* gdbarch.sh: Assert that gdbarch is non-NULL.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:register_read:int regnum, char *buf:regnum, buf:
432 M:::void:register_write:int regnum, char *buf:regnum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
451 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
454 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
456 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457 # Convert from an sdb register number to an internal gdb register number.
458 # This should be defined in tm.h, if REGISTER_NAMES is not set up
459 # to map one to one onto the sdb register numbers.
460 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
461 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
462 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
463 v:2:REGISTER_SIZE:int:register_size::::0:-1
464 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
465 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
466 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
467 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
468 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
469 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
470 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
471 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
472 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
473 # MAP a GDB RAW register number onto a simulator register number. See
474 # also include/...-sim.h.
475 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
476 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
477 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
478 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
479 # setjmp/longjmp support.
480 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
481 #
482 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
483 # much better but at least they are vaguely consistent). The headers
484 # and body contain convoluted #if/#else sequences for determine how
485 # things should be compiled. Instead of trying to mimic that
486 # behaviour here (and hence entrench it further) gdbarch simply
487 # reqires that these methods be set up from the word go. This also
488 # avoids any potential problems with moving beyond multi-arch partial.
489 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
490 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
491 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
492 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
493 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
494 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
495 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
496 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
497 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
498 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
499 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
500 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
502 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
503 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
504 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
505 #
506 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
507 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
508 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
509 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
510 # old code has strange #ifdef interaction. So far no one has found
511 # that default_get_saved_register() is the default they are after.
512 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
513 #
514 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
515 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
516 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
517 # This function is called when the value of a pseudo-register needs to
518 # be updated. Typically it will be defined on a per-architecture
519 # basis.
520 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
521 # This function is called when the value of a pseudo-register needs to
522 # be set or stored. Typically it will be defined on a
523 # per-architecture basis.
524 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
525 #
526 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
527 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
528 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
529 #
530 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
531 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
532 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
533 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
534 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
535 f:2:POP_FRAME:void:pop_frame:void:-:::0
536 #
537 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
538 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
539 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578 v:2:PARM_BOUNDARY:int:parm_boundary
579 #
580 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595 # ADDR_BITS_REMOVE.
596 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598 # the target needs software single step. An ISA method to implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601 # using the breakpoint system instead of blatting memory directly (as with rs6000).
602 #
603 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604 # single step. If not, then implement single step using breakpoints.
605 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608 # For SVR4 shared libraries, each call goes through a small piece of
609 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
610 # to nonzero if we are current stopped in one of these.
611 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
612 # Sigtramp is a routine that the kernel calls (which then calls the
613 # signal handler). On most machines it is a library routine that is
614 # linked into the executable.
615 #
616 # This macro, given a program counter value and the name of the
617 # function in which that PC resides (which can be null if the name is
618 # not known), returns nonzero if the PC and name show that we are in
619 # sigtramp.
620 #
621 # On most machines just see if the name is sigtramp (and if we have
622 # no name, assume we are not in sigtramp).
623 #
624 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
625 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
626 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
627 # own local NAME lookup.
628 #
629 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
630 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
631 # does not.
632 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
633 # A target might have problems with watchpoints as soon as the stack
634 # frame of the current function has been destroyed. This mostly happens
635 # as the first action in a funtion's epilogue. in_function_epilogue_p()
636 # is defined to return a non-zero value if either the given addr is one
637 # instruction after the stack destroying instruction up to the trailing
638 # return instruction or if we can figure out that the stack frame has
639 # already been invalidated regardless of the value of addr. Targets
640 # which don't suffer from that problem could just let this functionality
641 # untouched.
642 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
643 # Given a vector of command-line arguments, return a newly allocated
644 # string which, when passed to the create_inferior function, will be
645 # parsed (on Unix systems, by the shell) to yield the same vector.
646 # This function should call error() if the argument vector is not
647 # representable for this target or if this target does not support
648 # command-line arguments.
649 # ARGC is the number of elements in the vector.
650 # ARGV is an array of strings, one per argument.
651 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
652 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
653 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
654 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
655 EOF
656 }
657
658 #
659 # The .log file
660 #
661 exec > new-gdbarch.log
662 function_list | while do_read
663 do
664 cat <<EOF
665 ${class} ${macro}(${actual})
666 ${returntype} ${function} ($formal)${attrib}
667 EOF
668 for r in ${read}
669 do
670 eval echo \"\ \ \ \ ${r}=\${${r}}\"
671 done
672 # #fallbackdefault=${fallbackdefault}
673 # #valid_p=${valid_p}
674 #EOF
675 if class_is_predicate_p && fallback_default_p
676 then
677 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
678 kill $$
679 exit 1
680 fi
681 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
682 then
683 echo "Error: postdefault is useless when invalid_p=0" 1>&2
684 kill $$
685 exit 1
686 fi
687 if class_is_multiarch_p
688 then
689 if class_is_predicate_p ; then :
690 elif test "x${predefault}" = "x"
691 then
692 echo "Error: pure multi-arch function must have a predefault" 1>&2
693 kill $$
694 exit 1
695 fi
696 fi
697 echo ""
698 done
699
700 exec 1>&2
701 compare_new gdbarch.log
702
703
704 copyright ()
705 {
706 cat <<EOF
707 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
708
709 /* Dynamic architecture support for GDB, the GNU debugger.
710 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
711
712 This file is part of GDB.
713
714 This program is free software; you can redistribute it and/or modify
715 it under the terms of the GNU General Public License as published by
716 the Free Software Foundation; either version 2 of the License, or
717 (at your option) any later version.
718
719 This program is distributed in the hope that it will be useful,
720 but WITHOUT ANY WARRANTY; without even the implied warranty of
721 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
722 GNU General Public License for more details.
723
724 You should have received a copy of the GNU General Public License
725 along with this program; if not, write to the Free Software
726 Foundation, Inc., 59 Temple Place - Suite 330,
727 Boston, MA 02111-1307, USA. */
728
729 /* This file was created with the aid of \`\`gdbarch.sh''.
730
731 The Bourne shell script \`\`gdbarch.sh'' creates the files
732 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
733 against the existing \`\`gdbarch.[hc]''. Any differences found
734 being reported.
