Add gdbarch callback to provide formats for debug info float types
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # Returns the floating-point format to be used for values of length LENGTH.
387 # NAME, if non-NULL, is the type name, which may be used to distinguish
388 # different target formats of the same length.
389 m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
391 # For most targets, a pointer on the target and its representation as an
392 # address in GDB have the same size and "look the same". For such a
393 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
394 # / addr_bit will be set from it.
395 #
396 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
397 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398 # gdbarch_address_to_pointer as well.
399 #
400 # ptr_bit is the size of a pointer on the target
401 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
402 # addr_bit is the size of a target address as represented in gdb
403 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
404 #
405 # dwarf2_addr_size is the target address size as used in the Dwarf debug
406 # info. For .debug_frame FDEs, this is supposed to be the target address
407 # size from the associated CU header, and which is equivalent to the
408 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409 # Unfortunately there is no good way to determine this value. Therefore
410 # dwarf2_addr_size simply defaults to the target pointer size.
411 #
412 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413 # defined using the target's pointer size so far.
414 #
415 # Note that dwarf2_addr_size only needs to be redefined by a target if the
416 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417 # and if Dwarf versions < 4 need to be supported.
418 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419 #
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v:int:char_signed:::1:-1:1
422 #
423 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
429 #
430 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 # Read a register into a new struct value. If the register is wholly
432 # or partly unavailable, this should call mark_value_bytes_unavailable
433 # as appropriate. If this is defined, then pseudo_register_read will
434 # never be called.
435 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
436 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
437 #
438 v:int:num_regs:::0:-1
439 # This macro gives the number of pseudo-registers that live in the
440 # register namespace but do not get fetched or stored on the target.
441 # These pseudo-registers may be aliases for other registers,
442 # combinations of other registers, or they may be computed by GDB.
443 v:int:num_pseudo_regs:::0:0::0
444
445 # Assemble agent expression bytecode to collect pseudo-register REG.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449 # Assemble agent expression bytecode to push the value of pseudo-register
450 # REG on the interpreter stack.
451 # Return -1 if something goes wrong, 0 otherwise.
452 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
454 # Some targets/architectures can do extra processing/display of
455 # segmentation faults. E.g., Intel MPX boundary faults.
456 # Call the architecture dependent function to handle the fault.
457 # UIOUT is the output stream where the handler will place information.
458 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
460 # GDB's standard (or well known) register numbers. These can map onto
461 # a real register or a pseudo (computed) register or not be defined at
462 # all (-1).
463 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
464 v:int:sp_regnum:::-1:-1::0
465 v:int:pc_regnum:::-1:-1::0
466 v:int:ps_regnum:::-1:-1::0
467 v:int:fp0_regnum:::0:-1::0
468 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
469 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
470 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
471 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
472 # Convert from an sdb register number to an internal gdb register number.
473 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
474 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
475 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
476 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
477 m:const char *:register_name:int regnr:regnr::0
478
479 # Return the type of a register specified by the architecture. Only
480 # the register cache should call this function directly; others should
481 # use "register_type".
482 M:struct type *:register_type:int reg_nr:reg_nr
483
484 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
486 # deprecated_fp_regnum.
487 v:int:deprecated_fp_regnum:::-1:-1::0
488
489 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490 v:int:call_dummy_location::::AT_ENTRY_POINT::0
491 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
492
493 # Return true if the code of FRAME is writable.
494 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
496 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
497 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
498 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
499 # MAP a GDB RAW register number onto a simulator register number. See
500 # also include/...-sim.h.
501 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
502 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
504
505 # Determine the address where a longjmp will land and save this address
506 # in PC. Return nonzero on success.
507 #
508 # FRAME corresponds to the longjmp frame.
509 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
510
511 #
512 v:int:believe_pcc_promotion:::::::
513 #
514 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
515 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
516 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
517 # Construct a value representing the contents of register REGNUM in
518 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
519 # allocate and return a struct value with all value attributes
520 # (but not the value contents) filled in.
521 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
522 #
523 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
525 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
526
527 # Return the return-value convention that will be used by FUNCTION
528 # to return a value of type VALTYPE. FUNCTION may be NULL in which
529 # case the return convention is computed based only on VALTYPE.
530 #
531 # If READBUF is not NULL, extract the return value and save it in this buffer.
532 #
533 # If WRITEBUF is not NULL, it contains a return value which will be
534 # stored into the appropriate register. This can be used when we want
535 # to force the value returned by a function (see the "return" command
536 # for instance).
