New gdbarch functions: dtrace_parse_probe_argument, dtrace_probe_is_enabled, dtrace_e...
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988 # DTrace related functions.
989
990 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
991 # NARG must be >= 0.
992 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
993
994 # True if the given ADDR does not contain the instruction sequence
995 # corresponding to a disabled DTrace is-enabled probe.
996 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
997
998 # Enable a DTrace is-enabled probe at ADDR.
999 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1000
1001 # Disable a DTrace is-enabled probe at ADDR.
1002 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1003
1004 # True if the list of shared libraries is one and only for all
1005 # processes, as opposed to a list of shared libraries per inferior.
1006 # This usually means that all processes, although may or may not share
1007 # an address space, will see the same set of symbols at the same
1008 # addresses.
1009 v:int:has_global_solist:::0:0::0
1010
1011 # On some targets, even though each inferior has its own private
1012 # address space, the debug interface takes care of making breakpoints
1013 # visible to all address spaces automatically. For such cases,
1014 # this property should be set to true.
1015 v:int:has_global_breakpoints:::0:0::0
1016
1017 # True if inferiors share an address space (e.g., uClinux).
1018 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1019
1020 # True if a fast tracepoint can be set at an address.
1021 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1022
1023 # Return the "auto" target charset.
1024 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1025 # Return the "auto" target wide charset.
1026 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1027
1028 # If non-empty, this is a file extension that will be opened in place
1029 # of the file extension reported by the shared library list.
1030 #
1031 # This is most useful for toolchains that use a post-linker tool,
1032 # where the names of the files run on the target differ in extension
1033 # compared to the names of the files GDB should load for debug info.
1034 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1035
1036 # If true, the target OS has DOS-based file system semantics. That
1037 # is, absolute paths include a drive name, and the backslash is
1038 # considered a directory separator.
1039 v:int:has_dos_based_file_system:::0:0::0
1040
1041 # Generate bytecodes to collect the return address in a frame.
1042 # Since the bytecodes run on the target, possibly with GDB not even
1043 # connected, the full unwinding machinery is not available, and
1044 # typically this function will issue bytecodes for one or more likely
1045 # places that the return address may be found.
1046 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1047
1048 # Implement the "info proc" command.
1049 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1050
1051 # Implement the "info proc" command for core files. Noe that there
1052 # are two "info_proc"-like methods on gdbarch -- one for core files,
1053 # one for live targets.
1054 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1055
1056 # Iterate over all objfiles in the order that makes the most sense
1057 # for the architecture to make global symbol searches.
1058 #
1059 # CB is a callback function where OBJFILE is the objfile to be searched,
1060 # and CB_DATA a pointer to user-defined data (the same data that is passed
1061 # when calling this gdbarch method). The iteration stops if this function
1062 # returns nonzero.
1063 #
1064 # CB_DATA is a pointer to some user-defined data to be passed to
1065 # the callback.
1066 #
1067 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1068 # inspected when the symbol search was requested.
1069 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1070
1071 # Ravenscar arch-dependent ops.
1072 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1073
1074 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1075 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1076
1077 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1078 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1079
1080 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1081 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1082
1083 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1084 # Return 0 if *READPTR is already at the end of the buffer.
1085 # Return -1 if there is insufficient buffer for a whole entry.
1086 # Return 1 if an entry was read into *TYPEP and *VALP.
1087 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1088
1089 # Find the address range of the current inferior's vsyscall/vDSO, and
1090 # write it to *RANGE. If the vsyscall's length can't be determined, a
1091 # range with zero length is returned. Returns true if the vsyscall is
1092 # found, false otherwise.
1093 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1094
1095 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1096 # PROT has GDB_MMAP_PROT_* bitmask format.
1097 # Throw an error if it is not possible. Returned address is always valid.
1098 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1099
1100 # Return string (caller has to use xfree for it) with options for GCC
1101 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1102 # These options are put before CU's DW_AT_producer compilation options so that
1103 # they can override it. Method may also return NULL.
1104 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1105
1106 # Return a regular expression that matches names used by this
1107 # architecture in GNU configury triplets. The result is statically
1108 # allocated and must not be freed. The default implementation simply
1109 # returns the BFD architecture name, which is correct in nearly every
1110 # case.
1111 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1112 EOF
1113 }
1114
1115 #
1116 # The .log file
1117 #
1118 exec > new-gdbarch.log
1119 function_list | while do_read
1120 do
1121 cat <<EOF
1122 ${class} ${returntype} ${function} ($formal)
1123 EOF
1124 for r in ${read}
1125 do
1126 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1127 done
1128 if class_is_predicate_p && fallback_default_p
1129 then
1130 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1131 kill $$
1132 exit 1
1133 fi
1134 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1135 then
1136 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1137 kill $$
1138 exit 1
1139 fi
1140 if class_is_multiarch_p
1141 then
1142 if class_is_predicate_p ; then :
1143 elif test "x${predefault}" = "x"
1144 then
1145 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1146 kill $$
1147 exit 1
1148 fi
1149 fi
1150 echo ""
1151 done
1152
1153 exec 1>&2
1154 compare_new gdbarch.log
1155
1156
1157 copyright ()
1158 {
1159 cat <<EOF
1160 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1161 /* vi:set ro: */
1162
1163 /* Dynamic architecture support for GDB, the GNU debugger.
1164
1165 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1166
1167 This file is part of GDB.
1168
1169 This program is free software; you can redistribute it and/or modify
1170 it under the terms of the GNU General Public License as published by
1171 the Free Software Foundation; either version 3 of the License, or
1172 (at your option) any later version.