735
736 If editing this file, please also run gdbarch.sh and merge any
737 changes into that script. Conversely, when making sweeping changes
738 to this file, modifying gdbarch.sh and using its output may prove
739 easier. */
740
741 EOF
742 }
743
744 #
745 # The .h file
746 #
747
748 exec > new-gdbarch.h
749 copyright
750 cat <<EOF
751 #ifndef GDBARCH_H
752 #define GDBARCH_H
753
754 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
755 #if !GDB_MULTI_ARCH
756 /* Pull in function declarations refered to, indirectly, via macros. */
757 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
758 #include "inferior.h" /* For unsigned_address_to_pointer(). */
759 #endif
760
761 struct frame_info;
762 struct value;
763 struct objfile;
764 struct minimal_symbol;
765
766 extern struct gdbarch *current_gdbarch;
767
768
769 /* If any of the following are defined, the target wasn't correctly
770 converted. */
771
772 #if GDB_MULTI_ARCH
773 #if defined (EXTRA_FRAME_INFO)
774 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
775 #endif
776 #endif
777
778 #if GDB_MULTI_ARCH
779 #if defined (FRAME_FIND_SAVED_REGS)
780 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
781 #endif
782 #endif
783
784 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
785 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
786 #endif
787 EOF
788
789 # function typedef's
790 printf "\n"
791 printf "\n"
792 printf "/* The following are pre-initialized by GDBARCH. */\n"
793 function_list | while do_read
794 do
795 if class_is_info_p
796 then
797 printf "\n"
798 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
799 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
800 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
801 printf "#error \"Non multi-arch definition of ${macro}\"\n"
802 printf "#endif\n"
803 printf "#if GDB_MULTI_ARCH\n"
804 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
805 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "#endif\n"
807 printf "#endif\n"
808 fi
809 done
810
811 # function typedef's
812 printf "\n"
813 printf "\n"
814 printf "/* The following are initialized by the target dependent code. */\n"
815 function_list | while do_read
816 do
817 if [ -n "${comment}" ]
818 then
819 echo "${comment}" | sed \
820 -e '2 s,#,/*,' \
821 -e '3,$ s,#, ,' \
822 -e '$ s,$, */,'
823 fi
824 if class_is_multiarch_p
825 then
826 if class_is_predicate_p
827 then
828 printf "\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 fi
831 else
832 if class_is_predicate_p
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
838 printf "#if !defined (${macro}_P)\n"
839 printf "#define ${macro}_P() (1)\n"
840 printf "#endif\n"
841 printf "#endif\n"
842 printf "\n"
843 printf "/* Default predicate for non- multi-arch targets. */\n"
844 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
845 printf "#define ${macro}_P() (0)\n"
846 printf "#endif\n"
847 printf "\n"
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
853 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
854 printf "#endif\n"
855 fi
856 fi
857 if class_is_variable_p
858 then
859 if fallback_default_p || class_is_predicate_p
860 then
861 printf "\n"
862 printf "/* Default (value) for non- multi-arch platforms. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
864 echo "#define ${macro} (${fallbackdefault})" \
865 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
866 printf "#endif\n"
867 fi
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
874 printf "#if GDB_MULTI_ARCH\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 printf "#endif\n"
879 fi
880 if class_is_function_p
881 then
882 if class_is_multiarch_p ; then :
883 elif fallback_default_p || class_is_predicate_p
884 then
885 printf "\n"
886 printf "/* Default (function) for non- multi-arch platforms. */\n"
887 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
888 if [ "x${fallbackdefault}" = "x0" ]
889 then
890 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
891 else
892 # FIXME: Should be passing current_gdbarch through!
893 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
894 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
895 fi
896 printf "#endif\n"
897 fi
898 printf "\n"
899 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
900 then
901 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
902 elif class_is_multiarch_p
903 then
904 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
905 else
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
907 fi
908 if [ "x${formal}" = "xvoid" ]
909 then
910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
911 else
912 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
913 fi
914 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
915 if class_is_multiarch_p ; then :
916 else
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 printf "#if GDB_MULTI_ARCH\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
922 if [ "x${actual}" = "x" ]
923 then
924 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
925 elif [ "x${actual}" = "x-" ]
926 then
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 else
929 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
930 fi
931 printf "#endif\n"
932 printf "#endif\n"
933 fi
934 fi
935 done
936
937 # close it off
938 cat <<EOF
939
940 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
941
942
943 /* Mechanism for co-ordinating the selection of a specific
944 architecture.
945
946 GDB targets (*-tdep.c) can register an interest in a specific
947 architecture. Other GDB components can register a need to maintain
948 per-architecture data.
949
950 The mechanisms below ensures that there is only a loose connection
951 between the set-architecture command and the various GDB
952 components. Each component can independently register their need
953 to maintain architecture specific data with gdbarch.
954
955 Pragmatics:
956
957 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
958 didn't scale.
959
960 The more traditional mega-struct containing architecture specific
961 data for all the various GDB components was also considered. Since
962 GDB is built from a variable number of (fairly independent)
963 components it was determined that the global aproach was not
964 applicable. */
965
966
967 /* Register a new architectural family with GDB.
968
969 Register support for the specified ARCHITECTURE with GDB. When
970 gdbarch determines that the specified architecture has been
971 selected, the corresponding INIT function is called.
972
973 --
974
975 The INIT function takes two parameters: INFO which contains the
976 information available to gdbarch about the (possibly new)
977 architecture; ARCHES which is a list of the previously created
978 \`\`struct gdbarch'' for this architecture.
979
980 The INFO parameter is, as far as possible, be pre-initialized with
981 information obtained from INFO.ABFD or the previously selected
982 architecture.
983
984 The ARCHES parameter is a linked list (sorted most recently used)
985 of all the previously created architures for this architecture
986 family. The (possibly NULL) ARCHES->gdbarch can used to access
987 values from the previously selected architecture for this
988 architecture family. The global \`\`current_gdbarch'' shall not be
989 used.
990
991 The INIT function shall return any of: NULL - indicating that it
992 doesn't recognize the selected architecture; an existing \`\`struct
993 gdbarch'' from the ARCHES list - indicating that the new
994 architecture is just a synonym for an earlier architecture (see
995 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
996 - that describes the selected architecture (see gdbarch_alloc()).
