compile: Use also inferior munmap
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a function's epilogue. stack_frame_destroyed_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988 # DTrace related functions.
989
990 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
991 # NARG must be >= 0.
992 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
993
994 # True if the given ADDR does not contain the instruction sequence
995 # corresponding to a disabled DTrace is-enabled probe.
996 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
997
998 # Enable a DTrace is-enabled probe at ADDR.
999 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1000
1001 # Disable a DTrace is-enabled probe at ADDR.
1002 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1003
1004 # True if the list of shared libraries is one and only for all
1005 # processes, as opposed to a list of shared libraries per inferior.
1006 # This usually means that all processes, although may or may not share
1007 # an address space, will see the same set of symbols at the same
1008 # addresses.
1009 v:int:has_global_solist:::0:0::0
1010
1011 # On some targets, even though each inferior has its own private
1012 # address space, the debug interface takes care of making breakpoints
1013 # visible to all address spaces automatically. For such cases,
1014 # this property should be set to true.
1015 v:int:has_global_breakpoints:::0:0::0
1016
1017 # True if inferiors share an address space (e.g., uClinux).
1018 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1019
1020 # True if a fast tracepoint can be set at an address.
1021 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1022
1023 # Return the "auto" target charset.
1024 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1025 # Return the "auto" target wide charset.
1026 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1027
1028 # If non-empty, this is a file extension that will be opened in place
1029 # of the file extension reported by the shared library list.
1030 #
1031 # This is most useful for toolchains that use a post-linker tool,
1032 # where the names of the files run on the target differ in extension
1033 # compared to the names of the files GDB should load for debug info.
1034 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1035
1036 # If true, the target OS has DOS-based file system semantics. That
1037 # is, absolute paths include a drive name, and the backslash is
1038 # considered a directory separator.
1039 v:int:has_dos_based_file_system:::0:0::0
1040
1041 # Generate bytecodes to collect the return address in a frame.
1042 # Since the bytecodes run on the target, possibly with GDB not even
1043 # connected, the full unwinding machinery is not available, and
1044 # typically this function will issue bytecodes for one or more likely
1045 # places that the return address may be found.
1046 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1047
1048 # Implement the "info proc" command.
1049 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1050
1051 # Implement the "info proc" command for core files. Noe that there
1052 # are two "info_proc"-like methods on gdbarch -- one for core files,
1053 # one for live targets.
1054 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1055
1056 # Iterate over all objfiles in the order that makes the most sense
1057 # for the architecture to make global symbol searches.
1058 #
1059 # CB is a callback function where OBJFILE is the objfile to be searched,
1060 # and CB_DATA a pointer to user-defined data (the same data that is passed
1061 # when calling this gdbarch method). The iteration stops if this function
1062 # returns nonzero.
1063 #
1064 # CB_DATA is a pointer to some user-defined data to be passed to
1065 # the callback.
1066 #
1067 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1068 # inspected when the symbol search was requested.
1069 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1070
1071 # Ravenscar arch-dependent ops.
1072 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1073
1074 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1075 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1076
1077 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1078 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1079
1080 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1081 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1082
1083 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1084 # Return 0 if *READPTR is already at the end of the buffer.
1085 # Return -1 if there is insufficient buffer for a whole entry.
1086 # Return 1 if an entry was read into *TYPEP and *VALP.
1087 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1088
1089 # Find the address range of the current inferior's vsyscall/vDSO, and
1090 # write it to *RANGE. If the vsyscall's length can't be determined, a
1091 # range with zero length is returned. Returns true if the vsyscall is
1092 # found, false otherwise.
1093 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1094
1095 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1096 # PROT has GDB_MMAP_PROT_* bitmask format.
1097 # Throw an error if it is not possible. Returned address is always valid.
1098 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1099
1100 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1101 # Print a warning if it is not possible.
1102 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1103
1104 # Return string (caller has to use xfree for it) with options for GCC
1105 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1106 # These options are put before CU's DW_AT_producer compilation options so that
1107 # they can override it. Method may also return NULL.
1108 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1109
1110 # Return a regular expression that matches names used by this
1111 # architecture in GNU configury triplets. The result is statically
1112 # allocated and must not be freed. The default implementation simply
1113 # returns the BFD architecture name, which is correct in nearly every
1114 # case.
1115 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1116 EOF
1117 }
1118
1119 #
1120 # The .log file
1121 #
1122 exec > new-gdbarch.log
1123 function_list | while do_read
1124 do
1125 cat <<EOF
1126 ${class} ${returntype} ${function} ($formal)
1127 EOF
1128 for r in ${read}
1129 do
1130 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1131 done
1132 if class_is_predicate_p && fallback_default_p
1133 then
1134 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1135 kill $$
1136 exit 1
1137 fi
1138 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1139 then
1140 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1141 kill $$
1142 exit 1
1143 fi
1144 if class_is_multiarch_p
1145 then
1146 if class_is_predicate_p ; then :
1147 elif test "x${predefault}" = "x"
1148 then
1149 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1150 kill $$
1151 exit 1
1152 fi
1153 fi
1154 echo ""
1155 done
1156
1157 exec 1>&2
1158 compare_new gdbarch.log
1159
1160
1161 copyright ()
1162 {
1163 cat <<EOF
1164 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1165 /* vi:set ro: */
1166
1167 /* Dynamic architecture support for GDB, the GNU debugger.
1168
1169 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1170
1171 This file is part of GDB.
1172
1173 This program is free software; you can redistribute it and/or modify
1174 it under the terms of the GNU General Public License as published by
1175 the Free Software Foundation; either version 3 of the License, or
1176 (at your option) any later version.
