* config/i386/tm-linux.h (I386_LINUX_ORIG_EAX_REGNUM): Define in
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault="0"
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
476 #
477 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
478 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
479 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
480 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
481 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
482 f:2:POP_FRAME:void:pop_frame:void:-:::0
483 #
484 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
485 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
486 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
487 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
488 #
489 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
490 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
491 #
492 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
493 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
494 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
495 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
496 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
497 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
498 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
499 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
500 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
501 #
502 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
503 #
504 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
505 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
506 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
507 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
508 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
509 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
510 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
511 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
512 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
513 #
514 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
515 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
516 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
517 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
518 v:2:PARM_BOUNDARY:int:parm_boundary
519 #
520 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
521 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
522 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
523 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
524 # On some machines there are bits in addresses which are not really
525 # part of the address, but are used by the kernel, the hardware, etc.
526 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
527 # we get a "real" address such as one would find in a symbol table.
528 # This is used only for addresses of instructions, and even then I'm
529 # not sure it's used in all contexts. It exists to deal with there
530 # being a few stray bits in the PC which would mislead us, not as some
531 # sort of generic thing to handle alignment or segmentation (it's
532 # possible it should be in TARGET_READ_PC instead).
533 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
534 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
535 # the target needs software single step. An ISA method to implement it.
536 #
537 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
538 # using the breakpoint system instead of blatting memory directly (as with rs6000).
539 #
540 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
541 # single step. If not, then implement single step using breakpoints.
542 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
543 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
544 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
545 # For SVR4 shared libraries, each call goes through a small piece of
546 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
547 # to nonzero if we are current stopped in one of these.
548 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
549 # A target might have problems with watchpoints as soon as the stack
550 # frame of the current function has been destroyed. This mostly happens
551 # as the first action in a funtion's epilogue. in_function_epilogue_p()
552 # is defined to return a non-zero value if either the given addr is one
553 # instruction after the stack destroying instruction up to the trailing
554 # return instruction or if we can figure out that the stack frame has
555 # already been invalidated regardless of the value of addr. Targets
556 # which don't suffer from that problem could just let this functionality
557 # untouched.
558 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
559 EOF
560 }
561
562 #
563 # The .log file
564 #
565 exec > new-gdbarch.log
566 function_list | while do_read
567 do
568 cat <<EOF
569 ${class} ${macro}(${actual})
570 ${returntype} ${function} ($formal)${attrib}
571 EOF
572 for r in ${read}
573 do
574 eval echo \"\ \ \ \ ${r}=\${${r}}\"
575 done
576 # #fallbackdefault=${fallbackdefault}
577 # #valid_p=${valid_p}
578 #EOF
579 if class_is_predicate_p && fallback_default_p
580 then
581 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
582 kill $$
583 exit 1
584 fi
585 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
586 then
587 echo "Error: postdefault is useless when invalid_p=0" 1>&2
588 kill $$
589 exit 1
590 fi
591 echo ""
592 done
593
594 exec 1>&2
595 compare_new gdbarch.log
596
597
598 copyright ()
599 {
600 cat <<EOF
601 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
602
603 /* Dynamic architecture support for GDB, the GNU debugger.
604 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
605
606 This file is part of GDB.
607
608 This program is free software; you can redistribute it and/or modify
609 it under the terms of the GNU General Public License as published by
610 the Free Software Foundation; either version 2 of the License, or
611 (at your option) any later version.
612
613 This program is distributed in the hope that it will be useful,
614 but WITHOUT ANY WARRANTY; without even the implied warranty of
615 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
616 GNU General Public License for more details.
617
618 You should have received a copy of the GNU General Public License
619 along with this program; if not, write to the Free Software
620 Foundation, Inc., 59 Temple Place - Suite 330,
621 Boston, MA 02111-1307, USA. */
622
623 /* This file was created with the aid of \`\`gdbarch.sh''.
624
625 The Bourne shell script \`\`gdbarch.sh'' creates the files
626 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
627 against the existing \`\`gdbarch.[hc]''. Any differences found
628 being reported.
629
630 If editing this file, please also run gdbarch.sh and merge any
631 changes into that script. Conversely, when making sweeping changes
632 to this file, modifying gdbarch.sh and using its output may prove
633 easier. */
634
635 EOF
636 }
637
638 #
639 # The .h file
640 #
641
642 exec > new-gdbarch.h
643 copyright
644 cat <<EOF
645 #ifndef GDBARCH_H
646 #define GDBARCH_H
647
648 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
649 #if !GDB_MULTI_ARCH
650 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
651 #endif
652
653 struct frame_info;
654 struct value;
655
656
657 extern struct gdbarch *current_gdbarch;
658
659
660 /* If any of the following are defined, the target wasn't correctly
661 converted. */
662
663 #if GDB_MULTI_ARCH
664 #if defined (EXTRA_FRAME_INFO)
665 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
666 #endif
667 #endif
668
669 #if GDB_MULTI_ARCH
670 #if defined (FRAME_FIND_SAVED_REGS)
671 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
672 #endif
673 #endif
674
675 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
676 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
677 #endif
678 EOF
679
680 # function typedef's
681 printf "\n"
682 printf "\n"
683 printf "/* The following are pre-initialized by GDBARCH. */\n"
684 function_list | while do_read
685 do
686 if class_is_info_p
687 then
688 printf "\n"
689 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
690 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
691 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
692 printf "#error \"Non multi-arch definition of ${macro}\"\n"
693 printf "#endif\n"
694 printf "#if GDB_MULTI_ARCH\n"
695 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
696 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
697 printf "#endif\n"
698 printf "#endif\n"
699 fi
700 done
701
702 # function typedef's
703 printf "\n"
704 printf "\n"
705 printf "/* The following are initialized by the target dependent code. */\n"
706 function_list | while do_read
707 do
708 if [ -n "${comment}" ]
709 then
710 echo "${comment}" | sed \
711 -e '2 s,#,/*,' \
712 -e '3,$ s,#, ,' \
713 -e '$ s,$, */,'
714 fi
715 if class_is_multiarch_p
716 then
717 if class_is_predicate_p
718 then
719 printf "\n"
720 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
721 fi
722 else
723 if class_is_predicate_p
724 then
725 printf "\n"
726 printf "#if defined (${macro})\n"
727 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
728 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
729 printf "#if !defined (${macro}_P)\n"
730 printf "#define ${macro}_P() (1)\n"
731 printf "#endif\n"
732 printf "#endif\n"
733 printf "\n"
734 printf "/* Default predicate for non- multi-arch targets. */\n"
735 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
736 printf "#define ${macro}_P() (0)\n"
737 printf "#endif\n"
738 printf "\n"
739 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
740 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
741 printf "#error \"Non multi-arch definition of ${macro}\"\n"
742 printf "#endif\n"
743 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
744 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
745 printf "#endif\n"
746 fi
747 fi
748 if class_is_variable_p
749 then
750 if fallback_default_p || class_is_predicate_p
751 then
752 printf "\n"
753 printf "/* Default (value) for non- multi-arch platforms. */\n"
754 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
755 echo "#define ${macro} (${fallbackdefault})" \
756 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
757 printf "#endif\n"
758 fi
759 printf "\n"
760 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
761 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
762 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
763 printf "#error \"Non multi-arch definition of ${macro}\"\n"
764 printf "#endif\n"
765 printf "#if GDB_MULTI_ARCH\n"
766 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
767 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
768 printf "#endif\n"
769 printf "#endif\n"
770 fi
771 if class_is_function_p
772 then
773 if class_is_multiarch_p ; then :
774 elif fallback_default_p || class_is_predicate_p
775 then
776 printf "\n"
777 printf "/* Default (function) for non- multi-arch platforms. */\n"
778 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
779 if [ "x${fallbackdefault}" = "x0" ]
780 then
781 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
782 else
783 # FIXME: Should be passing current_gdbarch through!