537 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
538
539 # Return true if the return value of function is stored in the first hidden
540 # parameter. In theory, this feature should be language-dependent, specified
541 # by language and its ABI, such as C++. Unfortunately, compiler may
542 # implement it to a target-dependent feature. So that we need such hook here
543 # to be aware of this in GDB.
544 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
546 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
547 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
548 # On some platforms, a single function may provide multiple entry points,
549 # e.g. one that is used for function-pointer calls and a different one
550 # that is used for direct function calls.
551 # In order to ensure that breakpoints set on the function will trigger
552 # no matter via which entry point the function is entered, a platform
553 # may provide the skip_entrypoint callback. It is called with IP set
554 # to the main entry point of a function (as determined by the symbol table),
555 # and should return the address of the innermost entry point, where the
556 # actual breakpoint needs to be set. Note that skip_entrypoint is used
557 # by GDB common code even when debugging optimized code, where skip_prologue
558 # is not used.
559 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
561 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
562 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
563 # Return the adjusted address and kind to use for Z0/Z1 packets.
564 # KIND is usually the memory length of the breakpoint, but may have a
565 # different target-specific meaning.
566 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
567 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
568 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
569 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
570 v:CORE_ADDR:decr_pc_after_break:::0:::0
571
572 # A function can be addressed by either it's "pointer" (possibly a
573 # descriptor address) or "entry point" (first executable instruction).
574 # The method "convert_from_func_ptr_addr" converting the former to the
575 # latter. gdbarch_deprecated_function_start_offset is being used to implement
576 # a simplified subset of that functionality - the function's address
577 # corresponds to the "function pointer" and the function's start
578 # corresponds to the "function entry point" - and hence is redundant.
579
580 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
581
582 # Return the remote protocol register number associated with this
583 # register. Normally the identity mapping.
584 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
585
586 # Fetch the target specific address used to represent a load module.
587 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
588 #
589 v:CORE_ADDR:frame_args_skip:::0:::0
590 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
591 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
592 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
593 # frame-base. Enable frame-base before frame-unwind.
594 F:int:frame_num_args:struct frame_info *frame:frame
595 #
596 M:CORE_ADDR:frame_align:CORE_ADDR address:address
597 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
598 v:int:frame_red_zone_size
599 #
600 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
601 # On some machines there are bits in addresses which are not really
602 # part of the address, but are used by the kernel, the hardware, etc.
603 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
604 # we get a "real" address such as one would find in a symbol table.
605 # This is used only for addresses of instructions, and even then I'm
606 # not sure it's used in all contexts. It exists to deal with there
607 # being a few stray bits in the PC which would mislead us, not as some
608 # sort of generic thing to handle alignment or segmentation (it's
609 # possible it should be in TARGET_READ_PC instead).
610 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
611
612 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
613 # indicates if the target needs software single step. An ISA method to
614 # implement it.
615 #
616 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
617 # target can single step. If not, then implement single step using breakpoints.
618 #
619 # A return value of 1 means that the software_single_step breakpoints
620 # were inserted; 0 means they were not. Multiple breakpoints may be
621 # inserted for some instructions such as conditional branch. However,
622 # each implementation must always evaluate the condition and only put
623 # the breakpoint at the branch destination if the condition is true, so
624 # that we ensure forward progress when stepping past a conditional
625 # branch to self.
626 F:int:software_single_step:struct frame_info *frame:frame
627
628 # Return non-zero if the processor is executing a delay slot and a
629 # further single-step is needed before the instruction finishes.
630 M:int:single_step_through_delay:struct frame_info *frame:frame
631 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
632 # disassembler. Perhaps objdump can handle it?
633 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
634 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
635
636
637 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
638 # evaluates non-zero, this is the address where the debugger will place
639 # a step-resume breakpoint to get us past the dynamic linker.
640 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
641 # Some systems also have trampoline code for returning from shared libs.
642 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
643
644 # A target might have problems with watchpoints as soon as the stack
645 # frame of the current function has been destroyed. This mostly happens
646 # as the first action in a function's epilogue. stack_frame_destroyed_p()
647 # is defined to return a non-zero value if either the given addr is one
648 # instruction after the stack destroying instruction up to the trailing
649 # return instruction or if we can figure out that the stack frame has
650 # already been invalidated regardless of the value of addr. Targets
651 # which don't suffer from that problem could just let this functionality
652 # untouched.