997
998 The DUMP_TDEP function shall print out all target specific values.
999 Care should be taken to ensure that the function works in both the
1000 multi-arch and non- multi-arch cases. */
1001
1002 struct gdbarch_list
1003 {
1004 struct gdbarch *gdbarch;
1005 struct gdbarch_list *next;
1006 };
1007
1008 struct gdbarch_info
1009 {
1010 /* Use default: NULL (ZERO). */
1011 const struct bfd_arch_info *bfd_arch_info;
1012
1013 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1014 int byte_order;
1015
1016 /* Use default: NULL (ZERO). */
1017 bfd *abfd;
1018
1019 /* Use default: NULL (ZERO). */
1020 struct gdbarch_tdep_info *tdep_info;
1021 };
1022
1023 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1024 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1025
1026 /* DEPRECATED - use gdbarch_register() */
1027 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1028
1029 extern void gdbarch_register (enum bfd_architecture architecture,
1030 gdbarch_init_ftype *,
1031 gdbarch_dump_tdep_ftype *);
1032
1033
1034 /* Return a freshly allocated, NULL terminated, array of the valid
1035 architecture names. Since architectures are registered during the
1036 _initialize phase this function only returns useful information
1037 once initialization has been completed. */
1038
1039 extern const char **gdbarch_printable_names (void);
1040
1041
1042 /* Helper function. Search the list of ARCHES for a GDBARCH that
1043 matches the information provided by INFO. */
1044
1045 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046
1047
1048 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1049 basic initialization using values obtained from the INFO andTDEP
1050 parameters. set_gdbarch_*() functions are called to complete the
1051 initialization of the object. */
1052
1053 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054
1055
1056 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1057 It is assumed that the caller freeds the \`\`struct
1058 gdbarch_tdep''. */
1059
1060 extern void gdbarch_free (struct gdbarch *);
1061
1062
1063 /* Helper function. Force an update of the current architecture.
1064
1065 The actual architecture selected is determined by INFO, \`\`(gdb) set
1066 architecture'' et.al., the existing architecture and BFD's default
1067 architecture. INFO should be initialized to zero and then selected
1068 fields should be updated.
1069
1070 Returns non-zero if the update succeeds */
1071
1072 extern int gdbarch_update_p (struct gdbarch_info info);
1073
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 The per-architecture data-pointer can be initialized in one of two
1083 ways: The value can be set explicitly using a call to
1084 set_gdbarch_data(); the value can be set implicitly using the value
1085 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1086 called after the basic architecture vector has been created.
1087
1088 When a previously created architecture is re-selected, the
1089 per-architecture data-pointer for that previous architecture is
1090 restored. INIT() is not called.
1091
1092 During initialization, multiple assignments of the data-pointer are
1093 allowed, non-NULL values are deleted by calling FREE(). If the
1094 architecture is deleted using gdbarch_free() all non-NULL data
1095 pointers are also deleted using FREE().
1096
1097 Multiple registrarants for any architecture are allowed (and
1098 strongly encouraged). */
1099
1100 struct gdbarch_data;
1101
1102 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1103 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1104 void *pointer);
1105 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1106 gdbarch_data_free_ftype *free);
1107 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1108 struct gdbarch_data *data,
1109 void *pointer);
1110
1111 extern void *gdbarch_data (struct gdbarch_data*);
1112
1113
1114 /* Register per-architecture memory region.
1115
1116 Provide a memory-region swap mechanism. Per-architecture memory
1117 region are created. These memory regions are swapped whenever the
1118 architecture is changed. For a new architecture, the memory region
1119 is initialized with zero (0) and the INIT function is called.
1120
1121 Memory regions are swapped / initialized in the order that they are
1122 registered. NULL DATA and/or INIT values can be specified.
1123
1124 New code should use register_gdbarch_data(). */
1125
1126 typedef void (gdbarch_swap_ftype) (void);
1127 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1128 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1129
1130
1131
1132 /* The target-system-dependent byte order is dynamic */
1133
1134 extern int target_byte_order;
1135 #ifndef TARGET_BYTE_ORDER
1136 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1137 #endif
1138
1139 extern int target_byte_order_auto;
1140 #ifndef TARGET_BYTE_ORDER_AUTO
1141 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1142 #endif
1143
1144
1145
1146 /* The target-system-dependent BFD architecture is dynamic */
1147
1148 extern int target_architecture_auto;
1149 #ifndef TARGET_ARCHITECTURE_AUTO
1150 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1151 #endif
1152
1153 extern const struct bfd_arch_info *target_architecture;
1154 #ifndef TARGET_ARCHITECTURE
1155 #define TARGET_ARCHITECTURE (target_architecture + 0)
1156 #endif
1157
1158
1159 /* The target-system-dependent disassembler is semi-dynamic */
1160
1161 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1162 unsigned int len, disassemble_info *info);
1163
1164 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1165 disassemble_info *info);
1166
1167 extern void dis_asm_print_address (bfd_vma addr,
1168 disassemble_info *info);
1169
1170 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1171 extern disassemble_info tm_print_insn_info;
1172 #ifndef TARGET_PRINT_INSN_INFO
1173 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1174 #endif
1175
1176
1177
1178 /* Set the dynamic target-system-dependent parameters (architecture,
1179 byte-order, ...) using information found in the BFD */
1180
1181 extern void set_gdbarch_from_file (bfd *);
1182
1183
1184 /* Initialize the current architecture to the "first" one we find on
1185 our list. */
1186
1187 extern void initialize_current_architecture (void);
1188
1189 /* For non-multiarched targets, do any initialization of the default
1190 gdbarch object necessary after the _initialize_MODULE functions
1191 have run. */
1192 extern void initialize_non_multiarch ();
1193
1194 /* gdbarch trace variable */
1195 extern int gdbarch_debug;
1196
1197 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1198
1199 #endif
1200 EOF
1201 exec 1>&2
1202 #../move-if-change new-gdbarch.h gdbarch.h
1203 compare_new gdbarch.h
1204
1205
1206 #
1207 # C file
1208 #
1209
1210 exec > new-gdbarch.c
1211 copyright
1212 cat <<EOF
1213
1214 #include "defs.h"
1215 #include "arch-utils.h"
1216
1217 #if GDB_MULTI_ARCH
1218 #include "gdbcmd.h"
1219 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1220 #else
1221 /* Just include everything in sight so that the every old definition
1222 of macro is visible. */
1223 #include "gdb_string.h"
1224 #include <ctype.h>
1225 #include "symtab.h"
1226 #include "frame.h"
1227 #include "inferior.h"
1228 #include "breakpoint.h"
1229 #include "gdb_wait.h"
1230 #include "gdbcore.h"
1231 #include "gdbcmd.h"
1232 #include "target.h"
1233 #include "gdbthread.h"
1234 #include "annotate.h"
1235 #include "symfile.h" /* for overlay functions */
1236 #include "value.h" /* For old tm.h/nm.h macros. */
1237 #endif
1238 #include "symcat.h"
1239
1240 #include "floatformat.h"
1241
1242 #include "gdb_assert.h"
1243 #include "gdb-events.h"
1244
1245 /* Static function declarations */
1246
1247 static void verify_gdbarch (struct gdbarch *gdbarch);
1248 static void alloc_gdbarch_data (struct gdbarch *);
1249 static void init_gdbarch_data (struct gdbarch *);
1250 static void free_gdbarch_data (struct gdbarch *);
1251 static void init_gdbarch_swap (struct gdbarch *);
1252 static void swapout_gdbarch_swap (struct gdbarch *);
1253 static void swapin_gdbarch_swap (struct gdbarch *);
1254
1255 /* Non-zero if we want to trace architecture code. */
1256
1257 #ifndef GDBARCH_DEBUG
1258 #define GDBARCH_DEBUG 0
1259 #endif
1260 int gdbarch_debug = GDBARCH_DEBUG;
1261
1262 EOF
1263
1264 # gdbarch open the gdbarch object
1265 printf "\n"
1266 printf "/* Maintain the struct gdbarch object */\n"
1267 printf "\n"
1268 printf "struct gdbarch\n"
1269 printf "{\n"
1270 printf " /* basic architectural information */\n"
1271 function_list | while do_read
1272 do
1273 if class_is_info_p
1274 then
1275 printf " ${returntype} ${function};\n"
1276 fi
1277 done
1278 printf "\n"
1279 printf " /* target specific vector. */\n"
1280 printf " struct gdbarch_tdep *tdep;\n"
1281 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1282 printf "\n"
1283 printf " /* per-architecture data-pointers */\n"
1284 printf " unsigned nr_data;\n"
1285 printf " void **data;\n"
1286 printf "\n"
1287 printf " /* per-architecture swap-regions */\n"
1288 printf " struct gdbarch_swap *swap;\n"
1289 printf "\n"
1290 cat <<EOF
1291 /* Multi-arch values.
