Partial fix for PR breakpoints/10737: Make syscall info be per-arch instead of global
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Iterate over all supported register notes in a core file. For each
655 # supported register note section, the iterator must call CB and pass
656 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657 # the supported register note sections based on the current register
658 # values. Otherwise it should enumerate all supported register note
659 # sections.
660 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
661
662 # Create core file notes
663 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
665 # The elfcore writer hook to use to write Linux prpsinfo notes to core
666 # files. Most Linux architectures use the same prpsinfo32 or
667 # prpsinfo64 layouts, and so won't need to provide this hook, as we
668 # call the Linux generic routines in bfd to write prpsinfo notes by
669 # default.
670 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
672 # Find core file memory regions
673 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
675 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
676 # core file into buffer READBUF with length LEN. Return the number of bytes read
677 # (zero indicates failure).
678 # failed, otherwise, return the red length of READBUF.
679 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
680
681 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682 # libraries list from core file into buffer READBUF with length LEN.
683 # Return the number of bytes read (zero indicates failure).
684 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
685
686 # How the core target converts a PTID from a core file to a string.
687 M:char *:core_pid_to_str:ptid_t ptid:ptid
688
689 # BFD target to use when generating a core file.
690 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
691
692 # If the elements of C++ vtables are in-place function descriptors rather
693 # than normal function pointers (which may point to code or a descriptor),
694 # set this to one.
695 v:int:vtable_function_descriptors:::0:0::0
696
697 # Set if the least significant bit of the delta is used instead of the least
698 # significant bit of the pfn for pointers to virtual member functions.
699 v:int:vbit_in_delta:::0:0::0
700
701 # Advance PC to next instruction in order to skip a permanent breakpoint.
702 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
703
704 # The maximum length of an instruction on this architecture in bytes.
705 V:ULONGEST:max_insn_length:::0:0
706
707 # Copy the instruction at FROM to TO, and make any adjustments
708 # necessary to single-step it at that address.
709 #
710 # REGS holds the state the thread's registers will have before
711 # executing the copied instruction; the PC in REGS will refer to FROM,
712 # not the copy at TO. The caller should update it to point at TO later.
713 #
714 # Return a pointer to data of the architecture's choice to be passed
715 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716 # the instruction's effects have been completely simulated, with the
717 # resulting state written back to REGS.
718 #
719 # For a general explanation of displaced stepping and how GDB uses it,
720 # see the comments in infrun.c.
721 #
722 # The TO area is only guaranteed to have space for
723 # gdbarch_max_insn_length (arch) bytes, so this function must not
724 # write more bytes than that to that area.
725 #
726 # If you do not provide this function, GDB assumes that the
727 # architecture does not support displaced stepping.
728 #
729 # If your architecture doesn't need to adjust instructions before
730 # single-stepping them, consider using simple_displaced_step_copy_insn
731 # here.
732 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
734 # Return true if GDB should use hardware single-stepping to execute
735 # the displaced instruction identified by CLOSURE. If false,
736 # GDB will simply restart execution at the displaced instruction
737 # location, and it is up to the target to ensure GDB will receive
738 # control again (e.g. by placing a software breakpoint instruction
739 # into the displaced instruction buffer).
740 #
741 # The default implementation returns false on all targets that
742 # provide a gdbarch_software_single_step routine, and true otherwise.
743 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
745 # Fix up the state resulting from successfully single-stepping a
746 # displaced instruction, to give the result we would have gotten from
747 # stepping the instruction in its original location.
748 #
749 # REGS is the register state resulting from single-stepping the
750 # displaced instruction.
751 #
752 # CLOSURE is the result from the matching call to
753 # gdbarch_displaced_step_copy_insn.
754 #
755 # If you provide gdbarch_displaced_step_copy_insn.but not this
756 # function, then GDB assumes that no fixup is needed after
757 # single-stepping the instruction.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763 # Free a closure returned by gdbarch_displaced_step_copy_insn.
764 #
765 # If you provide gdbarch_displaced_step_copy_insn, you must provide
766 # this function as well.
767 #
768 # If your architecture uses closures that don't need to be freed, then
769 # you can use simple_displaced_step_free_closure here.
770 #
771 # For a general explanation of displaced stepping and how GDB uses it,
772 # see the comments in infrun.c.
773 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775 # Return the address of an appropriate place to put displaced
776 # instructions while we step over them. There need only be one such
777 # place, since we're only stepping one thread over a breakpoint at a
778 # time.
779 #
780 # For a general explanation of displaced stepping and how GDB uses it,
781 # see the comments in infrun.c.
782 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
784 # Relocate an instruction to execute at a different address. OLDLOC
785 # is the address in the inferior memory where the instruction to
786 # relocate is currently at. On input, TO points to the destination
787 # where we want the instruction to be copied (and possibly adjusted)
788 # to. On output, it points to one past the end of the resulting
789 # instruction(s). The effect of executing the instruction at TO shall
790 # be the same as if executing it at FROM. For example, call
791 # instructions that implicitly push the return address on the stack
792 # should be adjusted to return to the instruction after OLDLOC;
793 # relative branches, and other PC-relative instructions need the
794 # offset adjusted; etc.
795 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
797 # Refresh overlay mapped state for section OSECT.
798 F:void:overlay_update:struct obj_section *osect:osect
799
800 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
801
802 # Handle special encoding of static variables in stabs debug info.
803 F:const char *:static_transform_name:const char *name:name
804 # Set if the address in N_SO or N_FUN stabs may be zero.
805 v:int:sofun_address_maybe_missing:::0:0::0
806
807 # Parse the instruction at ADDR storing in the record execution log
808 # the registers REGCACHE and memory ranges that will be affected when
809 # the instruction executes, along with their current values.
810 # Return -1 if something goes wrong, 0 otherwise.
811 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
813 # Save process state after a signal.
814 # Return -1 if something goes wrong, 0 otherwise.
815 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
816
817 # Signal translation: translate inferior's signal (target's) number
818 # into GDB's representation. The implementation of this method must
819 # be host independent. IOW, don't rely on symbols of the NAT_FILE
820 # header (the nm-*.h files), the host <signal.h> header, or similar
821 # headers. This is mainly used when cross-debugging core files ---
822 # "Live" targets hide the translation behind the target interface
823 # (target_wait, target_resume, etc.).
824 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
825
826 # Signal translation: translate the GDB's internal signal number into
827 # the inferior's signal (target's) representation. The implementation
828 # of this method must be host independent. IOW, don't rely on symbols
829 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830 # header, or similar headers.
831 # Return the target signal number if found, or -1 if the GDB internal
832 # signal number is invalid.
833 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
835 # Extra signal info inspection.
