Fix 'sprintf' of potential NULL pointer in 'maint print arch'
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365 # Alignment of a long long or unsigned long long for the target
366 # machine.
367 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368
369 # The ABI default bit-size and format for "half", "float", "double", and
370 # "long double". These bit/format pairs should eventually be combined
371 # into a single object. For the moment, just initialize them as a pair.
372 # Each format describes both the big and little endian layouts (if
373 # useful).
374
375 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
377 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
379 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
381 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383
384 # For most targets, a pointer on the target and its representation as an
385 # address in GDB have the same size and "look the same". For such a
386 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
387 # / addr_bit will be set from it.
388 #
389 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
390 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
391 # gdbarch_address_to_pointer as well.
392 #
393 # ptr_bit is the size of a pointer on the target
394 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
395 # addr_bit is the size of a target address as represented in gdb
396 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 #
398 # dwarf2_addr_size is the target address size as used in the Dwarf debug
399 # info. For .debug_frame FDEs, this is supposed to be the target address
400 # size from the associated CU header, and which is equivalent to the
401 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
402 # Unfortunately there is no good way to determine this value. Therefore
403 # dwarf2_addr_size simply defaults to the target pointer size.
404 #
405 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
406 # defined using the target's pointer size so far.
407 #
408 # Note that dwarf2_addr_size only needs to be redefined by a target if the
409 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
410 # and if Dwarf versions < 4 need to be supported.
411 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 #
413 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
414 v:int:char_signed:::1:-1:1
415 #
416 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
417 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
418 # Function for getting target's idea of a frame pointer. FIXME: GDB's
419 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 # serious shakedown.
421 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 #
423 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
424 # Read a register into a new struct value. If the register is wholly
425 # or partly unavailable, this should call mark_value_bytes_unavailable
426 # as appropriate. If this is defined, then pseudo_register_read will
427 # never be called.
428 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
429 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 #
431 v:int:num_regs:::0:-1
432 # This macro gives the number of pseudo-registers that live in the
433 # register namespace but do not get fetched or stored on the target.
434 # These pseudo-registers may be aliases for other registers,
435 # combinations of other registers, or they may be computed by GDB.
436 v:int:num_pseudo_regs:::0:0::0
437
438 # Assemble agent expression bytecode to collect pseudo-register REG.
439 # Return -1 if something goes wrong, 0 otherwise.
440 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441
442 # Assemble agent expression bytecode to push the value of pseudo-register
443 # REG on the interpreter stack.
444 # Return -1 if something goes wrong, 0 otherwise.
445 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446
447 # GDB's standard (or well known) register numbers. These can map onto
448 # a real register or a pseudo (computed) register or not be defined at
449 # all (-1).
450 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
451 v:int:sp_regnum:::-1:-1::0
452 v:int:pc_regnum:::-1:-1::0
453 v:int:ps_regnum:::-1:-1::0
454 v:int:fp0_regnum:::0:-1::0
455 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
456 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
457 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
458 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
459 # Convert from an sdb register number to an internal gdb register number.
460 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
462 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
463 m:const char *:register_name:int regnr:regnr::0
464
465 # Return the type of a register specified by the architecture. Only
466 # the register cache should call this function directly; others should
467 # use "register_type".
468 M:struct type *:register_type:int reg_nr:reg_nr
469
470 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
471 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
472 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
473 # deprecated_fp_regnum.
474 v:int:deprecated_fp_regnum:::-1:-1::0
475
476 # See gdbint.texinfo. See infcall.c.
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 #
492 v:int:believe_pcc_promotion:::::::
493 #
494 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
496 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
497 # Construct a value representing the contents of register REGNUM in
498 # frame FRAME, interpreted as type TYPE. The routine needs to
499 # allocate and return a struct value with all value attributes
500 # (but not the value contents) filled in.
501 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 #
503 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
504 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
505 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506
507 # Return the return-value convention that will be used by FUNCTYPE
508 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
509 # case the return convention is computed based only on VALTYPE.
510 #
511 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 #
513 # If WRITEBUF is not NULL, it contains a return value which will be
514 # stored into the appropriate register. This can be used when we want
515 # to force the value returned by a function (see the "return" command
516 # for instance).
517 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
518
519 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
520 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
521 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
522 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
523 # Return the adjusted address and kind to use for Z0/Z1 packets.
524 # KIND is usually the memory length of the breakpoint, but may have a
525 # different target-specific meaning.
526 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
527 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
528 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
529 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
530 v:CORE_ADDR:decr_pc_after_break:::0:::0
531
532 # A function can be addressed by either it's "pointer" (possibly a
533 # descriptor address) or "entry point" (first executable instruction).
534 # The method "convert_from_func_ptr_addr" converting the former to the
535 # latter. gdbarch_deprecated_function_start_offset is being used to implement
536 # a simplified subset of that functionality - the function's address
537 # corresponds to the "function pointer" and the function's start
538 # corresponds to the "function entry point" - and hence is redundant.
539
540 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
541
542 # Return the remote protocol register number associated with this
543 # register. Normally the identity mapping.
544 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
545
546 # Fetch the target specific address used to represent a load module.
547 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
548 #
549 v:CORE_ADDR:frame_args_skip:::0:::0
550 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
551 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
552 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
553 # frame-base. Enable frame-base before frame-unwind.
554 F:int:frame_num_args:struct frame_info *frame:frame
555 #
556 M:CORE_ADDR:frame_align:CORE_ADDR address:address
557 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
558 v:int:frame_red_zone_size
559 #
560 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
561 # On some machines there are bits in addresses which are not really
562 # part of the address, but are used by the kernel, the hardware, etc.
563 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
564 # we get a "real" address such as one would find in a symbol table.
565 # This is used only for addresses of instructions, and even then I'm
566 # not sure it's used in all contexts. It exists to deal with there
567 # being a few stray bits in the PC which would mislead us, not as some
568 # sort of generic thing to handle alignment or segmentation (it's
569 # possible it should be in TARGET_READ_PC instead).
570 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
571 # It is not at all clear why gdbarch_smash_text_address is not folded into
572 # gdbarch_addr_bits_remove.
573 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
574
575 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
576 # indicates if the target needs software single step. An ISA method to
577 # implement it.
578 #
579 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
580 # breakpoints using the breakpoint system instead of blatting memory directly
581 # (as with rs6000).
582 #
583 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
584 # target can single step. If not, then implement single step using breakpoints.
585 #
586 # A return value of 1 means that the software_single_step breakpoints
587 # were inserted; 0 means they were not.
588 F:int:software_single_step:struct frame_info *frame:frame
589
590 # Return non-zero if the processor is executing a delay slot and a
591 # further single-step is needed before the instruction finishes.
592 M:int:single_step_through_delay:struct frame_info *frame:frame
593 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
594 # disassembler. Perhaps objdump can handle it?