784 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
785 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
786 fi
787 printf "#endif\n"
788 fi
789 printf "\n"
790 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
791 then
792 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
793 elif class_is_multiarch_p
794 then
795 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
796 else
797 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
798 fi
799 if [ "x${formal}" = "xvoid" ]
800 then
801 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
802 else
803 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
804 fi
805 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
806 if class_is_multiarch_p ; then :
807 else
808 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
809 printf "#error \"Non multi-arch definition of ${macro}\"\n"
810 printf "#endif\n"
811 printf "#if GDB_MULTI_ARCH\n"
812 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
813 if [ "x${actual}" = "x" ]
814 then
815 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
816 elif [ "x${actual}" = "x-" ]
817 then
818 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
819 else
820 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
821 fi
822 printf "#endif\n"
823 printf "#endif\n"
824 fi
825 fi
826 done
827
828 # close it off
829 cat <<EOF
830
831 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
832
833
834 /* Mechanism for co-ordinating the selection of a specific
835 architecture.
836
837 GDB targets (*-tdep.c) can register an interest in a specific
838 architecture. Other GDB components can register a need to maintain
839 per-architecture data.
840
841 The mechanisms below ensures that there is only a loose connection
842 between the set-architecture command and the various GDB
843 components. Each component can independently register their need
844 to maintain architecture specific data with gdbarch.
845
846 Pragmatics:
847
848 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
849 didn't scale.
850
851 The more traditional mega-struct containing architecture specific
852 data for all the various GDB components was also considered. Since
853 GDB is built from a variable number of (fairly independent)
854 components it was determined that the global aproach was not
855 applicable. */
856
857
858 /* Register a new architectural family with GDB.
859
860 Register support for the specified ARCHITECTURE with GDB. When
861 gdbarch determines that the specified architecture has been
862 selected, the corresponding INIT function is called.
863
864 --
865
866 The INIT function takes two parameters: INFO which contains the
867 information available to gdbarch about the (possibly new)
868 architecture; ARCHES which is a list of the previously created
869 \`\`struct gdbarch'' for this architecture.
870
871 The INIT function parameter INFO shall, as far as possible, be
872 pre-initialized with information obtained from INFO.ABFD or
873 previously selected architecture (if similar). INIT shall ensure
874 that the INFO.BYTE_ORDER is non-zero.
875
876 The INIT function shall return any of: NULL - indicating that it
877 doesn't recognize the selected architecture; an existing \`\`struct
878 gdbarch'' from the ARCHES list - indicating that the new
879 architecture is just a synonym for an earlier architecture (see
880 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
881 - that describes the selected architecture (see gdbarch_alloc()).
882
883 The DUMP_TDEP function shall print out all target specific values.
884 Care should be taken to ensure that the function works in both the
885 multi-arch and non- multi-arch cases. */
886
887 struct gdbarch_list
888 {
889 struct gdbarch *gdbarch;
890 struct gdbarch_list *next;
891 };
892
893 struct gdbarch_info
894 {
895 /* Use default: NULL (ZERO). */
896 const struct bfd_arch_info *bfd_arch_info;
897
898 /* Use default: 0 (ZERO). */
899 int byte_order;
900
901 /* Use default: NULL (ZERO). */
902 bfd *abfd;
903
904 /* Use default: NULL (ZERO). */
905 struct gdbarch_tdep_info *tdep_info;
906 };
907
908 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
909 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
910
911 /* DEPRECATED - use gdbarch_register() */
912 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
913
914 extern void gdbarch_register (enum bfd_architecture architecture,
915 gdbarch_init_ftype *,
916 gdbarch_dump_tdep_ftype *);
917
918
919 /* Return a freshly allocated, NULL terminated, array of the valid
920 architecture names. Since architectures are registered during the
921 _initialize phase this function only returns useful information
922 once initialization has been completed. */
923
924 extern const char **gdbarch_printable_names (void);
925
926
927 /* Helper function. Search the list of ARCHES for a GDBARCH that
928 matches the information provided by INFO. */
929
930 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
931
932
933 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
934 basic initialization using values obtained from the INFO andTDEP
935 parameters. set_gdbarch_*() functions are called to complete the
936 initialization of the object. */
937
938 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
939
940
941 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
942 It is assumed that the caller freeds the \`\`struct
943 gdbarch_tdep''. */
944
945 extern void gdbarch_free (struct gdbarch *);
946
947
948 /* Helper function. Force an update of the current architecture.
949
950 The actual architecture selected is determined by INFO, \`\`(gdb) set
951 architecture'' et.al., the existing architecture and BFD's default
952 architecture. INFO should be initialized to zero and then selected
953 fields should be updated.
954
955 Returns non-zero if the update succeeds */
956
957 extern int gdbarch_update_p (struct gdbarch_info info);
958
959
960
961 /* Register per-architecture data-pointer.