1173
1174 This program is distributed in the hope that it will be useful,
1175 but WITHOUT ANY WARRANTY; without even the implied warranty of
1176 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1177 GNU General Public License for more details.
1178
1179 You should have received a copy of the GNU General Public License
1180 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1181
1182 /* This file was created with the aid of \`\`gdbarch.sh''.
1183
1184 The Bourne shell script \`\`gdbarch.sh'' creates the files
1185 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1186 against the existing \`\`gdbarch.[hc]''. Any differences found
1187 being reported.
1188
1189 If editing this file, please also run gdbarch.sh and merge any
1190 changes into that script. Conversely, when making sweeping changes
1191 to this file, modifying gdbarch.sh and using its output may prove
1192 easier. */
1193
1194 EOF
1195 }
1196
1197 #
1198 # The .h file
1199 #
1200
1201 exec > new-gdbarch.h
1202 copyright
1203 cat <<EOF
1204 #ifndef GDBARCH_H
1205 #define GDBARCH_H
1206
1207 #include "frame.h"
1208
1209 struct floatformat;
1210 struct ui_file;
1211 struct value;
1212 struct objfile;
1213 struct obj_section;
1214 struct minimal_symbol;
1215 struct regcache;
1216 struct reggroup;
1217 struct regset;
1218 struct disassemble_info;
1219 struct target_ops;
1220 struct obstack;
1221 struct bp_target_info;
1222 struct target_desc;
1223 struct objfile;
1224 struct symbol;
1225 struct displaced_step_closure;
1226 struct core_regset_section;
1227 struct syscall;
1228 struct agent_expr;
1229 struct axs_value;
1230 struct stap_parse_info;
1231 struct parser_state;
1232 struct ravenscar_arch_ops;
1233 struct elf_internal_linux_prpsinfo;
1234 struct mem_range;
1235 struct syscalls_info;
1236
1237 /* The architecture associated with the inferior through the
1238 connection to the target.
1239
1240 The architecture vector provides some information that is really a
1241 property of the inferior, accessed through a particular target:
1242 ptrace operations; the layout of certain RSP packets; the solib_ops
1243 vector; etc. To differentiate architecture accesses to
1244 per-inferior/target properties from
1245 per-thread/per-frame/per-objfile properties, accesses to
1246 per-inferior/target properties should be made through this
1247 gdbarch. */
1248
1249 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1250 extern struct gdbarch *target_gdbarch (void);
1251
1252 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1253 gdbarch method. */
1254
1255 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1256 (struct objfile *objfile, void *cb_data);
1257
1258 /* Callback type for regset section iterators. The callback usually
1259 invokes the REGSET's supply or collect method, to which it must
1260 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1261 section name, and HUMAN_NAME is used for diagnostic messages.
1262 CB_DATA should have been passed unchanged through the iterator. */
1263
1264 typedef void (iterate_over_regset_sections_cb)
1265 (const char *sect_name, int size, const struct regset *regset,
1266 const char *human_name, void *cb_data);
1267 EOF
1268
1269 # function typedef's
1270 printf "\n"
1271 printf "\n"
1272 printf "/* The following are pre-initialized by GDBARCH. */\n"
1273 function_list | while do_read
1274 do
1275 if class_is_info_p
1276 then
1277 printf "\n"
1278 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1279 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1280 fi
1281 done
1282
1283 # function typedef's
1284 printf "\n"
1285 printf "\n"
1286 printf "/* The following are initialized by the target dependent code. */\n"
1287 function_list | while do_read
1288 do
1289 if [ -n "${comment}" ]
1290 then
1291 echo "${comment}" | sed \
1292 -e '2 s,#,/*,' \
1293 -e '3,$ s,#, ,' \
1294 -e '$ s,$, */,'
1295 fi
1296
1297 if class_is_predicate_p
1298 then
1299 printf "\n"
1300 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1301 fi
1302 if class_is_variable_p
1303 then
1304 printf "\n"
1305 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1306 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1307 fi
1308 if class_is_function_p
1309 then
1310 printf "\n"
1311 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1312 then
1313 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1314 elif class_is_multiarch_p
1315 then
1316 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1317 else
1318 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1319 fi
1320 if [ "x${formal}" = "xvoid" ]
1321 then
1322 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1323 else
1324 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1325 fi
1326 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1327 fi
1328 done
1329
1330 # close it off
1331 cat <<EOF
1332
1333 /* Definition for an unknown syscall, used basically in error-cases. */
1334 #define UNKNOWN_SYSCALL (-1)
1335
1336 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1337
1338
1339 /* Mechanism for co-ordinating the selection of a specific
1340 architecture.
1341
1342 GDB targets (*-tdep.c) can register an interest in a specific
1343 architecture. Other GDB components can register a need to maintain
1344 per-architecture data.
1345
1346 The mechanisms below ensures that there is only a loose connection
1347 between the set-architecture command and the various GDB
1348 components. Each component can independently register their need
1349 to maintain architecture specific data with gdbarch.
1350
1351 Pragmatics:
1352
1353 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1354 didn't scale.
1355
1356 The more traditional mega-struct containing architecture specific
1357 data for all the various GDB components was also considered. Since
1358 GDB is built from a variable number of (fairly independent)
1359 components it was determined that the global aproach was not
1360 applicable. */
1361
1362
1363 /* Register a new architectural family with GDB.
1364
1365 Register support for the specified ARCHITECTURE with GDB. When
1366 gdbarch determines that the specified architecture has been
1367 selected, the corresponding INIT function is called.