595 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
596 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
597
598
599 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
600 # evaluates non-zero, this is the address where the debugger will place
601 # a step-resume breakpoint to get us past the dynamic linker.
602 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
603 # Some systems also have trampoline code for returning from shared libs.
604 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
605
606 # A target might have problems with watchpoints as soon as the stack
607 # frame of the current function has been destroyed. This mostly happens
608 # as the first action in a funtion's epilogue. in_function_epilogue_p()
609 # is defined to return a non-zero value if either the given addr is one
610 # instruction after the stack destroying instruction up to the trailing
611 # return instruction or if we can figure out that the stack frame has
612 # already been invalidated regardless of the value of addr. Targets
613 # which don't suffer from that problem could just let this functionality
614 # untouched.
615 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
616 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
617 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
618 v:int:cannot_step_breakpoint:::0:0::0
619 v:int:have_nonsteppable_watchpoint:::0:0::0
620 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
621 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
622 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
623 # Is a register in a group
624 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
625 # Fetch the pointer to the ith function argument.
626 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
627
628 # Return the appropriate register set for a core file section with
629 # name SECT_NAME and size SECT_SIZE.
630 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
631
632 # Supported register notes in a core file.
633 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
634
635 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
636 # core file into buffer READBUF with length LEN.
637 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
638
639 # How the core target converts a PTID from a core file to a string.
640 M:char *:core_pid_to_str:ptid_t ptid:ptid
641
642 # BFD target to use when generating a core file.
643 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
644
645 # If the elements of C++ vtables are in-place function descriptors rather
646 # than normal function pointers (which may point to code or a descriptor),
647 # set this to one.
648 v:int:vtable_function_descriptors:::0:0::0
649
650 # Set if the least significant bit of the delta is used instead of the least
651 # significant bit of the pfn for pointers to virtual member functions.
652 v:int:vbit_in_delta:::0:0::0
653
654 # Advance PC to next instruction in order to skip a permanent breakpoint.
655 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
656
657 # The maximum length of an instruction on this architecture.
658 V:ULONGEST:max_insn_length:::0:0
659
660 # Copy the instruction at FROM to TO, and make any adjustments
661 # necessary to single-step it at that address.
662 #
663 # REGS holds the state the thread's registers will have before
664 # executing the copied instruction; the PC in REGS will refer to FROM,
665 # not the copy at TO. The caller should update it to point at TO later.
666 #
667 # Return a pointer to data of the architecture's choice to be passed
668 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
669 # the instruction's effects have been completely simulated, with the
670 # resulting state written back to REGS.
671 #
672 # For a general explanation of displaced stepping and how GDB uses it,
673 # see the comments in infrun.c.
674 #
675 # The TO area is only guaranteed to have space for
676 # gdbarch_max_insn_length (arch) bytes, so this function must not
677 # write more bytes than that to that area.
678 #
679 # If you do not provide this function, GDB assumes that the
680 # architecture does not support displaced stepping.
681 #
682 # If your architecture doesn't need to adjust instructions before
683 # single-stepping them, consider using simple_displaced_step_copy_insn
684 # here.
685 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
686
687 # Return true if GDB should use hardware single-stepping to execute
688 # the displaced instruction identified by CLOSURE. If false,
689 # GDB will simply restart execution at the displaced instruction
690 # location, and it is up to the target to ensure GDB will receive
691 # control again (e.g. by placing a software breakpoint instruction
692 # into the displaced instruction buffer).
693 #
694 # The default implementation returns false on all targets that
695 # provide a gdbarch_software_single_step routine, and true otherwise.
696 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
697
698 # Fix up the state resulting from successfully single-stepping a
699 # displaced instruction, to give the result we would have gotten from
700 # stepping the instruction in its original location.
701 #
702 # REGS is the register state resulting from single-stepping the
703 # displaced instruction.
704 #
705 # CLOSURE is the result from the matching call to
706 # gdbarch_displaced_step_copy_insn.
707 #
708 # If you provide gdbarch_displaced_step_copy_insn.but not this
709 # function, then GDB assumes that no fixup is needed after
710 # single-stepping the instruction.
711 #
712 # For a general explanation of displaced stepping and how GDB uses it,
713 # see the comments in infrun.c.
714 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
715
716 # Free a closure returned by gdbarch_displaced_step_copy_insn.
717 #
718 # If you provide gdbarch_displaced_step_copy_insn, you must provide
719 # this function as well.
720 #
721 # If your architecture uses closures that don't need to be freed, then
722 # you can use simple_displaced_step_free_closure here.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
727
728 # Return the address of an appropriate place to put displaced
729 # instructions while we step over them. There need only be one such
730 # place, since we're only stepping one thread over a breakpoint at a
731 # time.
732 #
733 # For a general explanation of displaced stepping and how GDB uses it,
734 # see the comments in infrun.c.
735 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
736
737 # Relocate an instruction to execute at a different address. OLDLOC
738 # is the address in the inferior memory where the instruction to
739 # relocate is currently at. On input, TO points to the destination
740 # where we want the instruction to be copied (and possibly adjusted)
741 # to. On output, it points to one past the end of the resulting
742 # instruction(s). The effect of executing the instruction at TO shall
743 # be the same as if executing it at FROM. For example, call
744 # instructions that implicitly push the return address on the stack
745 # should be adjusted to return to the instruction after OLDLOC;
746 # relative branches, and other PC-relative instructions need the
747 # offset adjusted; etc.
748 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
749
750 # Refresh overlay mapped state for section OSECT.
751 F:void:overlay_update:struct obj_section *osect:osect
752
753 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
754
755 # Handle special encoding of static variables in stabs debug info.
756 F:char *:static_transform_name:char *name:name
757 # Set if the address in N_SO or N_FUN stabs may be zero.
758 v:int:sofun_address_maybe_missing:::0:0::0
759
760 # Parse the instruction at ADDR storing in the record execution log
761 # the registers REGCACHE and memory ranges that will be affected when
762 # the instruction executes, along with their current values.
763 # Return -1 if something goes wrong, 0 otherwise.
764 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
765
766 # Save process state after a signal.
767 # Return -1 if something goes wrong, 0 otherwise.
768 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
769
770 # Signal translation: translate inferior's signal (host's) number into
771 # GDB's representation.
772 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
773 # Signal translation: translate GDB's signal number into inferior's host
774 # signal number.
775 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
776
777 # Extra signal info inspection.
778 #
779 # Return a type suitable to inspect extra signal information.
780 M:struct type *:get_siginfo_type:void:
781
782 # Record architecture-specific information from the symbol table.
783 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
784
785 # Function for the 'catch syscall' feature.
786
787 # Get architecture-specific system calls information from registers.
788 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
789
790 # True if the list of shared libraries is one and only for all
791 # processes, as opposed to a list of shared libraries per inferior.