962
963 Reserve space for a per-architecture data-pointer. An identifier
964 for the reserved data-pointer is returned. That identifer should
965 be saved in a local static variable.
966
967 The per-architecture data-pointer can be initialized in one of two
968 ways: The value can be set explicitly using a call to
969 set_gdbarch_data(); the value can be set implicitly using the value
970 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
971 called after the basic architecture vector has been created.
972
973 When a previously created architecture is re-selected, the
974 per-architecture data-pointer for that previous architecture is
975 restored. INIT() is not called.
976
977 During initialization, multiple assignments of the data-pointer are
978 allowed, non-NULL values are deleted by calling FREE(). If the
979 architecture is deleted using gdbarch_free() all non-NULL data
980 pointers are also deleted using FREE().
981
982 Multiple registrarants for any architecture are allowed (and
983 strongly encouraged). */
984
985 struct gdbarch_data;
986
987 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
988 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
989 void *pointer);
990 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
991 gdbarch_data_free_ftype *free);
992 extern void set_gdbarch_data (struct gdbarch *gdbarch,
993 struct gdbarch_data *data,
994 void *pointer);
995
996 extern void *gdbarch_data (struct gdbarch_data*);
997
998
999 /* Register per-architecture memory region.
1000
1001 Provide a memory-region swap mechanism. Per-architecture memory
1002 region are created. These memory regions are swapped whenever the
1003 architecture is changed. For a new architecture, the memory region
1004 is initialized with zero (0) and the INIT function is called.
1005
1006 Memory regions are swapped / initialized in the order that they are
1007 registered. NULL DATA and/or INIT values can be specified.
1008
1009 New code should use register_gdbarch_data(). */
1010
1011 typedef void (gdbarch_swap_ftype) (void);
1012 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1013 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1014
1015
1016
1017 /* The target-system-dependent byte order is dynamic */
1018
1019 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1020 is selectable at runtime. The user can use the \`\`set endian''
1021 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1022 target_byte_order should be auto-detected (from the program image
1023 say). */
1024
1025 #if GDB_MULTI_ARCH
1026 /* Multi-arch GDB is always bi-endian. */
1027 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1028 #endif
1029
1030 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1031 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1032 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1033 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1034 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1035 #else
1036 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1037 #endif
1038 #endif
1039
1040 extern int target_byte_order;
1041 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1042 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1043 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1044 #undef TARGET_BYTE_ORDER
1045 #endif
1046 #ifndef TARGET_BYTE_ORDER
1047 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1048 #endif
1049
1050 extern int target_byte_order_auto;
1051 #ifndef TARGET_BYTE_ORDER_AUTO
1052 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1053 #endif
1054
1055
1056
1057 /* The target-system-dependent BFD architecture is dynamic */
1058
1059 extern int target_architecture_auto;
1060 #ifndef TARGET_ARCHITECTURE_AUTO
1061 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1062 #endif
1063
1064 extern const struct bfd_arch_info *target_architecture;
1065 #ifndef TARGET_ARCHITECTURE
1066 #define TARGET_ARCHITECTURE (target_architecture + 0)
1067 #endif
1068
1069
1070 /* The target-system-dependent disassembler is semi-dynamic */
1071
1072 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1073 unsigned int len, disassemble_info *info);
1074
1075 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1076 disassemble_info *info);
1077
1078 extern void dis_asm_print_address (bfd_vma addr,
1079 disassemble_info *info);
1080
1081 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1082 extern disassemble_info tm_print_insn_info;
1083 #ifndef TARGET_PRINT_INSN_INFO
1084 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1085 #endif
1086
1087
1088
1089 /* Set the dynamic target-system-dependent parameters (architecture,
1090 byte-order, ...) using information found in the BFD */
1091
1092 extern void set_gdbarch_from_file (bfd *);
1093
1094
1095 /* Initialize the current architecture to the "first" one we find on
1096 our list. */
1097
1098 extern void initialize_current_architecture (void);
1099
1100 /* For non-multiarched targets, do any initialization of the default
1101 gdbarch object necessary after the _initialize_MODULE functions
1102 have run. */
1103 extern void initialize_non_multiarch ();
1104
1105 /* gdbarch trace variable */
1106 extern int gdbarch_debug;
1107
1108 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1109
1110 #endif
1111 EOF
1112 exec 1>&2
1113 #../move-if-change new-gdbarch.h gdbarch.h
1114 compare_new gdbarch.h
1115
1116
1117 #
1118 # C file
1119 #
1120
1121 exec > new-gdbarch.c
1122 copyright
1123 cat <<EOF
1124
1125 #include "defs.h"
1126 #include "arch-utils.h"
1127
1128 #if GDB_MULTI_ARCH
1129 #include "gdbcmd.h"
1130 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1131 #else
1132 /* Just include everything in sight so that the every old definition
1133 of macro is visible. */
1134 #include "gdb_string.h"
1135 #include <ctype.h>
1136 #include "symtab.h"
1137 #include "frame.h"
1138 #include "inferior.h"
1139 #include "breakpoint.h"
1140 #include "gdb_wait.h"
1141 #include "gdbcore.h"
1142 #include "gdbcmd.h"
1143 #include "target.h"
1144 #include "gdbthread.h"
1145 #include "annotate.h"
1146 #include "symfile.h" /* for overlay functions */
1147 #include "value.h" /* For old tm.h/nm.h macros. */
1148 #endif
1149 #include "symcat.h"
1150
1151 #include "floatformat.h"
1152
1153 #include "gdb_assert.h"
1154 #include "gdb-events.h"
1155
1156 /* Static function declarations */
1157
1158 static void verify_gdbarch (struct gdbarch *gdbarch);
1159 static void alloc_gdbarch_data (struct gdbarch *);
1160 static void init_gdbarch_data (struct gdbarch *);
1161 static void free_gdbarch_data (struct gdbarch *);
1162 static void init_gdbarch_swap (struct gdbarch *);
1163 static void swapout_gdbarch_swap (struct gdbarch *);
1164 static void swapin_gdbarch_swap (struct gdbarch *);
1165
1166 /* Convenience macro for allocting typesafe memory. */
1167
1168 #ifndef XMALLOC
1169 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1170 #endif
1171
1172
1173 /* Non-zero if we want to trace architecture code. */
1174
1175 #ifndef GDBARCH_DEBUG
1176 #define GDBARCH_DEBUG 0
1177 #endif
1178 int gdbarch_debug = GDBARCH_DEBUG;
1179
1180 EOF
1181
1182 # gdbarch open the gdbarch object
1183 printf "\n"
1184 printf "/* Maintain the struct gdbarch object */\n"
1185 printf "\n"
1186 printf "struct gdbarch\n"
1187 printf "{\n"
1188 printf " /* basic architectural information */\n"
1189 function_list | while do_read
1190 do
1191 if class_is_info_p
1192 then
1193 printf " ${returntype} ${function};\n"
1194 fi
1195 done
1196 printf "\n"
1197 printf " /* target specific vector. */\n"
1198 printf " struct gdbarch_tdep *tdep;\n"
1199 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1200 printf "\n"
1201 printf " /* per-architecture data-pointers */\n"
1202 printf " unsigned nr_data;\n"
1203 printf " void **data;\n"
1204 printf "\n"
1205 printf " /* per-architecture swap-regions */\n"
1206 printf " struct gdbarch_swap *swap;\n"
1207 printf "\n"
1208 cat <<EOF
1209 /* Multi-arch values.