1177
1178 This program is distributed in the hope that it will be useful,
1179 but WITHOUT ANY WARRANTY; without even the implied warranty of
1180 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1181 GNU General Public License for more details.
1182
1183 You should have received a copy of the GNU General Public License
1184 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1185
1186 /* This file was created with the aid of \`\`gdbarch.sh''.
1187
1188 The Bourne shell script \`\`gdbarch.sh'' creates the files
1189 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1190 against the existing \`\`gdbarch.[hc]''. Any differences found
1191 being reported.
1192
1193 If editing this file, please also run gdbarch.sh and merge any
1194 changes into that script. Conversely, when making sweeping changes
1195 to this file, modifying gdbarch.sh and using its output may prove
1196 easier. */
1197
1198 EOF
1199 }
1200
1201 #
1202 # The .h file
1203 #
1204
1205 exec > new-gdbarch.h
1206 copyright
1207 cat <<EOF
1208 #ifndef GDBARCH_H
1209 #define GDBARCH_H
1210
1211 #include "frame.h"
1212
1213 struct floatformat;
1214 struct ui_file;
1215 struct value;
1216 struct objfile;
1217 struct obj_section;
1218 struct minimal_symbol;
1219 struct regcache;
1220 struct reggroup;
1221 struct regset;
1222 struct disassemble_info;
1223 struct target_ops;
1224 struct obstack;
1225 struct bp_target_info;
1226 struct target_desc;
1227 struct objfile;
1228 struct symbol;
1229 struct displaced_step_closure;
1230 struct core_regset_section;
1231 struct syscall;
1232 struct agent_expr;
1233 struct axs_value;
1234 struct stap_parse_info;
1235 struct parser_state;
1236 struct ravenscar_arch_ops;
1237 struct elf_internal_linux_prpsinfo;
1238 struct mem_range;
1239 struct syscalls_info;
1240
1241 #include "regcache.h"
1242
1243 /* The architecture associated with the inferior through the
1244 connection to the target.
1245
1246 The architecture vector provides some information that is really a
1247 property of the inferior, accessed through a particular target:
1248 ptrace operations; the layout of certain RSP packets; the solib_ops
1249 vector; etc. To differentiate architecture accesses to
1250 per-inferior/target properties from
1251 per-thread/per-frame/per-objfile properties, accesses to
1252 per-inferior/target properties should be made through this
1253 gdbarch. */
1254
1255 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1256 extern struct gdbarch *target_gdbarch (void);
1257
1258 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1259 gdbarch method. */
1260
1261 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1262 (struct objfile *objfile, void *cb_data);
1263
1264 /* Callback type for regset section iterators. The callback usually
1265 invokes the REGSET's supply or collect method, to which it must
1266 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1267 section name, and HUMAN_NAME is used for diagnostic messages.
1268 CB_DATA should have been passed unchanged through the iterator. */
1269
1270 typedef void (iterate_over_regset_sections_cb)
1271 (const char *sect_name, int size, const struct regset *regset,
1272 const char *human_name, void *cb_data);
1273 EOF
1274
1275 # function typedef's
1276 printf "\n"
1277 printf "\n"
1278 printf "/* The following are pre-initialized by GDBARCH. */\n"
1279 function_list | while do_read
1280 do
1281 if class_is_info_p
1282 then
1283 printf "\n"
1284 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1285 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1286 fi
1287 done
1288
1289 # function typedef's
1290 printf "\n"
1291 printf "\n"
1292 printf "/* The following are initialized by the target dependent code. */\n"
1293 function_list | while do_read
1294 do
1295 if [ -n "${comment}" ]
1296 then
1297 echo "${comment}" | sed \
1298 -e '2 s,#,/*,' \
1299 -e '3,$ s,#, ,' \
1300 -e '$ s,$, */,'
1301 fi
1302
1303 if class_is_predicate_p
1304 then
1305 printf "\n"
1306 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1307 fi
1308 if class_is_variable_p
1309 then
1310 printf "\n"
1311 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1312 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1313 fi
1314 if class_is_function_p
1315 then
1316 printf "\n"
1317 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1318 then
1319 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1320 elif class_is_multiarch_p
1321 then
1322 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1323 else
1324 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1325 fi
1326 if [ "x${formal}" = "xvoid" ]
1327 then
1328 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1329 else
1330 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1331 fi
1332 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1333 fi
1334 done
1335
1336 # close it off
1337 cat <<EOF
1338
1339 /* Definition for an unknown syscall, used basically in error-cases. */
1340 #define UNKNOWN_SYSCALL (-1)
1341
1342 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1343
1344
1345 /* Mechanism for co-ordinating the selection of a specific
1346 architecture.
1347
1348 GDB targets (*-tdep.c) can register an interest in a specific
1349 architecture. Other GDB components can register a need to maintain
1350 per-architecture data.
1351
1352 The mechanisms below ensures that there is only a loose connection
1353 between the set-architecture command and the various GDB
1354 components. Each component can independently register their need
1355 to maintain architecture specific data with gdbarch.
1356
1357 Pragmatics:
1358
1359 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1360 didn't scale.
1361
1362 The more traditional mega-struct containing architecture specific
1363 data for all the various GDB components was also considered. Since
1364 GDB is built from a variable number of (fairly independent)
1365 components it was determined that the global aproach was not
1366 applicable. */
1367
1368
1369 /* Register a new architectural family with GDB.
1370
1371 Register support for the specified ARCHITECTURE with GDB. When
1372 gdbarch determines that the specified architecture has been
1373 selected, the corresponding INIT function is called.
