" ]
960 then
961 if [ "x${actual}" = "x-" ]
962 then
963 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
964 else
965 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
966 fi
967 else
968 # FIXME: Should be passing current_gdbarch through!
969 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
970 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
971 fi
972 printf "#endif\n"
973 fi
974 printf "\n"
975 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
976 then
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
978 elif class_is_multiarch_p
979 then
980 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
981 else
982 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
983 fi
984 if [ "x${formal}" = "xvoid" ]
985 then
986 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
987 else
988 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
989 fi
990 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
991 if class_is_multiarch_p ; then :
992 else
993 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
994 printf "#error \"Non multi-arch definition of ${macro}\"\n"
995 printf "#endif\n"
996 if [ "x${actual}" = "x" ]
997 then
998 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
999 elif [ "x${actual}" = "x-" ]
1000 then
1001 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1002 else
1003 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1004 fi
1005 printf "#if !defined (${macro})\n"
1006 if [ "x${actual}" = "x" ]
1007 then
1008 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1009 elif [ "x${actual}" = "x-" ]
1010 then
1011 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1012 else
1013 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1014 fi
1015 printf "#endif\n"
1016 fi
1017 fi
1018 done
1019
1020 # close it off
1021 cat <<EOF
1022
1023 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1024
1025
1026 /* Mechanism for co-ordinating the selection of a specific
1027 architecture.
1028
1029 GDB targets (*-tdep.c) can register an interest in a specific
1030 architecture. Other GDB components can register a need to maintain
1031 per-architecture data.
1032
1033 The mechanisms below ensures that there is only a loose connection
1034 between the set-architecture command and the various GDB
1035 components. Each component can independently register their need
1036 to maintain architecture specific data with gdbarch.
1037
1038 Pragmatics:
1039
1040 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1041 didn't scale.
1042
1043 The more traditional mega-struct containing architecture specific
1044 data for all the various GDB components was also considered. Since
1045 GDB is built from a variable number of (fairly independent)
1046 components it was determined that the global aproach was not
1047 applicable. */
1048
1049
1050 /* Register a new architectural family with GDB.
1051
1052 Register support for the specified ARCHITECTURE with GDB. When
1053 gdbarch determines that the specified architecture has been
1054 selected, the corresponding INIT function is called.
1055
1056 --
1057
1058 The INIT function takes two parameters: INFO which contains the
1059 information available to gdbarch about the (possibly new)
1060 architecture; ARCHES which is a list of the previously created
1061 \`\`struct gdbarch'' for this architecture.
1062
1063 The INFO parameter is, as far as possible, be pre-initialized with
1064 information obtained from INFO.ABFD or the previously selected
1065 architecture.
1066
1067 The ARCHES parameter is a linked list (sorted most recently used)
1068 of all the previously created architures for this architecture
1069 family. The (possibly NULL) ARCHES->gdbarch can used to access
1070 values from the previously selected architecture for this
1071 architecture family. The global \`\`current_gdbarch'' shall not be
1072 used.
1073
1074 The INIT function shall return any of: NULL - indicating that it
1075 doesn't recognize the selected architecture; an existing \`\`struct
1076 gdbarch'' from the ARCHES list - indicating that the new
1077 architecture is just a synonym for an earlier architecture (see
1078 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1079 - that describes the selected architecture (see gdbarch_alloc()).
1080
1081 The DUMP_TDEP function shall print out all target specific values.
1082 Care should be taken to ensure that the function works in both the
1083 multi-arch and non- multi-arch cases. */
1084
1085 struct gdbarch_list
1086 {
1087 struct gdbarch *gdbarch;
1088 struct gdbarch_list *next;
1089 };
1090
1091 struct gdbarch_info
1092 {
1093 /* Use default: NULL (ZERO). */
1094 const struct bfd_arch_info *bfd_arch_info;
1095
1096 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1097 int byte_order;
1098
1099 /* Use default: NULL (ZERO). */
1100 bfd *abfd;
1101
1102 /* Use default: NULL (ZERO). */
1103 struct gdbarch_tdep_info *tdep_info;
1104
1105 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1106 enum gdb_osabi osabi;
1107 };
1108
1109 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1110 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1111
1112 /* DEPRECATED - use gdbarch_register() */
1113 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1114
1115 extern void gdbarch_register (enum bfd_architecture architecture,
1116 gdbarch_init_ftype *,
1117 gdbarch_dump_tdep_ftype *);
1118
1119
1120 /* Return a freshly allocated, NULL terminated, array of the valid
1121 architecture names. Since architectures are registered during the
1122 _initialize phase this function only returns useful information
1123 once initialization has been completed. */
1124
1125 extern const char **gdbarch_printable_names (void);
1126
1127
1128 /* Helper function. Search the list of ARCHES for a GDBARCH that
1129 matches the information provided by INFO. */
1130
1131 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1132
1133
1134 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1135 basic initialization using values obtained from the INFO andTDEP
1136 parameters. set_gdbarch_*() functions are called to complete the
1137 initialization of the object. */
1138
1139 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1140
1141
1142 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1143 It is assumed that the caller freeds the \`\`struct
1144 gdbarch_tdep''. */
1145
1146 extern void gdbarch_free (struct gdbarch *);
1147
1148
1149 /* Helper function. Force an update of the current architecture.
1150
1151 The actual architecture selected is determined by INFO, \`\`(gdb) set
1152 architecture'' et.al., the existing architecture and BFD's default
1153 architecture. INFO should be initialized to zero and then selected
1154 fields should be updated.
1155
1156 Returns non-zero if the update succeeds */
1157
1158 extern int gdbarch_update_p (struct gdbarch_info info);
1159
1160
1161
1162 /* Register per-architecture data-pointer.