1368
1369 --
1370
1371 The INIT function takes two parameters: INFO which contains the
1372 information available to gdbarch about the (possibly new)
1373 architecture; ARCHES which is a list of the previously created
1374 \`\`struct gdbarch'' for this architecture.
1375
1376 The INFO parameter is, as far as possible, be pre-initialized with
1377 information obtained from INFO.ABFD or the global defaults.
1378
1379 The ARCHES parameter is a linked list (sorted most recently used)
1380 of all the previously created architures for this architecture
1381 family. The (possibly NULL) ARCHES->gdbarch can used to access
1382 values from the previously selected architecture for this
1383 architecture family.
1384
1385 The INIT function shall return any of: NULL - indicating that it
1386 doesn't recognize the selected architecture; an existing \`\`struct
1387 gdbarch'' from the ARCHES list - indicating that the new
1388 architecture is just a synonym for an earlier architecture (see
1389 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1390 - that describes the selected architecture (see gdbarch_alloc()).
1391
1392 The DUMP_TDEP function shall print out all target specific values.
1393 Care should be taken to ensure that the function works in both the
1394 multi-arch and non- multi-arch cases. */
1395
1396 struct gdbarch_list
1397 {
1398 struct gdbarch *gdbarch;
1399 struct gdbarch_list *next;
1400 };
1401
1402 struct gdbarch_info
1403 {
1404 /* Use default: NULL (ZERO). */
1405 const struct bfd_arch_info *bfd_arch_info;
1406
1407 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1408 enum bfd_endian byte_order;
1409
1410 enum bfd_endian byte_order_for_code;
1411
1412 /* Use default: NULL (ZERO). */
1413 bfd *abfd;
1414
1415 /* Use default: NULL (ZERO). */
1416 struct gdbarch_tdep_info *tdep_info;
1417
1418 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1419 enum gdb_osabi osabi;
1420
1421 /* Use default: NULL (ZERO). */
1422 const struct target_desc *target_desc;
1423 };
1424
1425 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1426 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1427
1428 /* DEPRECATED - use gdbarch_register() */
1429 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1430
1431 extern void gdbarch_register (enum bfd_architecture architecture,
1432 gdbarch_init_ftype *,
1433 gdbarch_dump_tdep_ftype *);
1434
1435
1436 /* Return a freshly allocated, NULL terminated, array of the valid
1437 architecture names. Since architectures are registered during the
1438 _initialize phase this function only returns useful information
1439 once initialization has been completed. */
1440
1441 extern const char **gdbarch_printable_names (void);
1442
1443
1444 /* Helper function. Search the list of ARCHES for a GDBARCH that
1445 matches the information provided by INFO. */
1446
1447 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1448
1449
1450 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1451 basic initialization using values obtained from the INFO and TDEP
1452 parameters. set_gdbarch_*() functions are called to complete the
1453 initialization of the object. */
1454
1455 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1456
1457
1458 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1459 It is assumed that the caller freeds the \`\`struct
1460 gdbarch_tdep''. */
1461
1462 extern void gdbarch_free (struct gdbarch *);
1463
1464
1465 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1466 obstack. The memory is freed when the corresponding architecture
1467 is also freed. */
1468
1469 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1470 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1471 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1472
1473
1474 /* Helper function. Force an update of the current architecture.
1475
1476 The actual architecture selected is determined by INFO, \`\`(gdb) set
1477 architecture'' et.al., the existing architecture and BFD's default
1478 architecture. INFO should be initialized to zero and then selected
1479 fields should be updated.
1480
1481 Returns non-zero if the update succeeds. */
1482
1483 extern int gdbarch_update_p (struct gdbarch_info info);
1484
1485
1486 /* Helper function. Find an architecture matching info.
1487
1488 INFO should be initialized using gdbarch_info_init, relevant fields
1489 set, and then finished using gdbarch_info_fill.
1490
1491 Returns the corresponding architecture, or NULL if no matching
1492 architecture was found. */
1493
1494 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1495
1496
1497 /* Helper function. Set the target gdbarch to "gdbarch". */
1498
1499 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1500
1501
1502 /* Register per-architecture data-pointer.
1503
1504 Reserve space for a per-architecture data-pointer. An identifier
1505 for the reserved data-pointer is returned. That identifer should
1506 be saved in a local static variable.
1507
1508 Memory for the per-architecture data shall be allocated using
1509 gdbarch_obstack_zalloc. That memory will be deleted when the
1510 corresponding architecture object is deleted.
1511
1512 When a previously created architecture is re-selected, the
1513 per-architecture data-pointer for that previous architecture is
1514 restored. INIT() is not re-called.