1210
1211 When extending this structure you must:
1212
1213 Add the field below.
1214
1215 Declare set/get functions and define the corresponding
1216 macro in gdbarch.h.
1217
1218 gdbarch_alloc(): If zero/NULL is not a suitable default,
1219 initialize the new field.
1220
1221 verify_gdbarch(): Confirm that the target updated the field
1222 correctly.
1223
1224 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1225 field is dumped out
1226
1227 \`\`startup_gdbarch()'': Append an initial value to the static
1228 variable (base values on the host's c-type system).
1229
1230 get_gdbarch(): Implement the set/get functions (probably using
1231 the macro's as shortcuts).
1232
1233 */
1234
1235 EOF
1236 function_list | while do_read
1237 do
1238 if class_is_variable_p
1239 then
1240 printf " ${returntype} ${function};\n"
1241 elif class_is_function_p
1242 then
1243 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1244 fi
1245 done
1246 printf "};\n"
1247
1248 # A pre-initialized vector
1249 printf "\n"
1250 printf "\n"
1251 cat <<EOF
1252 /* The default architecture uses host values (for want of a better
1253 choice). */
1254 EOF
1255 printf "\n"
1256 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1257 printf "\n"
1258 printf "struct gdbarch startup_gdbarch =\n"
1259 printf "{\n"
1260 printf " /* basic architecture information */\n"
1261 function_list | while do_read
1262 do
1263 if class_is_info_p
1264 then
1265 printf " ${staticdefault},\n"
1266 fi
1267 done
1268 cat <<EOF
1269 /* target specific vector and its dump routine */
1270 NULL, NULL,
1271 /*per-architecture data-pointers and swap regions */
1272 0, NULL, NULL,
1273 /* Multi-arch values */
1274 EOF
1275 function_list | while do_read
1276 do
1277 if class_is_function_p || class_is_variable_p
1278 then
1279 printf " ${staticdefault},\n"
1280 fi
1281 done
1282 cat <<EOF
1283 /* startup_gdbarch() */
1284 };
1285
1286 struct gdbarch *current_gdbarch = &startup_gdbarch;
1287
1288 /* Do any initialization needed for a non-multiarch configuration
1289 after the _initialize_MODULE functions have been run. */
1290 void
1291 initialize_non_multiarch ()
1292 {
1293 alloc_gdbarch_data (&startup_gdbarch);
1294 init_gdbarch_data (&startup_gdbarch);
1295 }
1296 EOF
1297
1298 # Create a new gdbarch struct
1299 printf "\n"
1300 printf "\n"
1301 cat <<EOF
1302 /* Create a new \`\`struct gdbarch'' based on information provided by
1303 \`\`struct gdbarch_info''. */
1304 EOF
1305 printf "\n"
1306 cat <<EOF
1307 struct gdbarch *
1308 gdbarch_alloc (const struct gdbarch_info *info,
1309 struct gdbarch_tdep *tdep)
1310 {
1311 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1312 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1313 the current local architecture and not the previous global
1314 architecture. This ensures that the new architectures initial
1315 values are not influenced by the previous architecture. Once
1316 everything is parameterised with gdbarch, this will go away. */
1317 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1318 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1319
1320 alloc_gdbarch_data (current_gdbarch);
1321
1322 current_gdbarch->tdep = tdep;
1323 EOF
1324 printf "\n"
1325 function_list | while do_read
1326 do
1327 if class_is_info_p
1328 then
1329 printf " current_gdbarch->${function} = info->${function};\n"
1330 fi
1331 done
1332 printf "\n"
1333 printf " /* Force the explicit initialization of these. */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_function_p || class_is_variable_p
1337 then
1338 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1339 then
1340 printf " current_gdbarch->${function} = ${predefault};\n"
1341 fi
1342 fi
1343 done
1344 cat <<EOF
1345 /* gdbarch_alloc() */
1346
1347 return current_gdbarch;
1348 }
1349 EOF
1350
1351 # Free a gdbarch struct.
1352 printf "\n"
1353 printf "\n"
1354 cat <<EOF
1355 /* Free a gdbarch struct. This should never happen in normal
1356 operation --- once you've created a gdbarch, you keep it around.