1163
1164 Reserve space for a per-architecture data-pointer. An identifier
1165 for the reserved data-pointer is returned. That identifer should
1166 be saved in a local static variable.
1167
1168 The per-architecture data-pointer is either initialized explicitly
1169 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1170 gdbarch_data()). FREE() is called to delete either an existing
1171 data-pointer overridden by set_gdbarch_data() or when the
1172 architecture object is being deleted.
1173
1174 When a previously created architecture is re-selected, the
1175 per-architecture data-pointer for that previous architecture is
1176 restored. INIT() is not re-called.
1177
1178 Multiple registrarants for any architecture are allowed (and
1179 strongly encouraged). */
1180
1181 struct gdbarch_data;
1182
1183 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1184 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1185 void *pointer);
1186 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1187 gdbarch_data_free_ftype *free);
1188 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1189 struct gdbarch_data *data,
1190 void *pointer);
1191
1192 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1193
1194
1195 /* Register per-architecture memory region.
1196
1197 Provide a memory-region swap mechanism. Per-architecture memory
1198 region are created. These memory regions are swapped whenever the
1199 architecture is changed. For a new architecture, the memory region
1200 is initialized with zero (0) and the INIT function is called.
1201
1202 Memory regions are swapped / initialized in the order that they are
1203 registered. NULL DATA and/or INIT values can be specified.
1204
1205 New code should use register_gdbarch_data(). */
1206
1207 typedef void (gdbarch_swap_ftype) (void);
1208 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1209 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1210
1211
1212
1213 /* The target-system-dependent byte order is dynamic */
1214
1215 extern int target_byte_order;
1216 #ifndef TARGET_BYTE_ORDER
1217 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1218 #endif
1219
1220 extern int target_byte_order_auto;
1221 #ifndef TARGET_BYTE_ORDER_AUTO
1222 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1223 #endif
1224
1225
1226
1227 /* The target-system-dependent BFD architecture is dynamic */
1228
1229 extern int target_architecture_auto;
1230 #ifndef TARGET_ARCHITECTURE_AUTO
1231 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1232 #endif
1233
1234 extern const struct bfd_arch_info *target_architecture;
1235 #ifndef TARGET_ARCHITECTURE
1236 #define TARGET_ARCHITECTURE (target_architecture + 0)
1237 #endif
1238
1239
1240 /* The target-system-dependent disassembler is semi-dynamic */
1241
1242 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1243 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1244
1245 /* Use set_gdbarch_print_insn instead. */
1246 extern disassemble_info deprecated_tm_print_insn_info;
1247
1248 /* Set the dynamic target-system-dependent parameters (architecture,
1249 byte-order, ...) using information found in the BFD */
1250
1251 extern void set_gdbarch_from_file (bfd *);
1252
1253
1254 /* Initialize the current architecture to the "first" one we find on
1255 our list. */
1256
1257 extern void initialize_current_architecture (void);
1258
1259 /* For non-multiarched targets, do any initialization of the default
1260 gdbarch object necessary after the _initialize_MODULE functions
1261 have run. */
1262 extern void initialize_non_multiarch (void);
1263
1264 /* gdbarch trace variable */
1265 extern int gdbarch_debug;
1266
1267 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1268
1269 #endif
1270 EOF
1271 exec 1>&2
1272 #../move-if-change new-gdbarch.h gdbarch.h
1273 compare_new gdbarch.h
1274
1275
1276 #
1277 # C file
1278 #
1279
1280 exec > new-gdbarch.c
1281 copyright
1282 cat <<EOF
1283
1284 #include "defs.h"
1285 #include "arch-utils.h"
1286
1287 #if GDB_MULTI_ARCH
1288 #include "gdbcmd.h"
1289 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1290 #else
1291 /* Just include everything in sight so that the every old definition
1292 of macro is visible. */
1293 #include "gdb_string.h"
1294 #include <ctype.h>
1295 #include "symtab.h"
1296 #include "frame.h"
1297 #include "inferior.h"
1298 #include "breakpoint.h"
1299 #include "gdb_wait.h"
1300 #include "gdbcore.h"
1301 #include "gdbcmd.h"
1302 #include "target.h"
1303 #include "gdbthread.h"
1304 #include "annotate.h"
1305 #include "symfile.h" /* for overlay functions */
1306 #include "value.h" /* For old tm.h/nm.h macros. */
1307 #endif
1308 #include "symcat.h"
1309
1310 #include "floatformat.h"
1311
1312 #include "gdb_assert.h"
1313 #include "gdb_string.h"
1314 #include "gdb-events.h"
1315 #include "reggroups.h"
1316 #include "osabi.h"
1317 #include "symfile.h" /* For entry_point_address. */
1318
1319 /* Static function declarations */
1320
1321 static void verify_gdbarch (struct gdbarch *gdbarch);
1322 static void alloc_gdbarch_data (struct gdbarch *);
1323 static void free_gdbarch_data (struct gdbarch *);
1324 static void init_gdbarch_swap (struct gdbarch *);
1325 static void clear_gdbarch_swap (struct gdbarch *);
1326 static void swapout_gdbarch_swap (struct gdbarch *);
1327 static void swapin_gdbarch_swap (struct gdbarch *);
1328
1329 /* Non-zero if we want to trace architecture code. */
1330
1331 #ifndef GDBARCH_DEBUG
1332 #define GDBARCH_DEBUG 0
1333 #endif
1334 int gdbarch_debug = GDBARCH_DEBUG;
1335
1336 EOF
1337
1338 # gdbarch open the gdbarch object
1339 printf "\n"
1340 printf "/* Maintain the struct gdbarch object */\n"
1341 printf "\n"
1342 printf "struct gdbarch\n"
1343 printf "{\n"
1344 printf " /* Has this architecture been fully initialized? */\n"
1345 printf " int initialized_p;\n"
1346 printf " /* basic architectural information */\n"
1347 function_list | while do_read
1348 do
1349 if class_is_info_p
1350 then
1351 printf " ${returntype} ${function};\n"
1352 fi
1353 done
1354 printf "\n"
1355 printf " /* target specific vector. */\n"
1356 printf " struct gdbarch_tdep *tdep;\n"
1357 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1358 printf "\n"
1359 printf " /* per-architecture data-pointers */\n"
1360 printf " unsigned nr_data;\n"
1361 printf " void **data;\n"
1362 printf "\n"
1363 printf " /* per-architecture swap-regions */\n"
1364 printf " struct gdbarch_swap *swap;\n"
1365 printf "\n"
1366 cat <<EOF
1367 /* Multi-arch values.