792 # This usually means that all processes, although may or may not share
793 # an address space, will see the same set of symbols at the same
794 # addresses.
795 v:int:has_global_solist:::0:0::0
796
797 # On some targets, even though each inferior has its own private
798 # address space, the debug interface takes care of making breakpoints
799 # visible to all address spaces automatically. For such cases,
800 # this property should be set to true.
801 v:int:has_global_breakpoints:::0:0::0
802
803 # True if inferiors share an address space (e.g., uClinux).
804 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
805
806 # True if a fast tracepoint can be set at an address.
807 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
808
809 # Return the "auto" target charset.
810 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
811 # Return the "auto" target wide charset.
812 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
813
814 # If non-empty, this is a file extension that will be opened in place
815 # of the file extension reported by the shared library list.
816 #
817 # This is most useful for toolchains that use a post-linker tool,
818 # where the names of the files run on the target differ in extension
819 # compared to the names of the files GDB should load for debug info.
820 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
821
822 # If true, the target OS has DOS-based file system semantics. That
823 # is, absolute paths include a drive name, and the backslash is
824 # considered a directory separator.
825 v:int:has_dos_based_file_system:::0:0::0
826
827 # Generate bytecodes to collect the return address in a frame.
828 # Since the bytecodes run on the target, possibly with GDB not even
829 # connected, the full unwinding machinery is not available, and
830 # typically this function will issue bytecodes for one or more likely
831 # places that the return address may be found.
832 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
833
834 EOF
835 }
836
837 #
838 # The .log file
839 #
840 exec > new-gdbarch.log
841 function_list | while do_read
842 do
843 cat <<EOF
844 ${class} ${returntype} ${function} ($formal)
845 EOF
846 for r in ${read}
847 do
848 eval echo \"\ \ \ \ ${r}=\${${r}}\"
849 done
850 if class_is_predicate_p && fallback_default_p
851 then
852 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
853 kill $$
854 exit 1
855 fi
856 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
857 then
858 echo "Error: postdefault is useless when invalid_p=0" 1>&2
859 kill $$
860 exit 1
861 fi
862 if class_is_multiarch_p
863 then
864 if class_is_predicate_p ; then :
865 elif test "x${predefault}" = "x"
866 then
867 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
868 kill $$
869 exit 1
870 fi
871 fi
872 echo ""
873 done
874
875 exec 1>&2
876 compare_new gdbarch.log
877
878
879 copyright ()
880 {
881 cat <<EOF
882 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
883
884 /* Dynamic architecture support for GDB, the GNU debugger.
885
886 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
887 2007, 2008, 2009 Free Software Foundation, Inc.
888
889 This file is part of GDB.
890
891 This program is free software; you can redistribute it and/or modify
892 it under the terms of the GNU General Public License as published by
893 the Free Software Foundation; either version 3 of the License, or
894 (at your option) any later version.
895
896 This program is distributed in the hope that it will be useful,
897 but WITHOUT ANY WARRANTY; without even the implied warranty of
898 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
899 GNU General Public License for more details.
900
901 You should have received a copy of the GNU General Public License
902 along with this program. If not, see <http://www.gnu.org/licenses/>. */
903
904 /* This file was created with the aid of \`\`gdbarch.sh''.
905
906 The Bourne shell script \`\`gdbarch.sh'' creates the files
907 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
908 against the existing \`\`gdbarch.[hc]''. Any differences found
909 being reported.
910
911 If editing this file, please also run gdbarch.sh and merge any
912 changes into that script. Conversely, when making sweeping changes
913 to this file, modifying gdbarch.sh and using its output may prove
914 easier. */
915
916 EOF
917 }
918
919 #
920 # The .h file
921 #
922
923 exec > new-gdbarch.h
924 copyright
925 cat <<EOF
926 #ifndef GDBARCH_H
927 #define GDBARCH_H
928
929 struct floatformat;
930 struct ui_file;
931 struct frame_info;
932 struct value;
933 struct objfile;
934 struct obj_section;
935 struct minimal_symbol;
936 struct regcache;
937 struct reggroup;
938 struct regset;
939 struct disassemble_info;
940 struct target_ops;
941 struct obstack;
942 struct bp_target_info;
943 struct target_desc;
944 struct displaced_step_closure;
945 struct core_regset_section;
946 struct syscall;
947 struct agent_expr;
948 struct axs_value;
949
950 /* The architecture associated with the connection to the target.
951
952 The architecture vector provides some information that is really
953 a property of the target: The layout of certain packets, for instance;
954 or the solib_ops vector. Etc. To differentiate architecture accesses
955 to per-target properties from per-thread/per-frame/per-objfile properties,
956 accesses to per-target properties should be made through target_gdbarch.
957
958 Eventually, when support for multiple targets is implemented in
959 GDB, this global should be made target-specific. */
960 extern struct gdbarch *target_gdbarch;
961 EOF
962
963 # function typedef's
964 printf "\n"
965 printf "\n"
966 printf "/* The following are pre-initialized by GDBARCH. */\n"
967 function_list | while do_read
968 do
969 if class_is_info_p
970 then
971 printf "\n"
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
973 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
974 fi
975 done
976
977 # function typedef's
978 printf "\n"
979 printf "\n"
980 printf "/* The following are initialized by the target dependent code. */\n"
981 function_list | while do_read
982 do
983 if [ -n "${comment}" ]
984 then
985 echo "${comment}" | sed \
986 -e '2 s,#,/*,' \
987 -e '3,$ s,#, ,' \
988 -e '$ s,$, */,'
989 fi
990
991 if class_is_predicate_p
992 then
993 printf "\n"
994 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
995 fi
996 if class_is_variable_p
997 then
998 printf "\n"
999 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1000 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1001 fi
1002 if class_is_function_p
1003 then
1004 printf "\n"
1005 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1006 then
1007 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1008 elif class_is_multiarch_p
1009 then
1010 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1011 else
1012 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1013 fi
1014 if [ "x${formal}" = "xvoid" ]
1015 then
1016 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1017 else
1018 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1019 fi
1020 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1021 fi
1022 done
1023
1024 # close it off
1025 cat <<EOF
1026
1027 /* Definition for an unknown syscall, used basically in error-cases. */
1028 #define UNKNOWN_SYSCALL (-1)
1029
1030 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1031
1032
1033 /* Mechanism for co-ordinating the selection of a specific
1034 architecture.
1035
1036 GDB targets (*-tdep.c) can register an interest in a specific
1037 architecture. Other GDB components can register a need to maintain
1038 per-architecture data.
1039
1040 The mechanisms below ensures that there is only a loose connection
1041 between the set-architecture command and the various GDB
1042 components. Each component can independently register their need
1043 to maintain architecture specific data with gdbarch.
1044
1045 Pragmatics:
1046
1047 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1048 didn't scale.