1374
1375 --
1376
1377 The INIT function takes two parameters: INFO which contains the
1378 information available to gdbarch about the (possibly new)
1379 architecture; ARCHES which is a list of the previously created
1380 \`\`struct gdbarch'' for this architecture.
1381
1382 The INFO parameter is, as far as possible, be pre-initialized with
1383 information obtained from INFO.ABFD or the global defaults.
1384
1385 The ARCHES parameter is a linked list (sorted most recently used)
1386 of all the previously created architures for this architecture
1387 family. The (possibly NULL) ARCHES->gdbarch can used to access
1388 values from the previously selected architecture for this
1389 architecture family.
1390
1391 The INIT function shall return any of: NULL - indicating that it
1392 doesn't recognize the selected architecture; an existing \`\`struct
1393 gdbarch'' from the ARCHES list - indicating that the new
1394 architecture is just a synonym for an earlier architecture (see
1395 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1396 - that describes the selected architecture (see gdbarch_alloc()).
1397
1398 The DUMP_TDEP function shall print out all target specific values.
1399 Care should be taken to ensure that the function works in both the
1400 multi-arch and non- multi-arch cases. */
1401
1402 struct gdbarch_list
1403 {
1404 struct gdbarch *gdbarch;
1405 struct gdbarch_list *next;
1406 };
1407
1408 struct gdbarch_info
1409 {
1410 /* Use default: NULL (ZERO). */
1411 const struct bfd_arch_info *bfd_arch_info;
1412
1413 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1414 enum bfd_endian byte_order;
1415
1416 enum bfd_endian byte_order_for_code;
1417
1418 /* Use default: NULL (ZERO). */
1419 bfd *abfd;
1420
1421 /* Use default: NULL (ZERO). */
1422 struct gdbarch_tdep_info *tdep_info;
1423
1424 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1425 enum gdb_osabi osabi;
1426
1427 /* Use default: NULL (ZERO). */
1428 const struct target_desc *target_desc;
1429 };
1430
1431 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1432 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1433
1434 /* DEPRECATED - use gdbarch_register() */
1435 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1436
1437 extern void gdbarch_register (enum bfd_architecture architecture,
1438 gdbarch_init_ftype *,
1439 gdbarch_dump_tdep_ftype *);
1440
1441
1442 /* Return a freshly allocated, NULL terminated, array of the valid
1443 architecture names. Since architectures are registered during the
1444 _initialize phase this function only returns useful information
1445 once initialization has been completed. */
1446
1447 extern const char **gdbarch_printable_names (void);
1448
1449
1450 /* Helper function. Search the list of ARCHES for a GDBARCH that
1451 matches the information provided by INFO. */
1452
1453 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1454
1455
1456 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1457 basic initialization using values obtained from the INFO and TDEP
1458 parameters. set_gdbarch_*() functions are called to complete the
1459 initialization of the object. */
1460
1461 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1462
1463
1464 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1465 It is assumed that the caller freeds the \`\`struct
1466 gdbarch_tdep''. */
1467
1468 extern void gdbarch_free (struct gdbarch *);
1469
1470
1471 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1472 obstack. The memory is freed when the corresponding architecture
1473 is also freed. */
1474
1475 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1476 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1477 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1478
1479
1480 /* Helper function. Force an update of the current architecture.
1481
1482 The actual architecture selected is determined by INFO, \`\`(gdb) set
1483 architecture'' et.al., the existing architecture and BFD's default
1484 architecture. INFO should be initialized to zero and then selected
1485 fields should be updated.
1486
1487 Returns non-zero if the update succeeds. */
1488
1489 extern int gdbarch_update_p (struct gdbarch_info info);
1490
1491
1492 /* Helper function. Find an architecture matching info.
1493
1494 INFO should be initialized using gdbarch_info_init, relevant fields
1495 set, and then finished using gdbarch_info_fill.
1496
1497 Returns the corresponding architecture, or NULL if no matching
1498 architecture was found. */
1499
1500 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1501
1502
1503 /* Helper function. Set the target gdbarch to "gdbarch". */
1504
1505 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1506
1507
1508 /* Register per-architecture data-pointer.
1509
1510 Reserve space for a per-architecture data-pointer. An identifier
1511 for the reserved data-pointer is returned. That identifer should
1512 be saved in a local static variable.
1513
1514 Memory for the per-architecture data shall be allocated using
1515 gdbarch_obstack_zalloc. That memory will be deleted when the
1516 corresponding architecture object is deleted.
1517
1518 When a previously created architecture is re-selected, the
1519 per-architecture data-pointer for that previous architecture is
1520 restored. INIT() is not re-called.