836 #
837 # Return a type suitable to inspect extra signal information.
838 M:struct type *:get_siginfo_type:void:
839
840 # Record architecture-specific information from the symbol table.
841 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
842
843 # Function for the 'catch syscall' feature.
844
845 # Get architecture-specific system calls information from registers.
846 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
848 # The filename of the XML syscall for this architecture.
849 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
850
851 # Information about system calls from this architecture
852 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
853
854 # SystemTap related fields and functions.
855
856 # A NULL-terminated array of prefixes used to mark an integer constant
857 # on the architecture's assembly.
858 # For example, on x86 integer constants are written as:
859 #
860 # \$10 ;; integer constant 10
861 #
862 # in this case, this prefix would be the character \`\$\'.
863 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
864
865 # A NULL-terminated array of suffixes used to mark an integer constant
866 # on the architecture's assembly.
867 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
868
869 # A NULL-terminated array of prefixes used to mark a register name on
870 # the architecture's assembly.
871 # For example, on x86 the register name is written as:
872 #
873 # \%eax ;; register eax
874 #
875 # in this case, this prefix would be the character \`\%\'.
876 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
877
878 # A NULL-terminated array of suffixes used to mark a register name on
879 # the architecture's assembly.
880 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
881
882 # A NULL-terminated array of prefixes used to mark a register
883 # indirection on the architecture's assembly.
884 # For example, on x86 the register indirection is written as:
885 #
886 # \(\%eax\) ;; indirecting eax
887 #
888 # in this case, this prefix would be the charater \`\(\'.
889 #
890 # Please note that we use the indirection prefix also for register
891 # displacement, e.g., \`4\(\%eax\)\' on x86.
892 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
893
894 # A NULL-terminated array of suffixes used to mark a register
895 # indirection on the architecture's assembly.
896 # For example, on x86 the register indirection is written as:
897 #
898 # \(\%eax\) ;; indirecting eax
899 #
900 # in this case, this prefix would be the charater \`\)\'.
901 #
902 # Please note that we use the indirection suffix also for register
903 # displacement, e.g., \`4\(\%eax\)\' on x86.
904 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
905
906 # Prefix(es) used to name a register using GDB's nomenclature.
907 #
908 # For example, on PPC a register is represented by a number in the assembly
909 # language (e.g., \`10\' is the 10th general-purpose register). However,
910 # inside GDB this same register has an \`r\' appended to its name, so the 10th
911 # register would be represented as \`r10\' internally.
912 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
913
914 # Suffix used to name a register using GDB's nomenclature.
915 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
916
917 # Check if S is a single operand.
918 #
919 # Single operands can be:
920 # \- Literal integers, e.g. \`\$10\' on x86
921 # \- Register access, e.g. \`\%eax\' on x86
922 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
923 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
924 #
925 # This function should check for these patterns on the string
926 # and return 1 if some were found, or zero otherwise. Please try to match
927 # as much info as you can from the string, i.e., if you have to match
928 # something like \`\(\%\', do not match just the \`\(\'.
929 M:int:stap_is_single_operand:const char *s:s
930
931 # Function used to handle a "special case" in the parser.
932 #
933 # A "special case" is considered to be an unknown token, i.e., a token
934 # that the parser does not know how to parse. A good example of special
935 # case would be ARM's register displacement syntax:
936 #
937 # [R0, #4] ;; displacing R0 by 4
938 #
939 # Since the parser assumes that a register displacement is of the form:
940 #
941 # <number> <indirection_prefix> <register_name> <indirection_suffix>
942 #
943 # it means that it will not be able to recognize and parse this odd syntax.
944 # Therefore, we should add a special case function that will handle this token.
945 #
946 # This function should generate the proper expression form of the expression
947 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
948 # and so on). It should also return 1 if the parsing was successful, or zero
949 # if the token was not recognized as a special token (in this case, returning
950 # zero means that the special parser is deferring the parsing to the generic
951 # parser), and should advance the buffer pointer (p->arg).
952 M:int:stap_parse_special_token:struct stap_parse_info *p:p
953
954
955 # True if the list of shared libraries is one and only for all
956 # processes, as opposed to a list of shared libraries per inferior.
957 # This usually means that all processes, although may or may not share
958 # an address space, will see the same set of symbols at the same
959 # addresses.
960 v:int:has_global_solist:::0:0::0
961
962 # On some targets, even though each inferior has its own private
963 # address space, the debug interface takes care of making breakpoints
964 # visible to all address spaces automatically. For such cases,
965 # this property should be set to true.
966 v:int:has_global_breakpoints:::0:0::0
967
968 # True if inferiors share an address space (e.g., uClinux).
969 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
970
971 # True if a fast tracepoint can be set at an address.
972 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
973
974 # Return the "auto" target charset.
975 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
976 # Return the "auto" target wide charset.
977 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
978
979 # If non-empty, this is a file extension that will be opened in place
980 # of the file extension reported by the shared library list.
981 #
982 # This is most useful for toolchains that use a post-linker tool,
983 # where the names of the files run on the target differ in extension
984 # compared to the names of the files GDB should load for debug info.
985 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
986
987 # If true, the target OS has DOS-based file system semantics. That
988 # is, absolute paths include a drive name, and the backslash is
989 # considered a directory separator.
990 v:int:has_dos_based_file_system:::0:0::0
991
992 # Generate bytecodes to collect the return address in a frame.
993 # Since the bytecodes run on the target, possibly with GDB not even
994 # connected, the full unwinding machinery is not available, and
995 # typically this function will issue bytecodes for one or more likely
996 # places that the return address may be found.
997 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
998
999 # Implement the "info proc" command.
1000 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1001
1002 # Implement the "info proc" command for core files. Noe that there
1003 # are two "info_proc"-like methods on gdbarch -- one for core files,
1004 # one for live targets.
1005 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1006
1007 # Iterate over all objfiles in the order that makes the most sense
1008 # for the architecture to make global symbol searches.
1009 #
1010 # CB is a callback function where OBJFILE is the objfile to be searched,
1011 # and CB_DATA a pointer to user-defined data (the same data that is passed
1012 # when calling this gdbarch method). The iteration stops if this function
1013 # returns nonzero.
1014 #
1015 # CB_DATA is a pointer to some user-defined data to be passed to
1016 # the callback.
1017 #
1018 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1019 # inspected when the symbol search was requested.
1020 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1021
1022 # Ravenscar arch-dependent ops.
1023 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1024
1025 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1026 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1027
1028 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1029 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1030
1031 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1032 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1033
1034 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1035 # Return 0 if *READPTR is already at the end of the buffer.
1036 # Return -1 if there is insufficient buffer for a whole entry.