1357 However, if an architecture's init function encounters an error
1358 building the structure, it may need to clean up a partially
1359 constructed gdbarch. */
1360
1361 void
1362 gdbarch_free (struct gdbarch *arch)
1363 {
1364 gdb_assert (arch != NULL);
1365 free_gdbarch_data (arch);
1366 xfree (arch);
1367 }
1368 EOF
1369
1370 # verify a new architecture
1371 printf "\n"
1372 printf "\n"
1373 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1374 printf "\n"
1375 cat <<EOF
1376 static void
1377 verify_gdbarch (struct gdbarch *gdbarch)
1378 {
1379 struct ui_file *log;
1380 struct cleanup *cleanups;
1381 long dummy;
1382 char *buf;
1383 /* Only perform sanity checks on a multi-arch target. */
1384 if (!GDB_MULTI_ARCH)
1385 return;
1386 log = mem_fileopen ();
1387 cleanups = make_cleanup_ui_file_delete (log);
1388 /* fundamental */
1389 if (gdbarch->byte_order == 0)
1390 fprintf_unfiltered (log, "\n\tbyte-order");
1391 if (gdbarch->bfd_arch_info == NULL)
1392 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1393 /* Check those that need to be defined for the given multi-arch level. */
1394 EOF
1395 function_list | while do_read
1396 do
1397 if class_is_function_p || class_is_variable_p
1398 then
1399 if [ "x${invalid_p}" = "x0" ]
1400 then
1401 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1402 elif class_is_predicate_p
1403 then
1404 printf " /* Skip verify of ${function}, has predicate */\n"
1405 # FIXME: See do_read for potential simplification
1406 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1407 then
1408 printf " if (${invalid_p})\n"
1409 printf " gdbarch->${function} = ${postdefault};\n"
1410 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1411 then
1412 printf " if (gdbarch->${function} == ${predefault})\n"
1413 printf " gdbarch->${function} = ${postdefault};\n"
1414 elif [ -n "${postdefault}" ]
1415 then
1416 printf " if (gdbarch->${function} == 0)\n"
1417 printf " gdbarch->${function} = ${postdefault};\n"
1418 elif [ -n "${invalid_p}" ]
1419 then
1420 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1421 printf " && (${invalid_p}))\n"
1422 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1423 elif [ -n "${predefault}" ]
1424 then
1425 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1426 printf " && (gdbarch->${function} == ${predefault}))\n"
1427 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1428 fi
1429 fi
1430 done
1431 cat <<EOF
1432 buf = ui_file_xstrdup (log, &dummy);
1433 make_cleanup (xfree, buf);
1434 if (strlen (buf) > 0)
1435 internal_error (__FILE__, __LINE__,
1436 "verify_gdbarch: the following are invalid ...%s",
1437 buf);
1438 do_cleanups (cleanups);
1439 }
1440 EOF
1441
1442 # dump the structure
1443 printf "\n"
1444 printf "\n"
1445 cat <<EOF
1446 /* Print out the details of the current architecture. */
1447
1448 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1449 just happens to match the global variable \`\`current_gdbarch''. That
1450 way macros refering to that variable get the local and not the global
1451 version - ulgh. Once everything is parameterised with gdbarch, this
1452 will go away. */
1453
1454 void
1455 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1456 {
1457 fprintf_unfiltered (file,
1458 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1459 GDB_MULTI_ARCH);
1460 EOF
1461 function_list | sort -t: +2 | while do_read
1462 do
1463 # multiarch functions don't have macros.
1464 if class_is_multiarch_p
1465 then
1466 printf " if (GDB_MULTI_ARCH)\n"
1467 printf " fprintf_unfiltered (file,\n"
1468 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1469 printf " (long) current_gdbarch->${function});\n"
1470 continue
1471 fi
1472 printf "#ifdef ${macro}\n"
1473 if [ "x${returntype}" = "xvoid" ]
1474 then
1475 printf "#if GDB_MULTI_ARCH\n"
1476 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1477 fi
1478 if class_is_function_p
1479 then
1480 printf " fprintf_unfiltered (file,\n"
1481 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1482 printf " \"${macro}(${actual})\",\n"
1483 printf " XSTRING (${macro} (${actual})));\n"
1484 else
1485 printf " fprintf_unfiltered (file,\n"
1486 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1487 printf " XSTRING (${macro}));\n"
1488 fi
1489 if [ "x${returntype}" = "xvoid" ]
1490 then
1491 printf "#endif\n"
1492 fi
1493 if [ "x${print_p}" = "x()" ]
1494 then
1495 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1496 elif [ "x${print_p}" = "x0" ]
1497 then
1498 printf " /* skip print of ${macro}, print_p == 0. */\n"
1499 elif [ -n "${print_p}" ]
1500 then
1501 printf " if (${print_p})\n"
1502 printf " fprintf_unfiltered (file,\n"
1503 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1504 printf " ${print});\n"
1505 elif class_is_function_p
1506 then
1507 printf " if (GDB_MULTI_ARCH)\n"
1508 printf " fprintf_unfiltered (file,\n"
1509 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1510 printf " (long) current_gdbarch->${function}\n"
1511 printf " /*${macro} ()*/);\n"
1512 else
1513 printf " fprintf_unfiltered (file,\n"
1514 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1515 printf " ${print});\n"
1516 fi
1517 printf "#endif\n"
1518 done
1519 cat <<EOF
1520 if (current_gdbarch->dump_tdep != NULL)
1521 current_gdbarch->dump_tdep (current_gdbarch, file);
1522 }
1523 EOF
1524
1525
1526 # GET/SET
1527 printf "\n"
1528 cat <<EOF
1529 struct gdbarch_tdep *
1530 gdbarch_tdep (struct gdbarch *gdbarch)
1531 {
1532 if (gdbarch_debug >= 2)
1533 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1534 return gdbarch->tdep;
1535 }
1536 EOF
1537 printf "\n"
1538 function_list | while do_read
1539 do
1540 if class_is_predicate_p
1541 then
1542 printf "\n"
1543 printf "int\n"
1544 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1545 printf "{\n"
1546 if [ -n "${valid_p}" ]
1547 then
1548 printf " return ${valid_p};\n"
1549 else
1550 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1551 fi
1552 printf "}\n"
1553 fi
1554 if class_is_function_p
1555 then
1556 printf "\n"
1557 printf "${returntype}\n"
1558 if [ "x${formal}" = "xvoid" ]
1559 then