1368
1369 When extending this structure you must:
1370
1371 Add the field below.
1372
1373 Declare set/get functions and define the corresponding
1374 macro in gdbarch.h.
1375
1376 gdbarch_alloc(): If zero/NULL is not a suitable default,
1377 initialize the new field.
1378
1379 verify_gdbarch(): Confirm that the target updated the field
1380 correctly.
1381
1382 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1383 field is dumped out
1384
1385 \`\`startup_gdbarch()'': Append an initial value to the static
1386 variable (base values on the host's c-type system).
1387
1388 get_gdbarch(): Implement the set/get functions (probably using
1389 the macro's as shortcuts).
1390
1391 */
1392
1393 EOF
1394 function_list | while do_read
1395 do
1396 if class_is_variable_p
1397 then
1398 printf " ${returntype} ${function};\n"
1399 elif class_is_function_p
1400 then
1401 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1402 fi
1403 done
1404 printf "};\n"
1405
1406 # A pre-initialized vector
1407 printf "\n"
1408 printf "\n"
1409 cat <<EOF
1410 /* The default architecture uses host values (for want of a better
1411 choice). */
1412 EOF
1413 printf "\n"
1414 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1415 printf "\n"
1416 printf "struct gdbarch startup_gdbarch =\n"
1417 printf "{\n"
1418 printf " 1, /* Always initialized. */\n"
1419 printf " /* basic architecture information */\n"
1420 function_list | while do_read
1421 do
1422 if class_is_info_p
1423 then
1424 printf " ${staticdefault}, /* ${function} */\n"
1425 fi
1426 done
1427 cat <<EOF
1428 /* target specific vector and its dump routine */
1429 NULL, NULL,
1430 /*per-architecture data-pointers and swap regions */
1431 0, NULL, NULL,
1432 /* Multi-arch values */
1433 EOF
1434 function_list | while do_read
1435 do
1436 if class_is_function_p || class_is_variable_p
1437 then
1438 printf " ${staticdefault}, /* ${function} */\n"
1439 fi
1440 done
1441 cat <<EOF
1442 /* startup_gdbarch() */
1443 };
1444
1445 struct gdbarch *current_gdbarch = &startup_gdbarch;
1446
1447 /* Do any initialization needed for a non-multiarch configuration
1448 after the _initialize_MODULE functions have been run. */
1449 void
1450 initialize_non_multiarch (void)
1451 {
1452 alloc_gdbarch_data (&startup_gdbarch);
1453 /* Ensure that all swap areas are zeroed so that they again think
1454 they are starting from scratch. */
1455 clear_gdbarch_swap (&startup_gdbarch);
1456 init_gdbarch_swap (&startup_gdbarch);
1457 }
1458 EOF
1459
1460 # Create a new gdbarch struct
1461 printf "\n"
1462 printf "\n"
1463 cat <<EOF
1464 /* Create a new \`\`struct gdbarch'' based on information provided by
1465 \`\`struct gdbarch_info''. */
1466 EOF
1467 printf "\n"
1468 cat <<EOF
1469 struct gdbarch *
1470 gdbarch_alloc (const struct gdbarch_info *info,
1471 struct gdbarch_tdep *tdep)
1472 {
1473 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1474 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1475 the current local architecture and not the previous global
1476 architecture. This ensures that the new architectures initial
1477 values are not influenced by the previous architecture. Once
1478 everything is parameterised with gdbarch, this will go away. */
1479 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1480 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1481
1482 alloc_gdbarch_data (current_gdbarch);
1483
1484 current_gdbarch->tdep = tdep;
1485 EOF
1486 printf "\n"
1487 function_list | while do_read
1488 do
1489 if class_is_info_p
1490 then
1491 printf " current_gdbarch->${function} = info->${function};\n"
1492 fi
1493 done
1494 printf "\n"
1495 printf " /* Force the explicit initialization of these. */\n"
1496 function_list | while do_read
1497 do
1498 if class_is_function_p || class_is_variable_p
1499 then
1500 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1501 then
1502 printf " current_gdbarch->${function} = ${predefault};\n"
1503 fi
1504 fi
1505 done
1506 cat <<EOF
1507 /* gdbarch_alloc() */
1508
1509 return current_gdbarch;
1510 }
1511 EOF
1512
1513 # Free a gdbarch struct.
1514 printf "\n"
1515 printf "\n"
1516 cat <<EOF
1517 /* Free a gdbarch struct. This should never happen in normal
1518 operation --- once you've created a gdbarch, you keep it around.
