2003-05-31 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # NOTE: cagney/2002-05-02: This function with predicate has a valid
478 # (callable) initial value. As a consequence, even when the predicate
479 # is false, the corresponding function works. This simplifies the
480 # migration process - old code, calling REGISTER_BYTE, doesn't need to
481 # be modified.
482 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
483 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
484 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
485 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
486 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
487 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
488 # MAX_REGISTER_SIZE (a constant).
489 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
490 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
491 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
492 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
493 # The methods DEPRECATED_MAX_REGISTER_RAW_SIZE and
494 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE are all being replaced by
495 # MAX_REGISTER_SIZE (a constant).
496 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
497 # The methods REGISTER_VIRTUAL_TYPE, REGISTER_VIRTUAL_SIZE and
498 # REGISTER_RAW_SIZE are all being replaced by REGISTER_TYPE.
499 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
500 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
501 #
502 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
503 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
504 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
505 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
509 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
510 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
511 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
512 # setjmp/longjmp support.
513 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
514 #
515 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
516 # much better but at least they are vaguely consistent). The headers
517 # and body contain convoluted #if/#else sequences for determine how
518 # things should be compiled. Instead of trying to mimic that
519 # behaviour here (and hence entrench it further) gdbarch simply
520 # reqires that these methods be set up from the word go. This also
521 # avoids any potential problems with moving beyond multi-arch partial.
522 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
523 # Replaced by push_dummy_code.
524 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
525 # Replaced by push_dummy_code.
526 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
527 # Replaced by push_dummy_code.
528 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
529 # Replaced by push_dummy_code.
530 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
531 # Replaced by push_dummy_code.
532 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
533 # NOTE: cagney/2002-11-24: This function with predicate has a valid
534 # (callable) initial value. As a consequence, even when the predicate
535 # is false, the corresponding function works. This simplifies the
536 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
537 # doesn't need to be modified.
538 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
539 # Replaced by push_dummy_code.
540 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
541 # Replaced by push_dummy_code.
542 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
543 # Replaced by push_dummy_code.
544 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
545 # Replaced by push_dummy_code.
546 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
547 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
548 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
549 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
550 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
551 #
552 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
553 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
554 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
555 #
556 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
557 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
558 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
559 #
560 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
561 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
562 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
563 #
564 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
565 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
566 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
567 #
568 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
569 # Replaced by PUSH_DUMMY_CALL
570 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
571 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
572 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
573 # NOTE: This can be handled directly in push_dummy_call.
574 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
575 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
576 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
577 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
578 #
579 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
580 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
581 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
582 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
583 #
584 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
585 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
586 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
587 #
588 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
589 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
590 #
591 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
592 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
593 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
594 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
595 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
596 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
597 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
598 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
599 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
600 #
601 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
602 #
603 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
604 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
605 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
606 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
607 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
608 # note, per UNWIND_PC's doco, that while the two have similar
609 # interfaces they have very different underlying implementations.
610 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
611 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
612 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
613 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
614 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
615 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
616 #
617 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
618 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
619 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
620 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
621 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
622 # FIXME: kettenis/2003-03-08: This should be replaced by a function
623 # parametrized with (at least) the regcache.
624 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
625 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
626 v:2:PARM_BOUNDARY:int:parm_boundary
627 #
628 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
629 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
630 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
631 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
632 # On some machines there are bits in addresses which are not really
633 # part of the address, but are used by the kernel, the hardware, etc.
634 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
635 # we get a "real" address such as one would find in a symbol table.
636 # This is used only for addresses of instructions, and even then I'm
637 # not sure it's used in all contexts. It exists to deal with there
638 # being a few stray bits in the PC which would mislead us, not as some
639 # sort of generic thing to handle alignment or segmentation (it's
640 # possible it should be in TARGET_READ_PC instead).
641 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
642 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
643 # ADDR_BITS_REMOVE.
644 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
645 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
646 # the target needs software single step. An ISA method to implement it.
647 #
648 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
649 # using the breakpoint system instead of blatting memory directly (as with rs6000).
650 #
651 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
652 # single step. If not, then implement single step using breakpoints.
653 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
654 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
655 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
656
657
658 # For SVR4 shared libraries, each call goes through a small piece of
659 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
660 # to nonzero if we are currently stopped in one of these.
661 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
662
663 # Some systems also have trampoline code for returning from shared libs.
664 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
665
666 # Sigtramp is a routine that the kernel calls (which then calls the
667 # signal handler). On most machines it is a library routine that is
668 # linked into the executable.
669 #
670 # This macro, given a program counter value and the name of the
671 # function in which that PC resides (which can be null if the name is
672 # not known), returns nonzero if the PC and name show that we are in
673 # sigtramp.
674 #
675 # On most machines just see if the name is sigtramp (and if we have
676 # no name, assume we are not in sigtramp).
677 #
678 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
679 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
680 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
681 # own local NAME lookup.
682 #
683 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
684 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
685 # does not.
686 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
687 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
688 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
689 # A target might have problems with watchpoints as soon as the stack
690 # frame of the current function has been destroyed. This mostly happens
691 # as the first action in a funtion's epilogue. in_function_epilogue_p()
692 # is defined to return a non-zero value if either the given addr is one
693 # instruction after the stack destroying instruction up to the trailing
694 # return instruction or if we can figure out that the stack frame has
695 # already been invalidated regardless of the value of addr. Targets
696 # which don't suffer from that problem could just let this functionality
697 # untouched.
698 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
699 # Given a vector of command-line arguments, return a newly allocated
700 # string which, when passed to the create_inferior function, will be
701 # parsed (on Unix systems, by the shell) to yield the same vector.
702 # This function should call error() if the argument vector is not
703 # representable for this target or if this target does not support
704 # command-line arguments.
705 # ARGC is the number of elements in the vector.
706 # ARGV is an array of strings, one per argument.
707 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
708 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
709 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
710 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
711 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
712 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
713 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
714 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
715 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
716 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
717 # Is a register in a group
718 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
719 EOF
720 }
721
722 #
723 # The .log file
724 #
725 exec > new-gdbarch.log
726 function_list | while do_read
727 do
728 cat <<EOF
729 ${class} ${macro}(${actual})
730 ${returntype} ${function} ($formal)${attrib}
731 EOF
732 for r in ${read}
733 do
734 eval echo \"\ \ \ \ ${r}=\${${r}}\"
735 done
736 if class_is_predicate_p && fallback_default_p
737 then
738 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
739 kill $$
740 exit 1
741 fi
742 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
743 then
744 echo "Error: postdefault is useless when invalid_p=0" 1>&2
745 kill $$
746 exit 1
747 fi
748 if class_is_multiarch_p
749 then
750 if class_is_predicate_p ; then :
751 elif test "x${predefault}" = "x"
752 then
753 echo "Error: pure multi-arch function must have a predefault" 1>&2
754 kill $$
755 exit 1
756 fi
757 fi
758 echo ""
759 done
760
761 exec 1>&2
762 compare_new gdbarch.log
763
764
765 copyright ()
766 {
767 cat <<EOF
768 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
769
770 /* Dynamic architecture support for GDB, the GNU debugger.