1560 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1561 else
1562 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1563 fi
1564 printf "{\n"
1565 printf " if (gdbarch->${function} == 0)\n"
1566 printf " internal_error (__FILE__, __LINE__,\n"
1567 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1568 printf " if (gdbarch_debug >= 2)\n"
1569 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1570 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1571 then
1572 if class_is_multiarch_p
1573 then
1574 params="gdbarch"
1575 else
1576 params=""
1577 fi
1578 else
1579 if class_is_multiarch_p
1580 then
1581 params="gdbarch, ${actual}"
1582 else
1583 params="${actual}"
1584 fi
1585 fi
1586 if [ "x${returntype}" = "xvoid" ]
1587 then
1588 printf " gdbarch->${function} (${params});\n"
1589 else
1590 printf " return gdbarch->${function} (${params});\n"
1591 fi
1592 printf "}\n"
1593 printf "\n"
1594 printf "void\n"
1595 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1596 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1597 printf "{\n"
1598 printf " gdbarch->${function} = ${function};\n"
1599 printf "}\n"
1600 elif class_is_variable_p
1601 then
1602 printf "\n"
1603 printf "${returntype}\n"
1604 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1605 printf "{\n"
1606 if [ "x${invalid_p}" = "x0" ]
1607 then
1608 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1609 elif [ -n "${invalid_p}" ]
1610 then
1611 printf " if (${invalid_p})\n"
1612 printf " internal_error (__FILE__, __LINE__,\n"
1613 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1614 elif [ -n "${predefault}" ]
1615 then
1616 printf " if (gdbarch->${function} == ${predefault})\n"
1617 printf " internal_error (__FILE__, __LINE__,\n"
1618 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1619 fi
1620 printf " if (gdbarch_debug >= 2)\n"
1621 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1622 printf " return gdbarch->${function};\n"
1623 printf "}\n"
1624 printf "\n"
1625 printf "void\n"
1626 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1627 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1628 printf "{\n"
1629 printf " gdbarch->${function} = ${function};\n"
1630 printf "}\n"
1631 elif class_is_info_p
1632 then
1633 printf "\n"
1634 printf "${returntype}\n"
1635 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1636 printf "{\n"
1637 printf " if (gdbarch_debug >= 2)\n"
1638 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1639 printf " return gdbarch->${function};\n"
1640 printf "}\n"
1641 fi
1642 done
1643
1644 # All the trailing guff
1645 cat <<EOF
1646
1647
1648 /* Keep a registry of per-architecture data-pointers required by GDB
1649 modules. */
1650
1651 struct gdbarch_data
1652 {
1653 unsigned index;
1654 gdbarch_data_init_ftype *init;
1655 gdbarch_data_free_ftype *free;
1656 };
1657
1658 struct gdbarch_data_registration
1659 {
1660 struct gdbarch_data *data;
1661 struct gdbarch_data_registration *next;
1662 };
1663
1664 struct gdbarch_data_registry
1665 {
1666 unsigned nr;
1667 struct gdbarch_data_registration *registrations;
1668 };
1669
1670 struct gdbarch_data_registry gdbarch_data_registry =
1671 {
1672 0, NULL,
1673 };
1674
1675 struct gdbarch_data *
1676 register_gdbarch_data (gdbarch_data_init_ftype *init,
1677 gdbarch_data_free_ftype *free)
1678 {
1679 struct gdbarch_data_registration **curr;
1680 for (curr = &gdbarch_data_registry.registrations;
1681 (*curr) != NULL;
1682 curr = &(*curr)->next);
1683 (*curr) = XMALLOC (struct gdbarch_data_registration);
1684 (*curr)->next = NULL;
1685 (*curr)->data = XMALLOC (struct gdbarch_data);
1686 (*curr)->data->index = gdbarch_data_registry.nr++;
1687 (*curr)->data->init = init;
1688 (*curr)->data->free = free;
1689 return (*curr)->data;
1690 }
1691
1692
1693 /* Walk through all the registered users initializing each in turn. */
1694
1695 static void
1696 init_gdbarch_data (struct gdbarch *gdbarch)
1697 {
1698 struct gdbarch_data_registration *rego;
1699 for (rego = gdbarch_data_registry.registrations;
1700 rego != NULL;
1701 rego = rego->next)
1702 {
1703 struct gdbarch_data *data = rego->data;
1704 gdb_assert (data->index < gdbarch->nr_data);
1705 if (data->init != NULL)
1706 {
1707 void *pointer = data->init (gdbarch);
1708 set_gdbarch_data (gdbarch, data, pointer);
1709 }
1710 }
1711 }
1712
1713 /* Create/delete the gdbarch data vector. */
1714
1715 static void
1716 alloc_gdbarch_data (struct gdbarch *gdbarch)
1717 {
1718 gdb_assert (gdbarch->data == NULL);
1719 gdbarch->nr_data = gdbarch_data_registry.nr;
1720 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1721 }
1722
1723 static void
1724 free_gdbarch_data (struct gdbarch *gdbarch)
1725 {
1726 struct gdbarch_data_registration *rego;
1727 gdb_assert (gdbarch->data != NULL);
1728 for (rego = gdbarch_data_registry.registrations;
1729 rego != NULL;
1730 rego = rego->next)
1731 {
1732 struct gdbarch_data *data = rego->data;
1733 gdb_assert (data->index < gdbarch->nr_data);
1734 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1735 {
1736 data->free (gdbarch, gdbarch->data[data->index]);
1737 gdbarch->data[data->index] = NULL;
1738 }
1739 }
1740 xfree (gdbarch->data);
1741 gdbarch->data = NULL;
1742 }
1743
1744
1745 /* Initialize the current value of thee specified per-architecture
1746 data-pointer. */
1747
1748 void
1749 set_gdbarch_data (struct gdbarch *gdbarch,
1750 struct gdbarch_data *data,
1751 void *pointer)
1752 {
1753 gdb_assert (data->index < gdbarch->nr_data);
1754 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1755 data->free (gdbarch, gdbarch->data[data->index]);
1756 gdbarch->data[data->index] = pointer;
1757 }
1758
1759 /* Return the current value of the specified per-architecture
1760 data-pointer. */
1761
1762 void *
1763 gdbarch_data (struct gdbarch_data *data)
1764 {
1765 gdb_assert (data->index < current_gdbarch->nr_data);
1766 return current_gdbarch->data[data->index];
1767 }
1768
1769
1770
1771 /* Keep a registry of swapped data required by GDB modules. */
1772
1773 struct gdbarch_swap
1774 {
1775 void *swap;
1776 struct gdbarch_swap_registration *source;
1777 struct gdbarch_swap *next;
1778 };
1779