1037 # Return 1 if an entry was read into *TYPEP and *VALP.
1038 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1039
1040 # Find the address range of the current inferior's vsyscall/vDSO, and
1041 # write it to *RANGE. If the vsyscall's length can't be determined, a
1042 # range with zero length is returned. Returns true if the vsyscall is
1043 # found, false otherwise.
1044 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1045 EOF
1046 }
1047
1048 #
1049 # The .log file
1050 #
1051 exec > new-gdbarch.log
1052 function_list | while do_read
1053 do
1054 cat <<EOF
1055 ${class} ${returntype} ${function} ($formal)
1056 EOF
1057 for r in ${read}
1058 do
1059 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1060 done
1061 if class_is_predicate_p && fallback_default_p
1062 then
1063 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1064 kill $$
1065 exit 1
1066 fi
1067 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1068 then
1069 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1070 kill $$
1071 exit 1
1072 fi
1073 if class_is_multiarch_p
1074 then
1075 if class_is_predicate_p ; then :
1076 elif test "x${predefault}" = "x"
1077 then
1078 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1079 kill $$
1080 exit 1
1081 fi
1082 fi
1083 echo ""
1084 done
1085
1086 exec 1>&2
1087 compare_new gdbarch.log
1088
1089
1090 copyright ()
1091 {
1092 cat <<EOF
1093 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1094 /* vi:set ro: */
1095
1096 /* Dynamic architecture support for GDB, the GNU debugger.
1097
1098 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1099
1100 This file is part of GDB.
1101
1102 This program is free software; you can redistribute it and/or modify
1103 it under the terms of the GNU General Public License as published by
1104 the Free Software Foundation; either version 3 of the License, or
1105 (at your option) any later version.
1106
1107 This program is distributed in the hope that it will be useful,
1108 but WITHOUT ANY WARRANTY; without even the implied warranty of
1109 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1110 GNU General Public License for more details.
1111
1112 You should have received a copy of the GNU General Public License
1113 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1114
1115 /* This file was created with the aid of \`\`gdbarch.sh''.
1116
1117 The Bourne shell script \`\`gdbarch.sh'' creates the files
1118 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1119 against the existing \`\`gdbarch.[hc]''. Any differences found
1120 being reported.
1121
1122 If editing this file, please also run gdbarch.sh and merge any
1123 changes into that script. Conversely, when making sweeping changes
1124 to this file, modifying gdbarch.sh and using its output may prove
1125 easier. */
1126
1127 EOF
1128 }
1129
1130 #
1131 # The .h file
1132 #
1133
1134 exec > new-gdbarch.h
1135 copyright
1136 cat <<EOF
1137 #ifndef GDBARCH_H
1138 #define GDBARCH_H
1139
1140 #include "frame.h"
1141
1142 struct floatformat;
1143 struct ui_file;
1144 struct value;
1145 struct objfile;
1146 struct obj_section;
1147 struct minimal_symbol;
1148 struct regcache;
1149 struct reggroup;
1150 struct regset;
1151 struct disassemble_info;
1152 struct target_ops;
1153 struct obstack;
1154 struct bp_target_info;
1155 struct target_desc;
1156 struct displaced_step_closure;
1157 struct core_regset_section;
1158 struct syscall;
1159 struct agent_expr;
1160 struct axs_value;
1161 struct stap_parse_info;
1162 struct ravenscar_arch_ops;
1163 struct elf_internal_linux_prpsinfo;
1164 struct mem_range;
1165 struct syscalls_info;
1166
1167 /* The architecture associated with the inferior through the
1168 connection to the target.
1169
1170 The architecture vector provides some information that is really a
1171 property of the inferior, accessed through a particular target:
1172 ptrace operations; the layout of certain RSP packets; the solib_ops
1173 vector; etc. To differentiate architecture accesses to
1174 per-inferior/target properties from
1175 per-thread/per-frame/per-objfile properties, accesses to
1176 per-inferior/target properties should be made through this
1177 gdbarch. */
1178
1179 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1180 extern struct gdbarch *target_gdbarch (void);
1181
1182 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1183 gdbarch method. */
1184
1185 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1186 (struct objfile *objfile, void *cb_data);
1187
1188 typedef void (iterate_over_regset_sections_cb)
1189 (const char *sect_name, int size, const struct regset *regset,
1190 const char *human_name, void *cb_data);
1191 EOF
1192
1193 # function typedef's
1194 printf "\n"
1195 printf "\n"
1196 printf "/* The following are pre-initialized by GDBARCH. */\n"
1197 function_list | while do_read
1198 do
1199 if class_is_info_p
1200 then
1201 printf "\n"
1202 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1203 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1204 fi
1205 done
1206
1207 # function typedef's
1208 printf "\n"
1209 printf "\n"
1210 printf "/* The following are initialized by the target dependent code. */\n"
1211 function_list | while do_read
1212 do
1213 if [ -n "${comment}" ]
1214 then
1215 echo "${comment}" | sed \
1216 -e '2 s,#,/*,' \
1217 -e '3,$ s,#, ,' \
1218 -e '$ s,$, */,'
1219 fi
1220
1221 if class_is_predicate_p
1222 then
1223 printf "\n"
1224 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1225 fi
1226 if class_is_variable_p
1227 then
1228 printf "\n"
1229 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1231 fi
1232 if class_is_function_p
1233 then
1234 printf "\n"
1235 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1236 then
1237 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1238 elif class_is_multiarch_p
1239 then
1240 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1241 else
1242 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1243 fi
1244 if [ "x${formal}" = "xvoid" ]
1245 then
1246 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1247 else
1248 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1249 fi
1250 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1251 fi
1252 done
1253
1254 # close it off
1255 cat <<EOF
1256
1257 /* Definition for an unknown syscall, used basically in error-cases. */
1258 #define UNKNOWN_SYSCALL (-1)
1259
1260 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1261
1262
1263 /* Mechanism for co-ordinating the selection of a specific
1264 architecture.
1265
1266 GDB targets (*-tdep.c) can register an interest in a specific
1267 architecture. Other GDB components can register a need to maintain
1268 per-architecture data.
1269
1270 The mechanisms below ensures that there is only a loose connection
1271 between the set-architecture command and the various GDB
1272 components. Each component can independently register their need
1273 to maintain architecture specific data with gdbarch.
1274
1275 Pragmatics:
1276
1277 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1278 didn't scale.
1279
1280 The more traditional mega-struct containing architecture specific
1281 data for all the various GDB components was also considered. Since
1282 GDB is built from a variable number of (fairly independent)
1283 components it was determined that the global aproach was not
1284 applicable. */
1285
1286
1287 /* Register a new architectural family with GDB.