771 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
772
773 This file is part of GDB.
774
775 This program is free software; you can redistribute it and/or modify
776 it under the terms of the GNU General Public License as published by
777 the Free Software Foundation; either version 2 of the License, or
778 (at your option) any later version.
779
780 This program is distributed in the hope that it will be useful,
781 but WITHOUT ANY WARRANTY; without even the implied warranty of
782 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
783 GNU General Public License for more details.
784
785 You should have received a copy of the GNU General Public License
786 along with this program; if not, write to the Free Software
787 Foundation, Inc., 59 Temple Place - Suite 330,
788 Boston, MA 02111-1307, USA. */
789
790 /* This file was created with the aid of \`\`gdbarch.sh''.
791
792 The Bourne shell script \`\`gdbarch.sh'' creates the files
793 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
794 against the existing \`\`gdbarch.[hc]''. Any differences found
795 being reported.
796
797 If editing this file, please also run gdbarch.sh and merge any
798 changes into that script. Conversely, when making sweeping changes
799 to this file, modifying gdbarch.sh and using its output may prove
800 easier. */
801
802 EOF
803 }
804
805 #
806 # The .h file
807 #
808
809 exec > new-gdbarch.h
810 copyright
811 cat <<EOF
812 #ifndef GDBARCH_H
813 #define GDBARCH_H
814
815 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
816 #if !GDB_MULTI_ARCH
817 /* Pull in function declarations refered to, indirectly, via macros. */
818 #include "inferior.h" /* For unsigned_address_to_pointer(). */
819 #include "symfile.h" /* For entry_point_address(). */
820 #endif
821
822 struct floatformat;
823 struct ui_file;
824 struct frame_info;
825 struct value;
826 struct objfile;
827 struct minimal_symbol;
828 struct regcache;
829 struct reggroup;
830
831 extern struct gdbarch *current_gdbarch;
832
833
834 /* If any of the following are defined, the target wasn't correctly
835 converted. */
836
837 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
838 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
839 #endif
840 EOF
841
842 # function typedef's
843 printf "\n"
844 printf "\n"
845 printf "/* The following are pre-initialized by GDBARCH. */\n"
846 function_list | while do_read
847 do
848 if class_is_info_p
849 then
850 printf "\n"
851 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
854 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#endif\n"
856 printf "#if !defined (${macro})\n"
857 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
858 printf "#endif\n"
859 fi
860 done
861
862 # function typedef's
863 printf "\n"
864 printf "\n"
865 printf "/* The following are initialized by the target dependent code. */\n"
866 function_list | while do_read
867 do
868 if [ -n "${comment}" ]
869 then
870 echo "${comment}" | sed \
871 -e '2 s,#,/*,' \
872 -e '3,$ s,#, ,' \
873 -e '$ s,$, */,'
874 fi
875 if class_is_multiarch_p
876 then
877 if class_is_predicate_p
878 then
879 printf "\n"
880 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
881 fi
882 else
883 if class_is_predicate_p
884 then
885 printf "\n"
886 printf "#if defined (${macro})\n"
887 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
888 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
889 printf "#if !defined (${macro}_P)\n"
890 printf "#define ${macro}_P() (1)\n"
891 printf "#endif\n"
892 printf "#endif\n"
893 printf "\n"
894 printf "/* Default predicate for non- multi-arch targets. */\n"
895 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
896 printf "#define ${macro}_P() (0)\n"
897 printf "#endif\n"
898 printf "\n"
899 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
901 printf "#error \"Non multi-arch definition of ${macro}\"\n"
902 printf "#endif\n"
903 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
904 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
905 printf "#endif\n"
906 fi
907 fi
908 if class_is_variable_p
909 then
910 if fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (value) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 echo "#define ${macro} (${fallbackdefault})" \
916 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
917 printf "#endif\n"
918 fi
919 printf "\n"
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
921 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
925 printf "#if !defined (${macro})\n"
926 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
929 if class_is_function_p
930 then
931 if class_is_multiarch_p ; then :
932 elif fallback_default_p || class_is_predicate_p
933 then
934 printf "\n"
935 printf "/* Default (function) for non- multi-arch platforms. */\n"
936 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
937 if [ "x${fallbackdefault}" = "x0" ]
938 then
939 if [ "x${actual}" = "x-" ]
940 then
941 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
942 else
943 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
944 fi
945 else
946 # FIXME: Should be passing current_gdbarch through!
947 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
948 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
949 fi
950 printf "#endif\n"
951 fi
952 printf "\n"
953 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
954 then
955 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
956 elif class_is_multiarch_p
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
959 else
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
961 fi
962 if [ "x${formal}" = "xvoid" ]
963 then
964 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
965 else
966 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
967 fi
968 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
969 if class_is_multiarch_p ; then :
970 else
971 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
972 printf "#error \"Non multi-arch definition of ${macro}\"\n"
973 printf "#endif\n"
974 if [ "x${actual}" = "x" ]
975 then
976 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
977 elif [ "x${actual}" = "x-" ]
978 then
979 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
980 else
981 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
982 fi
983 printf "#if !defined (${macro})\n"
984 if [ "x${actual}" = "x" ]
985 then
986 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
987 elif [ "x${actual}" = "x-" ]
988 then
989 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
990 else
991 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
992 fi
993 printf "#endif\n"
994 fi
995 fi
996 done
997
998 # close it off
999 cat <<EOF
1000
1001 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1002
1003
1004 /* Mechanism for co-ordinating the selection of a specific
1005 architecture.
1006
1007 GDB targets (*-tdep.c) can register an interest in a specific
1008 architecture. Other GDB components can register a need to maintain
1009 per-architecture data.
1010
1011 The mechanisms below ensures that there is only a loose connection
1012 between the set-architecture command and the various GDB
1013 components. Each component can independently register their need
1014 to maintain architecture specific data with gdbarch.
1015
1016 Pragmatics:
1017
1018 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1019 didn't scale.
1020
1021 The more traditional mega-struct containing architecture specific
1022 data for all the various GDB components was also considered. Since
1023 GDB is built from a variable number of (fairly independent)
1024 components it was determined that the global aproach was not
1025 applicable. */
1026
1027
1028 /* Register a new architectural family with GDB.
1029
1030 Register support for the specified ARCHITECTURE with GDB. When
1031 gdbarch determines that the specified architecture has been
1032 selected, the corresponding INIT function is called.
1033
1034 --
1035
1036 The INIT function takes two parameters: INFO which contains the
1037 information available to gdbarch about the (possibly new)
1038 architecture; ARCHES which is a list of the previously created
1039 \`\`struct gdbarch'' for this architecture.
1040
1041 The INFO parameter is, as far as possible, be pre-initialized with
1042 information obtained from INFO.ABFD or the previously selected
1043 architecture.
1044
1045 The ARCHES parameter is a linked list (sorted most recently used)
1046 of all the previously created architures for this architecture
1047 family. The (possibly NULL) ARCHES->gdbarch can used to access
1048 values from the previously selected architecture for this
1049 architecture family. The global \`\`current_gdbarch'' shall not be
1050 used.