1521
1522 Multiple registrarants for any architecture are allowed (and
1523 strongly encouraged). */
1524
1525 struct gdbarch_data;
1526
1527 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1528 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1529 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1530 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1531 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1532 struct gdbarch_data *data,
1533 void *pointer);
1534
1535 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1536
1537
1538 /* Set the dynamic target-system-dependent parameters (architecture,
1539 byte-order, ...) using information found in the BFD. */
1540
1541 extern void set_gdbarch_from_file (bfd *);
1542
1543
1544 /* Initialize the current architecture to the "first" one we find on
1545 our list. */
1546
1547 extern void initialize_current_architecture (void);
1548
1549 /* gdbarch trace variable */
1550 extern unsigned int gdbarch_debug;
1551
1552 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1553
1554 #endif
1555 EOF
1556 exec 1>&2
1557 #../move-if-change new-gdbarch.h gdbarch.h
1558 compare_new gdbarch.h
1559
1560
1561 #
1562 # C file
1563 #
1564
1565 exec > new-gdbarch.c
1566 copyright
1567 cat <<EOF
1568
1569 #include "defs.h"
1570 #include "arch-utils.h"
1571
1572 #include "gdbcmd.h"
1573 #include "inferior.h"
1574 #include "symcat.h"
1575
1576 #include "floatformat.h"
1577 #include "reggroups.h"
1578 #include "osabi.h"
1579 #include "gdb_obstack.h"
1580 #include "observer.h"
1581 #include "regcache.h"
1582 #include "objfiles.h"
1583
1584 /* Static function declarations */
1585
1586 static void alloc_gdbarch_data (struct gdbarch *);
1587
1588 /* Non-zero if we want to trace architecture code. */
1589
1590 #ifndef GDBARCH_DEBUG
1591 #define GDBARCH_DEBUG 0
1592 #endif
1593 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1594 static void
1595 show_gdbarch_debug (struct ui_file *file, int from_tty,
1596 struct cmd_list_element *c, const char *value)
1597 {
1598 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1599 }
1600
1601 static const char *
1602 pformat (const struct floatformat **format)
1603 {
1604 if (format == NULL)
1605 return "(null)";
1606 else
1607 /* Just print out one of them - this is only for diagnostics. */
1608 return format[0]->name;
1609 }
1610
1611 static const char *
1612 pstring (const char *string)
1613 {
1614 if (string == NULL)
1615 return "(null)";
1616 return string;
1617 }
1618
1619 /* Helper function to print a list of strings, represented as "const
1620 char *const *". The list is printed comma-separated. */
1621
1622 static char *
1623 pstring_list (const char *const *list)
1624 {
1625 static char ret[100];
1626 const char *const *p;
1627 size_t offset = 0;
1628
1629 if (list == NULL)
1630 return "(null)";
1631
1632 ret[0] = '\0';
1633 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1634 {
1635 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1636 offset += 2 + s;
1637 }
1638
1639 if (offset > 0)
1640 {
1641 gdb_assert (offset - 2 < sizeof (ret));
1642 ret[offset - 2] = '\0';
1643 }
1644
1645 return ret;
1646 }
1647
1648 EOF
1649
1650 # gdbarch open the gdbarch object
1651 printf "\n"
1652 printf "/* Maintain the struct gdbarch object. */\n"
1653 printf "\n"
1654 printf "struct gdbarch\n"
1655 printf "{\n"
1656 printf " /* Has this architecture been fully initialized? */\n"
1657 printf " int initialized_p;\n"
1658 printf "\n"
1659 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1660 printf " struct obstack *obstack;\n"
1661 printf "\n"
1662 printf " /* basic architectural information. */\n"
1663 function_list | while do_read
1664 do
1665 if class_is_info_p
1666 then
1667 printf " ${returntype} ${function};\n"
1668 fi
1669 done
1670 printf "\n"
1671 printf " /* target specific vector. */\n"
1672 printf " struct gdbarch_tdep *tdep;\n"
1673 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1674 printf "\n"
1675 printf " /* per-architecture data-pointers. */\n"
1676 printf " unsigned nr_data;\n"
1677 printf " void **data;\n"
1678 printf "\n"
1679 cat <<EOF
1680 /* Multi-arch values.
1681
1682 When extending this structure you must:
1683
1684 Add the field below.
1685
1686 Declare set/get functions and define the corresponding
1687 macro in gdbarch.h.
1688
1689 gdbarch_alloc(): If zero/NULL is not a suitable default,
1690 initialize the new field.
1691
1692 verify_gdbarch(): Confirm that the target updated the field
1693 correctly.
1694
1695 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1696 field is dumped out
1697
1698 get_gdbarch(): Implement the set/get functions (probably using
1699 the macro's as shortcuts).
1700
1701 */
1702
1703 EOF
1704 function_list | while do_read
1705 do
1706 if class_is_variable_p
1707 then
1708 printf " ${returntype} ${function};\n"
1709 elif class_is_function_p
1710 then
1711 printf " gdbarch_${function}_ftype *${function};\n"
1712 fi
1713 done
1714 printf "};\n"
1715
1716 # Create a new gdbarch struct
1717 cat <<EOF
1718
1719 /* Create a new \`\`struct gdbarch'' based on information provided by
1720 \`\`struct gdbarch_info''. */
1721 EOF
1722 printf "\n"
1723 cat <<EOF
1724 struct gdbarch *
1725 gdbarch_alloc (const struct gdbarch_info *info,
1726 struct gdbarch_tdep *tdep)
1727 {
1728 struct gdbarch *gdbarch;
1729
1730 /* Create an obstack for allocating all the per-architecture memory,
1731 then use that to allocate the architecture vector. */
1732 struct obstack *obstack = XNEW (struct obstack);
1733 obstack_init (obstack);
1734 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1735 memset (gdbarch, 0, sizeof (*gdbarch));
1736 gdbarch->obstack = obstack;
1737
1738 alloc_gdbarch_data (gdbarch);
1739
1740 gdbarch->tdep = tdep;
1741 EOF
1742 printf "\n"
1743 function_list | while do_read
1744 do
1745 if class_is_info_p
1746 then
1747 printf " gdbarch->${function} = info->${function};\n"
1748 fi
1749 done
1750 printf "\n"
1751 printf " /* Force the explicit initialization of these. */\n"
1752 function_list | while do_read
1753 do
1754 if class_is_function_p || class_is_variable_p
1755 then
1756 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1757 then
1758 printf " gdbarch->${function} = ${predefault};\n"
1759 fi
1760 fi
1761 done
1762 cat <<EOF
1763 /* gdbarch_alloc() */
1764
1765 return gdbarch;
1766 }
1767 EOF
1768
1769 # Free a gdbarch struct.