1292
1293 When extending this structure you must:
1294
1295 Add the field below.
1296
1297 Declare set/get functions and define the corresponding
1298 macro in gdbarch.h.
1299
1300 gdbarch_alloc(): If zero/NULL is not a suitable default,
1301 initialize the new field.
1302
1303 verify_gdbarch(): Confirm that the target updated the field
1304 correctly.
1305
1306 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1307 field is dumped out
1308
1309 \`\`startup_gdbarch()'': Append an initial value to the static
1310 variable (base values on the host's c-type system).
1311
1312 get_gdbarch(): Implement the set/get functions (probably using
1313 the macro's as shortcuts).
1314
1315 */
1316
1317 EOF
1318 function_list | while do_read
1319 do
1320 if class_is_variable_p
1321 then
1322 printf " ${returntype} ${function};\n"
1323 elif class_is_function_p
1324 then
1325 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1326 fi
1327 done
1328 printf "};\n"
1329
1330 # A pre-initialized vector
1331 printf "\n"
1332 printf "\n"
1333 cat <<EOF
1334 /* The default architecture uses host values (for want of a better
1335 choice). */
1336 EOF
1337 printf "\n"
1338 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1339 printf "\n"
1340 printf "struct gdbarch startup_gdbarch =\n"
1341 printf "{\n"
1342 printf " /* basic architecture information */\n"
1343 function_list | while do_read
1344 do
1345 if class_is_info_p
1346 then
1347 printf " ${staticdefault},\n"
1348 fi
1349 done
1350 cat <<EOF
1351 /* target specific vector and its dump routine */
1352 NULL, NULL,
1353 /*per-architecture data-pointers and swap regions */
1354 0, NULL, NULL,
1355 /* Multi-arch values */
1356 EOF
1357 function_list | while do_read
1358 do
1359 if class_is_function_p || class_is_variable_p
1360 then
1361 printf " ${staticdefault},\n"
1362 fi
1363 done
1364 cat <<EOF
1365 /* startup_gdbarch() */
1366 };
1367
1368 struct gdbarch *current_gdbarch = &startup_gdbarch;
1369
1370 /* Do any initialization needed for a non-multiarch configuration
1371 after the _initialize_MODULE functions have been run. */
1372 void
1373 initialize_non_multiarch ()
1374 {
1375 alloc_gdbarch_data (&startup_gdbarch);
1376 init_gdbarch_swap (&startup_gdbarch);
1377 init_gdbarch_data (&startup_gdbarch);
1378 }
1379 EOF
1380
1381 # Create a new gdbarch struct
1382 printf "\n"
1383 printf "\n"
1384 cat <<EOF
1385 /* Create a new \`\`struct gdbarch'' based on information provided by
1386 \`\`struct gdbarch_info''. */
1387 EOF
1388 printf "\n"
1389 cat <<EOF
1390 struct gdbarch *
1391 gdbarch_alloc (const struct gdbarch_info *info,
1392 struct gdbarch_tdep *tdep)
1393 {
1394 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1395 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1396 the current local architecture and not the previous global
1397 architecture. This ensures that the new architectures initial
1398 values are not influenced by the previous architecture. Once
1399 everything is parameterised with gdbarch, this will go away. */
1400 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1401 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1402
1403 alloc_gdbarch_data (current_gdbarch);
1404
1405 current_gdbarch->tdep = tdep;
1406 EOF
1407 printf "\n"
1408 function_list | while do_read
1409 do
1410 if class_is_info_p
1411 then
1412 printf " current_gdbarch->${function} = info->${function};\n"
1413 fi
1414 done
1415 printf "\n"
1416 printf " /* Force the explicit initialization of these. */\n"
1417 function_list | while do_read
1418 do
1419 if class_is_function_p || class_is_variable_p
1420 then
1421 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1422 then
1423 printf " current_gdbarch->${function} = ${predefault};\n"
1424 fi
1425 fi
1426 done
1427 cat <<EOF
1428 /* gdbarch_alloc() */
1429
1430 return current_gdbarch;
1431 }
1432 EOF
1433
1434 # Free a gdbarch struct.
1435 printf "\n"
1436 printf "\n"
1437 cat <<EOF
1438 /* Free a gdbarch struct. This should never happen in normal
1439 operation --- once you've created a gdbarch, you keep it around.