1288
1289 Register support for the specified ARCHITECTURE with GDB. When
1290 gdbarch determines that the specified architecture has been
1291 selected, the corresponding INIT function is called.
1292
1293 --
1294
1295 The INIT function takes two parameters: INFO which contains the
1296 information available to gdbarch about the (possibly new)
1297 architecture; ARCHES which is a list of the previously created
1298 \`\`struct gdbarch'' for this architecture.
1299
1300 The INFO parameter is, as far as possible, be pre-initialized with
1301 information obtained from INFO.ABFD or the global defaults.
1302
1303 The ARCHES parameter is a linked list (sorted most recently used)
1304 of all the previously created architures for this architecture
1305 family. The (possibly NULL) ARCHES->gdbarch can used to access
1306 values from the previously selected architecture for this
1307 architecture family.
1308
1309 The INIT function shall return any of: NULL - indicating that it
1310 doesn't recognize the selected architecture; an existing \`\`struct
1311 gdbarch'' from the ARCHES list - indicating that the new
1312 architecture is just a synonym for an earlier architecture (see
1313 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1314 - that describes the selected architecture (see gdbarch_alloc()).
1315
1316 The DUMP_TDEP function shall print out all target specific values.
1317 Care should be taken to ensure that the function works in both the
1318 multi-arch and non- multi-arch cases. */
1319
1320 struct gdbarch_list
1321 {
1322 struct gdbarch *gdbarch;
1323 struct gdbarch_list *next;
1324 };
1325
1326 struct gdbarch_info
1327 {
1328 /* Use default: NULL (ZERO). */
1329 const struct bfd_arch_info *bfd_arch_info;
1330
1331 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1332 enum bfd_endian byte_order;
1333
1334 enum bfd_endian byte_order_for_code;
1335
1336 /* Use default: NULL (ZERO). */
1337 bfd *abfd;
1338
1339 /* Use default: NULL (ZERO). */
1340 struct gdbarch_tdep_info *tdep_info;
1341
1342 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1343 enum gdb_osabi osabi;
1344
1345 /* Use default: NULL (ZERO). */
1346 const struct target_desc *target_desc;
1347 };
1348
1349 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1350 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1351
1352 /* DEPRECATED - use gdbarch_register() */
1353 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1354
1355 extern void gdbarch_register (enum bfd_architecture architecture,
1356 gdbarch_init_ftype *,
1357 gdbarch_dump_tdep_ftype *);
1358
1359
1360 /* Return a freshly allocated, NULL terminated, array of the valid
1361 architecture names. Since architectures are registered during the
1362 _initialize phase this function only returns useful information
1363 once initialization has been completed. */
1364
1365 extern const char **gdbarch_printable_names (void);
1366
1367
1368 /* Helper function. Search the list of ARCHES for a GDBARCH that
1369 matches the information provided by INFO. */
1370
1371 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1372
1373
1374 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1375 basic initialization using values obtained from the INFO and TDEP
1376 parameters. set_gdbarch_*() functions are called to complete the
1377 initialization of the object. */
1378
1379 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1380
1381
1382 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1383 It is assumed that the caller freeds the \`\`struct
1384 gdbarch_tdep''. */
1385
1386 extern void gdbarch_free (struct gdbarch *);
1387
1388
1389 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1390 obstack. The memory is freed when the corresponding architecture
1391 is also freed. */
1392
1393 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1394 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1395 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1396
1397
1398 /* Helper function. Force an update of the current architecture.
1399
1400 The actual architecture selected is determined by INFO, \`\`(gdb) set
1401 architecture'' et.al., the existing architecture and BFD's default
1402 architecture. INFO should be initialized to zero and then selected
1403 fields should be updated.
1404
1405 Returns non-zero if the update succeeds. */
1406
1407 extern int gdbarch_update_p (struct gdbarch_info info);
1408
1409
1410 /* Helper function. Find an architecture matching info.
1411
1412 INFO should be initialized using gdbarch_info_init, relevant fields
1413 set, and then finished using gdbarch_info_fill.
1414
1415 Returns the corresponding architecture, or NULL if no matching
1416 architecture was found. */
1417
1418 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1419
1420
1421 /* Helper function. Set the target gdbarch to "gdbarch". */
1422
1423 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1424
1425
1426 /* Register per-architecture data-pointer.
1427
1428 Reserve space for a per-architecture data-pointer. An identifier
1429 for the reserved data-pointer is returned. That identifer should
1430 be saved in a local static variable.
1431
1432 Memory for the per-architecture data shall be allocated using
1433 gdbarch_obstack_zalloc. That memory will be deleted when the
1434 corresponding architecture object is deleted.
1435
1436 When a previously created architecture is re-selected, the
1437 per-architecture data-pointer for that previous architecture is
1438 restored. INIT() is not re-called.