1519 However, if an architecture's init function encounters an error
1520 building the structure, it may need to clean up a partially
1521 constructed gdbarch. */
1522
1523 void
1524 gdbarch_free (struct gdbarch *arch)
1525 {
1526 gdb_assert (arch != NULL);
1527 free_gdbarch_data (arch);
1528 xfree (arch);
1529 }
1530 EOF
1531
1532 # verify a new architecture
1533 printf "\n"
1534 printf "\n"
1535 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1536 printf "\n"
1537 cat <<EOF
1538 static void
1539 verify_gdbarch (struct gdbarch *gdbarch)
1540 {
1541 struct ui_file *log;
1542 struct cleanup *cleanups;
1543 long dummy;
1544 char *buf;
1545 /* Only perform sanity checks on a multi-arch target. */
1546 if (!GDB_MULTI_ARCH)
1547 return;
1548 log = mem_fileopen ();
1549 cleanups = make_cleanup_ui_file_delete (log);
1550 /* fundamental */
1551 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1552 fprintf_unfiltered (log, "\n\tbyte-order");
1553 if (gdbarch->bfd_arch_info == NULL)
1554 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1555 /* Check those that need to be defined for the given multi-arch level. */
1556 EOF
1557 function_list | while do_read
1558 do
1559 if class_is_function_p || class_is_variable_p
1560 then
1561 if [ "x${invalid_p}" = "x0" ]
1562 then
1563 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1564 elif class_is_predicate_p
1565 then
1566 printf " /* Skip verify of ${function}, has predicate */\n"
1567 # FIXME: See do_read for potential simplification
1568 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1569 then
1570 printf " if (${invalid_p})\n"
1571 printf " gdbarch->${function} = ${postdefault};\n"
1572 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1573 then
1574 printf " if (gdbarch->${function} == ${predefault})\n"
1575 printf " gdbarch->${function} = ${postdefault};\n"
1576 elif [ -n "${postdefault}" ]
1577 then
1578 printf " if (gdbarch->${function} == 0)\n"
1579 printf " gdbarch->${function} = ${postdefault};\n"
1580 elif [ -n "${invalid_p}" ]
1581 then
1582 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1583 printf " && (${invalid_p}))\n"
1584 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1585 elif [ -n "${predefault}" ]
1586 then
1587 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1588 printf " && (gdbarch->${function} == ${predefault}))\n"
1589 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1590 fi
1591 fi
1592 done
1593 cat <<EOF
1594 buf = ui_file_xstrdup (log, &dummy);
1595 make_cleanup (xfree, buf);
1596 if (strlen (buf) > 0)
1597 internal_error (__FILE__, __LINE__,
1598 "verify_gdbarch: the following are invalid ...%s",
1599 buf);
1600 do_cleanups (cleanups);
1601 }
1602 EOF
1603
1604 # dump the structure
1605 printf "\n"
1606 printf "\n"
1607 cat <<EOF
1608 /* Print out the details of the current architecture. */
1609
1610 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1611 just happens to match the global variable \`\`current_gdbarch''. That
1612 way macros refering to that variable get the local and not the global
1613 version - ulgh. Once everything is parameterised with gdbarch, this
1614 will go away. */
1615
1616 void
1617 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1618 {
1619 fprintf_unfiltered (file,
1620 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1621 GDB_MULTI_ARCH);
1622 EOF
1623 function_list | sort -t: -k 3 | while do_read
1624 do
1625 # First the predicate
1626 if class_is_predicate_p
1627 then
1628 if class_is_multiarch_p
1629 then
1630 printf " if (GDB_MULTI_ARCH)\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1633 printf " gdbarch_${function}_p (current_gdbarch));\n"
1634 else
1635 printf "#ifdef ${macro}_P\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1638 printf " \"${macro}_P()\",\n"
1639 printf " XSTRING (${macro}_P ()));\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1642 printf " ${macro}_P ());\n"
1643 printf "#endif\n"
1644 fi
1645 fi
1646 # multiarch functions don't have macros.
1647 if class_is_multiarch_p
1648 then
1649 printf " if (GDB_MULTI_ARCH)\n"
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1652 printf " (long) current_gdbarch->${function});\n"
1653 continue
1654 fi
1655 # Print the macro definition.
1656 printf "#ifdef ${macro}\n"
1657 if [ "x${returntype}" = "xvoid" ]
1658 then
1659 printf "#if GDB_MULTI_ARCH\n"
1660 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1661 fi
1662 if class_is_function_p
1663 then
1664 printf " fprintf_unfiltered (file,\n"
1665 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1666 printf " \"${macro}(${actual})\",\n"
1667 printf " XSTRING (${macro} (${actual})));\n"
1668 else
1669 printf " fprintf_unfiltered (file,\n"
1670 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1671 printf " XSTRING (${macro}));\n"
1672 fi
1673 # Print the architecture vector value
1674 if [ "x${returntype}" = "xvoid" ]
1675 then
1676 printf "#endif\n"
1677 fi
1678 if [ "x${print_p}" = "x()" ]
1679 then
1680 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1681 elif [ "x${print_p}" = "x0" ]
1682 then
1683 printf " /* skip print of ${macro}, print_p == 0. */\n"
1684 elif [ -n "${print_p}" ]
1685 then
1686 printf " if (${print_p})\n"
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
1690 elif class_is_function_p
1691 then
1692 printf " if (GDB_MULTI_ARCH)\n"
1693 printf " fprintf_unfiltered (file,\n"
1694 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1695 printf " (long) current_gdbarch->${function}\n"
1696 printf " /*${macro} ()*/);\n"
1697 else
1698 printf " fprintf_unfiltered (file,\n"
1699 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1700 printf " ${print});\n"
1701 fi
1702 printf "#endif\n"
1703 done
1704 cat <<EOF
1705 if (current_gdbarch->dump_tdep != NULL)
1706 current_gdbarch->dump_tdep (current_gdbarch, file);
1707 }
1708 EOF
1709
1710
1711 # GET/SET
1712 printf "\n"
1713 cat <<EOF
1714 struct gdbarch_tdep *
1715 gdbarch_tdep (struct gdbarch *gdbarch)
1716 {
1717 if (gdbarch_debug >= 2)
1718 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1719 return gdbarch->tdep;
1720 }
1721 EOF
1722 printf "\n"
1723 function_list | while do_read
1724 do
1725 if class_is_predicate_p
1726 then
1727 printf "\n"
1728 printf "int\n"
1729 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1730 printf "{\n"
1731 printf " gdb_assert (gdbarch != NULL);\n"
1732 if [ -n "${predicate}" ]
1733 then
1734 printf " return ${predicate};\n"
1735 else
1736 printf " return gdbarch->${function} != 0;\n"
1737 fi
1738 printf "}\n"
1739 fi
1740 if class_is_function_p
1741 then
1742 printf "\n"
1743 printf "${returntype}\n"
1744 if [ "x${formal}" = "xvoid" ]
1745 then
1746 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1747 else
1748 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1749 fi
1750 printf "{\n"
1751 printf " gdb_assert (gdbarch != NULL);\n"
1752 printf " if (gdbarch->${function} == 0)\n"
1753 printf " internal_error (__FILE__, __LINE__,\n"
1754 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1755 if class_is_predicate_p && test -n "${predicate}"
1756 then
1757 # Allow a call to a function with a predicate.