653 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
654 # Process an ELF symbol in the minimal symbol table in a backend-specific
655 # way. Normally this hook is supposed to do nothing, however if required,
656 # then this hook can be used to apply tranformations to symbols that are
657 # considered special in some way. For example the MIPS backend uses it
658 # to interpret \`st_other' information to mark compressed code symbols so
659 # that they can be treated in the appropriate manner in the processing of
660 # the main symbol table and DWARF-2 records.
661 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
662 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
663 # Process a symbol in the main symbol table in a backend-specific way.
664 # Normally this hook is supposed to do nothing, however if required,
665 # then this hook can be used to apply tranformations to symbols that
666 # are considered special in some way. This is currently used by the
667 # MIPS backend to make sure compressed code symbols have the ISA bit
668 # set. This in turn is needed for symbol values seen in GDB to match
669 # the values used at the runtime by the program itself, for function
670 # and label references.
671 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
672 # Adjust the address retrieved from a DWARF-2 record other than a line
673 # entry in a backend-specific way. Normally this hook is supposed to
674 # return the address passed unchanged, however if that is incorrect for
675 # any reason, then this hook can be used to fix the address up in the
676 # required manner. This is currently used by the MIPS backend to make
677 # sure addresses in FDE, range records, etc. referring to compressed
678 # code have the ISA bit set, matching line information and the symbol
679 # table.
680 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
681 # Adjust the address updated by a line entry in a backend-specific way.
682 # Normally this hook is supposed to return the address passed unchanged,
683 # however in the case of inconsistencies in these records, this hook can
684 # be used to fix them up in the required manner. This is currently used
685 # by the MIPS backend to make sure all line addresses in compressed code
686 # are presented with the ISA bit set, which is not always the case. This
687 # in turn ensures breakpoint addresses are correctly matched against the
688 # stop PC.
689 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
690 v:int:cannot_step_breakpoint:::0:0::0
691 v:int:have_nonsteppable_watchpoint:::0:0::0
692 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
693 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
694
695 # Return the appropriate type_flags for the supplied address class.
696 # This function should return 1 if the address class was recognized and
697 # type_flags was set, zero otherwise.
698 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
699 # Is a register in a group
700 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
701 # Fetch the pointer to the ith function argument.
702 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
703
704 # Iterate over all supported register notes in a core file. For each
705 # supported register note section, the iterator must call CB and pass
706 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
707 # the supported register note sections based on the current register
708 # values. Otherwise it should enumerate all supported register note
709 # sections.
710 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
711
712 # Create core file notes
713 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
714
715 # The elfcore writer hook to use to write Linux prpsinfo notes to core
716 # files. Most Linux architectures use the same prpsinfo32 or
717 # prpsinfo64 layouts, and so won't need to provide this hook, as we
718 # call the Linux generic routines in bfd to write prpsinfo notes by
719 # default.
720 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
721
722 # Find core file memory regions
723 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
724
725 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
726 # core file into buffer READBUF with length LEN. Return the number of bytes read
727 # (zero indicates failure).
728 # failed, otherwise, return the red length of READBUF.
729 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
730
731 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
732 # libraries list from core file into buffer READBUF with length LEN.
733 # Return the number of bytes read (zero indicates failure).
734 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
735
736 # How the core target converts a PTID from a core file to a string.
737 M:char *:core_pid_to_str:ptid_t ptid:ptid
738
739 # How the core target extracts the name of a thread from a core file.
740 M:const char *:core_thread_name:struct thread_info *thr:thr
741
742 # BFD target to use when generating a core file.
743 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
744
745 # If the elements of C++ vtables are in-place function descriptors rather
746 # than normal function pointers (which may point to code or a descriptor),
747 # set this to one.
748 v:int:vtable_function_descriptors:::0:0::0
749
750 # Set if the least significant bit of the delta is used instead of the least
751 # significant bit of the pfn for pointers to virtual member functions.
752 v:int:vbit_in_delta:::0:0::0
753
754 # Advance PC to next instruction in order to skip a permanent breakpoint.
755 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
756
757 # The maximum length of an instruction on this architecture in bytes.
758 V:ULONGEST:max_insn_length:::0:0
759
760 # Copy the instruction at FROM to TO, and make any adjustments
761 # necessary to single-step it at that address.