1515
1516 Multiple registrarants for any architecture are allowed (and
1517 strongly encouraged). */
1518
1519 struct gdbarch_data;
1520
1521 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1522 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1523 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1524 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1525 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1526 struct gdbarch_data *data,
1527 void *pointer);
1528
1529 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1530
1531
1532 /* Set the dynamic target-system-dependent parameters (architecture,
1533 byte-order, ...) using information found in the BFD. */
1534
1535 extern void set_gdbarch_from_file (bfd *);
1536
1537
1538 /* Initialize the current architecture to the "first" one we find on
1539 our list. */
1540
1541 extern void initialize_current_architecture (void);
1542
1543 /* gdbarch trace variable */
1544 extern unsigned int gdbarch_debug;
1545
1546 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1547
1548 #endif
1549 EOF
1550 exec 1>&2
1551 #../move-if-change new-gdbarch.h gdbarch.h
1552 compare_new gdbarch.h
1553
1554
1555 #
1556 # C file
1557 #
1558
1559 exec > new-gdbarch.c
1560 copyright
1561 cat <<EOF
1562
1563 #include "defs.h"
1564 #include "arch-utils.h"
1565
1566 #include "gdbcmd.h"
1567 #include "inferior.h"
1568 #include "symcat.h"
1569
1570 #include "floatformat.h"
1571 #include "reggroups.h"
1572 #include "osabi.h"
1573 #include "gdb_obstack.h"
1574 #include "observer.h"
1575 #include "regcache.h"
1576 #include "objfiles.h"
1577
1578 /* Static function declarations */
1579
1580 static void alloc_gdbarch_data (struct gdbarch *);
1581
1582 /* Non-zero if we want to trace architecture code. */
1583
1584 #ifndef GDBARCH_DEBUG
1585 #define GDBARCH_DEBUG 0
1586 #endif
1587 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1588 static void
1589 show_gdbarch_debug (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c, const char *value)
1591 {
1592 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1593 }
1594
1595 static const char *
1596 pformat (const struct floatformat **format)
1597 {
1598 if (format == NULL)
1599 return "(null)";
1600 else
1601 /* Just print out one of them - this is only for diagnostics. */
1602 return format[0]->name;
1603 }
1604
1605 static const char *
1606 pstring (const char *string)
1607 {
1608 if (string == NULL)
1609 return "(null)";
1610 return string;
1611 }
1612
1613 /* Helper function to print a list of strings, represented as "const
1614 char *const *". The list is printed comma-separated. */
1615
1616 static char *
1617 pstring_list (const char *const *list)
1618 {
1619 static char ret[100];
1620 const char *const *p;
1621 size_t offset = 0;
1622
1623 if (list == NULL)
1624 return "(null)";
1625
1626 ret[0] = '\0';
1627 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1628 {
1629 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1630 offset += 2 + s;
1631 }
1632
1633 if (offset > 0)
1634 {
1635 gdb_assert (offset - 2 < sizeof (ret));
1636 ret[offset - 2] = '\0';
1637 }
1638
1639 return ret;
1640 }
1641
1642 EOF
1643
1644 # gdbarch open the gdbarch object
1645 printf "\n"
1646 printf "/* Maintain the struct gdbarch object. */\n"
1647 printf "\n"
1648 printf "struct gdbarch\n"
1649 printf "{\n"
1650 printf " /* Has this architecture been fully initialized? */\n"
1651 printf " int initialized_p;\n"
1652 printf "\n"
1653 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1654 printf " struct obstack *obstack;\n"
1655 printf "\n"
1656 printf " /* basic architectural information. */\n"
1657 function_list | while do_read
1658 do
1659 if class_is_info_p
1660 then
1661 printf " ${returntype} ${function};\n"
1662 fi
1663 done
1664 printf "\n"
1665 printf " /* target specific vector. */\n"
1666 printf " struct gdbarch_tdep *tdep;\n"
1667 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1668 printf "\n"
1669 printf " /* per-architecture data-pointers. */\n"
1670 printf " unsigned nr_data;\n"
1671 printf " void **data;\n"
1672 printf "\n"
1673 cat <<EOF
1674 /* Multi-arch values.
1675
1676 When extending this structure you must:
1677
1678 Add the field below.
1679
1680 Declare set/get functions and define the corresponding
1681 macro in gdbarch.h.
1682
1683 gdbarch_alloc(): If zero/NULL is not a suitable default,
1684 initialize the new field.
1685
1686 verify_gdbarch(): Confirm that the target updated the field
1687 correctly.
1688
1689 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1690 field is dumped out
1691
1692 get_gdbarch(): Implement the set/get functions (probably using
1693 the macro's as shortcuts).
1694
1695 */
1696
1697 EOF
1698 function_list | while do_read
1699 do
1700 if class_is_variable_p
1701 then
1702 printf " ${returntype} ${function};\n"
1703 elif class_is_function_p
1704 then
1705 printf " gdbarch_${function}_ftype *${function};\n"
1706 fi
1707 done
1708 printf "};\n"
1709
1710 # Create a new gdbarch struct
1711 cat <<EOF
1712
1713 /* Create a new \`\`struct gdbarch'' based on information provided by
1714 \`\`struct gdbarch_info''. */
1715 EOF
1716 printf "\n"
1717 cat <<EOF
1718 struct gdbarch *
1719 gdbarch_alloc (const struct gdbarch_info *info,
1720 struct gdbarch_tdep *tdep)
1721 {
1722 struct gdbarch *gdbarch;
1723
1724 /* Create an obstack for allocating all the per-architecture memory,
1725 then use that to allocate the architecture vector. */
1726 struct obstack *obstack = XNEW (struct obstack);
1727 obstack_init (obstack);
1728 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1729 memset (gdbarch, 0, sizeof (*gdbarch));
1730 gdbarch->obstack = obstack;
1731
1732 alloc_gdbarch_data (gdbarch);
1733
1734 gdbarch->tdep = tdep;
1735 EOF
1736 printf "\n"
1737 function_list | while do_read
1738 do
1739 if class_is_info_p
1740 then
1741 printf " gdbarch->${function} = info->${function};\n"
1742 fi
1743 done
1744 printf "\n"
1745 printf " /* Force the explicit initialization of these. */\n"
1746 function_list | while do_read
1747 do
1748 if class_is_function_p || class_is_variable_p
1749 then
1750 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1751 then
1752 printf " gdbarch->${function} = ${predefault};\n"
1753 fi
1754 fi
1755 done
1756 cat <<EOF
1757 /* gdbarch_alloc() */
1758
1759 return gdbarch;
1760 }
1761 EOF
1762
1763 # Free a gdbarch struct.