1439
1440 Multiple registrarants for any architecture are allowed (and
1441 strongly encouraged). */
1442
1443 struct gdbarch_data;
1444
1445 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1446 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1447 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1448 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1449 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1450 struct gdbarch_data *data,
1451 void *pointer);
1452
1453 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1454
1455
1456 /* Set the dynamic target-system-dependent parameters (architecture,
1457 byte-order, ...) using information found in the BFD. */
1458
1459 extern void set_gdbarch_from_file (bfd *);
1460
1461
1462 /* Initialize the current architecture to the "first" one we find on
1463 our list. */
1464
1465 extern void initialize_current_architecture (void);
1466
1467 /* gdbarch trace variable */
1468 extern unsigned int gdbarch_debug;
1469
1470 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1471
1472 #endif
1473 EOF
1474 exec 1>&2
1475 #../move-if-change new-gdbarch.h gdbarch.h
1476 compare_new gdbarch.h
1477
1478
1479 #
1480 # C file
1481 #
1482
1483 exec > new-gdbarch.c
1484 copyright
1485 cat <<EOF
1486
1487 #include "defs.h"
1488 #include "arch-utils.h"
1489
1490 #include "gdbcmd.h"
1491 #include "inferior.h"
1492 #include "symcat.h"
1493
1494 #include "floatformat.h"
1495 #include "reggroups.h"
1496 #include "osabi.h"
1497 #include "gdb_obstack.h"
1498 #include "observer.h"
1499 #include "regcache.h"
1500 #include "objfiles.h"
1501
1502 /* Static function declarations */
1503
1504 static void alloc_gdbarch_data (struct gdbarch *);
1505
1506 /* Non-zero if we want to trace architecture code. */
1507
1508 #ifndef GDBARCH_DEBUG
1509 #define GDBARCH_DEBUG 0
1510 #endif
1511 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1512 static void
1513 show_gdbarch_debug (struct ui_file *file, int from_tty,
1514 struct cmd_list_element *c, const char *value)
1515 {
1516 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1517 }
1518
1519 static const char *
1520 pformat (const struct floatformat **format)
1521 {
1522 if (format == NULL)
1523 return "(null)";
1524 else
1525 /* Just print out one of them - this is only for diagnostics. */
1526 return format[0]->name;
1527 }
1528
1529 static const char *
1530 pstring (const char *string)
1531 {
1532 if (string == NULL)
1533 return "(null)";
1534 return string;
1535 }
1536
1537 /* Helper function to print a list of strings, represented as "const
1538 char *const *". The list is printed comma-separated. */
1539
1540 static char *
1541 pstring_list (const char *const *list)
1542 {
1543 static char ret[100];
1544 const char *const *p;
1545 size_t offset = 0;
1546
1547 if (list == NULL)
1548 return "(null)";
1549
1550 ret[0] = '\0';
1551 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1552 {
1553 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1554 offset += 2 + s;
1555 }
1556
1557 if (offset > 0)
1558 {
1559 gdb_assert (offset - 2 < sizeof (ret));
1560 ret[offset - 2] = '\0';
1561 }
1562
1563 return ret;
1564 }
1565
1566 EOF
1567
1568 # gdbarch open the gdbarch object
1569 printf "\n"
1570 printf "/* Maintain the struct gdbarch object. */\n"
1571 printf "\n"
1572 printf "struct gdbarch\n"
1573 printf "{\n"
1574 printf " /* Has this architecture been fully initialized? */\n"
1575 printf " int initialized_p;\n"
1576 printf "\n"
1577 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1578 printf " struct obstack *obstack;\n"
1579 printf "\n"
1580 printf " /* basic architectural information. */\n"
1581 function_list | while do_read
1582 do
1583 if class_is_info_p
1584 then
1585 printf " ${returntype} ${function};\n"
1586 fi
1587 done
1588 printf "\n"
1589 printf " /* target specific vector. */\n"
1590 printf " struct gdbarch_tdep *tdep;\n"
1591 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1592 printf "\n"
1593 printf " /* per-architecture data-pointers. */\n"
1594 printf " unsigned nr_data;\n"
1595 printf " void **data;\n"
1596 printf "\n"
1597 cat <<EOF
1598 /* Multi-arch values.
1599
1600 When extending this structure you must:
1601
1602 Add the field below.
1603
1604 Declare set/get functions and define the corresponding
1605 macro in gdbarch.h.
1606
1607 gdbarch_alloc(): If zero/NULL is not a suitable default,
1608 initialize the new field.
1609
1610 verify_gdbarch(): Confirm that the target updated the field
1611 correctly.
1612
1613 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1614 field is dumped out
1615
1616 get_gdbarch(): Implement the set/get functions (probably using
1617 the macro's as shortcuts).
1618
1619 */
1620
1621 EOF
1622 function_list | while do_read
1623 do
1624 if class_is_variable_p
1625 then
1626 printf " ${returntype} ${function};\n"
1627 elif class_is_function_p
1628 then
1629 printf " gdbarch_${function}_ftype *${function};\n"
1630 fi
1631 done
1632 printf "};\n"
1633
1634 # Create a new gdbarch struct
1635 cat <<EOF
1636
1637 /* Create a new \`\`struct gdbarch'' based on information provided by
1638 \`\`struct gdbarch_info''. */
1639 EOF
1640 printf "\n"
1641 cat <<EOF
1642 struct gdbarch *
1643 gdbarch_alloc (const struct gdbarch_info *info,
1644 struct gdbarch_tdep *tdep)
1645 {
1646 struct gdbarch *gdbarch;
1647
1648 /* Create an obstack for allocating all the per-architecture memory,
1649 then use that to allocate the architecture vector. */
1650 struct obstack *obstack = XNEW (struct obstack);
1651 obstack_init (obstack);
1652 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1653 memset (gdbarch, 0, sizeof (*gdbarch));
1654 gdbarch->obstack = obstack;
1655
1656 alloc_gdbarch_data (gdbarch);
1657
1658 gdbarch->tdep = tdep;
1659 EOF
1660 printf "\n"
1661 function_list | while do_read
1662 do
1663 if class_is_info_p
1664 then
1665 printf " gdbarch->${function} = info->${function};\n"
1666 fi
1667 done
1668 printf "\n"
1669 printf " /* Force the explicit initialization of these. */\n"
1670 function_list | while do_read
1671 do
1672 if class_is_function_p || class_is_variable_p
1673 then
1674 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1675 then
1676 printf " gdbarch->${function} = ${predefault};\n"
1677 fi
1678 fi
1679 done
1680 cat <<EOF
1681 /* gdbarch_alloc() */
1682
1683 return gdbarch;
1684 }
1685 EOF
1686
1687 # Free a gdbarch struct.
1688 printf "\n"
1689 printf "\n"
1690 cat <<EOF
1691 /* Allocate extra space using the per-architecture obstack. */
1692
1693 void *
1694 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1695 {
1696 void *data = obstack_alloc (arch->obstack, size);
1697
1698 memset (data, 0, size);
1699 return data;
1700 }
1701
1702
1703 /* Free a gdbarch struct. This should never happen in normal
1704 operation --- once you've created a gdbarch, you keep it around.