1758 printf " /* Ignore predicate (${predicate}). */\n"
1759 fi
1760 printf " if (gdbarch_debug >= 2)\n"
1761 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1762 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1763 then
1764 if class_is_multiarch_p
1765 then
1766 params="gdbarch"
1767 else
1768 params=""
1769 fi
1770 else
1771 if class_is_multiarch_p
1772 then
1773 params="gdbarch, ${actual}"
1774 else
1775 params="${actual}"
1776 fi
1777 fi
1778 if [ "x${returntype}" = "xvoid" ]
1779 then
1780 printf " gdbarch->${function} (${params});\n"
1781 else
1782 printf " return gdbarch->${function} (${params});\n"
1783 fi
1784 printf "}\n"
1785 printf "\n"
1786 printf "void\n"
1787 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1788 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1789 printf "{\n"
1790 printf " gdbarch->${function} = ${function};\n"
1791 printf "}\n"
1792 elif class_is_variable_p
1793 then
1794 printf "\n"
1795 printf "${returntype}\n"
1796 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1797 printf "{\n"
1798 printf " gdb_assert (gdbarch != NULL);\n"
1799 if [ "x${invalid_p}" = "x0" ]
1800 then
1801 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1802 elif [ -n "${invalid_p}" ]
1803 then
1804 printf " if (${invalid_p})\n"
1805 printf " internal_error (__FILE__, __LINE__,\n"
1806 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1807 elif [ -n "${predefault}" ]
1808 then
1809 printf " if (gdbarch->${function} == ${predefault})\n"
1810 printf " internal_error (__FILE__, __LINE__,\n"
1811 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1812 fi
1813 printf " if (gdbarch_debug >= 2)\n"
1814 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1815 printf " return gdbarch->${function};\n"
1816 printf "}\n"
1817 printf "\n"
1818 printf "void\n"
1819 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1820 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1821 printf "{\n"
1822 printf " gdbarch->${function} = ${function};\n"
1823 printf "}\n"
1824 elif class_is_info_p
1825 then
1826 printf "\n"
1827 printf "${returntype}\n"
1828 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1829 printf "{\n"
1830 printf " gdb_assert (gdbarch != NULL);\n"
1831 printf " if (gdbarch_debug >= 2)\n"
1832 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1833 printf " return gdbarch->${function};\n"
1834 printf "}\n"
1835 fi
1836 done
1837
1838 # All the trailing guff
1839 cat <<EOF
1840
1841
1842 /* Keep a registry of per-architecture data-pointers required by GDB
1843 modules. */
1844
1845 struct gdbarch_data
1846 {
1847 unsigned index;
1848 int init_p;
1849 gdbarch_data_init_ftype *init;
1850 gdbarch_data_free_ftype *free;
1851 };
1852
1853 struct gdbarch_data_registration
1854 {
1855 struct gdbarch_data *data;
1856 struct gdbarch_data_registration *next;
1857 };
1858
1859 struct gdbarch_data_registry
1860 {
1861 unsigned nr;
1862 struct gdbarch_data_registration *registrations;
1863 };
1864
1865 struct gdbarch_data_registry gdbarch_data_registry =
1866 {
1867 0, NULL,
1868 };
1869
1870 struct gdbarch_data *
1871 register_gdbarch_data (gdbarch_data_init_ftype *init,
1872 gdbarch_data_free_ftype *free)
1873 {
1874 struct gdbarch_data_registration **curr;
1875 /* Append the new registraration. */
1876 for (curr = &gdbarch_data_registry.registrations;
1877 (*curr) != NULL;
1878 curr = &(*curr)->next);
1879 (*curr) = XMALLOC (struct gdbarch_data_registration);
1880 (*curr)->next = NULL;
1881 (*curr)->data = XMALLOC (struct gdbarch_data);
1882 (*curr)->data->index = gdbarch_data_registry.nr++;
1883 (*curr)->data->init = init;
1884 (*curr)->data->init_p = 1;
1885 (*curr)->data->free = free;
1886 return (*curr)->data;
1887 }
1888
1889
1890 /* Create/delete the gdbarch data vector. */
1891
1892 static void
1893 alloc_gdbarch_data (struct gdbarch *gdbarch)
1894 {
1895 gdb_assert (gdbarch->data == NULL);
1896 gdbarch->nr_data = gdbarch_data_registry.nr;
1897 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1898 }
1899
1900 static void
1901 free_gdbarch_data (struct gdbarch *gdbarch)
1902 {
1903 struct gdbarch_data_registration *rego;
1904 gdb_assert (gdbarch->data != NULL);
1905 for (rego = gdbarch_data_registry.registrations;
1906 rego != NULL;
1907 rego = rego->next)
1908 {
1909 struct gdbarch_data *data = rego->data;
1910 gdb_assert (data->index < gdbarch->nr_data);
1911 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1912 {
1913 data->free (gdbarch, gdbarch->data[data->index]);
1914 gdbarch->data[data->index] = NULL;
1915 }
1916 }
1917 xfree (gdbarch->data);
1918 gdbarch->data = NULL;
1919 }
1920
1921
1922 /* Initialize the current value of the specified per-architecture
1923 data-pointer. */
1924
1925 void
1926 set_gdbarch_data (struct gdbarch *gdbarch,
1927 struct gdbarch_data *data,
1928 void *pointer)
1929 {
1930 gdb_assert (data->index < gdbarch->nr_data);
1931 if (gdbarch->data[data->index] != NULL)
1932 {
1933 gdb_assert (data->free != NULL);
1934 data->free (gdbarch, gdbarch->data[data->index]);