1764 printf "\n"
1765 printf "\n"
1766 cat <<EOF
1767 /* Allocate extra space using the per-architecture obstack. */
1768
1769 void *
1770 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1771 {
1772 void *data = obstack_alloc (arch->obstack, size);
1773
1774 memset (data, 0, size);
1775 return data;
1776 }
1777
1778
1779 /* Free a gdbarch struct. This should never happen in normal
1780 operation --- once you've created a gdbarch, you keep it around.
1781 However, if an architecture's init function encounters an error
1782 building the structure, it may need to clean up a partially
1783 constructed gdbarch. */
1784
1785 void
1786 gdbarch_free (struct gdbarch *arch)
1787 {
1788 struct obstack *obstack;
1789
1790 gdb_assert (arch != NULL);
1791 gdb_assert (!arch->initialized_p);
1792 obstack = arch->obstack;
1793 obstack_free (obstack, 0); /* Includes the ARCH. */
1794 xfree (obstack);
1795 }
1796 EOF
1797
1798 # verify a new architecture
1799 cat <<EOF
1800
1801
1802 /* Ensure that all values in a GDBARCH are reasonable. */
1803
1804 static void
1805 verify_gdbarch (struct gdbarch *gdbarch)
1806 {
1807 struct ui_file *log;
1808 struct cleanup *cleanups;
1809 long length;
1810 char *buf;
1811
1812 log = mem_fileopen ();
1813 cleanups = make_cleanup_ui_file_delete (log);
1814 /* fundamental */
1815 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1816 fprintf_unfiltered (log, "\n\tbyte-order");
1817 if (gdbarch->bfd_arch_info == NULL)
1818 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1819 /* Check those that need to be defined for the given multi-arch level. */
1820 EOF
1821 function_list | while do_read
1822 do
1823 if class_is_function_p || class_is_variable_p
1824 then
1825 if [ "x${invalid_p}" = "x0" ]
1826 then
1827 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1828 elif class_is_predicate_p
1829 then
1830 printf " /* Skip verify of ${function}, has predicate. */\n"
1831 # FIXME: See do_read for potential simplification
1832 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1833 then
1834 printf " if (${invalid_p})\n"
1835 printf " gdbarch->${function} = ${postdefault};\n"
1836 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1837 then
1838 printf " if (gdbarch->${function} == ${predefault})\n"
1839 printf " gdbarch->${function} = ${postdefault};\n"
1840 elif [ -n "${postdefault}" ]
1841 then
1842 printf " if (gdbarch->${function} == 0)\n"
1843 printf " gdbarch->${function} = ${postdefault};\n"
1844 elif [ -n "${invalid_p}" ]
1845 then
1846 printf " if (${invalid_p})\n"
1847 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1848 elif [ -n "${predefault}" ]
1849 then
1850 printf " if (gdbarch->${function} == ${predefault})\n"
1851 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1852 fi
1853 fi
1854 done
1855 cat <<EOF
1856 buf = ui_file_xstrdup (log, &length);
1857 make_cleanup (xfree, buf);
1858 if (length > 0)
1859 internal_error (__FILE__, __LINE__,
1860 _("verify_gdbarch: the following are invalid ...%s"),
1861 buf);
1862 do_cleanups (cleanups);
1863 }
1864 EOF
1865
1866 # dump the structure
1867 printf "\n"
1868 printf "\n"
1869 cat <<EOF
1870 /* Print out the details of the current architecture. */
1871
1872 void
1873 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1874 {
1875 const char *gdb_nm_file = "<not-defined>";
1876
1877 #if defined (GDB_NM_FILE)
1878 gdb_nm_file = GDB_NM_FILE;
1879 #endif
1880 fprintf_unfiltered (file,
1881 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1882 gdb_nm_file);
1883 EOF
1884 function_list | sort -t: -k 3 | while do_read
1885 do
1886 # First the predicate
1887 if class_is_predicate_p
1888 then
1889 printf " fprintf_unfiltered (file,\n"
1890 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1891 printf " gdbarch_${function}_p (gdbarch));\n"
1892 fi
1893 # Print the corresponding value.
1894 if class_is_function_p
1895 then
1896 printf " fprintf_unfiltered (file,\n"
1897 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1898 printf " host_address_to_string (gdbarch->${function}));\n"
1899 else
1900 # It is a variable
1901 case "${print}:${returntype}" in
1902 :CORE_ADDR )
1903 fmt="%s"
1904 print="core_addr_to_string_nz (gdbarch->${function})"
1905 ;;
1906 :* )
1907 fmt="%s"
1908 print="plongest (gdbarch->${function})"
1909 ;;
1910 * )
1911 fmt="%s"
1912 ;;
1913 esac
1914 printf " fprintf_unfiltered (file,\n"
1915 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1916 printf " ${print});\n"
1917 fi
1918 done
1919 cat <<EOF
1920 if (gdbarch->dump_tdep != NULL)
1921 gdbarch->dump_tdep (gdbarch, file);
1922 }
1923 EOF
1924
1925
1926 # GET/SET
1927 printf "\n"
1928 cat <<EOF
1929 struct gdbarch_tdep *
1930 gdbarch_tdep (struct gdbarch *gdbarch)
1931 {
1932 if (gdbarch_debug >= 2)
1933 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1934 return gdbarch->tdep;
1935 }
1936 EOF
1937 printf "\n"
1938 function_list | while do_read
1939 do
1940 if class_is_predicate_p
1941 then
1942 printf "\n"
1943 printf "int\n"
1944 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1945 printf "{\n"
1946 printf " gdb_assert (gdbarch != NULL);\n"
1947 printf " return ${predicate};\n"
1948 printf "}\n"
1949 fi
1950 if class_is_function_p
1951 then
1952 printf "\n"
1953 printf "${returntype}\n"
1954 if [ "x${formal}" = "xvoid" ]
1955 then
1956 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1957 else
1958 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1959 fi
1960 printf "{\n"
1961 printf " gdb_assert (gdbarch != NULL);\n"
1962 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1963 if class_is_predicate_p && test -n "${predefault}"
1964 then
1965 # Allow a call to a function with a predicate.