1049
1050 The more traditional mega-struct containing architecture specific
1051 data for all the various GDB components was also considered. Since
1052 GDB is built from a variable number of (fairly independent)
1053 components it was determined that the global aproach was not
1054 applicable. */
1055
1056
1057 /* Register a new architectural family with GDB.
1058
1059 Register support for the specified ARCHITECTURE with GDB. When
1060 gdbarch determines that the specified architecture has been
1061 selected, the corresponding INIT function is called.
1062
1063 --
1064
1065 The INIT function takes two parameters: INFO which contains the
1066 information available to gdbarch about the (possibly new)
1067 architecture; ARCHES which is a list of the previously created
1068 \`\`struct gdbarch'' for this architecture.
1069
1070 The INFO parameter is, as far as possible, be pre-initialized with
1071 information obtained from INFO.ABFD or the global defaults.
1072
1073 The ARCHES parameter is a linked list (sorted most recently used)
1074 of all the previously created architures for this architecture
1075 family. The (possibly NULL) ARCHES->gdbarch can used to access
1076 values from the previously selected architecture for this
1077 architecture family.
1078
1079 The INIT function shall return any of: NULL - indicating that it
1080 doesn't recognize the selected architecture; an existing \`\`struct
1081 gdbarch'' from the ARCHES list - indicating that the new
1082 architecture is just a synonym for an earlier architecture (see
1083 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1084 - that describes the selected architecture (see gdbarch_alloc()).
1085
1086 The DUMP_TDEP function shall print out all target specific values.
1087 Care should be taken to ensure that the function works in both the
1088 multi-arch and non- multi-arch cases. */
1089
1090 struct gdbarch_list
1091 {
1092 struct gdbarch *gdbarch;
1093 struct gdbarch_list *next;
1094 };
1095
1096 struct gdbarch_info
1097 {
1098 /* Use default: NULL (ZERO). */
1099 const struct bfd_arch_info *bfd_arch_info;
1100
1101 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1102 int byte_order;
1103
1104 int byte_order_for_code;
1105
1106 /* Use default: NULL (ZERO). */
1107 bfd *abfd;
1108
1109 /* Use default: NULL (ZERO). */
1110 struct gdbarch_tdep_info *tdep_info;
1111
1112 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1113 enum gdb_osabi osabi;
1114
1115 /* Use default: NULL (ZERO). */
1116 const struct target_desc *target_desc;
1117 };
1118
1119 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1120 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1121
1122 /* DEPRECATED - use gdbarch_register() */
1123 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1124
1125 extern void gdbarch_register (enum bfd_architecture architecture,
1126 gdbarch_init_ftype *,
1127 gdbarch_dump_tdep_ftype *);
1128
1129
1130 /* Return a freshly allocated, NULL terminated, array of the valid
1131 architecture names. Since architectures are registered during the
1132 _initialize phase this function only returns useful information
1133 once initialization has been completed. */
1134
1135 extern const char **gdbarch_printable_names (void);
1136
1137
1138 /* Helper function. Search the list of ARCHES for a GDBARCH that
1139 matches the information provided by INFO. */
1140
1141 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1142
1143
1144 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1145 basic initialization using values obtained from the INFO and TDEP
1146 parameters. set_gdbarch_*() functions are called to complete the
1147 initialization of the object. */
1148
1149 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1150
1151
1152 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1153 It is assumed that the caller freeds the \`\`struct
1154 gdbarch_tdep''. */
1155
1156 extern void gdbarch_free (struct gdbarch *);
1157
1158
1159 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1160 obstack. The memory is freed when the corresponding architecture
1161 is also freed. */
1162
1163 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1164 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1165 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1166
1167
1168 /* Helper function. Force an update of the current architecture.
1169
1170 The actual architecture selected is determined by INFO, \`\`(gdb) set
1171 architecture'' et.al., the existing architecture and BFD's default
1172 architecture. INFO should be initialized to zero and then selected
1173 fields should be updated.
1174
1175 Returns non-zero if the update succeeds. */
1176
1177 extern int gdbarch_update_p (struct gdbarch_info info);
1178
1179
1180 /* Helper function. Find an architecture matching info.
1181
1182 INFO should be initialized using gdbarch_info_init, relevant fields
1183 set, and then finished using gdbarch_info_fill.
1184
1185 Returns the corresponding architecture, or NULL if no matching
1186 architecture was found. */
1187
1188 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1189
1190
1191 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1192
1193 FIXME: kettenis/20031124: Of the functions that follow, only
1194 gdbarch_from_bfd is supposed to survive. The others will
1195 dissappear since in the future GDB will (hopefully) be truly
1196 multi-arch. However, for now we're still stuck with the concept of
1197 a single active architecture. */
1198
1199 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1200
1201
1202 /* Register per-architecture data-pointer.
1203
1204 Reserve space for a per-architecture data-pointer. An identifier
1205 for the reserved data-pointer is returned. That identifer should
1206 be saved in a local static variable.
1207
1208 Memory for the per-architecture data shall be allocated using
1209 gdbarch_obstack_zalloc. That memory will be deleted when the
1210 corresponding architecture object is deleted.
1211
1212 When a previously created architecture is re-selected, the
1213 per-architecture data-pointer for that previous architecture is
1214 restored. INIT() is not re-called.