1770 printf "\n"
1771 printf "\n"
1772 cat <<EOF
1773 /* Allocate extra space using the per-architecture obstack. */
1774
1775 void *
1776 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1777 {
1778 void *data = obstack_alloc (arch->obstack, size);
1779
1780 memset (data, 0, size);
1781 return data;
1782 }
1783
1784
1785 /* Free a gdbarch struct. This should never happen in normal
1786 operation --- once you've created a gdbarch, you keep it around.
1787 However, if an architecture's init function encounters an error
1788 building the structure, it may need to clean up a partially
1789 constructed gdbarch. */
1790
1791 void
1792 gdbarch_free (struct gdbarch *arch)
1793 {
1794 struct obstack *obstack;
1795
1796 gdb_assert (arch != NULL);
1797 gdb_assert (!arch->initialized_p);
1798 obstack = arch->obstack;
1799 obstack_free (obstack, 0); /* Includes the ARCH. */
1800 xfree (obstack);
1801 }
1802 EOF
1803
1804 # verify a new architecture
1805 cat <<EOF
1806
1807
1808 /* Ensure that all values in a GDBARCH are reasonable. */
1809
1810 static void
1811 verify_gdbarch (struct gdbarch *gdbarch)
1812 {
1813 struct ui_file *log;
1814 struct cleanup *cleanups;
1815 long length;
1816 char *buf;
1817
1818 log = mem_fileopen ();
1819 cleanups = make_cleanup_ui_file_delete (log);
1820 /* fundamental */
1821 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1822 fprintf_unfiltered (log, "\n\tbyte-order");
1823 if (gdbarch->bfd_arch_info == NULL)
1824 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1825 /* Check those that need to be defined for the given multi-arch level. */
1826 EOF
1827 function_list | while do_read
1828 do
1829 if class_is_function_p || class_is_variable_p
1830 then
1831 if [ "x${invalid_p}" = "x0" ]
1832 then
1833 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1834 elif class_is_predicate_p
1835 then
1836 printf " /* Skip verify of ${function}, has predicate. */\n"
1837 # FIXME: See do_read for potential simplification
1838 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1839 then
1840 printf " if (${invalid_p})\n"
1841 printf " gdbarch->${function} = ${postdefault};\n"
1842 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1843 then
1844 printf " if (gdbarch->${function} == ${predefault})\n"
1845 printf " gdbarch->${function} = ${postdefault};\n"
1846 elif [ -n "${postdefault}" ]
1847 then
1848 printf " if (gdbarch->${function} == 0)\n"
1849 printf " gdbarch->${function} = ${postdefault};\n"
1850 elif [ -n "${invalid_p}" ]
1851 then
1852 printf " if (${invalid_p})\n"
1853 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1854 elif [ -n "${predefault}" ]
1855 then
1856 printf " if (gdbarch->${function} == ${predefault})\n"
1857 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1858 fi
1859 fi
1860 done
1861 cat <<EOF
1862 buf = ui_file_xstrdup (log, &length);
1863 make_cleanup (xfree, buf);
1864 if (length > 0)
1865 internal_error (__FILE__, __LINE__,
1866 _("verify_gdbarch: the following are invalid ...%s"),
1867 buf);
1868 do_cleanups (cleanups);
1869 }
1870 EOF
1871
1872 # dump the structure
1873 printf "\n"
1874 printf "\n"
1875 cat <<EOF
1876 /* Print out the details of the current architecture. */
1877
1878 void
1879 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1880 {
1881 const char *gdb_nm_file = "<not-defined>";
1882
1883 #if defined (GDB_NM_FILE)
1884 gdb_nm_file = GDB_NM_FILE;
1885 #endif
1886 fprintf_unfiltered (file,
1887 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1888 gdb_nm_file);
1889 EOF
1890 function_list | sort -t: -k 3 | while do_read
1891 do
1892 # First the predicate
1893 if class_is_predicate_p
1894 then
1895 printf " fprintf_unfiltered (file,\n"
1896 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1897 printf " gdbarch_${function}_p (gdbarch));\n"
1898 fi
1899 # Print the corresponding value.
1900 if class_is_function_p
1901 then
1902 printf " fprintf_unfiltered (file,\n"
1903 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1904 printf " host_address_to_string (gdbarch->${function}));\n"
1905 else
1906 # It is a variable
1907 case "${print}:${returntype}" in
1908 :CORE_ADDR )
1909 fmt="%s"
1910 print="core_addr_to_string_nz (gdbarch->${function})"
1911 ;;
1912 :* )
1913 fmt="%s"
1914 print="plongest (gdbarch->${function})"
1915 ;;
1916 * )
1917 fmt="%s"
1918 ;;
1919 esac
1920 printf " fprintf_unfiltered (file,\n"
1921 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1922 printf " ${print});\n"
1923 fi
1924 done
1925 cat <<EOF
1926 if (gdbarch->dump_tdep != NULL)
1927 gdbarch->dump_tdep (gdbarch, file);
1928 }
1929 EOF
1930
1931
1932 # GET/SET
1933 printf "\n"
1934 cat <<EOF
1935 struct gdbarch_tdep *
1936 gdbarch_tdep (struct gdbarch *gdbarch)
1937 {
1938 if (gdbarch_debug >= 2)
1939 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1940 return gdbarch->tdep;
1941 }
1942 EOF
1943 printf "\n"
1944 function_list | while do_read
1945 do
1946 if class_is_predicate_p
1947 then
1948 printf "\n"
1949 printf "int\n"
1950 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1951 printf "{\n"
1952 printf " gdb_assert (gdbarch != NULL);\n"
1953 printf " return ${predicate};\n"
1954 printf "}\n"
1955 fi
1956 if class_is_function_p
1957 then
1958 printf "\n"
1959 printf "${returntype}\n"
1960 if [ "x${formal}" = "xvoid" ]
1961 then
1962 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1963 else
1964 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1965 fi
1966 printf "{\n"
1967 printf " gdb_assert (gdbarch != NULL);\n"
1968 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1969 if class_is_predicate_p && test -n "${predefault}"
1970 then
1971 # Allow a call to a function with a predicate.