1966 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1967 fi
1968 printf " if (gdbarch_debug >= 2)\n"
1969 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1970 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1971 then
1972 if class_is_multiarch_p
1973 then
1974 params="gdbarch"
1975 else
1976 params=""
1977 fi
1978 else
1979 if class_is_multiarch_p
1980 then
1981 params="gdbarch, ${actual}"
1982 else
1983 params="${actual}"
1984 fi
1985 fi
1986 if [ "x${returntype}" = "xvoid" ]
1987 then
1988 printf " gdbarch->${function} (${params});\n"
1989 else
1990 printf " return gdbarch->${function} (${params});\n"
1991 fi
1992 printf "}\n"
1993 printf "\n"
1994 printf "void\n"
1995 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1996 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1997 printf "{\n"
1998 printf " gdbarch->${function} = ${function};\n"
1999 printf "}\n"
2000 elif class_is_variable_p
2001 then
2002 printf "\n"
2003 printf "${returntype}\n"
2004 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2005 printf "{\n"
2006 printf " gdb_assert (gdbarch != NULL);\n"
2007 if [ "x${invalid_p}" = "x0" ]
2008 then
2009 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2010 elif [ -n "${invalid_p}" ]
2011 then
2012 printf " /* Check variable is valid. */\n"
2013 printf " gdb_assert (!(${invalid_p}));\n"
2014 elif [ -n "${predefault}" ]
2015 then
2016 printf " /* Check variable changed from pre-default. */\n"
2017 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2018 fi
2019 printf " if (gdbarch_debug >= 2)\n"
2020 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2021 printf " return gdbarch->${function};\n"
2022 printf "}\n"
2023 printf "\n"
2024 printf "void\n"
2025 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2026 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2027 printf "{\n"
2028 printf " gdbarch->${function} = ${function};\n"
2029 printf "}\n"
2030 elif class_is_info_p
2031 then
2032 printf "\n"
2033 printf "${returntype}\n"
2034 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2035 printf "{\n"
2036 printf " gdb_assert (gdbarch != NULL);\n"
2037 printf " if (gdbarch_debug >= 2)\n"
2038 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2039 printf " return gdbarch->${function};\n"
2040 printf "}\n"
2041 fi
2042 done
2043
2044 # All the trailing guff
2045 cat <<EOF
2046
2047
2048 /* Keep a registry of per-architecture data-pointers required by GDB
2049 modules. */
2050
2051 struct gdbarch_data
2052 {
2053 unsigned index;
2054 int init_p;
2055 gdbarch_data_pre_init_ftype *pre_init;
2056 gdbarch_data_post_init_ftype *post_init;
2057 };
2058
2059 struct gdbarch_data_registration
2060 {
2061 struct gdbarch_data *data;
2062 struct gdbarch_data_registration *next;
2063 };
2064
2065 struct gdbarch_data_registry
2066 {
2067 unsigned nr;
2068 struct gdbarch_data_registration *registrations;
2069 };
2070
2071 struct gdbarch_data_registry gdbarch_data_registry =
2072 {
2073 0, NULL,
2074 };
2075
2076 static struct gdbarch_data *
2077 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2078 gdbarch_data_post_init_ftype *post_init)
2079 {
2080 struct gdbarch_data_registration **curr;
2081
2082 /* Append the new registration. */
2083 for (curr = &gdbarch_data_registry.registrations;
2084 (*curr) != NULL;
2085 curr = &(*curr)->next);
2086 (*curr) = XNEW (struct gdbarch_data_registration);
2087 (*curr)->next = NULL;
2088 (*curr)->data = XNEW (struct gdbarch_data);
2089 (*curr)->data->index = gdbarch_data_registry.nr++;
2090 (*curr)->data->pre_init = pre_init;
2091 (*curr)->data->post_init = post_init;
2092 (*curr)->data->init_p = 1;
2093 return (*curr)->data;
2094 }
2095
2096 struct gdbarch_data *
2097 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2098 {
2099 return gdbarch_data_register (pre_init, NULL);
2100 }
2101
2102 struct gdbarch_data *
2103 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2104 {
2105 return gdbarch_data_register (NULL, post_init);
2106 }
2107
2108 /* Create/delete the gdbarch data vector. */
2109
2110 static void
2111 alloc_gdbarch_data (struct gdbarch *gdbarch)
2112 {
2113 gdb_assert (gdbarch->data == NULL);
2114 gdbarch->nr_data = gdbarch_data_registry.nr;
2115 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2116 }
2117
2118 /* Initialize the current value of the specified per-architecture
2119 data-pointer. */
2120
2121 void
2122 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2123 struct gdbarch_data *data,
2124 void *pointer)
2125 {
2126 gdb_assert (data->index < gdbarch->nr_data);
2127 gdb_assert (gdbarch->data[data->index] == NULL);
2128 gdb_assert (data->pre_init == NULL);
2129 gdbarch->data[data->index] = pointer;
2130 }
2131
2132 /* Return the current value of the specified per-architecture
2133 data-pointer. */
2134
2135 void *
2136 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2137 {
2138 gdb_assert (data->index < gdbarch->nr_data);
2139 if (gdbarch->data[data->index] == NULL)