1780 struct gdbarch_swap_registration
1781 {
1782 void *data;
1783 unsigned long sizeof_data;
1784 gdbarch_swap_ftype *init;
1785 struct gdbarch_swap_registration *next;
1786 };
1787
1788 struct gdbarch_swap_registry
1789 {
1790 int nr;
1791 struct gdbarch_swap_registration *registrations;
1792 };
1793
1794 struct gdbarch_swap_registry gdbarch_swap_registry =
1795 {
1796 0, NULL,
1797 };
1798
1799 void
1800 register_gdbarch_swap (void *data,
1801 unsigned long sizeof_data,
1802 gdbarch_swap_ftype *init)
1803 {
1804 struct gdbarch_swap_registration **rego;
1805 for (rego = &gdbarch_swap_registry.registrations;
1806 (*rego) != NULL;
1807 rego = &(*rego)->next);
1808 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1809 (*rego)->next = NULL;
1810 (*rego)->init = init;
1811 (*rego)->data = data;
1812 (*rego)->sizeof_data = sizeof_data;
1813 }
1814
1815
1816 static void
1817 init_gdbarch_swap (struct gdbarch *gdbarch)
1818 {
1819 struct gdbarch_swap_registration *rego;
1820 struct gdbarch_swap **curr = &gdbarch->swap;
1821 for (rego = gdbarch_swap_registry.registrations;
1822 rego != NULL;
1823 rego = rego->next)
1824 {
1825 if (rego->data != NULL)
1826 {
1827 (*curr) = XMALLOC (struct gdbarch_swap);
1828 (*curr)->source = rego;
1829 (*curr)->swap = xmalloc (rego->sizeof_data);
1830 (*curr)->next = NULL;
1831 memset (rego->data, 0, rego->sizeof_data);
1832 curr = &(*curr)->next;
1833 }
1834 if (rego->init != NULL)
1835 rego->init ();
1836 }
1837 }
1838
1839 static void
1840 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1841 {
1842 struct gdbarch_swap *curr;
1843 for (curr = gdbarch->swap;
1844 curr != NULL;
1845 curr = curr->next)
1846 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1847 }
1848
1849 static void
1850 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1851 {
1852 struct gdbarch_swap *curr;
1853 for (curr = gdbarch->swap;
1854 curr != NULL;
1855 curr = curr->next)
1856 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1857 }
1858
1859
1860 /* Keep a registry of the architectures known by GDB. */
1861
1862 struct gdbarch_registration
1863 {
1864 enum bfd_architecture bfd_architecture;
1865 gdbarch_init_ftype *init;
1866 gdbarch_dump_tdep_ftype *dump_tdep;
1867 struct gdbarch_list *arches;
1868 struct gdbarch_registration *next;
1869 };
1870
1871 static struct gdbarch_registration *gdbarch_registry = NULL;
1872
1873 static void
1874 append_name (const char ***buf, int *nr, const char *name)
1875 {
1876 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1877 (*buf)[*nr] = name;
1878 *nr += 1;
1879 }
1880
1881 const char **
1882 gdbarch_printable_names (void)
1883 {
1884 if (GDB_MULTI_ARCH)
1885 {
1886 /* Accumulate a list of names based on the registed list of
1887 architectures. */
1888 enum bfd_architecture a;
1889 int nr_arches = 0;
1890 const char **arches = NULL;
1891 struct gdbarch_registration *rego;
1892 for (rego = gdbarch_registry;
1893 rego != NULL;
1894 rego = rego->next)
1895 {
1896 const struct bfd_arch_info *ap;
1897 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1898 if (ap == NULL)
1899 internal_error (__FILE__, __LINE__,
1900 "gdbarch_architecture_names: multi-arch unknown");
1901 do
1902 {
1903 append_name (&arches, &nr_arches, ap->printable_name);
1904 ap = ap->next;
1905 }
1906 while (ap != NULL);
1907 }
1908 append_name (&arches, &nr_arches, NULL);
1909 return arches;
1910 }
1911 else
1912 /* Just return all the architectures that BFD knows. Assume that
1913 the legacy architecture framework supports them. */
1914 return bfd_arch_list ();
1915 }
1916
1917
1918 void
1919 gdbarch_register (enum bfd_architecture bfd_architecture,
1920 gdbarch_init_ftype *init,
1921 gdbarch_dump_tdep_ftype *dump_tdep)
1922 {
1923 struct gdbarch_registration **curr;
1924 const struct bfd_arch_info *bfd_arch_info;
1925 /* Check that BFD recognizes this architecture */
1926 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1927 if (bfd_arch_info == NULL)
1928 {
1929 internal_error (__FILE__, __LINE__,
1930 "gdbarch: Attempt to register unknown architecture (%d)",
1931 bfd_architecture);
1932 }
1933 /* Check that we haven't seen this architecture before */
1934 for (curr = &gdbarch_registry;
1935 (*curr) != NULL;
1936 curr = &(*curr)->next)
1937 {
1938 if (bfd_architecture == (*curr)->bfd_architecture)
1939 internal_error (__FILE__, __LINE__,
1940 "gdbarch: Duplicate registraration of architecture (%s)",
1941 bfd_arch_info->printable_name);
1942 }
1943 /* log it */
1944 if (gdbarch_debug)
1945 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1946 bfd_arch_info->printable_name,
1947 (long) init);
1948 /* Append it */
1949 (*curr) = XMALLOC (struct gdbarch_registration);
1950 (*curr)->bfd_architecture = bfd_architecture;
1951 (*curr)->init = init;
1952 (*curr)->dump_tdep = dump_tdep;
1953 (*curr)->arches = NULL;
1954 (*curr)->next = NULL;
1955 /* When non- multi-arch, install whatever target dump routine we've
1956 been provided - hopefully that routine has been written correctly
1957 and works regardless of multi-arch. */
1958 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1959 && startup_gdbarch.dump_tdep == NULL)
1960 startup_gdbarch.dump_tdep = dump_tdep;
1961 }
1962
1963 void
1964 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1965 gdbarch_init_ftype *init)
1966 {
1967 gdbarch_register (bfd_architecture, init, NULL);
1968 }
1969
1970
1971 /* Look for an architecture using gdbarch_info. Base search on only
1972 BFD_ARCH_INFO and BYTE_ORDER. */
1973
1974 struct gdbarch_list *
1975 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1976 const struct gdbarch_info *info)
1977 {
1978 for (; arches != NULL; arches = arches->next)
1979 {
1980 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1981 continue;
1982 if (info->byte_order != arches->gdbarch->byte_order)
1983 continue;
1984 return arches;
1985 }
1986 return NULL;
1987 }
1988
1989
1990 /* Update the current architecture. Return ZERO if the update request
1991 failed. */
1992
1993 int
1994 gdbarch_update_p (struct gdbarch_info info)
1995 {
1996 struct gdbarch *new_gdbarch;
1997 struct gdbarch_list **list;