762 #
763 # REGS holds the state the thread's registers will have before
764 # executing the copied instruction; the PC in REGS will refer to FROM,
765 # not the copy at TO. The caller should update it to point at TO later.
766 #
767 # Return a pointer to data of the architecture's choice to be passed
768 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
769 # the instruction's effects have been completely simulated, with the
770 # resulting state written back to REGS.
771 #
772 # For a general explanation of displaced stepping and how GDB uses it,
773 # see the comments in infrun.c.
774 #
775 # The TO area is only guaranteed to have space for
776 # gdbarch_max_insn_length (arch) bytes, so this function must not
777 # write more bytes than that to that area.
778 #
779 # If you do not provide this function, GDB assumes that the
780 # architecture does not support displaced stepping.
781 #
782 # If your architecture doesn't need to adjust instructions before
783 # single-stepping them, consider using simple_displaced_step_copy_insn
784 # here.
785 #
786 # If the instruction cannot execute out of line, return NULL. The
787 # core falls back to stepping past the instruction in-line instead in
788 # that case.
789 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
790
791 # Return true if GDB should use hardware single-stepping to execute
792 # the displaced instruction identified by CLOSURE. If false,
793 # GDB will simply restart execution at the displaced instruction
794 # location, and it is up to the target to ensure GDB will receive
795 # control again (e.g. by placing a software breakpoint instruction
796 # into the displaced instruction buffer).
797 #
798 # The default implementation returns false on all targets that
799 # provide a gdbarch_software_single_step routine, and true otherwise.
800 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
801
802 # Fix up the state resulting from successfully single-stepping a
803 # displaced instruction, to give the result we would have gotten from
804 # stepping the instruction in its original location.
805 #
806 # REGS is the register state resulting from single-stepping the
807 # displaced instruction.
808 #
809 # CLOSURE is the result from the matching call to
810 # gdbarch_displaced_step_copy_insn.
811 #
812 # If you provide gdbarch_displaced_step_copy_insn.but not this
813 # function, then GDB assumes that no fixup is needed after
814 # single-stepping the instruction.
815 #
816 # For a general explanation of displaced stepping and how GDB uses it,
817 # see the comments in infrun.c.
818 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
819
820 # Free a closure returned by gdbarch_displaced_step_copy_insn.
821 #
822 # If you provide gdbarch_displaced_step_copy_insn, you must provide
823 # this function as well.
824 #
825 # If your architecture uses closures that don't need to be freed, then
826 # you can use simple_displaced_step_free_closure here.
827 #
828 # For a general explanation of displaced stepping and how GDB uses it,
829 # see the comments in infrun.c.
830 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
831
832 # Return the address of an appropriate place to put displaced
833 # instructions while we step over them. There need only be one such
834 # place, since we're only stepping one thread over a breakpoint at a
835 # time.
836 #
837 # For a general explanation of displaced stepping and how GDB uses it,
838 # see the comments in infrun.c.
839 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
840
841 # Relocate an instruction to execute at a different address. OLDLOC
842 # is the address in the inferior memory where the instruction to
843 # relocate is currently at. On input, TO points to the destination
844 # where we want the instruction to be copied (and possibly adjusted)
845 # to. On output, it points to one past the end of the resulting
846 # instruction(s). The effect of executing the instruction at TO shall
847 # be the same as if executing it at FROM. For example, call
848 # instructions that implicitly push the return address on the stack
849 # should be adjusted to return to the instruction after OLDLOC;
850 # relative branches, and other PC-relative instructions need the
851 # offset adjusted; etc.
852 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
853
854 # Refresh overlay mapped state for section OSECT.
855 F:void:overlay_update:struct obj_section *osect:osect
856
857 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
858
859 # Handle special encoding of static variables in stabs debug info.
860 F:const char *:static_transform_name:const char *name:name
861 # Set if the address in N_SO or N_FUN stabs may be zero.
862 v:int:sofun_address_maybe_missing:::0:0::0
863
864 # Parse the instruction at ADDR storing in the record execution log
865 # the registers REGCACHE and memory ranges that will be affected when
866 # the instruction executes, along with their current values.
867 # Return -1 if something goes wrong, 0 otherwise.
868 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
869
870 # Save process state after a signal.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
873
874 # Signal translation: translate inferior's signal (target's) number
875 # into GDB's representation. The implementation of this method must
876 # be host independent. IOW, don't rely on symbols of the NAT_FILE
877 # header (the nm-*.h files), the host <signal.h> header, or similar
878 # headers. This is mainly used when cross-debugging core files ---
879 # "Live" targets hide the translation behind the target interface
880 # (target_wait, target_resume, etc.).