1051
1052 The INIT function shall return any of: NULL - indicating that it
1053 doesn't recognize the selected architecture; an existing \`\`struct
1054 gdbarch'' from the ARCHES list - indicating that the new
1055 architecture is just a synonym for an earlier architecture (see
1056 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1057 - that describes the selected architecture (see gdbarch_alloc()).
1058
1059 The DUMP_TDEP function shall print out all target specific values.
1060 Care should be taken to ensure that the function works in both the
1061 multi-arch and non- multi-arch cases. */
1062
1063 struct gdbarch_list
1064 {
1065 struct gdbarch *gdbarch;
1066 struct gdbarch_list *next;
1067 };
1068
1069 struct gdbarch_info
1070 {
1071 /* Use default: NULL (ZERO). */
1072 const struct bfd_arch_info *bfd_arch_info;
1073
1074 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1075 int byte_order;
1076
1077 /* Use default: NULL (ZERO). */
1078 bfd *abfd;
1079
1080 /* Use default: NULL (ZERO). */
1081 struct gdbarch_tdep_info *tdep_info;
1082
1083 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1084 enum gdb_osabi osabi;
1085 };
1086
1087 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1088 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1089
1090 /* DEPRECATED - use gdbarch_register() */
1091 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1092
1093 extern void gdbarch_register (enum bfd_architecture architecture,
1094 gdbarch_init_ftype *,
1095 gdbarch_dump_tdep_ftype *);
1096
1097
1098 /* Return a freshly allocated, NULL terminated, array of the valid
1099 architecture names. Since architectures are registered during the
1100 _initialize phase this function only returns useful information
1101 once initialization has been completed. */
1102
1103 extern const char **gdbarch_printable_names (void);
1104
1105
1106 /* Helper function. Search the list of ARCHES for a GDBARCH that
1107 matches the information provided by INFO. */
1108
1109 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1110
1111
1112 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1113 basic initialization using values obtained from the INFO andTDEP
1114 parameters. set_gdbarch_*() functions are called to complete the
1115 initialization of the object. */
1116
1117 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1118
1119
1120 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1121 It is assumed that the caller freeds the \`\`struct
1122 gdbarch_tdep''. */
1123
1124 extern void gdbarch_free (struct gdbarch *);
1125
1126
1127 /* Helper function. Force an update of the current architecture.
1128
1129 The actual architecture selected is determined by INFO, \`\`(gdb) set
1130 architecture'' et.al., the existing architecture and BFD's default
1131 architecture. INFO should be initialized to zero and then selected
1132 fields should be updated.
1133
1134 Returns non-zero if the update succeeds */
1135
1136 extern int gdbarch_update_p (struct gdbarch_info info);
1137
1138
1139
1140 /* Register per-architecture data-pointer.
1141
1142 Reserve space for a per-architecture data-pointer. An identifier
1143 for the reserved data-pointer is returned. That identifer should
1144 be saved in a local static variable.
1145
1146 The per-architecture data-pointer is either initialized explicitly
1147 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1148 gdbarch_data()). FREE() is called to delete either an existing
1149 data-pointer overridden by set_gdbarch_data() or when the
1150 architecture object is being deleted.
1151
1152 When a previously created architecture is re-selected, the
1153 per-architecture data-pointer for that previous architecture is
1154 restored. INIT() is not re-called.
1155
1156 Multiple registrarants for any architecture are allowed (and
1157 strongly encouraged). */
1158
1159 struct gdbarch_data;
1160
1161 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1162 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1163 void *pointer);
1164 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1165 gdbarch_data_free_ftype *free);
1166 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1167 struct gdbarch_data *data,
1168 void *pointer);
1169
1170 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1171
1172
1173 /* Register per-architecture memory region.
1174
1175 Provide a memory-region swap mechanism. Per-architecture memory
1176 region are created. These memory regions are swapped whenever the
1177 architecture is changed. For a new architecture, the memory region
1178 is initialized with zero (0) and the INIT function is called.
1179
1180 Memory regions are swapped / initialized in the order that they are
1181 registered. NULL DATA and/or INIT values can be specified.
1182
1183 New code should use register_gdbarch_data(). */
1184
1185 typedef void (gdbarch_swap_ftype) (void);
1186 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1187 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1188
1189
1190
1191 /* The target-system-dependent byte order is dynamic */
1192
1193 extern int target_byte_order;
1194 #ifndef TARGET_BYTE_ORDER
1195 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1196 #endif
1197
1198 extern int target_byte_order_auto;
1199 #ifndef TARGET_BYTE_ORDER_AUTO
1200 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1201 #endif
1202
1203
1204
1205 /* The target-system-dependent BFD architecture is dynamic */
1206
1207 extern int target_architecture_auto;
1208 #ifndef TARGET_ARCHITECTURE_AUTO
1209 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1210 #endif
1211
1212 extern const struct bfd_arch_info *target_architecture;
1213 #ifndef TARGET_ARCHITECTURE
1214 #define TARGET_ARCHITECTURE (target_architecture + 0)
1215 #endif
1216
1217
1218 /* The target-system-dependent disassembler is semi-dynamic */
1219
1220 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1221 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1222
1223 /* Use set_gdbarch_print_insn instead. */
1224 extern disassemble_info deprecated_tm_print_insn_info;
1225
1226 /* Set the dynamic target-system-dependent parameters (architecture,
1227 byte-order, ...) using information found in the BFD */
1228
1229 extern void set_gdbarch_from_file (bfd *);
1230
1231
1232 /* Initialize the current architecture to the "first" one we find on
1233 our list. */
1234
1235 extern void initialize_current_architecture (void);
1236
1237 /* For non-multiarched targets, do any initialization of the default
1238 gdbarch object necessary after the _initialize_MODULE functions
1239 have run. */
1240 extern void initialize_non_multiarch (void);
1241
1242 /* gdbarch trace variable */
1243 extern int gdbarch_debug;
1244
1245 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1246
1247 #endif
1248 EOF
1249 exec 1>&2
1250 #../move-if-change new-gdbarch.h gdbarch.h
1251 compare_new gdbarch.h
1252
1253