1972 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1973 fi
1974 printf " if (gdbarch_debug >= 2)\n"
1975 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1976 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1977 then
1978 if class_is_multiarch_p
1979 then
1980 params="gdbarch"
1981 else
1982 params=""
1983 fi
1984 else
1985 if class_is_multiarch_p
1986 then
1987 params="gdbarch, ${actual}"
1988 else
1989 params="${actual}"
1990 fi
1991 fi
1992 if [ "x${returntype}" = "xvoid" ]
1993 then
1994 printf " gdbarch->${function} (${params});\n"
1995 else
1996 printf " return gdbarch->${function} (${params});\n"
1997 fi
1998 printf "}\n"
1999 printf "\n"
2000 printf "void\n"
2001 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2002 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2003 printf "{\n"
2004 printf " gdbarch->${function} = ${function};\n"
2005 printf "}\n"
2006 elif class_is_variable_p
2007 then
2008 printf "\n"
2009 printf "${returntype}\n"
2010 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2011 printf "{\n"
2012 printf " gdb_assert (gdbarch != NULL);\n"
2013 if [ "x${invalid_p}" = "x0" ]
2014 then
2015 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2016 elif [ -n "${invalid_p}" ]
2017 then
2018 printf " /* Check variable is valid. */\n"
2019 printf " gdb_assert (!(${invalid_p}));\n"
2020 elif [ -n "${predefault}" ]
2021 then
2022 printf " /* Check variable changed from pre-default. */\n"
2023 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2024 fi
2025 printf " if (gdbarch_debug >= 2)\n"
2026 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2027 printf " return gdbarch->${function};\n"
2028 printf "}\n"
2029 printf "\n"
2030 printf "void\n"
2031 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2032 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2033 printf "{\n"
2034 printf " gdbarch->${function} = ${function};\n"
2035 printf "}\n"
2036 elif class_is_info_p
2037 then
2038 printf "\n"
2039 printf "${returntype}\n"
2040 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2041 printf "{\n"
2042 printf " gdb_assert (gdbarch != NULL);\n"
2043 printf " if (gdbarch_debug >= 2)\n"
2044 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2045 printf " return gdbarch->${function};\n"
2046 printf "}\n"
2047 fi
2048 done
2049
2050 # All the trailing guff
2051 cat <<EOF
2052
2053
2054 /* Keep a registry of per-architecture data-pointers required by GDB
2055 modules. */
2056
2057 struct gdbarch_data
2058 {
2059 unsigned index;
2060 int init_p;
2061 gdbarch_data_pre_init_ftype *pre_init;
2062 gdbarch_data_post_init_ftype *post_init;
2063 };
2064
2065 struct gdbarch_data_registration
2066 {
2067 struct gdbarch_data *data;
2068 struct gdbarch_data_registration *next;
2069 };
2070
2071 struct gdbarch_data_registry
2072 {
2073 unsigned nr;
2074 struct gdbarch_data_registration *registrations;
2075 };
2076
2077 struct gdbarch_data_registry gdbarch_data_registry =
2078 {
2079 0, NULL,
2080 };
2081
2082 static struct gdbarch_data *
2083 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2084 gdbarch_data_post_init_ftype *post_init)
2085 {
2086 struct gdbarch_data_registration **curr;
2087
2088 /* Append the new registration. */
2089 for (curr = &gdbarch_data_registry.registrations;
2090 (*curr) != NULL;
2091 curr = &(*curr)->next);
2092 (*curr) = XNEW (struct gdbarch_data_registration);
2093 (*curr)->next = NULL;
2094 (*curr)->data = XNEW (struct gdbarch_data);
2095 (*curr)->data->index = gdbarch_data_registry.nr++;
2096 (*curr)->data->pre_init = pre_init;
2097 (*curr)->data->post_init = post_init;
2098 (*curr)->data->init_p = 1;
2099 return (*curr)->data;
2100 }
2101
2102 struct gdbarch_data *
2103 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2104 {
2105 return gdbarch_data_register (pre_init, NULL);
2106 }
2107
2108 struct gdbarch_data *
2109 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2110 {
2111 return gdbarch_data_register (NULL, post_init);
2112 }
2113
2114 /* Create/delete the gdbarch data vector. */
2115
2116 static void
2117 alloc_gdbarch_data (struct gdbarch *gdbarch)
2118 {
2119 gdb_assert (gdbarch->data == NULL);
2120 gdbarch->nr_data = gdbarch_data_registry.nr;
2121 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2122 }
2123
2124 /* Initialize the current value of the specified per-architecture
2125 data-pointer. */
2126
2127 void
2128 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2129 struct gdbarch_data *data,
2130 void *pointer)
2131 {
2132 gdb_assert (data->index < gdbarch->nr_data);
2133 gdb_assert (gdbarch->data[data->index] == NULL);
2134 gdb_assert (data->pre_init == NULL);
2135 gdbarch->data[data->index] = pointer;
2136 }
2137
2138 /* Return the current value of the specified per-architecture
2139 data-pointer. */
2140
2141 void *
2142 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2143 {
2144 gdb_assert (data->index < gdbarch->nr_data);
2145 if (gdbarch->data[data->index] == NULL)