1935 }
1936 gdbarch->data[data->index] = pointer;
1937 }
1938
1939 /* Return the current value of the specified per-architecture
1940 data-pointer. */
1941
1942 void *
1943 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1944 {
1945 gdb_assert (data->index < gdbarch->nr_data);
1946 /* The data-pointer isn't initialized, call init() to get a value but
1947 only if the architecture initializaiton has completed. Otherwise
1948 punt - hope that the caller knows what they are doing. */
1949 if (gdbarch->data[data->index] == NULL
1950 && gdbarch->initialized_p)
1951 {
1952 /* Be careful to detect an initialization cycle. */
1953 gdb_assert (data->init_p);
1954 data->init_p = 0;
1955 gdb_assert (data->init != NULL);
1956 gdbarch->data[data->index] = data->init (gdbarch);
1957 data->init_p = 1;
1958 gdb_assert (gdbarch->data[data->index] != NULL);
1959 }
1960 return gdbarch->data[data->index];
1961 }
1962
1963
1964
1965 /* Keep a registry of swapped data required by GDB modules. */
1966
1967 struct gdbarch_swap
1968 {
1969 void *swap;
1970 struct gdbarch_swap_registration *source;
1971 struct gdbarch_swap *next;
1972 };
1973
1974 struct gdbarch_swap_registration
1975 {
1976 void *data;
1977 unsigned long sizeof_data;
1978 gdbarch_swap_ftype *init;
1979 struct gdbarch_swap_registration *next;
1980 };
1981
1982 struct gdbarch_swap_registry
1983 {
1984 int nr;
1985 struct gdbarch_swap_registration *registrations;
1986 };
1987
1988 struct gdbarch_swap_registry gdbarch_swap_registry =
1989 {
1990 0, NULL,
1991 };
1992
1993 void
1994 register_gdbarch_swap (void *data,
1995 unsigned long sizeof_data,
1996 gdbarch_swap_ftype *init)
1997 {
1998 struct gdbarch_swap_registration **rego;
1999 for (rego = &gdbarch_swap_registry.registrations;
2000 (*rego) != NULL;
2001 rego = &(*rego)->next);
2002 (*rego) = XMALLOC (struct gdbarch_swap_registration);
2003 (*rego)->next = NULL;
2004 (*rego)->init = init;
2005 (*rego)->data = data;
2006 (*rego)->sizeof_data = sizeof_data;
2007 }
2008
2009 static void
2010 clear_gdbarch_swap (struct gdbarch *gdbarch)
2011 {
2012 struct gdbarch_swap *curr;
2013 for (curr = gdbarch->swap;
2014 curr != NULL;
2015 curr = curr->next)
2016 {
2017 memset (curr->source->data, 0, curr->source->sizeof_data);
2018 }
2019 }
2020
2021 static void
2022 init_gdbarch_swap (struct gdbarch *gdbarch)
2023 {
2024 struct gdbarch_swap_registration *rego;
2025 struct gdbarch_swap **curr = &gdbarch->swap;
2026 for (rego = gdbarch_swap_registry.registrations;
2027 rego != NULL;
2028 rego = rego->next)
2029 {
2030 if (rego->data != NULL)
2031 {
2032 (*curr) = XMALLOC (struct gdbarch_swap);
2033 (*curr)->source = rego;
2034 (*curr)->swap = xmalloc (rego->sizeof_data);
2035 (*curr)->next = NULL;
2036 curr = &(*curr)->next;
2037 }
2038 if (rego->init != NULL)
2039 rego->init ();
2040 }
2041 }
2042
2043 static void
2044 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2045 {
2046 struct gdbarch_swap *curr;
2047 for (curr = gdbarch->swap;
2048 curr != NULL;
2049 curr = curr->next)
2050 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2051 }
2052
2053 static void
2054 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2055 {
2056 struct gdbarch_swap *curr;
2057 for (curr = gdbarch->swap;
2058 curr != NULL;
2059 curr = curr->next)
2060 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2061 }
2062
2063
2064 /* Keep a registry of the architectures known by GDB. */
2065
2066 struct gdbarch_registration
2067 {
2068 enum bfd_architecture bfd_architecture;
2069 gdbarch_init_ftype *init;
2070 gdbarch_dump_tdep_ftype *dump_tdep;
2071 struct gdbarch_list *arches;
2072 struct gdbarch_registration *next;
2073 };
2074
2075 static struct gdbarch_registration *gdbarch_registry = NULL;
2076
2077 static void
2078 append_name (const char ***buf, int *nr, const char *name)
2079 {
2080 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2081 (*buf)[*nr] = name;
2082 *nr += 1;
2083 }
2084
2085 const char **
2086 gdbarch_printable_names (void)
2087 {
2088 if (GDB_MULTI_ARCH)
2089 {
2090 /* Accumulate a list of names based on the registed list of
2091 architectures. */
2092 enum bfd_architecture a;
2093 int nr_arches = 0;
2094 const char **arches = NULL;
2095 struct gdbarch_registration *rego;
2096 for (rego = gdbarch_registry;
2097 rego != NULL;
2098 rego = rego->next)
2099 {
2100 const struct bfd_arch_info *ap;
2101 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2102 if (ap == NULL)
2103 internal_error (__FILE__, __LINE__,
2104 "gdbarch_architecture_names: multi-arch unknown");
2105 do
2106 {
2107 append_name (&arches, &nr_arches, ap->printable_name);
2108 ap = ap->next;
2109 }
2110 while (ap != NULL);
2111 }
2112 append_name (&arches, &nr_arches, NULL);
2113 return arches;
2114 }
2115 else
2116 /* Just return all the architectures that BFD knows. Assume that
2117 the legacy architecture framework supports them. */
2118 return bfd_arch_list ();
2119 }
2120
2121
2122 void
2123 gdbarch_register (enum bfd_architecture bfd_architecture,
2124 gdbarch_init_ftype *init,