881 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
882
883 # Signal translation: translate the GDB's internal signal number into
884 # the inferior's signal (target's) representation. The implementation
885 # of this method must be host independent. IOW, don't rely on symbols
886 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
887 # header, or similar headers.
888 # Return the target signal number if found, or -1 if the GDB internal
889 # signal number is invalid.
890 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
891
892 # Extra signal info inspection.
893 #
894 # Return a type suitable to inspect extra signal information.
895 M:struct type *:get_siginfo_type:void:
896
897 # Record architecture-specific information from the symbol table.
898 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
899
900 # Function for the 'catch syscall' feature.
901
902 # Get architecture-specific system calls information from registers.
903 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
904
905 # The filename of the XML syscall for this architecture.
906 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
907
908 # Information about system calls from this architecture
909 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
910
911 # SystemTap related fields and functions.
912
913 # A NULL-terminated array of prefixes used to mark an integer constant
914 # on the architecture's assembly.
915 # For example, on x86 integer constants are written as:
916 #
917 # \$10 ;; integer constant 10
918 #
919 # in this case, this prefix would be the character \`\$\'.
920 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
921
922 # A NULL-terminated array of suffixes used to mark an integer constant
923 # on the architecture's assembly.
924 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
925
926 # A NULL-terminated array of prefixes used to mark a register name on
927 # the architecture's assembly.
928 # For example, on x86 the register name is written as:
929 #
930 # \%eax ;; register eax
931 #
932 # in this case, this prefix would be the character \`\%\'.
933 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
934
935 # A NULL-terminated array of suffixes used to mark a register name on
936 # the architecture's assembly.
937 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
938
939 # A NULL-terminated array of prefixes used to mark a register
940 # indirection on the architecture's assembly.
941 # For example, on x86 the register indirection is written as:
942 #
943 # \(\%eax\) ;; indirecting eax
944 #
945 # in this case, this prefix would be the charater \`\(\'.
946 #
947 # Please note that we use the indirection prefix also for register
948 # displacement, e.g., \`4\(\%eax\)\' on x86.
949 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
950
951 # A NULL-terminated array of suffixes used to mark a register
952 # indirection on the architecture's assembly.
953 # For example, on x86 the register indirection is written as:
954 #
955 # \(\%eax\) ;; indirecting eax
956 #
957 # in this case, this prefix would be the charater \`\)\'.
958 #
959 # Please note that we use the indirection suffix also for register
960 # displacement, e.g., \`4\(\%eax\)\' on x86.
961 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
962
963 # Prefix(es) used to name a register using GDB's nomenclature.
964 #
965 # For example, on PPC a register is represented by a number in the assembly
966 # language (e.g., \`10\' is the 10th general-purpose register). However,
967 # inside GDB this same register has an \`r\' appended to its name, so the 10th
968 # register would be represented as \`r10\' internally.
969 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
970
971 # Suffix used to name a register using GDB's nomenclature.
972 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
973
974 # Check if S is a single operand.
975 #
976 # Single operands can be:
977 # \- Literal integers, e.g. \`\$10\' on x86
978 # \- Register access, e.g. \`\%eax\' on x86
979 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
980 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
981 #
982 # This function should check for these patterns on the string
983 # and return 1 if some were found, or zero otherwise. Please try to match
984 # as much info as you can from the string, i.e., if you have to match
985 # something like \`\(\%\', do not match just the \`\(\'.
986 M:int:stap_is_single_operand:const char *s:s
987
988 # Function used to handle a "special case" in the parser.
989 #
990 # A "special case" is considered to be an unknown token, i.e., a token
991 # that the parser does not know how to parse. A good example of special
992 # case would be ARM's register displacement syntax:
993 #
994 # [R0, #4] ;; displacing R0 by 4
995 #
996 # Since the parser assumes that a register displacement is of the form:
997 #
998 # <number> <indirection_prefix> <register_name> <indirection_suffix>
999 #
1000 # it means that it will not be able to recognize and parse this odd syntax.
1001 # Therefore, we should add a special case function that will handle this token.
1002 #
1003 # This function should generate the proper expression form of the expression
1004 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1005 # and so on). It should also return 1 if the parsing was successful, or zero
1006 # if the token was not recognized as a special token (in this case, returning
1007 # zero means that the special parser is deferring the parsing to the generic
1008 # parser), and should advance the buffer pointer (p->arg).