1215
1216 Multiple registrarants for any architecture are allowed (and
1217 strongly encouraged). */
1218
1219 struct gdbarch_data;
1220
1221 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1222 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1223 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1224 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1225 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1226 struct gdbarch_data *data,
1227 void *pointer);
1228
1229 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1230
1231
1232 /* Set the dynamic target-system-dependent parameters (architecture,
1233 byte-order, ...) using information found in the BFD. */
1234
1235 extern void set_gdbarch_from_file (bfd *);
1236
1237
1238 /* Initialize the current architecture to the "first" one we find on
1239 our list. */
1240
1241 extern void initialize_current_architecture (void);
1242
1243 /* gdbarch trace variable */
1244 extern int gdbarch_debug;
1245
1246 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1247
1248 #endif
1249 EOF
1250 exec 1>&2
1251 #../move-if-change new-gdbarch.h gdbarch.h
1252 compare_new gdbarch.h
1253
1254
1255 #
1256 # C file
1257 #
1258
1259 exec > new-gdbarch.c
1260 copyright
1261 cat <<EOF
1262
1263 #include "defs.h"
1264 #include "arch-utils.h"
1265
1266 #include "gdbcmd.h"
1267 #include "inferior.h"
1268 #include "symcat.h"
1269
1270 #include "floatformat.h"
1271
1272 #include "gdb_assert.h"
1273 #include "gdb_string.h"
1274 #include "reggroups.h"
1275 #include "osabi.h"
1276 #include "gdb_obstack.h"
1277 #include "observer.h"
1278 #include "regcache.h"
1279
1280 /* Static function declarations */
1281
1282 static void alloc_gdbarch_data (struct gdbarch *);
1283
1284 /* Non-zero if we want to trace architecture code. */
1285
1286 #ifndef GDBARCH_DEBUG
1287 #define GDBARCH_DEBUG 0
1288 #endif
1289 int gdbarch_debug = GDBARCH_DEBUG;
1290 static void
1291 show_gdbarch_debug (struct ui_file *file, int from_tty,
1292 struct cmd_list_element *c, const char *value)
1293 {
1294 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1295 }
1296
1297 static const char *
1298 pformat (const struct floatformat **format)
1299 {
1300 if (format == NULL)
1301 return "(null)";
1302 else
1303 /* Just print out one of them - this is only for diagnostics. */
1304 return format[0]->name;
1305 }
1306
1307 static const char *
1308 pstring (const char *string)
1309 {
1310 if (string == NULL)
1311 return "(null)";
1312 return string;
1313 }
1314
1315 EOF
1316
1317 # gdbarch open the gdbarch object
1318 printf "\n"
1319 printf "/* Maintain the struct gdbarch object. */\n"
1320 printf "\n"
1321 printf "struct gdbarch\n"
1322 printf "{\n"
1323 printf " /* Has this architecture been fully initialized? */\n"
1324 printf " int initialized_p;\n"
1325 printf "\n"
1326 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1327 printf " struct obstack *obstack;\n"
1328 printf "\n"
1329 printf " /* basic architectural information. */\n"
1330 function_list | while do_read
1331 do
1332 if class_is_info_p
1333 then
1334 printf " ${returntype} ${function};\n"
1335 fi
1336 done
1337 printf "\n"
1338 printf " /* target specific vector. */\n"
1339 printf " struct gdbarch_tdep *tdep;\n"
1340 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1341 printf "\n"
1342 printf " /* per-architecture data-pointers. */\n"
1343 printf " unsigned nr_data;\n"
1344 printf " void **data;\n"
1345 printf "\n"
1346 printf " /* per-architecture swap-regions. */\n"
1347 printf " struct gdbarch_swap *swap;\n"
1348 printf "\n"
1349 cat <<EOF
1350 /* Multi-arch values.
1351
1352 When extending this structure you must:
1353
1354 Add the field below.
1355
1356 Declare set/get functions and define the corresponding
1357 macro in gdbarch.h.
1358
1359 gdbarch_alloc(): If zero/NULL is not a suitable default,
1360 initialize the new field.
1361
1362 verify_gdbarch(): Confirm that the target updated the field
1363 correctly.
1364
1365 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1366 field is dumped out
1367
1368 \`\`startup_gdbarch()'': Append an initial value to the static
1369 variable (base values on the host's c-type system).
1370
1371 get_gdbarch(): Implement the set/get functions (probably using
1372 the macro's as shortcuts).
1373
1374 */
1375
1376 EOF
1377 function_list | while do_read
1378 do
1379 if class_is_variable_p
1380 then
1381 printf " ${returntype} ${function};\n"
1382 elif class_is_function_p
1383 then
1384 printf " gdbarch_${function}_ftype *${function};\n"
1385 fi
1386 done
1387 printf "};\n"
1388
1389 # A pre-initialized vector
1390 printf "\n"
1391 printf "\n"
1392 cat <<EOF
1393 /* The default architecture uses host values (for want of a better
1394 choice). */
1395 EOF
1396 printf "\n"
1397 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1398 printf "\n"
1399 printf "struct gdbarch startup_gdbarch =\n"
1400 printf "{\n"
1401 printf " 1, /* Always initialized. */\n"
1402 printf " NULL, /* The obstack. */\n"
1403 printf " /* basic architecture information. */\n"
1404 function_list | while do_read
1405 do
1406 if class_is_info_p
1407 then
1408 printf " ${staticdefault}, /* ${function} */\n"
1409 fi
1410 done
1411 cat <<EOF
1412 /* target specific vector and its dump routine. */
1413 NULL, NULL,
1414 /*per-architecture data-pointers and swap regions. */
1415 0, NULL, NULL,
1416 /* Multi-arch values */
1417 EOF
1418 function_list | while do_read
1419 do
1420 if class_is_function_p || class_is_variable_p
1421 then
1422 printf " ${staticdefault}, /* ${function} */\n"
1423 fi
1424 done
1425 cat <<EOF
1426 /* startup_gdbarch() */
1427 };
1428
1429 struct gdbarch *target_gdbarch = &startup_gdbarch;
1430 EOF
1431
1432 # Create a new gdbarch struct
1433 cat <<EOF
1434
1435 /* Create a new \`\`struct gdbarch'' based on information provided by
1436 \`\`struct gdbarch_info''. */
1437 EOF
1438 printf "\n"
1439 cat <<EOF
1440 struct gdbarch *
1441 gdbarch_alloc (const struct gdbarch_info *info,
1442 struct gdbarch_tdep *tdep)
1443 {
1444 struct gdbarch *gdbarch;
1445
1446 /* Create an obstack for allocating all the per-architecture memory,
1447 then use that to allocate the architecture vector. */
1448 struct obstack *obstack = XMALLOC (struct obstack);
1449 obstack_init (obstack);
1450 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1451 memset (gdbarch, 0, sizeof (*gdbarch));
1452 gdbarch->obstack = obstack;
1453
1454 alloc_gdbarch_data (gdbarch);
1455
1456 gdbarch->tdep = tdep;
1457 EOF
1458 printf "\n"
1459 function_list | while do_read
1460 do
1461 if class_is_info_p
1462 then
1463 printf " gdbarch->${function} = info->${function};\n"
1464 fi
1465 done
1466 printf "\n"
1467 printf " /* Force the explicit initialization of these. */\n"
1468 function_list | while do_read
1469 do
1470 if class_is_function_p || class_is_variable_p
1471 then
1472 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1473 then
1474 printf " gdbarch->${function} = ${predefault};\n"
1475 fi
1476 fi
1477 done
1478 cat <<EOF
1479 /* gdbarch_alloc() */
1480
1481 return gdbarch;
1482 }
1483 EOF
1484
1485 # Free a gdbarch struct.
1486 printf "\n"
1487 printf "\n"
1488 cat <<EOF
1489 /* Allocate extra space using the per-architecture obstack. */
1490
1491 void *
1492 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1493 {
1494 void *data = obstack_alloc (arch->obstack, size);
1495
1496 memset (data, 0, size);
1497 return data;
1498 }
1499
1500
1501 /* Free a gdbarch struct. This should never happen in normal
1502 operation --- once you've created a gdbarch, you keep it around.