1440 However, if an architecture's init function encounters an error
1441 building the structure, it may need to clean up a partially
1442 constructed gdbarch. */
1443
1444 void
1445 gdbarch_free (struct gdbarch *arch)
1446 {
1447 gdb_assert (arch != NULL);
1448 free_gdbarch_data (arch);
1449 xfree (arch);
1450 }
1451 EOF
1452
1453 # verify a new architecture
1454 printf "\n"
1455 printf "\n"
1456 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1457 printf "\n"
1458 cat <<EOF
1459 static void
1460 verify_gdbarch (struct gdbarch *gdbarch)
1461 {
1462 struct ui_file *log;
1463 struct cleanup *cleanups;
1464 long dummy;
1465 char *buf;
1466 /* Only perform sanity checks on a multi-arch target. */
1467 if (!GDB_MULTI_ARCH)
1468 return;
1469 log = mem_fileopen ();
1470 cleanups = make_cleanup_ui_file_delete (log);
1471 /* fundamental */
1472 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1473 fprintf_unfiltered (log, "\n\tbyte-order");
1474 if (gdbarch->bfd_arch_info == NULL)
1475 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1476 /* Check those that need to be defined for the given multi-arch level. */
1477 EOF
1478 function_list | while do_read
1479 do
1480 if class_is_function_p || class_is_variable_p
1481 then
1482 if [ "x${invalid_p}" = "x0" ]
1483 then
1484 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1485 elif class_is_predicate_p
1486 then
1487 printf " /* Skip verify of ${function}, has predicate */\n"
1488 # FIXME: See do_read for potential simplification
1489 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1490 then
1491 printf " if (${invalid_p})\n"
1492 printf " gdbarch->${function} = ${postdefault};\n"
1493 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1494 then
1495 printf " if (gdbarch->${function} == ${predefault})\n"
1496 printf " gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${postdefault}" ]
1498 then
1499 printf " if (gdbarch->${function} == 0)\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${invalid_p}" ]
1502 then
1503 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1504 printf " && (${invalid_p}))\n"
1505 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1506 elif [ -n "${predefault}" ]
1507 then
1508 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1509 printf " && (gdbarch->${function} == ${predefault}))\n"
1510 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1511 fi
1512 fi
1513 done
1514 cat <<EOF
1515 buf = ui_file_xstrdup (log, &dummy);
1516 make_cleanup (xfree, buf);
1517 if (strlen (buf) > 0)
1518 internal_error (__FILE__, __LINE__,
1519 "verify_gdbarch: the following are invalid ...%s",
1520 buf);
1521 do_cleanups (cleanups);
1522 }
1523 EOF
1524
1525 # dump the structure
1526 printf "\n"
1527 printf "\n"
1528 cat <<EOF
1529 /* Print out the details of the current architecture. */
1530
1531 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1532 just happens to match the global variable \`\`current_gdbarch''. That
1533 way macros refering to that variable get the local and not the global
1534 version - ulgh. Once everything is parameterised with gdbarch, this
1535 will go away. */
1536
1537 void
1538 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1539 {
1540 fprintf_unfiltered (file,
1541 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1542 GDB_MULTI_ARCH);
1543 EOF
1544 function_list | sort -t: +2 | while do_read
1545 do
1546 # multiarch functions don't have macros.
1547 if class_is_multiarch_p
1548 then
1549 printf " if (GDB_MULTI_ARCH)\n"
1550 printf " fprintf_unfiltered (file,\n"
1551 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1552 printf " (long) current_gdbarch->${function});\n"
1553 continue
1554 fi
1555 # Print the macro definition.
1556 printf "#ifdef ${macro}\n"
1557 if [ "x${returntype}" = "xvoid" ]
1558 then
1559 printf "#if GDB_MULTI_ARCH\n"
1560 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1561 fi
1562 if class_is_function_p
1563 then
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1566 printf " \"${macro}(${actual})\",\n"
1567 printf " XSTRING (${macro} (${actual})));\n"
1568 else
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1571 printf " XSTRING (${macro}));\n"
1572 fi
1573 # Print the architecture vector value
1574 if [ "x${returntype}" = "xvoid" ]
1575 then
1576 printf "#endif\n"
1577 fi
1578 if [ "x${print_p}" = "x()" ]
1579 then
1580 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1581 elif [ "x${print_p}" = "x0" ]
1582 then
1583 printf " /* skip print of ${macro}, print_p == 0. */\n"
1584 elif [ -n "${print_p}" ]
1585 then
1586 printf " if (${print_p})\n"
1587 printf " fprintf_unfiltered (file,\n"
1588 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1589 printf " ${print});\n"
1590 elif class_is_function_p
1591 then
1592 printf " if (GDB_MULTI_ARCH)\n"
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1595 printf " (long) current_gdbarch->${function}\n"
1596 printf " /*${macro} ()*/);\n"
1597 else
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1600 printf " ${print});\n"
1601 fi
1602 printf "#endif\n"
1603 done
1604 cat <<EOF
1605 if (current_gdbarch->dump_tdep != NULL)
1606 current_gdbarch->dump_tdep (current_gdbarch, file);
1607 }
1608 EOF
1609
1610
1611 # GET/SET
1612 printf "\n"
1613 cat <<EOF
1614 struct gdbarch_tdep *
1615 gdbarch_tdep (struct gdbarch *gdbarch)
1616 {
1617 if (gdbarch_debug >= 2)
1618 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1619 return gdbarch->tdep;
1620 }
1621 EOF
1622 printf "\n"
1623 function_list | while do_read
1624 do
1625 if class_is_predicate_p
1626 then
1627 printf "\n"
1628 printf "int\n"
1629 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1630 printf "{\n"
1631 printf " gdb_assert (gdbarch != NULL);\n"
1632 if [ -n "${valid_p}" ]
1633 then
1634 printf " return ${valid_p};\n"
1635 else
1636 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1637 fi
1638 printf "}\n"
1639 fi
1640 if class_is_function_p
1641 then
1642 printf "\n"
1643 printf "${returntype}\n"
1644 if [ "x${formal}" = "xvoid" ]
1645 then
1646 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1647 else