2146 {
2147 /* The data-pointer isn't initialized, call init() to get a
2148 value. */
2149 if (data->pre_init != NULL)
2150 /* Mid architecture creation: pass just the obstack, and not
2151 the entire architecture, as that way it isn't possible for
2152 pre-init code to refer to undefined architecture
2153 fields. */
2154 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2155 else if (gdbarch->initialized_p
2156 && data->post_init != NULL)
2157 /* Post architecture creation: pass the entire architecture
2158 (as all fields are valid), but be careful to also detect
2159 recursive references. */
2160 {
2161 gdb_assert (data->init_p);
2162 data->init_p = 0;
2163 gdbarch->data[data->index] = data->post_init (gdbarch);
2164 data->init_p = 1;
2165 }
2166 else
2167 /* The architecture initialization hasn't completed - punt -
2168 hope that the caller knows what they are doing. Once
2169 deprecated_set_gdbarch_data has been initialized, this can be
2170 changed to an internal error. */
2171 return NULL;
2172 gdb_assert (gdbarch->data[data->index] != NULL);
2173 }
2174 return gdbarch->data[data->index];
2175 }
2176
2177
2178 /* Keep a registry of the architectures known by GDB. */
2179
2180 struct gdbarch_registration
2181 {
2182 enum bfd_architecture bfd_architecture;
2183 gdbarch_init_ftype *init;
2184 gdbarch_dump_tdep_ftype *dump_tdep;
2185 struct gdbarch_list *arches;
2186 struct gdbarch_registration *next;
2187 };
2188
2189 static struct gdbarch_registration *gdbarch_registry = NULL;
2190
2191 static void
2192 append_name (const char ***buf, int *nr, const char *name)
2193 {
2194 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2195 (*buf)[*nr] = name;
2196 *nr += 1;
2197 }
2198
2199 const char **
2200 gdbarch_printable_names (void)
2201 {
2202 /* Accumulate a list of names based on the registed list of
2203 architectures. */
2204 int nr_arches = 0;
2205 const char **arches = NULL;
2206 struct gdbarch_registration *rego;
2207
2208 for (rego = gdbarch_registry;
2209 rego != NULL;
2210 rego = rego->next)
2211 {
2212 const struct bfd_arch_info *ap;
2213 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2214 if (ap == NULL)
2215 internal_error (__FILE__, __LINE__,
2216 _("gdbarch_architecture_names: multi-arch unknown"));
2217 do
2218 {
2219 append_name (&arches, &nr_arches, ap->printable_name);
2220 ap = ap->next;
2221 }
2222 while (ap != NULL);
2223 }
2224 append_name (&arches, &nr_arches, NULL);
2225 return arches;
2226 }
2227
2228
2229 void
2230 gdbarch_register (enum bfd_architecture bfd_architecture,
2231 gdbarch_init_ftype *init,
2232 gdbarch_dump_tdep_ftype *dump_tdep)
2233 {
2234 struct gdbarch_registration **curr;
2235 const struct bfd_arch_info *bfd_arch_info;
2236
2237 /* Check that BFD recognizes this architecture */
2238 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2239 if (bfd_arch_info == NULL)
2240 {
2241 internal_error (__FILE__, __LINE__,
2242 _("gdbarch: Attempt to register "
2243 "unknown architecture (%d)"),
2244 bfd_architecture);
2245 }
2246 /* Check that we haven't seen this architecture before. */
2247 for (curr = &gdbarch_registry;
2248 (*curr) != NULL;
2249 curr = &(*curr)->next)
2250 {
2251 if (bfd_architecture == (*curr)->bfd_architecture)
2252 internal_error (__FILE__, __LINE__,
2253 _("gdbarch: Duplicate registration "
2254 "of architecture (%s)"),
2255 bfd_arch_info->printable_name);
2256 }
2257 /* log it */
2258 if (gdbarch_debug)
2259 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2260 bfd_arch_info->printable_name,
2261 host_address_to_string (init));
2262 /* Append it */
2263 (*curr) = XNEW (struct gdbarch_registration);
2264 (*curr)->bfd_architecture = bfd_architecture;
2265 (*curr)->init = init;
2266 (*curr)->dump_tdep = dump_tdep;
2267 (*curr)->arches = NULL;
2268 (*curr)->next = NULL;
2269 }
2270
2271 void
2272 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2273 gdbarch_init_ftype *init)
2274 {
2275 gdbarch_register (bfd_architecture, init, NULL);
2276 }
2277
2278
2279 /* Look for an architecture using gdbarch_info. */
2280
2281 struct gdbarch_list *
2282 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2283 const struct gdbarch_info *info)
2284 {
2285 for (; arches != NULL; arches = arches->next)
2286 {
2287 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2288 continue;
2289 if (info->byte_order != arches->gdbarch->byte_order)
2290 continue;
2291 if (info->osabi != arches->gdbarch->osabi)
2292 continue;
2293 if (info->target_desc != arches->gdbarch->target_desc)
2294 continue;
2295 return arches;
2296 }
2297 return NULL;
2298 }
2299
2300
2301 /* Find an architecture that matches the specified INFO. Create a new
2302 architecture if needed. Return that new architecture. */
2303
2304 struct gdbarch *
2305 gdbarch_find_by_info (struct gdbarch_info info)
2306 {
2307 struct gdbarch *new_gdbarch;
2308 struct gdbarch_registration *rego;
2309
2310 /* Fill in missing parts of the INFO struct using a number of