1998 struct gdbarch_registration *rego;
1999
2000 /* Fill in missing parts of the INFO struct using a number of
2001 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2002
2003 /* \`\`(gdb) set architecture ...'' */
2004 if (info.bfd_arch_info == NULL
2005 && !TARGET_ARCHITECTURE_AUTO)
2006 info.bfd_arch_info = TARGET_ARCHITECTURE;
2007 if (info.bfd_arch_info == NULL
2008 && info.abfd != NULL
2009 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2010 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2011 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2012 if (info.bfd_arch_info == NULL)
2013 info.bfd_arch_info = TARGET_ARCHITECTURE;
2014
2015 /* \`\`(gdb) set byte-order ...'' */
2016 if (info.byte_order == 0
2017 && !TARGET_BYTE_ORDER_AUTO)
2018 info.byte_order = TARGET_BYTE_ORDER;
2019 /* From the INFO struct. */
2020 if (info.byte_order == 0
2021 && info.abfd != NULL)
2022 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2023 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2024 : 0);
2025 /* From the current target. */
2026 if (info.byte_order == 0)
2027 info.byte_order = TARGET_BYTE_ORDER;
2028
2029 /* Must have found some sort of architecture. */
2030 gdb_assert (info.bfd_arch_info != NULL);
2031
2032 if (gdbarch_debug)
2033 {
2034 fprintf_unfiltered (gdb_stdlog,
2035 "gdbarch_update: info.bfd_arch_info %s\n",
2036 (info.bfd_arch_info != NULL
2037 ? info.bfd_arch_info->printable_name
2038 : "(null)"));
2039 fprintf_unfiltered (gdb_stdlog,
2040 "gdbarch_update: info.byte_order %d (%s)\n",
2041 info.byte_order,
2042 (info.byte_order == BIG_ENDIAN ? "big"
2043 : info.byte_order == LITTLE_ENDIAN ? "little"
2044 : "default"));
2045 fprintf_unfiltered (gdb_stdlog,
2046 "gdbarch_update: info.abfd 0x%lx\n",
2047 (long) info.abfd);
2048 fprintf_unfiltered (gdb_stdlog,
2049 "gdbarch_update: info.tdep_info 0x%lx\n",
2050 (long) info.tdep_info);
2051 }
2052
2053 /* Find the target that knows about this architecture. */
2054 for (rego = gdbarch_registry;
2055 rego != NULL;
2056 rego = rego->next)
2057 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2058 break;
2059 if (rego == NULL)
2060 {
2061 if (gdbarch_debug)
2062 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2063 return 0;
2064 }
2065
2066 /* Ask the target for a replacement architecture. */
2067 new_gdbarch = rego->init (info, rego->arches);
2068
2069 /* Did the target like it? No. Reject the change. */
2070 if (new_gdbarch == NULL)
2071 {
2072 if (gdbarch_debug)
2073 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2074 return 0;
2075 }
2076
2077 /* Did the architecture change? No. Do nothing. */
2078 if (current_gdbarch == new_gdbarch)
2079 {
2080 if (gdbarch_debug)
2081 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2082 (long) new_gdbarch,
2083 new_gdbarch->bfd_arch_info->printable_name);
2084 return 1;
2085 }
2086
2087 /* Swap all data belonging to the old target out */
2088 swapout_gdbarch_swap (current_gdbarch);
2089
2090 /* Is this a pre-existing architecture? Yes. Swap it in. */
2091 for (list = &rego->arches;
2092 (*list) != NULL;
2093 list = &(*list)->next)
2094 {
2095 if ((*list)->gdbarch == new_gdbarch)
2096 {
2097 if (gdbarch_debug)
2098 fprintf_unfiltered (gdb_stdlog,
2099 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2100 (long) new_gdbarch,
2101 new_gdbarch->bfd_arch_info->printable_name);
2102 current_gdbarch = new_gdbarch;
2103 swapin_gdbarch_swap (new_gdbarch);
2104 architecture_changed_event ();
2105 return 1;
2106 }
2107 }
2108
2109 /* Append this new architecture to this targets list. */
2110 (*list) = XMALLOC (struct gdbarch_list);
2111 (*list)->next = NULL;
2112 (*list)->gdbarch = new_gdbarch;
2113
2114 /* Switch to this new architecture. Dump it out. */
2115 current_gdbarch = new_gdbarch;
2116 if (gdbarch_debug)
2117 {
2118 fprintf_unfiltered (gdb_stdlog,
2119 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2120 (long) new_gdbarch,
2121 new_gdbarch->bfd_arch_info->printable_name);
2122 }
2123
2124 /* Check that the newly installed architecture is valid. Plug in
2125 any post init values. */
2126 new_gdbarch->dump_tdep = rego->dump_tdep;
2127 verify_gdbarch (new_gdbarch);
2128
2129 /* Initialize the per-architecture memory (swap) areas.
2130 CURRENT_GDBARCH must be update before these modules are
2131 called. */
2132 init_gdbarch_swap (new_gdbarch);
2133
2134 /* Initialize the per-architecture data-pointer of all parties that
2135 registered an interest in this architecture. CURRENT_GDBARCH
2136 must be updated before these modules are called. */
2137 init_gdbarch_data (new_gdbarch);
2138 architecture_changed_event ();
2139
2140 if (gdbarch_debug)
2141 gdbarch_dump (current_gdbarch, gdb_stdlog);
2142
2143 return 1;
2144 }
2145
2146
2147 /* Disassembler */
2148
2149 /* Pointer to the target-dependent disassembly function. */
2150 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2151 disassemble_info tm_print_insn_info;
2152
2153
2154 extern void _initialize_gdbarch (void);
2155
2156 void
2157 _initialize_gdbarch (void)
2158 {
2159 struct cmd_list_element *c;
2160
2161 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2162 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2163 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2164 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2165 tm_print_insn_info.print_address_func = dis_asm_print_address;
2166
2167 add_show_from_set (add_set_cmd ("arch",
2168 class_maintenance,
2169 var_zinteger,
2170 (char *)&gdbarch_debug,
2171 "Set architecture debugging.\\n\\
2172 When non-zero, architecture debugging is enabled.", &setdebuglist),
2173 &showdebuglist);
2174 c = add_set_cmd ("archdebug",
2175 class_maintenance,
2176 var_zinteger,
2177 (char *)&gdbarch_debug,
2178 "Set architecture debugging.\\n\\
2179 When non-zero, architecture debugging is enabled.", &setlist);
2180
2181 deprecate_cmd (c, "set debug arch");
2182 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2183 }
2184 EOF
2185
2186 # close things off
2187 exec 1>&2
2188 #../move-if-change new-gdbarch.c gdbarch.c
2189 compare_new gdbarch.c
This page took 0.097038 seconds and 5 git commands to generate.