1648 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1649 fi
1650 printf "{\n"
1651 printf " gdb_assert (gdbarch != NULL);\n"
1652 printf " if (gdbarch->${function} == 0)\n"
1653 printf " internal_error (__FILE__, __LINE__,\n"
1654 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1658 then
1659 if class_is_multiarch_p
1660 then
1661 params="gdbarch"
1662 else
1663 params=""
1664 fi
1665 else
1666 if class_is_multiarch_p
1667 then
1668 params="gdbarch, ${actual}"
1669 else
1670 params="${actual}"
1671 fi
1672 fi
1673 if [ "x${returntype}" = "xvoid" ]
1674 then
1675 printf " gdbarch->${function} (${params});\n"
1676 else
1677 printf " return gdbarch->${function} (${params});\n"
1678 fi
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_variable_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 if [ "x${invalid_p}" = "x0" ]
1695 then
1696 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1697 elif [ -n "${invalid_p}" ]
1698 then
1699 printf " if (${invalid_p})\n"
1700 printf " internal_error (__FILE__, __LINE__,\n"
1701 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1702 elif [ -n "${predefault}" ]
1703 then
1704 printf " if (gdbarch->${function} == ${predefault})\n"
1705 printf " internal_error (__FILE__, __LINE__,\n"
1706 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1707 fi
1708 printf " if (gdbarch_debug >= 2)\n"
1709 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1710 printf " return gdbarch->${function};\n"
1711 printf "}\n"
1712 printf "\n"
1713 printf "void\n"
1714 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1715 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1716 printf "{\n"
1717 printf " gdbarch->${function} = ${function};\n"
1718 printf "}\n"
1719 elif class_is_info_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 printf " if (gdbarch_debug >= 2)\n"
1727 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1728 printf " return gdbarch->${function};\n"
1729 printf "}\n"
1730 fi
1731 done
1732
1733 # All the trailing guff
1734 cat <<EOF
1735
1736
1737 /* Keep a registry of per-architecture data-pointers required by GDB
1738 modules. */
1739
1740 struct gdbarch_data
1741 {
1742 unsigned index;
1743 gdbarch_data_init_ftype *init;
1744 gdbarch_data_free_ftype *free;
1745 };
1746
1747 struct gdbarch_data_registration
1748 {
1749 struct gdbarch_data *data;
1750 struct gdbarch_data_registration *next;
1751 };
1752
1753 struct gdbarch_data_registry
1754 {
1755 unsigned nr;
1756 struct gdbarch_data_registration *registrations;
1757 };
1758
1759 struct gdbarch_data_registry gdbarch_data_registry =
1760 {
1761 0, NULL,
1762 };
1763
1764 struct gdbarch_data *
1765 register_gdbarch_data (gdbarch_data_init_ftype *init,
1766 gdbarch_data_free_ftype *free)
1767 {
1768 struct gdbarch_data_registration **curr;
1769 for (curr = &gdbarch_data_registry.registrations;
1770 (*curr) != NULL;
1771 curr = &(*curr)->next);
1772 (*curr) = XMALLOC (struct gdbarch_data_registration);
1773 (*curr)->next = NULL;
1774 (*curr)->data = XMALLOC (struct gdbarch_data);
1775 (*curr)->data->index = gdbarch_data_registry.nr++;
1776 (*curr)->data->init = init;
1777 (*curr)->data->free = free;
1778 return (*curr)->data;
1779 }
1780
1781
1782 /* Walk through all the registered users initializing each in turn. */
1783
1784 static void
1785 init_gdbarch_data (struct gdbarch *gdbarch)
1786 {
1787 struct gdbarch_data_registration *rego;
1788 for (rego = gdbarch_data_registry.registrations;
1789 rego != NULL;
1790 rego = rego->next)
1791 {
1792 struct gdbarch_data *data = rego->data;
1793 gdb_assert (data->index < gdbarch->nr_data);
1794 if (data->init != NULL)
1795 {
1796 void *pointer = data->init (gdbarch);
1797 set_gdbarch_data (gdbarch, data, pointer);
1798 }
1799 }
1800 }
1801
1802 /* Create/delete the gdbarch data vector. */
1803
1804 static void
1805 alloc_gdbarch_data (struct gdbarch *gdbarch)
1806 {
1807 gdb_assert (gdbarch->data == NULL);
1808 gdbarch->nr_data = gdbarch_data_registry.nr;
1809 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1810 }
1811
1812 static void
1813 free_gdbarch_data (struct gdbarch *gdbarch)
1814 {
1815 struct gdbarch_data_registration *rego;
1816 gdb_assert (gdbarch->data != NULL);
1817 for (rego = gdbarch_data_registry.registrations;
1818 rego != NULL;
1819 rego = rego->next)
1820 {
1821 struct gdbarch_data *data = rego->data;
1822 gdb_assert (data->index < gdbarch->nr_data);
1823 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1824 {
1825 data->free (gdbarch, gdbarch->data[data->index]);
1826 gdbarch->data[data->index] = NULL;
1827 }
1828 }
1829 xfree (gdbarch->data);
1830 gdbarch->data = NULL;
1831 }
1832
1833
1834 /* Initialize the current value of thee specified per-architecture
1835 data-pointer. */
1836
1837 void
1838 set_gdbarch_data (struct gdbarch *gdbarch,
1839 struct gdbarch_data *data,
1840 void *pointer)
1841 {
1842 gdb_assert (data->index < gdbarch->nr_data);
1843 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1844 data->free (gdbarch, gdbarch->data[data->index]);
1845 gdbarch->data[data->index] = pointer;
1846 }
1847
1848 /* Return the current value of the specified per-architecture
1849 data-pointer. */
1850
1851 void *
1852 gdbarch_data (struct gdbarch_data *data)
1853 {
1854 gdb_assert (data->index < current_gdbarch->nr_data);
1855 return current_gdbarch->data[data->index];
1856 }
1857
1858
1859
1860 /* Keep a registry of swapped data required by GDB modules. */
1861
1862 struct gdbarch_swap
1863 {
1864 void *swap;
1865 struct gdbarch_swap_registration *source;
1866 struct gdbarch_swap *next;
1867 };
1868
1869 struct gdbarch_swap_registration
1870 {
1871 void *data;
1872 unsigned long sizeof_data;
1873 gdbarch_swap_ftype *init;
1874 struct gdbarch_swap_registration *next;
1875 };
1876
1877 struct gdbarch_swap_registry
1878 {
1879 int nr;
1880 struct gdbarch_swap_registration *registrations;
1881 };
1882
1883 struct gdbarch_swap_registry gdbarch_swap_registry =
1884 {
1885 0, NULL,
1886 };
1887
1888 void
1889 register_gdbarch_swap (void *data,
1890 unsigned long sizeof_data,
1891 gdbarch_swap_ftype *init)
1892 {
1893 struct gdbarch_swap_registration **rego;