1705 However, if an architecture's init function encounters an error
1706 building the structure, it may need to clean up a partially
1707 constructed gdbarch. */
1708
1709 void
1710 gdbarch_free (struct gdbarch *arch)
1711 {
1712 struct obstack *obstack;
1713
1714 gdb_assert (arch != NULL);
1715 gdb_assert (!arch->initialized_p);
1716 obstack = arch->obstack;
1717 obstack_free (obstack, 0); /* Includes the ARCH. */
1718 xfree (obstack);
1719 }
1720 EOF
1721
1722 # verify a new architecture
1723 cat <<EOF
1724
1725
1726 /* Ensure that all values in a GDBARCH are reasonable. */
1727
1728 static void
1729 verify_gdbarch (struct gdbarch *gdbarch)
1730 {
1731 struct ui_file *log;
1732 struct cleanup *cleanups;
1733 long length;
1734 char *buf;
1735
1736 log = mem_fileopen ();
1737 cleanups = make_cleanup_ui_file_delete (log);
1738 /* fundamental */
1739 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1740 fprintf_unfiltered (log, "\n\tbyte-order");
1741 if (gdbarch->bfd_arch_info == NULL)
1742 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1743 /* Check those that need to be defined for the given multi-arch level. */
1744 EOF
1745 function_list | while do_read
1746 do
1747 if class_is_function_p || class_is_variable_p
1748 then
1749 if [ "x${invalid_p}" = "x0" ]
1750 then
1751 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1752 elif class_is_predicate_p
1753 then
1754 printf " /* Skip verify of ${function}, has predicate. */\n"
1755 # FIXME: See do_read for potential simplification
1756 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1757 then
1758 printf " if (${invalid_p})\n"
1759 printf " gdbarch->${function} = ${postdefault};\n"
1760 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1761 then
1762 printf " if (gdbarch->${function} == ${predefault})\n"
1763 printf " gdbarch->${function} = ${postdefault};\n"
1764 elif [ -n "${postdefault}" ]
1765 then
1766 printf " if (gdbarch->${function} == 0)\n"
1767 printf " gdbarch->${function} = ${postdefault};\n"
1768 elif [ -n "${invalid_p}" ]
1769 then
1770 printf " if (${invalid_p})\n"
1771 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1772 elif [ -n "${predefault}" ]
1773 then
1774 printf " if (gdbarch->${function} == ${predefault})\n"
1775 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1776 fi
1777 fi
1778 done
1779 cat <<EOF
1780 buf = ui_file_xstrdup (log, &length);
1781 make_cleanup (xfree, buf);
1782 if (length > 0)
1783 internal_error (__FILE__, __LINE__,
1784 _("verify_gdbarch: the following are invalid ...%s"),
1785 buf);
1786 do_cleanups (cleanups);
1787 }
1788 EOF
1789
1790 # dump the structure
1791 printf "\n"
1792 printf "\n"
1793 cat <<EOF
1794 /* Print out the details of the current architecture. */
1795
1796 void
1797 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1798 {
1799 const char *gdb_nm_file = "<not-defined>";
1800
1801 #if defined (GDB_NM_FILE)
1802 gdb_nm_file = GDB_NM_FILE;
1803 #endif
1804 fprintf_unfiltered (file,
1805 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1806 gdb_nm_file);
1807 EOF
1808 function_list | sort -t: -k 3 | while do_read
1809 do
1810 # First the predicate
1811 if class_is_predicate_p
1812 then
1813 printf " fprintf_unfiltered (file,\n"
1814 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1815 printf " gdbarch_${function}_p (gdbarch));\n"
1816 fi
1817 # Print the corresponding value.
1818 if class_is_function_p
1819 then
1820 printf " fprintf_unfiltered (file,\n"
1821 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1822 printf " host_address_to_string (gdbarch->${function}));\n"
1823 else
1824 # It is a variable
1825 case "${print}:${returntype}" in
1826 :CORE_ADDR )
1827 fmt="%s"
1828 print="core_addr_to_string_nz (gdbarch->${function})"
1829 ;;
1830 :* )
1831 fmt="%s"
1832 print="plongest (gdbarch->${function})"
1833 ;;
1834 * )
1835 fmt="%s"
1836 ;;
1837 esac
1838 printf " fprintf_unfiltered (file,\n"
1839 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1840 printf " ${print});\n"
1841 fi
1842 done
1843 cat <<EOF
1844 if (gdbarch->dump_tdep != NULL)
1845 gdbarch->dump_tdep (gdbarch, file);
1846 }
1847 EOF
1848
1849
1850 # GET/SET
1851 printf "\n"
1852 cat <<EOF
1853 struct gdbarch_tdep *
1854 gdbarch_tdep (struct gdbarch *gdbarch)
1855 {
1856 if (gdbarch_debug >= 2)
1857 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1858 return gdbarch->tdep;
1859 }
1860 EOF
1861 printf "\n"
1862 function_list | while do_read
1863 do
1864 if class_is_predicate_p
1865 then
1866 printf "\n"
1867 printf "int\n"
1868 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1869 printf "{\n"
1870 printf " gdb_assert (gdbarch != NULL);\n"
1871 printf " return ${predicate};\n"
1872 printf "}\n"
1873 fi
1874 if class_is_function_p
1875 then
1876 printf "\n"
1877 printf "${returntype}\n"
1878 if [ "x${formal}" = "xvoid" ]
1879 then
1880 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1881 else
1882 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1883 fi
1884 printf "{\n"
1885 printf " gdb_assert (gdbarch != NULL);\n"
1886 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1887 if class_is_predicate_p && test -n "${predefault}"
1888 then
1889 # Allow a call to a function with a predicate.
1890 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1891 fi
1892 printf " if (gdbarch_debug >= 2)\n"
1893 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1894 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1895 then
1896 if class_is_multiarch_p
1897 then
1898 params="gdbarch"
1899 else
1900 params=""
1901 fi
1902 else
1903 if class_is_multiarch_p
1904 then
1905 params="gdbarch, ${actual}"
1906 else
1907 params="${actual}"
1908 fi
1909 fi
1910 if [ "x${returntype}" = "xvoid" ]
1911 then
1912 printf " gdbarch->${function} (${params});\n"
1913 else
1914 printf " return gdbarch->${function} (${params});\n"
1915 fi
1916 printf "}\n"
1917 printf "\n"
1918 printf "void\n"
1919 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1920 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1921 printf "{\n"
1922 printf " gdbarch->${function} = ${function};\n"
1923 printf "}\n"
1924 elif class_is_variable_p
1925 then
1926 printf "\n"
1927 printf "${returntype}\n"
1928 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1929 printf "{\n"
1930 printf " gdb_assert (gdbarch != NULL);\n"
1931 if [ "x${invalid_p}" = "x0" ]
1932 then
1933 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1934 elif [ -n "${invalid_p}" ]
1935 then
1936 printf " /* Check variable is valid. */\n"
1937 printf " gdb_assert (!(${invalid_p}));\n"
1938 elif [ -n "${predefault}" ]
1939 then
1940 printf " /* Check variable changed from pre-default. */\n"