1503 However, if an architecture's init function encounters an error
1504 building the structure, it may need to clean up a partially
1505 constructed gdbarch. */
1506
1507 void
1508 gdbarch_free (struct gdbarch *arch)
1509 {
1510 struct obstack *obstack;
1511
1512 gdb_assert (arch != NULL);
1513 gdb_assert (!arch->initialized_p);
1514 obstack = arch->obstack;
1515 obstack_free (obstack, 0); /* Includes the ARCH. */
1516 xfree (obstack);
1517 }
1518 EOF
1519
1520 # verify a new architecture
1521 cat <<EOF
1522
1523
1524 /* Ensure that all values in a GDBARCH are reasonable. */
1525
1526 static void
1527 verify_gdbarch (struct gdbarch *gdbarch)
1528 {
1529 struct ui_file *log;
1530 struct cleanup *cleanups;
1531 long length;
1532 char *buf;
1533
1534 log = mem_fileopen ();
1535 cleanups = make_cleanup_ui_file_delete (log);
1536 /* fundamental */
1537 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1538 fprintf_unfiltered (log, "\n\tbyte-order");
1539 if (gdbarch->bfd_arch_info == NULL)
1540 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1541 /* Check those that need to be defined for the given multi-arch level. */
1542 EOF
1543 function_list | while do_read
1544 do
1545 if class_is_function_p || class_is_variable_p
1546 then
1547 if [ "x${invalid_p}" = "x0" ]
1548 then
1549 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1550 elif class_is_predicate_p
1551 then
1552 printf " /* Skip verify of ${function}, has predicate. */\n"
1553 # FIXME: See do_read for potential simplification
1554 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1555 then
1556 printf " if (${invalid_p})\n"
1557 printf " gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1559 then
1560 printf " if (gdbarch->${function} == ${predefault})\n"
1561 printf " gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${postdefault}" ]
1563 then
1564 printf " if (gdbarch->${function} == 0)\n"
1565 printf " gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${invalid_p}" ]
1567 then
1568 printf " if (${invalid_p})\n"
1569 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1570 elif [ -n "${predefault}" ]
1571 then
1572 printf " if (gdbarch->${function} == ${predefault})\n"
1573 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1574 fi
1575 fi
1576 done
1577 cat <<EOF
1578 buf = ui_file_xstrdup (log, &length);
1579 make_cleanup (xfree, buf);
1580 if (length > 0)
1581 internal_error (__FILE__, __LINE__,
1582 _("verify_gdbarch: the following are invalid ...%s"),
1583 buf);
1584 do_cleanups (cleanups);
1585 }
1586 EOF
1587
1588 # dump the structure
1589 printf "\n"
1590 printf "\n"
1591 cat <<EOF
1592 /* Print out the details of the current architecture. */
1593
1594 void
1595 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1596 {
1597 const char *gdb_nm_file = "<not-defined>";
1598
1599 #if defined (GDB_NM_FILE)
1600 gdb_nm_file = GDB_NM_FILE;
1601 #endif
1602 fprintf_unfiltered (file,
1603 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1604 gdb_nm_file);
1605 EOF
1606 function_list | sort -t: -k 3 | while do_read
1607 do
1608 # First the predicate
1609 if class_is_predicate_p
1610 then
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1613 printf " gdbarch_${function}_p (gdbarch));\n"
1614 fi
1615 # Print the corresponding value.
1616 if class_is_function_p
1617 then
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1620 printf " host_address_to_string (gdbarch->${function}));\n"
1621 else
1622 # It is a variable
1623 case "${print}:${returntype}" in
1624 :CORE_ADDR )
1625 fmt="%s"
1626 print="core_addr_to_string_nz (gdbarch->${function})"
1627 ;;
1628 :* )
1629 fmt="%s"
1630 print="plongest (gdbarch->${function})"
1631 ;;
1632 * )
1633 fmt="%s"
1634 ;;
1635 esac
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1638 printf " ${print});\n"
1639 fi
1640 done
1641 cat <<EOF
1642 if (gdbarch->dump_tdep != NULL)
1643 gdbarch->dump_tdep (gdbarch, file);
1644 }
1645 EOF
1646
1647
1648 # GET/SET
1649 printf "\n"
1650 cat <<EOF
1651 struct gdbarch_tdep *
1652 gdbarch_tdep (struct gdbarch *gdbarch)
1653 {
1654 if (gdbarch_debug >= 2)
1655 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1656 return gdbarch->tdep;
1657 }
1658 EOF
1659 printf "\n"
1660 function_list | while do_read
1661 do
1662 if class_is_predicate_p
1663 then
1664 printf "\n"
1665 printf "int\n"
1666 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1667 printf "{\n"
1668 printf " gdb_assert (gdbarch != NULL);\n"
1669 printf " return ${predicate};\n"
1670 printf "}\n"
1671 fi
1672 if class_is_function_p
1673 then
1674 printf "\n"
1675 printf "${returntype}\n"
1676 if [ "x${formal}" = "xvoid" ]
1677 then
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1679 else
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1681 fi
1682 printf "{\n"
1683 printf " gdb_assert (gdbarch != NULL);\n"
1684 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1685 if class_is_predicate_p && test -n "${predefault}"
1686 then
1687 # Allow a call to a function with a predicate.