1254 #
1255 # C file
1256 #
1257
1258 exec > new-gdbarch.c
1259 copyright
1260 cat <<EOF
1261
1262 #include "defs.h"
1263 #include "arch-utils.h"
1264
1265 #if GDB_MULTI_ARCH
1266 #include "gdbcmd.h"
1267 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1268 #else
1269 /* Just include everything in sight so that the every old definition
1270 of macro is visible. */
1271 #include "gdb_string.h"
1272 #include <ctype.h>
1273 #include "symtab.h"
1274 #include "frame.h"
1275 #include "inferior.h"
1276 #include "breakpoint.h"
1277 #include "gdb_wait.h"
1278 #include "gdbcore.h"
1279 #include "gdbcmd.h"
1280 #include "target.h"
1281 #include "gdbthread.h"
1282 #include "annotate.h"
1283 #include "symfile.h" /* for overlay functions */
1284 #include "value.h" /* For old tm.h/nm.h macros. */
1285 #endif
1286 #include "symcat.h"
1287
1288 #include "floatformat.h"
1289
1290 #include "gdb_assert.h"
1291 #include "gdb_string.h"
1292 #include "gdb-events.h"
1293 #include "reggroups.h"
1294 #include "osabi.h"
1295 #include "symfile.h" /* For entry_point_address. */
1296
1297 /* Static function declarations */
1298
1299 static void verify_gdbarch (struct gdbarch *gdbarch);
1300 static void alloc_gdbarch_data (struct gdbarch *);
1301 static void free_gdbarch_data (struct gdbarch *);
1302 static void init_gdbarch_swap (struct gdbarch *);
1303 static void clear_gdbarch_swap (struct gdbarch *);
1304 static void swapout_gdbarch_swap (struct gdbarch *);
1305 static void swapin_gdbarch_swap (struct gdbarch *);
1306
1307 /* Non-zero if we want to trace architecture code. */
1308
1309 #ifndef GDBARCH_DEBUG
1310 #define GDBARCH_DEBUG 0
1311 #endif
1312 int gdbarch_debug = GDBARCH_DEBUG;
1313
1314 EOF
1315
1316 # gdbarch open the gdbarch object
1317 printf "\n"
1318 printf "/* Maintain the struct gdbarch object */\n"
1319 printf "\n"
1320 printf "struct gdbarch\n"
1321 printf "{\n"
1322 printf " /* Has this architecture been fully initialized? */\n"
1323 printf " int initialized_p;\n"
1324 printf " /* basic architectural information */\n"
1325 function_list | while do_read
1326 do
1327 if class_is_info_p
1328 then
1329 printf " ${returntype} ${function};\n"
1330 fi
1331 done
1332 printf "\n"
1333 printf " /* target specific vector. */\n"
1334 printf " struct gdbarch_tdep *tdep;\n"
1335 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1336 printf "\n"
1337 printf " /* per-architecture data-pointers */\n"
1338 printf " unsigned nr_data;\n"
1339 printf " void **data;\n"
1340 printf "\n"
1341 printf " /* per-architecture swap-regions */\n"
1342 printf " struct gdbarch_swap *swap;\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* Multi-arch values.
1346
1347 When extending this structure you must:
1348
1349 Add the field below.
1350
1351 Declare set/get functions and define the corresponding
1352 macro in gdbarch.h.
1353
1354 gdbarch_alloc(): If zero/NULL is not a suitable default,
1355 initialize the new field.
1356
1357 verify_gdbarch(): Confirm that the target updated the field
1358 correctly.
1359
1360 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1361 field is dumped out
1362
1363 \`\`startup_gdbarch()'': Append an initial value to the static
1364 variable (base values on the host's c-type system).
1365
1366 get_gdbarch(): Implement the set/get functions (probably using
1367 the macro's as shortcuts).
1368
1369 */
1370
1371 EOF
1372 function_list | while do_read
1373 do
1374 if class_is_variable_p
1375 then
1376 printf " ${returntype} ${function};\n"
1377 elif class_is_function_p
1378 then
1379 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1380 fi
1381 done
1382 printf "};\n"
1383
1384 # A pre-initialized vector
1385 printf "\n"
1386 printf "\n"
1387 cat <<EOF
1388 /* The default architecture uses host values (for want of a better
1389 choice). */
1390 EOF
1391 printf "\n"
1392 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1393 printf "\n"
1394 printf "struct gdbarch startup_gdbarch =\n"
1395 printf "{\n"
1396 printf " 1, /* Always initialized. */\n"
1397 printf " /* basic architecture information */\n"
1398 function_list | while do_read
1399 do
1400 if class_is_info_p
1401 then
1402 printf " ${staticdefault},\n"
1403 fi
1404 done
1405 cat <<EOF
1406 /* target specific vector and its dump routine */
1407 NULL, NULL,
1408 /*per-architecture data-pointers and swap regions */
1409 0, NULL, NULL,
1410 /* Multi-arch values */
1411 EOF
1412 function_list | while do_read
1413 do
1414 if class_is_function_p || class_is_variable_p
1415 then
1416 printf " ${staticdefault},\n"
1417 fi
1418 done
1419 cat <<EOF
1420 /* startup_gdbarch() */
1421 };
1422
1423 struct gdbarch *current_gdbarch = &startup_gdbarch;
1424
1425 /* Do any initialization needed for a non-multiarch configuration
1426 after the _initialize_MODULE functions have been run. */
1427 void
1428 initialize_non_multiarch (void)
1429 {
1430 alloc_gdbarch_data (&startup_gdbarch);
1431 /* Ensure that all swap areas are zeroed so that they again think
1432 they are starting from scratch. */
1433 clear_gdbarch_swap (&startup_gdbarch);
1434 init_gdbarch_swap (&startup_gdbarch);
1435 }
1436 EOF
1437
1438 # Create a new gdbarch struct
1439 printf "\n"
1440 printf "\n"
1441 cat <<EOF
1442 /* Create a new \`\`struct gdbarch'' based on information provided by
1443 \`\`struct gdbarch_info''. */
1444 EOF
1445 printf "\n"
1446 cat <<EOF
1447 struct gdbarch *
1448 gdbarch_alloc (const struct gdbarch_info *info,
1449 struct gdbarch_tdep *tdep)
1450 {
1451 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1452 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1453 the current local architecture and not the previous global
1454 architecture. This ensures that the new architectures initial
1455 values are not influenced by the previous architecture. Once
1456 everything is parameterised with gdbarch, this will go away. */
1457 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1458 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1459
1460 alloc_gdbarch_data (current_gdbarch);
1461
1462 current_gdbarch->tdep = tdep;
1463 EOF
1464 printf "\n"
1465 function_list | while do_read
1466 do
1467 if class_is_info_p
1468 then
1469 printf " current_gdbarch->${function} = info->${function};\n"
1470 fi
1471 done
1472 printf "\n"
1473 printf " /* Force the explicit initialization of these. */\n"
1474 function_list | while do_read
1475 do
1476 if class_is_function_p || class_is_variable_p
1477 then
1478 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1479 then
1480 printf " current_gdbarch->${function} = ${predefault};\n"
1481 fi
1482 fi
1483 done
1484 cat <<EOF
1485 /* gdbarch_alloc() */
1486
1487 return current_gdbarch;
1488 }
1489 EOF
1490
1491 # Free a gdbarch struct.
1492 printf "\n"
1493 printf "\n"
1494 cat <<EOF
1495 /* Free a gdbarch struct. This should never happen in normal
1496 operation --- once you've created a gdbarch, you keep it around.