2311 sources: "set ..."; INFOabfd supplied; and the global
2312 defaults. */
2313 gdbarch_info_fill (&info);
2314
2315 /* Must have found some sort of architecture. */
2316 gdb_assert (info.bfd_arch_info != NULL);
2317
2318 if (gdbarch_debug)
2319 {
2320 fprintf_unfiltered (gdb_stdlog,
2321 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2322 (info.bfd_arch_info != NULL
2323 ? info.bfd_arch_info->printable_name
2324 : "(null)"));
2325 fprintf_unfiltered (gdb_stdlog,
2326 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2327 info.byte_order,
2328 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2329 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2330 : "default"));
2331 fprintf_unfiltered (gdb_stdlog,
2332 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2333 info.osabi, gdbarch_osabi_name (info.osabi));
2334 fprintf_unfiltered (gdb_stdlog,
2335 "gdbarch_find_by_info: info.abfd %s\n",
2336 host_address_to_string (info.abfd));
2337 fprintf_unfiltered (gdb_stdlog,
2338 "gdbarch_find_by_info: info.tdep_info %s\n",
2339 host_address_to_string (info.tdep_info));
2340 }
2341
2342 /* Find the tdep code that knows about this architecture. */
2343 for (rego = gdbarch_registry;
2344 rego != NULL;
2345 rego = rego->next)
2346 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2347 break;
2348 if (rego == NULL)
2349 {
2350 if (gdbarch_debug)
2351 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2352 "No matching architecture\n");
2353 return 0;
2354 }
2355
2356 /* Ask the tdep code for an architecture that matches "info". */
2357 new_gdbarch = rego->init (info, rego->arches);
2358
2359 /* Did the tdep code like it? No. Reject the change and revert to
2360 the old architecture. */
2361 if (new_gdbarch == NULL)
2362 {
2363 if (gdbarch_debug)
2364 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2365 "Target rejected architecture\n");
2366 return NULL;
2367 }
2368
2369 /* Is this a pre-existing architecture (as determined by already
2370 being initialized)? Move it to the front of the architecture
2371 list (keeping the list sorted Most Recently Used). */
2372 if (new_gdbarch->initialized_p)
2373 {
2374 struct gdbarch_list **list;
2375 struct gdbarch_list *self;
2376 if (gdbarch_debug)
2377 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2378 "Previous architecture %s (%s) selected\n",
2379 host_address_to_string (new_gdbarch),
2380 new_gdbarch->bfd_arch_info->printable_name);
2381 /* Find the existing arch in the list. */
2382 for (list = &rego->arches;
2383 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2384 list = &(*list)->next);
2385 /* It had better be in the list of architectures. */
2386 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2387 /* Unlink SELF. */
2388 self = (*list);
2389 (*list) = self->next;
2390 /* Insert SELF at the front. */
2391 self->next = rego->arches;
2392 rego->arches = self;
2393 /* Return it. */
2394 return new_gdbarch;
2395 }
2396
2397 /* It's a new architecture. */
2398 if (gdbarch_debug)
2399 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2400 "New architecture %s (%s) selected\n",
2401 host_address_to_string (new_gdbarch),
2402 new_gdbarch->bfd_arch_info->printable_name);
2403
2404 /* Insert the new architecture into the front of the architecture
2405 list (keep the list sorted Most Recently Used). */
2406 {
2407 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2408 self->next = rego->arches;
2409 self->gdbarch = new_gdbarch;
2410 rego->arches = self;
2411 }
2412
2413 /* Check that the newly installed architecture is valid. Plug in
2414 any post init values. */
2415 new_gdbarch->dump_tdep = rego->dump_tdep;
2416 verify_gdbarch (new_gdbarch);
2417 new_gdbarch->initialized_p = 1;
2418
2419 if (gdbarch_debug)
2420 gdbarch_dump (new_gdbarch, gdb_stdlog);
2421
2422 return new_gdbarch;
2423 }
2424
2425 /* Make the specified architecture current. */
2426
2427 void
2428 set_target_gdbarch (struct gdbarch *new_gdbarch)
2429 {
2430 gdb_assert (new_gdbarch != NULL);
2431 gdb_assert (new_gdbarch->initialized_p);
2432 current_inferior ()->gdbarch = new_gdbarch;
2433 observer_notify_architecture_changed (new_gdbarch);
2434 registers_changed ();
2435 }
2436
2437 /* Return the current inferior's arch. */
2438
2439 struct gdbarch *
2440 target_gdbarch (void)
2441 {
2442 return current_inferior ()->gdbarch;
2443 }
2444
2445 extern void _initialize_gdbarch (void);
2446
2447 void
2448 _initialize_gdbarch (void)
2449 {
2450 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2451 Set architecture debugging."), _("\\
2452 Show architecture debugging."), _("\\
2453 When non-zero, architecture debugging is enabled."),
2454 NULL,
2455 show_gdbarch_debug,
2456 &setdebuglist, &showdebuglist);
2457 }
2458 EOF
2459
2460 # close things off
2461 exec 1>&2
2462 #../move-if-change new-gdbarch.c gdbarch.c
2463 compare_new gdbarch.c
This page took 0.143995 seconds and 5 git commands to generate.