1688 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1689 fi
1690 printf " if (gdbarch_debug >= 2)\n"
1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1692 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1693 then
1694 if class_is_multiarch_p
1695 then
1696 params="gdbarch"
1697 else
1698 params=""
1699 fi
1700 else
1701 if class_is_multiarch_p
1702 then
1703 params="gdbarch, ${actual}"
1704 else
1705 params="${actual}"
1706 fi
1707 fi
1708 if [ "x${returntype}" = "xvoid" ]
1709 then
1710 printf " gdbarch->${function} (${params});\n"
1711 else
1712 printf " return gdbarch->${function} (${params});\n"
1713 fi
1714 printf "}\n"
1715 printf "\n"
1716 printf "void\n"
1717 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1718 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1719 printf "{\n"
1720 printf " gdbarch->${function} = ${function};\n"
1721 printf "}\n"
1722 elif class_is_variable_p
1723 then
1724 printf "\n"
1725 printf "${returntype}\n"
1726 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1727 printf "{\n"
1728 printf " gdb_assert (gdbarch != NULL);\n"
1729 if [ "x${invalid_p}" = "x0" ]
1730 then
1731 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1732 elif [ -n "${invalid_p}" ]
1733 then
1734 printf " /* Check variable is valid. */\n"
1735 printf " gdb_assert (!(${invalid_p}));\n"
1736 elif [ -n "${predefault}" ]
1737 then
1738 printf " /* Check variable changed from pre-default. */\n"
1739 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1740 fi
1741 printf " if (gdbarch_debug >= 2)\n"
1742 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1743 printf " return gdbarch->${function};\n"
1744 printf "}\n"
1745 printf "\n"
1746 printf "void\n"
1747 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1748 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1749 printf "{\n"
1750 printf " gdbarch->${function} = ${function};\n"
1751 printf "}\n"
1752 elif class_is_info_p
1753 then
1754 printf "\n"
1755 printf "${returntype}\n"
1756 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1757 printf "{\n"
1758 printf " gdb_assert (gdbarch != NULL);\n"
1759 printf " if (gdbarch_debug >= 2)\n"
1760 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1761 printf " return gdbarch->${function};\n"
1762 printf "}\n"
1763 fi
1764 done
1765
1766 # All the trailing guff
1767 cat <<EOF
1768
1769
1770 /* Keep a registry of per-architecture data-pointers required by GDB
1771 modules. */
1772
1773 struct gdbarch_data
1774 {
1775 unsigned index;
1776 int init_p;
1777 gdbarch_data_pre_init_ftype *pre_init;
1778 gdbarch_data_post_init_ftype *post_init;
1779 };
1780
1781 struct gdbarch_data_registration
1782 {
1783 struct gdbarch_data *data;
1784 struct gdbarch_data_registration *next;
1785 };
1786
1787 struct gdbarch_data_registry
1788 {
1789 unsigned nr;
1790 struct gdbarch_data_registration *registrations;
1791 };
1792
1793 struct gdbarch_data_registry gdbarch_data_registry =
1794 {
1795 0, NULL,
1796 };
1797
1798 static struct gdbarch_data *
1799 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1800 gdbarch_data_post_init_ftype *post_init)
1801 {
1802 struct gdbarch_data_registration **curr;
1803
1804 /* Append the new registration. */
1805 for (curr = &gdbarch_data_registry.registrations;
1806 (*curr) != NULL;
1807 curr = &(*curr)->next);
1808 (*curr) = XMALLOC (struct gdbarch_data_registration);
1809 (*curr)->next = NULL;
1810 (*curr)->data = XMALLOC (struct gdbarch_data);
1811 (*curr)->data->index = gdbarch_data_registry.nr++;
1812 (*curr)->data->pre_init = pre_init;
1813 (*curr)->data->post_init = post_init;
1814 (*curr)->data->init_p = 1;
1815 return (*curr)->data;
1816 }
1817
1818 struct gdbarch_data *
1819 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1820 {
1821 return gdbarch_data_register (pre_init, NULL);
1822 }
1823
1824 struct gdbarch_data *
1825 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1826 {
1827 return gdbarch_data_register (NULL, post_init);
1828 }
1829
1830 /* Create/delete the gdbarch data vector. */
1831
1832 static void
1833 alloc_gdbarch_data (struct gdbarch *gdbarch)
1834 {
1835 gdb_assert (gdbarch->data == NULL);
1836 gdbarch->nr_data = gdbarch_data_registry.nr;
1837 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1838 }
1839
1840 /* Initialize the current value of the specified per-architecture
1841 data-pointer. */
1842
1843 void
1844 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1845 struct gdbarch_data *data,
1846 void *pointer)
1847 {
1848 gdb_assert (data->index < gdbarch->nr_data);
1849 gdb_assert (gdbarch->data[data->index] == NULL);
1850 gdb_assert (data->pre_init == NULL);
1851 gdbarch->data[data->index] = pointer;
1852 }
1853
1854 /* Return the current value of the specified per-architecture
1855 data-pointer. */
1856
1857 void *
1858 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1859 {
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 if (gdbarch->data[data->index] == NULL)
1862 {
1863 /* The data-pointer isn't initialized, call init() to get a
1864 value. */
1865 if (data->pre_init != NULL)
1866 /* Mid architecture creation: pass just the obstack, and not
1867 the entire architecture, as that way it isn't possible for
1868 pre-init code to refer to undefined architecture
1869 fields. */
1870 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1871 else if (gdbarch->initialized_p
1872 && data->post_init != NULL)
1873 /* Post architecture creation: pass the entire architecture
1874 (as all fields are valid), but be careful to also detect
1875 recursive references. */
1876 {
1877 gdb_assert (data->init_p);
1878 data->init_p = 0;
1879 gdbarch->data[data->index] = data->post_init (gdbarch);
1880 data->init_p = 1;
1881 }
1882 else
1883 /* The architecture initialization hasn't completed - punt -
1884 hope that the caller knows what they are doing. Once
1885 deprecated_set_gdbarch_data has been initialized, this can be
1886 changed to an internal error. */
1887 return NULL;
1888 gdb_assert (gdbarch->data[data->index] != NULL);
1889 }
1890 return gdbarch->data[data->index];
1891 }
1892
1893
1894 /* Keep a registry of the architectures known by GDB. */
1895
1896 struct gdbarch_registration
1897 {
1898 enum bfd_architecture bfd_architecture;
1899 gdbarch_init_ftype *init;
1900 gdbarch_dump_tdep_ftype *dump_tdep;
1901 struct gdbarch_list *arches;
1902 struct gdbarch_registration *next;
1903 };
1904
1905 static struct gdbarch_registration *gdbarch_registry = NULL;
1906
1907 static void
1908 append_name (const char ***buf, int *nr, const char *name)
1909 {
1910 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1911 (*buf)[*nr] = name;
1912 *nr += 1;
1913 }
1914
1915 const char **
1916 gdbarch_printable_names (void)
1917 {
1918 /* Accumulate a list of names based on the registed list of
1919 architectures. */
1920 int nr_arches = 0;
1921 const char **arches = NULL;
1922 struct gdbarch_registration *rego;
1923
1924 for (rego = gdbarch_registry;
1925 rego != NULL;
1926 rego = rego->next)
1927 {
1928 const struct bfd_arch_info *ap;
1929 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1930 if (ap == NULL)
1931 internal_error (__FILE__, __LINE__,
1932 _("gdbarch_architecture_names: multi-arch unknown"));
1933 do
1934 {
1935 append_name (&arches, &nr_arches, ap->printable_name);
1936 ap = ap->next;
1937 }