2125 gdbarch_dump_tdep_ftype *dump_tdep)
2126 {
2127 struct gdbarch_registration **curr;
2128 const struct bfd_arch_info *bfd_arch_info;
2129 /* Check that BFD recognizes this architecture */
2130 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2131 if (bfd_arch_info == NULL)
2132 {
2133 internal_error (__FILE__, __LINE__,
2134 "gdbarch: Attempt to register unknown architecture (%d)",
2135 bfd_architecture);
2136 }
2137 /* Check that we haven't seen this architecture before */
2138 for (curr = &gdbarch_registry;
2139 (*curr) != NULL;
2140 curr = &(*curr)->next)
2141 {
2142 if (bfd_architecture == (*curr)->bfd_architecture)
2143 internal_error (__FILE__, __LINE__,
2144 "gdbarch: Duplicate registraration of architecture (%s)",
2145 bfd_arch_info->printable_name);
2146 }
2147 /* log it */
2148 if (gdbarch_debug)
2149 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2150 bfd_arch_info->printable_name,
2151 (long) init);
2152 /* Append it */
2153 (*curr) = XMALLOC (struct gdbarch_registration);
2154 (*curr)->bfd_architecture = bfd_architecture;
2155 (*curr)->init = init;
2156 (*curr)->dump_tdep = dump_tdep;
2157 (*curr)->arches = NULL;
2158 (*curr)->next = NULL;
2159 /* When non- multi-arch, install whatever target dump routine we've
2160 been provided - hopefully that routine has been written correctly
2161 and works regardless of multi-arch. */
2162 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2163 && startup_gdbarch.dump_tdep == NULL)
2164 startup_gdbarch.dump_tdep = dump_tdep;
2165 }
2166
2167 void
2168 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2169 gdbarch_init_ftype *init)
2170 {
2171 gdbarch_register (bfd_architecture, init, NULL);
2172 }
2173
2174
2175 /* Look for an architecture using gdbarch_info. Base search on only
2176 BFD_ARCH_INFO and BYTE_ORDER. */
2177
2178 struct gdbarch_list *
2179 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2180 const struct gdbarch_info *info)
2181 {
2182 for (; arches != NULL; arches = arches->next)
2183 {
2184 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2185 continue;
2186 if (info->byte_order != arches->gdbarch->byte_order)
2187 continue;
2188 if (info->osabi != arches->gdbarch->osabi)
2189 continue;
2190 return arches;
2191 }
2192 return NULL;
2193 }
2194
2195
2196 /* Update the current architecture. Return ZERO if the update request
2197 failed. */
2198
2199 int
2200 gdbarch_update_p (struct gdbarch_info info)
2201 {
2202 struct gdbarch *new_gdbarch;
2203 struct gdbarch *old_gdbarch;
2204 struct gdbarch_registration *rego;
2205
2206 /* Fill in missing parts of the INFO struct using a number of
2207 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2208
2209 /* \`\`(gdb) set architecture ...'' */
2210 if (info.bfd_arch_info == NULL
2211 && !TARGET_ARCHITECTURE_AUTO)
2212 info.bfd_arch_info = TARGET_ARCHITECTURE;
2213 if (info.bfd_arch_info == NULL
2214 && info.abfd != NULL
2215 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2216 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2217 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2218 if (info.bfd_arch_info == NULL)
2219 info.bfd_arch_info = TARGET_ARCHITECTURE;
2220
2221 /* \`\`(gdb) set byte-order ...'' */
2222 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2223 && !TARGET_BYTE_ORDER_AUTO)
2224 info.byte_order = TARGET_BYTE_ORDER;
2225 /* From the INFO struct. */
2226 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2227 && info.abfd != NULL)
2228 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2229 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2230 : BFD_ENDIAN_UNKNOWN);
2231 /* From the current target. */
2232 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2233 info.byte_order = TARGET_BYTE_ORDER;
2234
2235 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2236 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2237 info.osabi = gdbarch_lookup_osabi (info.abfd);
2238 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2239 info.osabi = current_gdbarch->osabi;
2240
2241 /* Must have found some sort of architecture. */
2242 gdb_assert (info.bfd_arch_info != NULL);
2243
2244 if (gdbarch_debug)
2245 {
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.bfd_arch_info %s\n",
2248 (info.bfd_arch_info != NULL
2249 ? info.bfd_arch_info->printable_name
2250 : "(null)"));
2251 fprintf_unfiltered (gdb_stdlog,
2252 "gdbarch_update: info.byte_order %d (%s)\n",
2253 info.byte_order,
2254 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2255 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2256 : "default"));
2257 fprintf_unfiltered (gdb_stdlog,
2258 "gdbarch_update: info.osabi %d (%s)\n",
2259 info.osabi, gdbarch_osabi_name (info.osabi));
2260 fprintf_unfiltered (gdb_stdlog,
2261 "gdbarch_update: info.abfd 0x%lx\n",
2262 (long) info.abfd);
2263 fprintf_unfiltered (gdb_stdlog,
2264 "gdbarch_update: info.tdep_info 0x%lx\n",
2265 (long) info.tdep_info);
2266 }
2267
2268 /* Find the target that knows about this architecture. */
2269 for (rego = gdbarch_registry;