2140 {
2141 /* The data-pointer isn't initialized, call init() to get a
2142 value. */
2143 if (data->pre_init != NULL)
2144 /* Mid architecture creation: pass just the obstack, and not
2145 the entire architecture, as that way it isn't possible for
2146 pre-init code to refer to undefined architecture
2147 fields. */
2148 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2149 else if (gdbarch->initialized_p
2150 && data->post_init != NULL)
2151 /* Post architecture creation: pass the entire architecture
2152 (as all fields are valid), but be careful to also detect
2153 recursive references. */
2154 {
2155 gdb_assert (data->init_p);
2156 data->init_p = 0;
2157 gdbarch->data[data->index] = data->post_init (gdbarch);
2158 data->init_p = 1;
2159 }
2160 else
2161 /* The architecture initialization hasn't completed - punt -
2162 hope that the caller knows what they are doing. Once
2163 deprecated_set_gdbarch_data has been initialized, this can be
2164 changed to an internal error. */
2165 return NULL;
2166 gdb_assert (gdbarch->data[data->index] != NULL);
2167 }
2168 return gdbarch->data[data->index];
2169 }
2170
2171
2172 /* Keep a registry of the architectures known by GDB. */
2173
2174 struct gdbarch_registration
2175 {
2176 enum bfd_architecture bfd_architecture;
2177 gdbarch_init_ftype *init;
2178 gdbarch_dump_tdep_ftype *dump_tdep;
2179 struct gdbarch_list *arches;
2180 struct gdbarch_registration *next;
2181 };
2182
2183 static struct gdbarch_registration *gdbarch_registry = NULL;
2184
2185 static void
2186 append_name (const char ***buf, int *nr, const char *name)
2187 {
2188 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2189 (*buf)[*nr] = name;
2190 *nr += 1;
2191 }
2192
2193 const char **
2194 gdbarch_printable_names (void)
2195 {
2196 /* Accumulate a list of names based on the registed list of
2197 architectures. */
2198 int nr_arches = 0;
2199 const char **arches = NULL;
2200 struct gdbarch_registration *rego;
2201
2202 for (rego = gdbarch_registry;
2203 rego != NULL;
2204 rego = rego->next)
2205 {
2206 const struct bfd_arch_info *ap;
2207 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2208 if (ap == NULL)
2209 internal_error (__FILE__, __LINE__,
2210 _("gdbarch_architecture_names: multi-arch unknown"));
2211 do
2212 {
2213 append_name (&arches, &nr_arches, ap->printable_name);
2214 ap = ap->next;
2215 }
2216 while (ap != NULL);
2217 }
2218 append_name (&arches, &nr_arches, NULL);
2219 return arches;
2220 }
2221
2222
2223 void
2224 gdbarch_register (enum bfd_architecture bfd_architecture,
2225 gdbarch_init_ftype *init,
2226 gdbarch_dump_tdep_ftype *dump_tdep)
2227 {
2228 struct gdbarch_registration **curr;
2229 const struct bfd_arch_info *bfd_arch_info;
2230
2231 /* Check that BFD recognizes this architecture */
2232 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2233 if (bfd_arch_info == NULL)
2234 {
2235 internal_error (__FILE__, __LINE__,
2236 _("gdbarch: Attempt to register "
2237 "unknown architecture (%d)"),
2238 bfd_architecture);
2239 }
2240 /* Check that we haven't seen this architecture before. */
2241 for (curr = &gdbarch_registry;
2242 (*curr) != NULL;
2243 curr = &(*curr)->next)
2244 {
2245 if (bfd_architecture == (*curr)->bfd_architecture)
2246 internal_error (__FILE__, __LINE__,
2247 _("gdbarch: Duplicate registration "
2248 "of architecture (%s)"),
2249 bfd_arch_info->printable_name);
2250 }
2251 /* log it */
2252 if (gdbarch_debug)
2253 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2254 bfd_arch_info->printable_name,
2255 host_address_to_string (init));
2256 /* Append it */
2257 (*curr) = XNEW (struct gdbarch_registration);
2258 (*curr)->bfd_architecture = bfd_architecture;
2259 (*curr)->init = init;
2260 (*curr)->dump_tdep = dump_tdep;
2261 (*curr)->arches = NULL;
2262 (*curr)->next = NULL;
2263 }
2264
2265 void
2266 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2267 gdbarch_init_ftype *init)
2268 {
2269 gdbarch_register (bfd_architecture, init, NULL);
2270 }
2271
2272
2273 /* Look for an architecture using gdbarch_info. */
2274
2275 struct gdbarch_list *
2276 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2277 const struct gdbarch_info *info)
2278 {
2279 for (; arches != NULL; arches = arches->next)
2280 {
2281 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2282 continue;
2283 if (info->byte_order != arches->gdbarch->byte_order)
2284 continue;
2285 if (info->osabi != arches->gdbarch->osabi)
2286 continue;
2287 if (info->target_desc != arches->gdbarch->target_desc)
2288 continue;
2289 return arches;
2290 }
2291 return NULL;
2292 }
2293
2294
2295 /* Find an architecture that matches the specified INFO. Create a new
2296 architecture if needed. Return that new architecture. */
2297
2298 struct gdbarch *
2299 gdbarch_find_by_info (struct gdbarch_info info)
2300 {
2301 struct gdbarch *new_gdbarch;
2302 struct gdbarch_registration *rego;
2303
2304 /* Fill in missing parts of the INFO struct using a number of