1938 while (ap != NULL);
1939 }
1940 append_name (&arches, &nr_arches, NULL);
1941 return arches;
1942 }
1943
1944
1945 void
1946 gdbarch_register (enum bfd_architecture bfd_architecture,
1947 gdbarch_init_ftype *init,
1948 gdbarch_dump_tdep_ftype *dump_tdep)
1949 {
1950 struct gdbarch_registration **curr;
1951 const struct bfd_arch_info *bfd_arch_info;
1952
1953 /* Check that BFD recognizes this architecture */
1954 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1955 if (bfd_arch_info == NULL)
1956 {
1957 internal_error (__FILE__, __LINE__,
1958 _("gdbarch: Attempt to register "
1959 "unknown architecture (%d)"),
1960 bfd_architecture);
1961 }
1962 /* Check that we haven't seen this architecture before. */
1963 for (curr = &gdbarch_registry;
1964 (*curr) != NULL;
1965 curr = &(*curr)->next)
1966 {
1967 if (bfd_architecture == (*curr)->bfd_architecture)
1968 internal_error (__FILE__, __LINE__,
1969 _("gdbarch: Duplicate registration "
1970 "of architecture (%s)"),
1971 bfd_arch_info->printable_name);
1972 }
1973 /* log it */
1974 if (gdbarch_debug)
1975 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1976 bfd_arch_info->printable_name,
1977 host_address_to_string (init));
1978 /* Append it */
1979 (*curr) = XMALLOC (struct gdbarch_registration);
1980 (*curr)->bfd_architecture = bfd_architecture;
1981 (*curr)->init = init;
1982 (*curr)->dump_tdep = dump_tdep;
1983 (*curr)->arches = NULL;
1984 (*curr)->next = NULL;
1985 }
1986
1987 void
1988 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1989 gdbarch_init_ftype *init)
1990 {
1991 gdbarch_register (bfd_architecture, init, NULL);
1992 }
1993
1994
1995 /* Look for an architecture using gdbarch_info. */
1996
1997 struct gdbarch_list *
1998 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1999 const struct gdbarch_info *info)
2000 {
2001 for (; arches != NULL; arches = arches->next)
2002 {
2003 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2004 continue;
2005 if (info->byte_order != arches->gdbarch->byte_order)
2006 continue;
2007 if (info->osabi != arches->gdbarch->osabi)
2008 continue;
2009 if (info->target_desc != arches->gdbarch->target_desc)
2010 continue;
2011 return arches;
2012 }
2013 return NULL;
2014 }
2015
2016
2017 /* Find an architecture that matches the specified INFO. Create a new
2018 architecture if needed. Return that new architecture. */
2019
2020 struct gdbarch *
2021 gdbarch_find_by_info (struct gdbarch_info info)
2022 {
2023 struct gdbarch *new_gdbarch;
2024 struct gdbarch_registration *rego;
2025
2026 /* Fill in missing parts of the INFO struct using a number of
2027 sources: "set ..."; INFOabfd supplied; and the global
2028 defaults. */
2029 gdbarch_info_fill (&info);
2030
2031 /* Must have found some sort of architecture. */
2032 gdb_assert (info.bfd_arch_info != NULL);
2033
2034 if (gdbarch_debug)
2035 {
2036 fprintf_unfiltered (gdb_stdlog,
2037 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2038 (info.bfd_arch_info != NULL
2039 ? info.bfd_arch_info->printable_name
2040 : "(null)"));
2041 fprintf_unfiltered (gdb_stdlog,
2042 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2043 info.byte_order,
2044 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2045 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2046 : "default"));
2047 fprintf_unfiltered (gdb_stdlog,
2048 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2049 info.osabi, gdbarch_osabi_name (info.osabi));
2050 fprintf_unfiltered (gdb_stdlog,
2051 "gdbarch_find_by_info: info.abfd %s\n",
2052 host_address_to_string (info.abfd));
2053 fprintf_unfiltered (gdb_stdlog,
2054 "gdbarch_find_by_info: info.tdep_info %s\n",
2055 host_address_to_string (info.tdep_info));
2056 }
2057
2058 /* Find the tdep code that knows about this architecture. */
2059 for (rego = gdbarch_registry;
2060 rego != NULL;
2061 rego = rego->next)
2062 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2063 break;
2064 if (rego == NULL)
2065 {
2066 if (gdbarch_debug)
2067 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2068 "No matching architecture\n");
2069 return 0;
2070 }
2071
2072 /* Ask the tdep code for an architecture that matches "info". */
2073 new_gdbarch = rego->init (info, rego->arches);
2074
2075 /* Did the tdep code like it? No. Reject the change and revert to
2076 the old architecture. */
2077 if (new_gdbarch == NULL)
2078 {
2079 if (gdbarch_debug)
2080 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2081 "Target rejected architecture\n");
2082 return NULL;
2083 }
2084
2085 /* Is this a pre-existing architecture (as determined by already
2086 being initialized)? Move it to the front of the architecture
2087 list (keeping the list sorted Most Recently Used). */
2088 if (new_gdbarch->initialized_p)
2089 {
2090 struct gdbarch_list **list;
2091 struct gdbarch_list *this;
2092 if (gdbarch_debug)
2093 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2094 "Previous architecture %s (%s) selected\n",
2095 host_address_to_string (new_gdbarch),
2096 new_gdbarch->bfd_arch_info->printable_name);
2097 /* Find the existing arch in the list. */
2098 for (list = &rego->arches;
2099 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2100 list = &(*list)->next);
2101 /* It had better be in the list of architectures. */
2102 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2103 /* Unlink THIS. */
2104 this = (*list);
2105 (*list) = this->next;
2106 /* Insert THIS at the front. */
2107 this->next = rego->arches;
2108 rego->arches = this;
2109 /* Return it. */
2110 return new_gdbarch;
2111 }
2112
2113 /* It's a new architecture. */
2114 if (gdbarch_debug)
2115 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2116 "New architecture %s (%s) selected\n",
2117 host_address_to_string (new_gdbarch),
2118 new_gdbarch->bfd_arch_info->printable_name);
2119
2120 /* Insert the new architecture into the front of the architecture
2121 list (keep the list sorted Most Recently Used). */
2122 {
2123 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2124 this->next = rego->arches;
2125 this->gdbarch = new_gdbarch;
2126 rego->arches = this;
2127 }
2128
2129 /* Check that the newly installed architecture is valid. Plug in
2130 any post init values. */
2131 new_gdbarch->dump_tdep = rego->dump_tdep;
2132 verify_gdbarch (new_gdbarch);
2133 new_gdbarch->initialized_p = 1;
2134
2135 if (gdbarch_debug)
2136 gdbarch_dump (new_gdbarch, gdb_stdlog);
2137
2138 return new_gdbarch;
2139 }
2140
2141 /* Make the specified architecture current. */
2142
2143 void
2144 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2145 {
2146 gdb_assert (new_gdbarch != NULL);
2147 gdb_assert (new_gdbarch->initialized_p);
2148 target_gdbarch = new_gdbarch;
2149 observer_notify_architecture_changed (new_gdbarch);
2150 registers_changed ();
2151 }
2152
2153 extern void _initialize_gdbarch (void);
2154
2155 void
2156 _initialize_gdbarch (void)
2157 {
2158 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2159 Set architecture debugging."), _("\\
2160 Show architecture debugging."), _("\\
2161 When non-zero, architecture debugging is enabled."),
2162 NULL,
2163 show_gdbarch_debug,
2164 &setdebuglist, &showdebuglist);
2165 }
2166 EOF
2167
2168 # close things off
2169 exec 1>&2
2170 #../move-if-change new-gdbarch.c gdbarch.c
2171 compare_new gdbarch.c
This page took 0.118882 seconds and 5 git commands to generate.