2270 rego != NULL;
2271 rego = rego->next)
2272 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2273 break;
2274 if (rego == NULL)
2275 {
2276 if (gdbarch_debug)
2277 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2278 return 0;
2279 }
2280
2281 /* Swap the data belonging to the old target out setting the
2282 installed data to zero. This stops the ->init() function trying
2283 to refer to the previous architecture's global data structures. */
2284 swapout_gdbarch_swap (current_gdbarch);
2285 clear_gdbarch_swap (current_gdbarch);
2286
2287 /* Save the previously selected architecture, setting the global to
2288 NULL. This stops ->init() trying to use the previous
2289 architecture's configuration. The previous architecture may not
2290 even be of the same architecture family. The most recent
2291 architecture of the same family is found at the head of the
2292 rego->arches list. */
2293 old_gdbarch = current_gdbarch;
2294 current_gdbarch = NULL;
2295
2296 /* Ask the target for a replacement architecture. */
2297 new_gdbarch = rego->init (info, rego->arches);
2298
2299 /* Did the target like it? No. Reject the change and revert to the
2300 old architecture. */
2301 if (new_gdbarch == NULL)
2302 {
2303 if (gdbarch_debug)
2304 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2305 swapin_gdbarch_swap (old_gdbarch);
2306 current_gdbarch = old_gdbarch;
2307 return 0;
2308 }
2309
2310 /* Did the architecture change? No. Oops, put the old architecture
2311 back. */
2312 if (old_gdbarch == new_gdbarch)
2313 {
2314 if (gdbarch_debug)
2315 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2316 (long) new_gdbarch,
2317 new_gdbarch->bfd_arch_info->printable_name);
2318 swapin_gdbarch_swap (old_gdbarch);
2319 current_gdbarch = old_gdbarch;
2320 return 1;
2321 }
2322
2323 /* Is this a pre-existing architecture? Yes. Move it to the front
2324 of the list of architectures (keeping the list sorted Most
2325 Recently Used) and then copy it in. */
2326 {
2327 struct gdbarch_list **list;
2328 for (list = &rego->arches;
2329 (*list) != NULL;
2330 list = &(*list)->next)
2331 {
2332 if ((*list)->gdbarch == new_gdbarch)
2333 {
2334 struct gdbarch_list *this;
2335 if (gdbarch_debug)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2338 (long) new_gdbarch,
2339 new_gdbarch->bfd_arch_info->printable_name);
2340 /* Unlink this. */
2341 this = (*list);
2342 (*list) = this->next;
2343 /* Insert in the front. */
2344 this->next = rego->arches;
2345 rego->arches = this;
2346 /* Copy the new architecture in. */
2347 current_gdbarch = new_gdbarch;
2348 swapin_gdbarch_swap (new_gdbarch);
2349 architecture_changed_event ();
2350 return 1;
2351 }
2352 }
2353 }
2354
2355 /* Prepend this new architecture to the architecture list (keep the
2356 list sorted Most Recently Used). */
2357 {
2358 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2359 this->next = rego->arches;
2360 this->gdbarch = new_gdbarch;
2361 rego->arches = this;
2362 }
2363
2364 /* Switch to this new architecture marking it initialized. */
2365 current_gdbarch = new_gdbarch;
2366 current_gdbarch->initialized_p = 1;
2367 if (gdbarch_debug)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
2370 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2371 (long) new_gdbarch,
2372 new_gdbarch->bfd_arch_info->printable_name);
2373 }
2374
2375 /* Check that the newly installed architecture is valid. Plug in
2376 any post init values. */
2377 new_gdbarch->dump_tdep = rego->dump_tdep;
2378 verify_gdbarch (new_gdbarch);
2379
2380 /* Initialize the per-architecture memory (swap) areas.
2381 CURRENT_GDBARCH must be update before these modules are
2382 called. */
2383 init_gdbarch_swap (new_gdbarch);
2384
2385 /* Initialize the per-architecture data. CURRENT_GDBARCH
2386 must be updated before these modules are called. */
2387 architecture_changed_event ();
2388
2389 if (gdbarch_debug)
2390 gdbarch_dump (current_gdbarch, gdb_stdlog);
2391
2392 return 1;
2393 }
2394
2395
2396 /* Disassembler */
2397
2398 /* Pointer to the target-dependent disassembly function. */
2399 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2400
2401 extern void _initialize_gdbarch (void);
2402
2403 void
2404 _initialize_gdbarch (void)
2405 {
2406 struct cmd_list_element *c;
2407
2408 add_show_from_set (add_set_cmd ("arch",
2409 class_maintenance,
2410 var_zinteger,
2411 (char *)&gdbarch_debug,
2412 "Set architecture debugging.\\n\\
2413 When non-zero, architecture debugging is enabled.", &setdebuglist),
2414 &showdebuglist);
2415 c = add_set_cmd ("archdebug",
2416 class_maintenance,
2417 var_zinteger,
2418 (char *)&gdbarch_debug,
2419 "Set architecture debugging.\\n\\
2420 When non-zero, architecture debugging is enabled.", &setlist);
2421
2422 deprecate_cmd (c, "set debug arch");
2423 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2424 }
2425 EOF
2426
2427 # close things off
2428 exec 1>&2
2429 #../move-if-change new-gdbarch.c gdbarch.c
2430 compare_new gdbarch.c
This page took 0.111262 seconds and 5 git commands to generate.