1497 However, if an architecture's init function encounters an error
1498 building the structure, it may need to clean up a partially
1499 constructed gdbarch. */
1500
1501 void
1502 gdbarch_free (struct gdbarch *arch)
1503 {
1504 gdb_assert (arch != NULL);
1505 free_gdbarch_data (arch);
1506 xfree (arch);
1507 }
1508 EOF
1509
1510 # verify a new architecture
1511 printf "\n"
1512 printf "\n"
1513 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1514 printf "\n"
1515 cat <<EOF
1516 static void
1517 verify_gdbarch (struct gdbarch *gdbarch)
1518 {
1519 struct ui_file *log;
1520 struct cleanup *cleanups;
1521 long dummy;
1522 char *buf;
1523 /* Only perform sanity checks on a multi-arch target. */
1524 if (!GDB_MULTI_ARCH)
1525 return;
1526 log = mem_fileopen ();
1527 cleanups = make_cleanup_ui_file_delete (log);
1528 /* fundamental */
1529 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1530 fprintf_unfiltered (log, "\n\tbyte-order");
1531 if (gdbarch->bfd_arch_info == NULL)
1532 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1533 /* Check those that need to be defined for the given multi-arch level. */
1534 EOF
1535 function_list | while do_read
1536 do
1537 if class_is_function_p || class_is_variable_p
1538 then
1539 if [ "x${invalid_p}" = "x0" ]
1540 then
1541 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1542 elif class_is_predicate_p
1543 then
1544 printf " /* Skip verify of ${function}, has predicate */\n"
1545 # FIXME: See do_read for potential simplification
1546 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1547 then
1548 printf " if (${invalid_p})\n"
1549 printf " gdbarch->${function} = ${postdefault};\n"
1550 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == ${predefault})\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${postdefault}" ]
1555 then
1556 printf " if (gdbarch->${function} == 0)\n"
1557 printf " gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${invalid_p}" ]
1559 then
1560 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1561 printf " && (${invalid_p}))\n"
1562 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1563 elif [ -n "${predefault}" ]
1564 then
1565 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1566 printf " && (gdbarch->${function} == ${predefault}))\n"
1567 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1568 fi
1569 fi
1570 done
1571 cat <<EOF
1572 buf = ui_file_xstrdup (log, &dummy);
1573 make_cleanup (xfree, buf);
1574 if (strlen (buf) > 0)
1575 internal_error (__FILE__, __LINE__,
1576 "verify_gdbarch: the following are invalid ...%s",
1577 buf);
1578 do_cleanups (cleanups);
1579 }
1580 EOF
1581
1582 # dump the structure
1583 printf "\n"
1584 printf "\n"
1585 cat <<EOF
1586 /* Print out the details of the current architecture. */
1587
1588 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1589 just happens to match the global variable \`\`current_gdbarch''. That
1590 way macros refering to that variable get the local and not the global
1591 version - ulgh. Once everything is parameterised with gdbarch, this
1592 will go away. */
1593
1594 void
1595 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1596 {
1597 fprintf_unfiltered (file,
1598 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1599 GDB_MULTI_ARCH);
1600 EOF
1601 function_list | sort -t: -k 3 | while do_read
1602 do
1603 # First the predicate
1604 if class_is_predicate_p
1605 then
1606 if class_is_multiarch_p
1607 then
1608 printf " if (GDB_MULTI_ARCH)\n"
1609 printf " fprintf_unfiltered (file,\n"
1610 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1611 printf " gdbarch_${function}_p (current_gdbarch));\n"
1612 else
1613 printf "#ifdef ${macro}_P\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1616 printf " \"${macro}_P()\",\n"
1617 printf " XSTRING (${macro}_P ()));\n"
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1620 printf " ${macro}_P ());\n"
1621 printf "#endif\n"
1622 fi
1623 fi
1624 # multiarch functions don't have macros.
1625 if class_is_multiarch_p
1626 then
1627 printf " if (GDB_MULTI_ARCH)\n"
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1630 printf " (long) current_gdbarch->${function});\n"
1631 continue
1632 fi
1633 # Print the macro definition.
1634 printf "#ifdef ${macro}\n"
1635 if [ "x${returntype}" = "xvoid" ]
1636 then
1637 printf "#if GDB_MULTI_ARCH\n"
1638 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1639 fi
1640 if class_is_function_p
1641 then
1642 printf " fprintf_unfiltered (file,\n"
1643 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1644 printf " \"${macro}(${actual})\",\n"
1645 printf " XSTRING (${macro} (${actual})));\n"
1646 else
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1649 printf " XSTRING (${macro}));\n"
1650 fi
1651 # Print the architecture vector value
1652 if [ "x${returntype}" = "xvoid" ]
1653 then
1654 printf "#endif\n"
1655 fi
1656 if [ "x${print_p}" = "x()" ]
1657 then
1658 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1659 elif [ "x${print_p}" = "x0" ]
1660 then
1661 printf " /* skip print of ${macro}, print_p == 0. */\n"
1662 elif [ -n "${print_p}" ]
1663 then
1664 printf " if (${print_p})\n"
1665 printf " fprintf_unfiltered (file,\n"
1666 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1667 printf " ${print});\n"
1668 elif class_is_function_p
1669 then
1670 printf " if (GDB_MULTI_ARCH)\n"
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1673 printf " (long) current_gdbarch->${function}\n"
1674 printf " /*${macro} ()*/);\n"
1675 else
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
1679 fi
1680 printf "#endif\n"
1681 done
1682 cat <<EOF
1683 if (current_gdbarch->dump_tdep != NULL)
1684 current_gdbarch->dump_tdep (current_gdbarch, file);
1685 }
1686 EOF
1687
1688
1689 # GET/SET
1690 printf "\n"
1691 cat <<EOF
1692 struct gdbarch_tdep *
1693 gdbarch_tdep (struct gdbarch *gdbarch)
1694 {
1695 if (gdbarch_debug >= 2)
1696 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1697 return gdbarch->tdep;
1698 }
1699 EOF
1700 printf "\n"
1701 function_list | while do_read
1702 do
1703 if class_is_predicate_p
1704 then
1705 printf "\n"
1706 printf "int\n"
1707 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1708 printf "{\n"
1709 printf " gdb_assert (gdbarch != NULL);\n"
1710 if [ -n "${predicate}" ]
1711 then
1712 printf " return ${predicate};\n"
1713 else
1714 printf " return gdbarch->${function} != 0;\n"
1715 fi
1716 printf "}\n"
1717 fi
1718 if class_is_function_p
1719 then
1720 printf "\n"
1721 printf "${returntype}\n"
1722 if [ "x${formal}" = "xvoid" ]
1723 then
1724 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1725 else
1726 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1727 fi
1728 printf "{\n"
1729 printf " gdb_assert (gdbarch != NULL);\n"
1730 printf " if (gdbarch->${function} == 0)\n"
1731 printf " internal_error (__FILE__, __LINE__,\n"
1732 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1733 if class_is_predicate_p && test -n "${predicate}"
1734 then
1735 # Allow a call to a function with a predicate.