2305 sources: "set ..."; INFOabfd supplied; and the global
2306 defaults. */
2307 gdbarch_info_fill (&info);
2308
2309 /* Must have found some sort of architecture. */
2310 gdb_assert (info.bfd_arch_info != NULL);
2311
2312 if (gdbarch_debug)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
2315 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2316 (info.bfd_arch_info != NULL
2317 ? info.bfd_arch_info->printable_name
2318 : "(null)"));
2319 fprintf_unfiltered (gdb_stdlog,
2320 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2321 info.byte_order,
2322 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2323 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2324 : "default"));
2325 fprintf_unfiltered (gdb_stdlog,
2326 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2327 info.osabi, gdbarch_osabi_name (info.osabi));
2328 fprintf_unfiltered (gdb_stdlog,
2329 "gdbarch_find_by_info: info.abfd %s\n",
2330 host_address_to_string (info.abfd));
2331 fprintf_unfiltered (gdb_stdlog,
2332 "gdbarch_find_by_info: info.tdep_info %s\n",
2333 host_address_to_string (info.tdep_info));
2334 }
2335
2336 /* Find the tdep code that knows about this architecture. */
2337 for (rego = gdbarch_registry;
2338 rego != NULL;
2339 rego = rego->next)
2340 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2341 break;
2342 if (rego == NULL)
2343 {
2344 if (gdbarch_debug)
2345 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2346 "No matching architecture\n");
2347 return 0;
2348 }
2349
2350 /* Ask the tdep code for an architecture that matches "info". */
2351 new_gdbarch = rego->init (info, rego->arches);
2352
2353 /* Did the tdep code like it? No. Reject the change and revert to
2354 the old architecture. */
2355 if (new_gdbarch == NULL)
2356 {
2357 if (gdbarch_debug)
2358 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2359 "Target rejected architecture\n");
2360 return NULL;
2361 }
2362
2363 /* Is this a pre-existing architecture (as determined by already
2364 being initialized)? Move it to the front of the architecture
2365 list (keeping the list sorted Most Recently Used). */
2366 if (new_gdbarch->initialized_p)
2367 {
2368 struct gdbarch_list **list;
2369 struct gdbarch_list *this;
2370 if (gdbarch_debug)
2371 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2372 "Previous architecture %s (%s) selected\n",
2373 host_address_to_string (new_gdbarch),
2374 new_gdbarch->bfd_arch_info->printable_name);
2375 /* Find the existing arch in the list. */
2376 for (list = &rego->arches;
2377 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2378 list = &(*list)->next);
2379 /* It had better be in the list of architectures. */
2380 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2381 /* Unlink THIS. */
2382 this = (*list);
2383 (*list) = this->next;
2384 /* Insert THIS at the front. */
2385 this->next = rego->arches;
2386 rego->arches = this;
2387 /* Return it. */
2388 return new_gdbarch;
2389 }
2390
2391 /* It's a new architecture. */
2392 if (gdbarch_debug)
2393 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2394 "New architecture %s (%s) selected\n",
2395 host_address_to_string (new_gdbarch),
2396 new_gdbarch->bfd_arch_info->printable_name);
2397
2398 /* Insert the new architecture into the front of the architecture
2399 list (keep the list sorted Most Recently Used). */
2400 {
2401 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2402 this->next = rego->arches;
2403 this->gdbarch = new_gdbarch;
2404 rego->arches = this;
2405 }
2406
2407 /* Check that the newly installed architecture is valid. Plug in
2408 any post init values. */
2409 new_gdbarch->dump_tdep = rego->dump_tdep;
2410 verify_gdbarch (new_gdbarch);
2411 new_gdbarch->initialized_p = 1;
2412
2413 if (gdbarch_debug)
2414 gdbarch_dump (new_gdbarch, gdb_stdlog);
2415
2416 return new_gdbarch;
2417 }
2418
2419 /* Make the specified architecture current. */
2420
2421 void
2422 set_target_gdbarch (struct gdbarch *new_gdbarch)
2423 {
2424 gdb_assert (new_gdbarch != NULL);
2425 gdb_assert (new_gdbarch->initialized_p);
2426 current_inferior ()->gdbarch = new_gdbarch;
2427 observer_notify_architecture_changed (new_gdbarch);
2428 registers_changed ();
2429 }
2430
2431 /* Return the current inferior's arch. */
2432
2433 struct gdbarch *
2434 target_gdbarch (void)
2435 {
2436 return current_inferior ()->gdbarch;
2437 }
2438
2439 extern void _initialize_gdbarch (void);
2440
2441 void
2442 _initialize_gdbarch (void)
2443 {
2444 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2445 Set architecture debugging."), _("\\
2446 Show architecture debugging."), _("\\
2447 When non-zero, architecture debugging is enabled."),
2448 NULL,
2449 show_gdbarch_debug,
2450 &setdebuglist, &showdebuglist);
2451 }
2452 EOF
2453
2454 # close things off
2455 exec 1>&2
2456 #../move-if-change new-gdbarch.c gdbarch.c
2457 compare_new gdbarch.c
This page took 0.090797 seconds and 5 git commands to generate.