1941 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1942 fi
1943 printf " if (gdbarch_debug >= 2)\n"
1944 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1945 printf " return gdbarch->${function};\n"
1946 printf "}\n"
1947 printf "\n"
1948 printf "void\n"
1949 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1950 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1951 printf "{\n"
1952 printf " gdbarch->${function} = ${function};\n"
1953 printf "}\n"
1954 elif class_is_info_p
1955 then
1956 printf "\n"
1957 printf "${returntype}\n"
1958 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1959 printf "{\n"
1960 printf " gdb_assert (gdbarch != NULL);\n"
1961 printf " if (gdbarch_debug >= 2)\n"
1962 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1963 printf " return gdbarch->${function};\n"
1964 printf "}\n"
1965 fi
1966 done
1967
1968 # All the trailing guff
1969 cat <<EOF
1970
1971
1972 /* Keep a registry of per-architecture data-pointers required by GDB
1973 modules. */
1974
1975 struct gdbarch_data
1976 {
1977 unsigned index;
1978 int init_p;
1979 gdbarch_data_pre_init_ftype *pre_init;
1980 gdbarch_data_post_init_ftype *post_init;
1981 };
1982
1983 struct gdbarch_data_registration
1984 {
1985 struct gdbarch_data *data;
1986 struct gdbarch_data_registration *next;
1987 };
1988
1989 struct gdbarch_data_registry
1990 {
1991 unsigned nr;
1992 struct gdbarch_data_registration *registrations;
1993 };
1994
1995 struct gdbarch_data_registry gdbarch_data_registry =
1996 {
1997 0, NULL,
1998 };
1999
2000 static struct gdbarch_data *
2001 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2002 gdbarch_data_post_init_ftype *post_init)
2003 {
2004 struct gdbarch_data_registration **curr;
2005
2006 /* Append the new registration. */
2007 for (curr = &gdbarch_data_registry.registrations;
2008 (*curr) != NULL;
2009 curr = &(*curr)->next);
2010 (*curr) = XNEW (struct gdbarch_data_registration);
2011 (*curr)->next = NULL;
2012 (*curr)->data = XNEW (struct gdbarch_data);
2013 (*curr)->data->index = gdbarch_data_registry.nr++;
2014 (*curr)->data->pre_init = pre_init;
2015 (*curr)->data->post_init = post_init;
2016 (*curr)->data->init_p = 1;
2017 return (*curr)->data;
2018 }
2019
2020 struct gdbarch_data *
2021 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2022 {
2023 return gdbarch_data_register (pre_init, NULL);
2024 }
2025
2026 struct gdbarch_data *
2027 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2028 {
2029 return gdbarch_data_register (NULL, post_init);
2030 }
2031
2032 /* Create/delete the gdbarch data vector. */
2033
2034 static void
2035 alloc_gdbarch_data (struct gdbarch *gdbarch)
2036 {
2037 gdb_assert (gdbarch->data == NULL);
2038 gdbarch->nr_data = gdbarch_data_registry.nr;
2039 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2040 }
2041
2042 /* Initialize the current value of the specified per-architecture
2043 data-pointer. */
2044
2045 void
2046 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2047 struct gdbarch_data *data,
2048 void *pointer)
2049 {
2050 gdb_assert (data->index < gdbarch->nr_data);
2051 gdb_assert (gdbarch->data[data->index] == NULL);
2052 gdb_assert (data->pre_init == NULL);
2053 gdbarch->data[data->index] = pointer;
2054 }
2055
2056 /* Return the current value of the specified per-architecture
2057 data-pointer. */
2058
2059 void *
2060 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2061 {
2062 gdb_assert (data->index < gdbarch->nr_data);
2063 if (gdbarch->data[data->index] == NULL)
2064 {
2065 /* The data-pointer isn't initialized, call init() to get a
2066 value. */
2067 if (data->pre_init != NULL)
2068 /* Mid architecture creation: pass just the obstack, and not
2069 the entire architecture, as that way it isn't possible for
2070 pre-init code to refer to undefined architecture
2071 fields. */
2072 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2073 else if (gdbarch->initialized_p
2074 && data->post_init != NULL)
2075 /* Post architecture creation: pass the entire architecture
2076 (as all fields are valid), but be careful to also detect
2077 recursive references. */
2078 {
2079 gdb_assert (data->init_p);
2080 data->init_p = 0;
2081 gdbarch->data[data->index] = data->post_init (gdbarch);
2082 data->init_p = 1;
2083 }
2084 else
2085 /* The architecture initialization hasn't completed - punt -
2086 hope that the caller knows what they are doing. Once
2087 deprecated_set_gdbarch_data has been initialized, this can be
2088 changed to an internal error. */
2089 return NULL;
2090 gdb_assert (gdbarch->data[data->index] != NULL);
2091 }
2092 return gdbarch->data[data->index];
2093 }
2094
2095
2096 /* Keep a registry of the architectures known by GDB. */
2097
2098 struct gdbarch_registration
2099 {
2100 enum bfd_architecture bfd_architecture;
2101 gdbarch_init_ftype *init;
2102 gdbarch_dump_tdep_ftype *dump_tdep;
2103 struct gdbarch_list *arches;
2104 struct gdbarch_registration *next;
2105 };
2106
2107 static struct gdbarch_registration *gdbarch_registry = NULL;
2108
2109 static void
2110 append_name (const char ***buf, int *nr, const char *name)
2111 {
2112 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2113 (*buf)[*nr] = name;
2114 *nr += 1;
2115 }
2116
2117 const char **
2118 gdbarch_printable_names (void)
2119 {
2120 /* Accumulate a list of names based on the registed list of
2121 architectures. */
2122 int nr_arches = 0;
2123 const char **arches = NULL;
2124 struct gdbarch_registration *rego;
2125
2126 for (rego = gdbarch_registry;
2127 rego != NULL;
2128 rego = rego->next)
2129 {
2130 const struct bfd_arch_info *ap;
2131 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2132 if (ap == NULL)
2133 internal_error (__FILE__, __LINE__,
2134 _("gdbarch_architecture_names: multi-arch unknown"));
2135 do
2136 {
2137 append_name (&arches, &nr_arches, ap->printable_name);
2138 ap = ap->next;
2139 }
2140 while (ap != NULL);
2141 }
2142 append_name (&arches, &nr_arches, NULL);
2143 return arches;
2144 }
2145
2146
2147 void
2148 gdbarch_register (enum bfd_architecture bfd_architecture,
2149 gdbarch_init_ftype *init,
2150 gdbarch_dump_tdep_ftype *dump_tdep)
2151 {
2152 struct gdbarch_registration **curr;
2153 const struct bfd_arch_info *bfd_arch_info;
2154
2155 /* Check that BFD recognizes this architecture */
2156 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2157 if (bfd_arch_info == NULL)
2158 {
2159 internal_error (__FILE__, __LINE__,
2160 _("gdbarch: Attempt to register "
2161 "unknown architecture (%d)"),
2162 bfd_architecture);
2163 }
2164 /* Check that we haven't seen this architecture before. */
2165 for (curr = &gdbarch_registry;
2166 (*curr) != NULL;