1736 printf " /* Ignore predicate (${predicate}). */\n"
1737 fi
1738 printf " if (gdbarch_debug >= 2)\n"
1739 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1740 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1741 then
1742 if class_is_multiarch_p
1743 then
1744 params="gdbarch"
1745 else
1746 params=""
1747 fi
1748 else
1749 if class_is_multiarch_p
1750 then
1751 params="gdbarch, ${actual}"
1752 else
1753 params="${actual}"
1754 fi
1755 fi
1756 if [ "x${returntype}" = "xvoid" ]
1757 then
1758 printf " gdbarch->${function} (${params});\n"
1759 else
1760 printf " return gdbarch->${function} (${params});\n"
1761 fi
1762 printf "}\n"
1763 printf "\n"
1764 printf "void\n"
1765 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1766 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1767 printf "{\n"
1768 printf " gdbarch->${function} = ${function};\n"
1769 printf "}\n"
1770 elif class_is_variable_p
1771 then
1772 printf "\n"
1773 printf "${returntype}\n"
1774 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1775 printf "{\n"
1776 printf " gdb_assert (gdbarch != NULL);\n"
1777 if [ "x${invalid_p}" = "x0" ]
1778 then
1779 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1780 elif [ -n "${invalid_p}" ]
1781 then
1782 printf " if (${invalid_p})\n"
1783 printf " internal_error (__FILE__, __LINE__,\n"
1784 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1785 elif [ -n "${predefault}" ]
1786 then
1787 printf " if (gdbarch->${function} == ${predefault})\n"
1788 printf " internal_error (__FILE__, __LINE__,\n"
1789 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1790 fi
1791 printf " if (gdbarch_debug >= 2)\n"
1792 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1793 printf " return gdbarch->${function};\n"
1794 printf "}\n"
1795 printf "\n"
1796 printf "void\n"
1797 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1798 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1799 printf "{\n"
1800 printf " gdbarch->${function} = ${function};\n"
1801 printf "}\n"
1802 elif class_is_info_p
1803 then
1804 printf "\n"
1805 printf "${returntype}\n"
1806 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1807 printf "{\n"
1808 printf " gdb_assert (gdbarch != NULL);\n"
1809 printf " if (gdbarch_debug >= 2)\n"
1810 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1811 printf " return gdbarch->${function};\n"
1812 printf "}\n"
1813 fi
1814 done
1815
1816 # All the trailing guff
1817 cat <<EOF
1818
1819
1820 /* Keep a registry of per-architecture data-pointers required by GDB
1821 modules. */
1822
1823 struct gdbarch_data
1824 {
1825 unsigned index;
1826 int init_p;
1827 gdbarch_data_init_ftype *init;
1828 gdbarch_data_free_ftype *free;
1829 };
1830
1831 struct gdbarch_data_registration
1832 {
1833 struct gdbarch_data *data;
1834 struct gdbarch_data_registration *next;
1835 };
1836
1837 struct gdbarch_data_registry
1838 {
1839 unsigned nr;
1840 struct gdbarch_data_registration *registrations;
1841 };
1842
1843 struct gdbarch_data_registry gdbarch_data_registry =
1844 {
1845 0, NULL,
1846 };
1847
1848 struct gdbarch_data *
1849 register_gdbarch_data (gdbarch_data_init_ftype *init,
1850 gdbarch_data_free_ftype *free)
1851 {
1852 struct gdbarch_data_registration **curr;
1853 /* Append the new registraration. */
1854 for (curr = &gdbarch_data_registry.registrations;
1855 (*curr) != NULL;
1856 curr = &(*curr)->next);
1857 (*curr) = XMALLOC (struct gdbarch_data_registration);
1858 (*curr)->next = NULL;
1859 (*curr)->data = XMALLOC (struct gdbarch_data);
1860 (*curr)->data->index = gdbarch_data_registry.nr++;
1861 (*curr)->data->init = init;
1862 (*curr)->data->init_p = 1;
1863 (*curr)->data->free = free;
1864 return (*curr)->data;
1865 }
1866
1867
1868 /* Create/delete the gdbarch data vector. */
1869
1870 static void
1871 alloc_gdbarch_data (struct gdbarch *gdbarch)
1872 {
1873 gdb_assert (gdbarch->data == NULL);
1874 gdbarch->nr_data = gdbarch_data_registry.nr;
1875 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1876 }
1877
1878 static void
1879 free_gdbarch_data (struct gdbarch *gdbarch)
1880 {
1881 struct gdbarch_data_registration *rego;
1882 gdb_assert (gdbarch->data != NULL);
1883 for (rego = gdbarch_data_registry.registrations;
1884 rego != NULL;
1885 rego = rego->next)
1886 {
1887 struct gdbarch_data *data = rego->data;
1888 gdb_assert (data->index < gdbarch->nr_data);
1889 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1890 {
1891 data->free (gdbarch, gdbarch->data[data->index]);
1892 gdbarch->data[data->index] = NULL;
1893 }
1894 }
1895 xfree (gdbarch->data);
1896 gdbarch->data = NULL;
1897 }
1898
1899
1900 /* Initialize the current value of the specified per-architecture
1901 data-pointer. */
1902
1903 void
1904 set_gdbarch_data (struct gdbarch *gdbarch,
1905 struct gdbarch_data *data,
1906 void *pointer)
1907 {
1908 gdb_assert (data->index < gdbarch->nr_data);
1909 if (gdbarch->data[data->index] != NULL)
1910 {
1911 gdb_assert (data->free != NULL);
1912 data->free (gdbarch, gdbarch->data[data->index]);
1913 }
1914 gdbarch->data[data->index] = pointer;
1915 }
1916
1917 /* Return the current value of the specified per-architecture
1918 data-pointer. */
1919
1920 void *
1921 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1922 {
1923 gdb_assert (data->index < gdbarch->nr_data);
1924 /* The data-pointer isn't initialized, call init() to get a value but
1925 only if the architecture initializaiton has completed. Otherwise
1926 punt - hope that the caller knows what they are doing. */
1927 if (gdbarch->data[data->index] == NULL
1928 && gdbarch->initialized_p)
1929 {
1930 /* Be careful to detect an initialization cycle. */
1931 gdb_assert (data->init_p);
1932 data->init_p = 0;
1933 gdb_assert (data->init != NULL);
1934 gdbarch->data[data->index] = data->init (gdbarch);
1935 data->init_p = 1;
1936 gdb_assert (gdbarch->data[data->index] != NULL);
1937 }
1938 return gdbarch->data[data->index];
1939 }
1940
1941
1942
1943 /* Keep a registry of swapped data required by GDB modules. */
1944
1945 struct gdbarch_swap
1946 {
1947 void *swap;
1948 struct gdbarch_swap_registration *source;
1949 struct gdbarch_swap *next;
1950 };
1951
1952 struct gdbarch_swap_registration
1953 {
1954 void *data;
1955 unsigned long sizeof_data;
1956 gdbarch_swap_ftype *init;
1957 struct gdbarch_swap_registration *next;
1958 };
1959
1960 struct gdbarch_swap_registry
1961 {
1962 int nr;
1963 struct gdbarch_swap_registration *registrations;
1964 };
1965
1966 struct gdbarch_swap_registry gdbarch_swap_registry =
1967 {
1968 0, NULL,
1969 };
1970
1971 void
1972 register_gdbarch_swap (void *data,
1973 unsigned long sizeof_data,
1974 gdbarch_swap_ftype *init)
1975 {
1976 struct gdbarch_swap_registration **rego;