1894 for (rego = &gdbarch_swap_registry.registrations;
1895 (*rego) != NULL;
1896 rego = &(*rego)->next);
1897 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1898 (*rego)->next = NULL;
1899 (*rego)->init = init;
1900 (*rego)->data = data;
1901 (*rego)->sizeof_data = sizeof_data;
1902 }
1903
1904
1905 static void
1906 init_gdbarch_swap (struct gdbarch *gdbarch)
1907 {
1908 struct gdbarch_swap_registration *rego;
1909 struct gdbarch_swap **curr = &gdbarch->swap;
1910 for (rego = gdbarch_swap_registry.registrations;
1911 rego != NULL;
1912 rego = rego->next)
1913 {
1914 if (rego->data != NULL)
1915 {
1916 (*curr) = XMALLOC (struct gdbarch_swap);
1917 (*curr)->source = rego;
1918 (*curr)->swap = xmalloc (rego->sizeof_data);
1919 (*curr)->next = NULL;
1920 memset (rego->data, 0, rego->sizeof_data);
1921 curr = &(*curr)->next;
1922 }
1923 if (rego->init != NULL)
1924 rego->init ();
1925 }
1926 }
1927
1928 static void
1929 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1930 {
1931 struct gdbarch_swap *curr;
1932 for (curr = gdbarch->swap;
1933 curr != NULL;
1934 curr = curr->next)
1935 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1936 }
1937
1938 static void
1939 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1940 {
1941 struct gdbarch_swap *curr;
1942 for (curr = gdbarch->swap;
1943 curr != NULL;
1944 curr = curr->next)
1945 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1946 }
1947
1948
1949 /* Keep a registry of the architectures known by GDB. */
1950
1951 struct gdbarch_registration
1952 {
1953 enum bfd_architecture bfd_architecture;
1954 gdbarch_init_ftype *init;
1955 gdbarch_dump_tdep_ftype *dump_tdep;
1956 struct gdbarch_list *arches;
1957 struct gdbarch_registration *next;
1958 };
1959
1960 static struct gdbarch_registration *gdbarch_registry = NULL;
1961
1962 static void
1963 append_name (const char ***buf, int *nr, const char *name)
1964 {
1965 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1966 (*buf)[*nr] = name;
1967 *nr += 1;
1968 }
1969
1970 const char **
1971 gdbarch_printable_names (void)
1972 {
1973 if (GDB_MULTI_ARCH)
1974 {
1975 /* Accumulate a list of names based on the registed list of
1976 architectures. */
1977 enum bfd_architecture a;
1978 int nr_arches = 0;
1979 const char **arches = NULL;
1980 struct gdbarch_registration *rego;
1981 for (rego = gdbarch_registry;
1982 rego != NULL;
1983 rego = rego->next)
1984 {
1985 const struct bfd_arch_info *ap;
1986 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1987 if (ap == NULL)
1988 internal_error (__FILE__, __LINE__,
1989 "gdbarch_architecture_names: multi-arch unknown");
1990 do
1991 {
1992 append_name (&arches, &nr_arches, ap->printable_name);
1993 ap = ap->next;
1994 }
1995 while (ap != NULL);
1996 }
1997 append_name (&arches, &nr_arches, NULL);
1998 return arches;
1999 }
2000 else
2001 /* Just return all the architectures that BFD knows. Assume that
2002 the legacy architecture framework supports them. */
2003 return bfd_arch_list ();
2004 }
2005
2006
2007 void
2008 gdbarch_register (enum bfd_architecture bfd_architecture,
2009 gdbarch_init_ftype *init,
2010 gdbarch_dump_tdep_ftype *dump_tdep)
2011 {
2012 struct gdbarch_registration **curr;
2013 const struct bfd_arch_info *bfd_arch_info;
2014 /* Check that BFD recognizes this architecture */
2015 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2016 if (bfd_arch_info == NULL)
2017 {
2018 internal_error (__FILE__, __LINE__,
2019 "gdbarch: Attempt to register unknown architecture (%d)",
2020 bfd_architecture);
2021 }
2022 /* Check that we haven't seen this architecture before */
2023 for (curr = &gdbarch_registry;
2024 (*curr) != NULL;
2025 curr = &(*curr)->next)
2026 {
2027 if (bfd_architecture == (*curr)->bfd_architecture)
2028 internal_error (__FILE__, __LINE__,
2029 "gdbarch: Duplicate registraration of architecture (%s)",
2030 bfd_arch_info->printable_name);
2031 }
2032 /* log it */
2033 if (gdbarch_debug)
2034 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2035 bfd_arch_info->printable_name,
2036 (long) init);
2037 /* Append it */
2038 (*curr) = XMALLOC (struct gdbarch_registration);
2039 (*curr)->bfd_architecture = bfd_architecture;
2040 (*curr)->init = init;
2041 (*curr)->dump_tdep = dump_tdep;
2042 (*curr)->arches = NULL;
2043 (*curr)->next = NULL;
2044 /* When non- multi-arch, install whatever target dump routine we've
2045 been provided - hopefully that routine has been written correctly
2046 and works regardless of multi-arch. */
2047 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2048 && startup_gdbarch.dump_tdep == NULL)
2049 startup_gdbarch.dump_tdep = dump_tdep;
2050 }
2051
2052 void
2053 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init)
2055 {
2056 gdbarch_register (bfd_architecture, init, NULL);
2057 }
2058
2059
2060 /* Look for an architecture using gdbarch_info. Base search on only
2061 BFD_ARCH_INFO and BYTE_ORDER. */
2062
2063 struct gdbarch_list *
2064 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2065 const struct gdbarch_info *info)
2066 {
2067 for (; arches != NULL; arches = arches->next)
2068 {
2069 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2070 continue;
2071 if (info->byte_order != arches->gdbarch->byte_order)
2072 continue;
2073 return arches;
2074 }
2075 return NULL;
2076 }
2077
2078
2079 /* Update the current architecture. Return ZERO if the update request
2080 failed. */
2081
2082 int
2083 gdbarch_update_p (struct gdbarch_info info)
2084 {
2085 struct gdbarch *new_gdbarch;
2086 struct gdbarch_registration *rego;
2087
2088 /* Fill in missing parts of the INFO struct using a number of
2089 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2090
2091 /* \`\`(gdb) set architecture ...'' */
2092 if (info.bfd_arch_info == NULL
2093 && !TARGET_ARCHITECTURE_AUTO)
2094 info.bfd_arch_info = TARGET_ARCHITECTURE;
2095 if (info.bfd_arch_info == NULL
2096 && info.abfd != NULL
2097 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2098 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2099 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2100 if (info.bfd_arch_info == NULL)
2101 info.bfd_arch_info = TARGET_ARCHITECTURE;