2167 curr = &(*curr)->next)
2168 {
2169 if (bfd_architecture == (*curr)->bfd_architecture)
2170 internal_error (__FILE__, __LINE__,
2171 _("gdbarch: Duplicate registration "
2172 "of architecture (%s)"),
2173 bfd_arch_info->printable_name);
2174 }
2175 /* log it */
2176 if (gdbarch_debug)
2177 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2178 bfd_arch_info->printable_name,
2179 host_address_to_string (init));
2180 /* Append it */
2181 (*curr) = XNEW (struct gdbarch_registration);
2182 (*curr)->bfd_architecture = bfd_architecture;
2183 (*curr)->init = init;
2184 (*curr)->dump_tdep = dump_tdep;
2185 (*curr)->arches = NULL;
2186 (*curr)->next = NULL;
2187 }
2188
2189 void
2190 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2191 gdbarch_init_ftype *init)
2192 {
2193 gdbarch_register (bfd_architecture, init, NULL);
2194 }
2195
2196
2197 /* Look for an architecture using gdbarch_info. */
2198
2199 struct gdbarch_list *
2200 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2201 const struct gdbarch_info *info)
2202 {
2203 for (; arches != NULL; arches = arches->next)
2204 {
2205 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2206 continue;
2207 if (info->byte_order != arches->gdbarch->byte_order)
2208 continue;
2209 if (info->osabi != arches->gdbarch->osabi)
2210 continue;
2211 if (info->target_desc != arches->gdbarch->target_desc)
2212 continue;
2213 return arches;
2214 }
2215 return NULL;
2216 }
2217
2218
2219 /* Find an architecture that matches the specified INFO. Create a new
2220 architecture if needed. Return that new architecture. */
2221
2222 struct gdbarch *
2223 gdbarch_find_by_info (struct gdbarch_info info)
2224 {
2225 struct gdbarch *new_gdbarch;
2226 struct gdbarch_registration *rego;
2227
2228 /* Fill in missing parts of the INFO struct using a number of
2229 sources: "set ..."; INFOabfd supplied; and the global
2230 defaults. */
2231 gdbarch_info_fill (&info);
2232
2233 /* Must have found some sort of architecture. */
2234 gdb_assert (info.bfd_arch_info != NULL);
2235
2236 if (gdbarch_debug)
2237 {
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2240 (info.bfd_arch_info != NULL
2241 ? info.bfd_arch_info->printable_name
2242 : "(null)"));
2243 fprintf_unfiltered (gdb_stdlog,
2244 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2245 info.byte_order,
2246 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2247 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2248 : "default"));
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2251 info.osabi, gdbarch_osabi_name (info.osabi));
2252 fprintf_unfiltered (gdb_stdlog,
2253 "gdbarch_find_by_info: info.abfd %s\n",
2254 host_address_to_string (info.abfd));
2255 fprintf_unfiltered (gdb_stdlog,
2256 "gdbarch_find_by_info: info.tdep_info %s\n",
2257 host_address_to_string (info.tdep_info));
2258 }
2259
2260 /* Find the tdep code that knows about this architecture. */
2261 for (rego = gdbarch_registry;
2262 rego != NULL;
2263 rego = rego->next)
2264 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2265 break;
2266 if (rego == NULL)
2267 {
2268 if (gdbarch_debug)
2269 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2270 "No matching architecture\n");
2271 return 0;
2272 }
2273
2274 /* Ask the tdep code for an architecture that matches "info". */
2275 new_gdbarch = rego->init (info, rego->arches);
2276
2277 /* Did the tdep code like it? No. Reject the change and revert to
2278 the old architecture. */
2279 if (new_gdbarch == NULL)
2280 {
2281 if (gdbarch_debug)
2282 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2283 "Target rejected architecture\n");
2284 return NULL;
2285 }
2286
2287 /* Is this a pre-existing architecture (as determined by already
2288 being initialized)? Move it to the front of the architecture
2289 list (keeping the list sorted Most Recently Used). */
2290 if (new_gdbarch->initialized_p)
2291 {
2292 struct gdbarch_list **list;
2293 struct gdbarch_list *this;
2294 if (gdbarch_debug)
2295 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2296 "Previous architecture %s (%s) selected\n",
2297 host_address_to_string (new_gdbarch),
2298 new_gdbarch->bfd_arch_info->printable_name);
2299 /* Find the existing arch in the list. */
2300 for (list = &rego->arches;
2301 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2302 list = &(*list)->next);
2303 /* It had better be in the list of architectures. */
2304 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2305 /* Unlink THIS. */
2306 this = (*list);
2307 (*list) = this->next;
2308 /* Insert THIS at the front. */
2309 this->next = rego->arches;
2310 rego->arches = this;
2311 /* Return it. */
2312 return new_gdbarch;
2313 }
2314
2315 /* It's a new architecture. */
2316 if (gdbarch_debug)
2317 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2318 "New architecture %s (%s) selected\n",
2319 host_address_to_string (new_gdbarch),
2320 new_gdbarch->bfd_arch_info->printable_name);
2321
2322 /* Insert the new architecture into the front of the architecture
2323 list (keep the list sorted Most Recently Used). */
2324 {
2325 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2326 this->next = rego->arches;
2327 this->gdbarch = new_gdbarch;
2328 rego->arches = this;
2329 }
2330
2331 /* Check that the newly installed architecture is valid. Plug in
2332 any post init values. */
2333 new_gdbarch->dump_tdep = rego->dump_tdep;
2334 verify_gdbarch (new_gdbarch);
2335 new_gdbarch->initialized_p = 1;
2336
2337 if (gdbarch_debug)
2338 gdbarch_dump (new_gdbarch, gdb_stdlog);
2339
2340 return new_gdbarch;
2341 }
2342
2343 /* Make the specified architecture current. */
2344
2345 void
2346 set_target_gdbarch (struct gdbarch *new_gdbarch)
2347 {
2348 gdb_assert (new_gdbarch != NULL);
2349 gdb_assert (new_gdbarch->initialized_p);
2350 current_inferior ()->gdbarch = new_gdbarch;
2351 observer_notify_architecture_changed (new_gdbarch);
2352 registers_changed ();
2353 }
2354
2355 /* Return the current inferior's arch. */
2356
2357 struct gdbarch *
2358 target_gdbarch (void)
2359 {
2360 return current_inferior ()->gdbarch;
2361 }
2362
2363 extern void _initialize_gdbarch (void);
2364
2365 void
2366 _initialize_gdbarch (void)
2367 {
2368 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2369 Set architecture debugging."), _("\\
2370 Show architecture debugging."), _("\\
2371 When non-zero, architecture debugging is enabled."),
2372 NULL,
2373 show_gdbarch_debug,
2374 &setdebuglist, &showdebuglist);
2375 }
2376 EOF
2377
2378 # close things off
2379 exec 1>&2
2380 #../move-if-change new-gdbarch.c gdbarch.c
2381 compare_new gdbarch.c
This page took 0.089426 seconds and 5 git commands to generate.