1977 for (rego = &gdbarch_swap_registry.registrations;
1978 (*rego) != NULL;
1979 rego = &(*rego)->next);
1980 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1981 (*rego)->next = NULL;
1982 (*rego)->init = init;
1983 (*rego)->data = data;
1984 (*rego)->sizeof_data = sizeof_data;
1985 }
1986
1987 static void
1988 clear_gdbarch_swap (struct gdbarch *gdbarch)
1989 {
1990 struct gdbarch_swap *curr;
1991 for (curr = gdbarch->swap;
1992 curr != NULL;
1993 curr = curr->next)
1994 {
1995 memset (curr->source->data, 0, curr->source->sizeof_data);
1996 }
1997 }
1998
1999 static void
2000 init_gdbarch_swap (struct gdbarch *gdbarch)
2001 {
2002 struct gdbarch_swap_registration *rego;
2003 struct gdbarch_swap **curr = &gdbarch->swap;
2004 for (rego = gdbarch_swap_registry.registrations;
2005 rego != NULL;
2006 rego = rego->next)
2007 {
2008 if (rego->data != NULL)
2009 {
2010 (*curr) = XMALLOC (struct gdbarch_swap);
2011 (*curr)->source = rego;
2012 (*curr)->swap = xmalloc (rego->sizeof_data);
2013 (*curr)->next = NULL;
2014 curr = &(*curr)->next;
2015 }
2016 if (rego->init != NULL)
2017 rego->init ();
2018 }
2019 }
2020
2021 static void
2022 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2023 {
2024 struct gdbarch_swap *curr;
2025 for (curr = gdbarch->swap;
2026 curr != NULL;
2027 curr = curr->next)
2028 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2029 }
2030
2031 static void
2032 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2033 {
2034 struct gdbarch_swap *curr;
2035 for (curr = gdbarch->swap;
2036 curr != NULL;
2037 curr = curr->next)
2038 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2039 }
2040
2041
2042 /* Keep a registry of the architectures known by GDB. */
2043
2044 struct gdbarch_registration
2045 {
2046 enum bfd_architecture bfd_architecture;
2047 gdbarch_init_ftype *init;
2048 gdbarch_dump_tdep_ftype *dump_tdep;
2049 struct gdbarch_list *arches;
2050 struct gdbarch_registration *next;
2051 };
2052
2053 static struct gdbarch_registration *gdbarch_registry = NULL;
2054
2055 static void
2056 append_name (const char ***buf, int *nr, const char *name)
2057 {
2058 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2059 (*buf)[*nr] = name;
2060 *nr += 1;
2061 }
2062
2063 const char **
2064 gdbarch_printable_names (void)
2065 {
2066 if (GDB_MULTI_ARCH)
2067 {
2068 /* Accumulate a list of names based on the registed list of
2069 architectures. */
2070 enum bfd_architecture a;
2071 int nr_arches = 0;
2072 const char **arches = NULL;
2073 struct gdbarch_registration *rego;
2074 for (rego = gdbarch_registry;
2075 rego != NULL;
2076 rego = rego->next)
2077 {
2078 const struct bfd_arch_info *ap;
2079 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2080 if (ap == NULL)
2081 internal_error (__FILE__, __LINE__,
2082 "gdbarch_architecture_names: multi-arch unknown");
2083 do
2084 {
2085 append_name (&arches, &nr_arches, ap->printable_name);
2086 ap = ap->next;
2087 }
2088 while (ap != NULL);
2089 }
2090 append_name (&arches, &nr_arches, NULL);
2091 return arches;
2092 }
2093 else
2094 /* Just return all the architectures that BFD knows. Assume that
2095 the legacy architecture framework supports them. */
2096 return bfd_arch_list ();
2097 }
2098
2099
2100 void
2101 gdbarch_register (enum bfd_architecture bfd_architecture,
2102 gdbarch_init_ftype *init,
2103 gdbarch_dump_tdep_ftype *dump_tdep)
2104 {
2105 struct gdbarch_registration **curr;
2106 const struct bfd_arch_info *bfd_arch_info;
2107 /* Check that BFD recognizes this architecture */
2108 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2109 if (bfd_arch_info == NULL)
2110 {
2111 internal_error (__FILE__, __LINE__,
2112 "gdbarch: Attempt to register unknown architecture (%d)",
2113 bfd_architecture);
2114 }
2115 /* Check that we haven't seen this architecture before */
2116 for (curr = &gdbarch_registry;
2117 (*curr) != NULL;
2118 curr = &(*curr)->next)
2119 {
2120 if (bfd_architecture == (*curr)->bfd_architecture)
2121 internal_error (__FILE__, __LINE__,
2122 "gdbarch: Duplicate registraration of architecture (%s)",
2123 bfd_arch_info->printable_name);
2124 }
2125 /* log it */
2126 if (gdbarch_debug)
2127 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2128 bfd_arch_info->printable_name,
2129 (long) init);
2130 /* Append it */
2131 (*curr) = XMALLOC (struct gdbarch_registration);
2132 (*curr)->bfd_architecture = bfd_architecture;
2133 (*curr)->init = init;
2134 (*curr)->dump_tdep = dump_tdep;
2135 (*curr)->arches = NULL;
2136 (*curr)->next = NULL;
2137 /* When non- multi-arch, install whatever target dump routine we've
2138 been provided - hopefully that routine has been written correctly
2139 and works regardless of multi-arch. */
2140 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2141 && startup_gdbarch.dump_tdep == NULL)
2142 startup_gdbarch.dump_tdep = dump_tdep;
2143 }
2144
2145 void
2146 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2147 gdbarch_init_ftype *init)
2148 {
2149 gdbarch_register (bfd_architecture, init, NULL);
2150 }
2151
2152
2153 /* Look for an architecture using gdbarch_info. Base search on only
2154 BFD_ARCH_INFO and BYTE_ORDER. */
2155
2156 struct gdbarch_list *
2157 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2158 const struct gdbarch_info *info)
2159 {
2160 for (; arches != NULL; arches = arches->next)
2161 {
2162 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2163 continue;
2164 if (info->byte_order != arches->gdbarch->byte_order)
2165 continue;
2166 if (info->osabi != arches->gdbarch->osabi)
2167 continue;
2168 return arches;
2169 }
2170 return NULL;
2171 }
2172
2173
2174 /* Update the current architecture. Return ZERO if the update request
2175 failed. */
2176
2177 int
2178 gdbarch_update_p (struct gdbarch_info info)
2179 {
2180 struct gdbarch *new_gdbarch;
2181 struct gdbarch *old_gdbarch;
2182 struct gdbarch_registration *rego;
2183
2184 /* Fill in missing parts of the INFO struct using a number of
2185 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2186
2187 /* \`\`(gdb) set architecture ...'' */
2188 if (info.bfd_arch_info == NULL
2189 && !TARGET_ARCHITECTURE_AUTO)
2190 info.bfd_arch_info = TARGET_ARCHITECTURE;
2191 if (info.bfd_arch_info == NULL
2192 && info.abfd != NULL
2193 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2194 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2195 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2196 if (info.bfd_arch_info == NULL)
2197 info.bfd_arch_info = TARGET_ARCHITECTURE;
2198
2199 /* \`\`(gdb) set byte-order ...'' */
2200 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2201 && !TARGET_BYTE_ORDER_AUTO)
2202 info.byte_order = TARGET_BYTE_ORDER;
2203 /* From the INFO struct. */