2102
2103 /* \`\`(gdb) set byte-order ...'' */
2104 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2105 && !TARGET_BYTE_ORDER_AUTO)
2106 info.byte_order = TARGET_BYTE_ORDER;
2107 /* From the INFO struct. */
2108 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2109 && info.abfd != NULL)
2110 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2111 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2112 : BFD_ENDIAN_UNKNOWN);
2113 /* From the current target. */
2114 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2115 info.byte_order = TARGET_BYTE_ORDER;
2116
2117 /* Must have found some sort of architecture. */
2118 gdb_assert (info.bfd_arch_info != NULL);
2119
2120 if (gdbarch_debug)
2121 {
2122 fprintf_unfiltered (gdb_stdlog,
2123 "gdbarch_update: info.bfd_arch_info %s\n",
2124 (info.bfd_arch_info != NULL
2125 ? info.bfd_arch_info->printable_name
2126 : "(null)"));
2127 fprintf_unfiltered (gdb_stdlog,
2128 "gdbarch_update: info.byte_order %d (%s)\n",
2129 info.byte_order,
2130 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2131 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2132 : "default"));
2133 fprintf_unfiltered (gdb_stdlog,
2134 "gdbarch_update: info.abfd 0x%lx\n",
2135 (long) info.abfd);
2136 fprintf_unfiltered (gdb_stdlog,
2137 "gdbarch_update: info.tdep_info 0x%lx\n",
2138 (long) info.tdep_info);
2139 }
2140
2141 /* Find the target that knows about this architecture. */
2142 for (rego = gdbarch_registry;
2143 rego != NULL;
2144 rego = rego->next)
2145 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2146 break;
2147 if (rego == NULL)
2148 {
2149 if (gdbarch_debug)
2150 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2151 return 0;
2152 }
2153
2154 /* Ask the target for a replacement architecture. */
2155 new_gdbarch = rego->init (info, rego->arches);
2156
2157 /* Did the target like it? No. Reject the change. */
2158 if (new_gdbarch == NULL)
2159 {
2160 if (gdbarch_debug)
2161 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2162 return 0;
2163 }
2164
2165 /* Did the architecture change? No. Do nothing. */
2166 if (current_gdbarch == new_gdbarch)
2167 {
2168 if (gdbarch_debug)
2169 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2170 (long) new_gdbarch,
2171 new_gdbarch->bfd_arch_info->printable_name);
2172 return 1;
2173 }
2174
2175 /* Swap all data belonging to the old target out */
2176 swapout_gdbarch_swap (current_gdbarch);
2177
2178 /* Is this a pre-existing architecture? Yes. Move it to the front
2179 of the list of architectures (keeping the list sorted Most
2180 Recently Used) and then copy it in. */
2181 {
2182 struct gdbarch_list **list;
2183 for (list = &rego->arches;
2184 (*list) != NULL;
2185 list = &(*list)->next)
2186 {
2187 if ((*list)->gdbarch == new_gdbarch)
2188 {
2189 struct gdbarch_list *this;
2190 if (gdbarch_debug)
2191 fprintf_unfiltered (gdb_stdlog,
2192 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2193 (long) new_gdbarch,
2194 new_gdbarch->bfd_arch_info->printable_name);
2195 /* Unlink this. */
2196 this = (*list);
2197 (*list) = this->next;
2198 /* Insert in the front. */
2199 this->next = rego->arches;
2200 rego->arches = this;
2201 /* Copy the new architecture in. */
2202 current_gdbarch = new_gdbarch;
2203 swapin_gdbarch_swap (new_gdbarch);
2204 architecture_changed_event ();
2205 return 1;
2206 }
2207 }
2208 }
2209
2210 /* Prepend this new architecture to the architecture list (keep the
2211 list sorted Most Recently Used). */
2212 {
2213 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2214 this->next = rego->arches;
2215 this->gdbarch = new_gdbarch;
2216 rego->arches = this;
2217 }
2218
2219 /* Switch to this new architecture. Dump it out. */
2220 current_gdbarch = new_gdbarch;
2221 if (gdbarch_debug)
2222 {
2223 fprintf_unfiltered (gdb_stdlog,
2224 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2225 (long) new_gdbarch,
2226 new_gdbarch->bfd_arch_info->printable_name);
2227 }
2228
2229 /* Check that the newly installed architecture is valid. Plug in
2230 any post init values. */
2231 new_gdbarch->dump_tdep = rego->dump_tdep;
2232 verify_gdbarch (new_gdbarch);
2233
2234 /* Initialize the per-architecture memory (swap) areas.
2235 CURRENT_GDBARCH must be update before these modules are
2236 called. */
2237 init_gdbarch_swap (new_gdbarch);
2238
2239 /* Initialize the per-architecture data-pointer of all parties that
2240 registered an interest in this architecture. CURRENT_GDBARCH
2241 must be updated before these modules are called. */
2242 init_gdbarch_data (new_gdbarch);
2243 architecture_changed_event ();
2244
2245 if (gdbarch_debug)
2246 gdbarch_dump (current_gdbarch, gdb_stdlog);
2247
2248 return 1;
2249 }
2250
2251
2252 /* Disassembler */
2253
2254 /* Pointer to the target-dependent disassembly function. */
2255 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2256 disassemble_info tm_print_insn_info;
2257
2258
2259 extern void _initialize_gdbarch (void);
2260
2261 void
2262 _initialize_gdbarch (void)
2263 {
2264 struct cmd_list_element *c;
2265
2266 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2267 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2268 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2269 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2270 tm_print_insn_info.print_address_func = dis_asm_print_address;
2271
2272 add_show_from_set (add_set_cmd ("arch",
2273 class_maintenance,
2274 var_zinteger,
2275 (char *)&gdbarch_debug,
2276 "Set architecture debugging.\\n\\
2277 When non-zero, architecture debugging is enabled.", &setdebuglist),
2278 &showdebuglist);
2279 c = add_set_cmd ("archdebug",
2280 class_maintenance,
2281 var_zinteger,
2282 (char *)&gdbarch_debug,
2283 "Set architecture debugging.\\n\\
2284 When non-zero, architecture debugging is enabled.", &setlist);
2285
2286 deprecate_cmd (c, "set debug arch");
2287 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2288 }
2289 EOF
2290
2291 # close things off
2292 exec 1>&2
2293 #../move-if-change new-gdbarch.c gdbarch.c
2294 compare_new gdbarch.c
This page took 0.147541 seconds and 5 git commands to generate.