2204 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2205 && info.abfd != NULL)
2206 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2207 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2208 : BFD_ENDIAN_UNKNOWN);
2209 /* From the current target. */
2210 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2211 info.byte_order = TARGET_BYTE_ORDER;
2212
2213 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2214 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2215 info.osabi = gdbarch_lookup_osabi (info.abfd);
2216 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2217 info.osabi = current_gdbarch->osabi;
2218
2219 /* Must have found some sort of architecture. */
2220 gdb_assert (info.bfd_arch_info != NULL);
2221
2222 if (gdbarch_debug)
2223 {
2224 fprintf_unfiltered (gdb_stdlog,
2225 "gdbarch_update: info.bfd_arch_info %s\n",
2226 (info.bfd_arch_info != NULL
2227 ? info.bfd_arch_info->printable_name
2228 : "(null)"));
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_update: info.byte_order %d (%s)\n",
2231 info.byte_order,
2232 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2233 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2234 : "default"));
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_update: info.osabi %d (%s)\n",
2237 info.osabi, gdbarch_osabi_name (info.osabi));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.abfd 0x%lx\n",
2240 (long) info.abfd);
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: info.tdep_info 0x%lx\n",
2243 (long) info.tdep_info);
2244 }
2245
2246 /* Find the target that knows about this architecture. */
2247 for (rego = gdbarch_registry;
2248 rego != NULL;
2249 rego = rego->next)
2250 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2251 break;
2252 if (rego == NULL)
2253 {
2254 if (gdbarch_debug)
2255 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2256 return 0;
2257 }
2258
2259 /* Swap the data belonging to the old target out setting the
2260 installed data to zero. This stops the ->init() function trying
2261 to refer to the previous architecture's global data structures. */
2262 swapout_gdbarch_swap (current_gdbarch);
2263 clear_gdbarch_swap (current_gdbarch);
2264
2265 /* Save the previously selected architecture, setting the global to
2266 NULL. This stops ->init() trying to use the previous
2267 architecture's configuration. The previous architecture may not
2268 even be of the same architecture family. The most recent
2269 architecture of the same family is found at the head of the
2270 rego->arches list. */
2271 old_gdbarch = current_gdbarch;
2272 current_gdbarch = NULL;
2273
2274 /* Ask the target for a replacement architecture. */
2275 new_gdbarch = rego->init (info, rego->arches);
2276
2277 /* Did the target like it? No. Reject the change and revert to the
2278 old architecture. */
2279 if (new_gdbarch == NULL)
2280 {
2281 if (gdbarch_debug)
2282 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2283 swapin_gdbarch_swap (old_gdbarch);
2284 current_gdbarch = old_gdbarch;
2285 return 0;
2286 }
2287
2288 /* Did the architecture change? No. Oops, put the old architecture
2289 back. */
2290 if (old_gdbarch == new_gdbarch)
2291 {
2292 if (gdbarch_debug)
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2294 (long) new_gdbarch,
2295 new_gdbarch->bfd_arch_info->printable_name);
2296 swapin_gdbarch_swap (old_gdbarch);
2297 current_gdbarch = old_gdbarch;
2298 return 1;
2299 }
2300
2301 /* Is this a pre-existing architecture? Yes. Move it to the front
2302 of the list of architectures (keeping the list sorted Most
2303 Recently Used) and then copy it in. */
2304 {
2305 struct gdbarch_list **list;
2306 for (list = &rego->arches;
2307 (*list) != NULL;
2308 list = &(*list)->next)
2309 {
2310 if ((*list)->gdbarch == new_gdbarch)
2311 {
2312 struct gdbarch_list *this;
2313 if (gdbarch_debug)
2314 fprintf_unfiltered (gdb_stdlog,
2315 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2316 (long) new_gdbarch,
2317 new_gdbarch->bfd_arch_info->printable_name);
2318 /* Unlink this. */
2319 this = (*list);
2320 (*list) = this->next;
2321 /* Insert in the front. */
2322 this->next = rego->arches;
2323 rego->arches = this;
2324 /* Copy the new architecture in. */
2325 current_gdbarch = new_gdbarch;
2326 swapin_gdbarch_swap (new_gdbarch);
2327 architecture_changed_event ();
2328 return 1;
2329 }
2330 }
2331 }
2332
2333 /* Prepend this new architecture to the architecture list (keep the
2334 list sorted Most Recently Used). */
2335 {
2336 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2337 this->next = rego->arches;
2338 this->gdbarch = new_gdbarch;
2339 rego->arches = this;
2340 }
2341
2342 /* Switch to this new architecture marking it initialized. */
2343 current_gdbarch = new_gdbarch;
2344 current_gdbarch->initialized_p = 1;
2345 if (gdbarch_debug)
2346 {
2347 fprintf_unfiltered (gdb_stdlog,
2348 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2349 (long) new_gdbarch,
2350 new_gdbarch->bfd_arch_info->printable_name);
2351 }
2352
2353 /* Check that the newly installed architecture is valid. Plug in
2354 any post init values. */
2355 new_gdbarch->dump_tdep = rego->dump_tdep;
2356 verify_gdbarch (new_gdbarch);
2357
2358 /* Initialize the per-architecture memory (swap) areas.
2359 CURRENT_GDBARCH must be update before these modules are
2360 called. */
2361 init_gdbarch_swap (new_gdbarch);
2362
2363 /* Initialize the per-architecture data. CURRENT_GDBARCH
2364 must be updated before these modules are called. */
2365 architecture_changed_event ();
2366
2367 if (gdbarch_debug)
2368 gdbarch_dump (current_gdbarch, gdb_stdlog);
2369
2370 return 1;
2371 }
2372
2373
2374 /* Disassembler */
2375
2376 /* Pointer to the target-dependent disassembly function. */
2377 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2378
2379 extern void _initialize_gdbarch (void);
2380
2381 void
2382 _initialize_gdbarch (void)
2383 {
2384 struct cmd_list_element *c;
2385
2386 add_show_from_set (add_set_cmd ("arch",
2387 class_maintenance,
2388 var_zinteger,
2389 (char *)&gdbarch_debug,
2390 "Set architecture debugging.\\n\\
2391 When non-zero, architecture debugging is enabled.", &setdebuglist),
2392 &showdebuglist);
2393 c = add_set_cmd ("archdebug",
2394 class_maintenance,
2395 var_zinteger,
2396 (char *)&gdbarch_debug,
2397 "Set architecture debugging.\\n\\
2398 When non-zero, architecture debugging is enabled.", &setlist);
2399
2400 deprecate_cmd (c, "set debug arch");
2401 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2402 }
2403 EOF
2404
2405 # close things off
2406 exec 1>&2
2407 #../move-if-change new-gdbarch.c gdbarch.c
2408 compare_new gdbarch.c
This page took 0.084824 seconds and 5 git commands to generate.