1009 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1010
1011 # DTrace related functions.
1012
1013 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1014 # NARG must be >= 0.
1015 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1016
1017 # True if the given ADDR does not contain the instruction sequence
1018 # corresponding to a disabled DTrace is-enabled probe.
1019 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1020
1021 # Enable a DTrace is-enabled probe at ADDR.
1022 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1023
1024 # Disable a DTrace is-enabled probe at ADDR.
1025 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1026
1027 # True if the list of shared libraries is one and only for all
1028 # processes, as opposed to a list of shared libraries per inferior.
1029 # This usually means that all processes, although may or may not share
1030 # an address space, will see the same set of symbols at the same
1031 # addresses.
1032 v:int:has_global_solist:::0:0::0
1033
1034 # On some targets, even though each inferior has its own private
1035 # address space, the debug interface takes care of making breakpoints
1036 # visible to all address spaces automatically. For such cases,
1037 # this property should be set to true.
1038 v:int:has_global_breakpoints:::0:0::0
1039
1040 # True if inferiors share an address space (e.g., uClinux).
1041 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1042
1043 # True if a fast tracepoint can be set at an address.
1044 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1045
1046 # Guess register state based on tracepoint location. Used for tracepoints
1047 # where no registers have been collected, but there's only one location,
1048 # allowing us to guess the PC value, and perhaps some other registers.
1049 # On entry, regcache has all registers marked as unavailable.
1050 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1051
1052 # Return the "auto" target charset.
1053 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1054 # Return the "auto" target wide charset.
1055 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1056
1057 # If non-empty, this is a file extension that will be opened in place
1058 # of the file extension reported by the shared library list.
1059 #
1060 # This is most useful for toolchains that use a post-linker tool,
1061 # where the names of the files run on the target differ in extension
1062 # compared to the names of the files GDB should load for debug info.
1063 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1064
1065 # If true, the target OS has DOS-based file system semantics. That
1066 # is, absolute paths include a drive name, and the backslash is
1067 # considered a directory separator.
1068 v:int:has_dos_based_file_system:::0:0::0
1069
1070 # Generate bytecodes to collect the return address in a frame.
1071 # Since the bytecodes run on the target, possibly with GDB not even
1072 # connected, the full unwinding machinery is not available, and
1073 # typically this function will issue bytecodes for one or more likely
1074 # places that the return address may be found.
1075 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1076
1077 # Implement the "info proc" command.
1078 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1079
1080 # Implement the "info proc" command for core files. Noe that there
1081 # are two "info_proc"-like methods on gdbarch -- one for core files,
1082 # one for live targets.
1083 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1084
1085 # Iterate over all objfiles in the order that makes the most sense
1086 # for the architecture to make global symbol searches.
1087 #
1088 # CB is a callback function where OBJFILE is the objfile to be searched,
1089 # and CB_DATA a pointer to user-defined data (the same data that is passed
1090 # when calling this gdbarch method). The iteration stops if this function
1091 # returns nonzero.
1092 #
1093 # CB_DATA is a pointer to some user-defined data to be passed to
1094 # the callback.
1095 #
1096 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1097 # inspected when the symbol search was requested.
1098 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1099
1100 # Ravenscar arch-dependent ops.
1101 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1102
1103 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1104 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1105
1106 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1107 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1108
1109 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1110 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1111
1112 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1113 # Return 0 if *READPTR is already at the end of the buffer.
1114 # Return -1 if there is insufficient buffer for a whole entry.
1115 # Return 1 if an entry was read into *TYPEP and *VALP.
1116 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1117
1118 # Print the description of a single auxv entry described by TYPE and VAL
1119 # to FILE.
1120 m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1121
1122 # Find the address range of the current inferior's vsyscall/vDSO, and
1123 # write it to *RANGE. If the vsyscall's length can't be determined, a
1124 # range with zero length is returned. Returns true if the vsyscall is
1125 # found, false otherwise.
1126 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1127
1128 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1129 # PROT has GDB_MMAP_PROT_* bitmask format.
1130 # Throw an error if it is not possible. Returned address is always valid.
1131 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1132
1133 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1134 # Print a warning if it is not possible.
1135 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1136
1137 # Return string (caller has to use xfree for it) with options for GCC
1138 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1139 # These options are put before CU's DW_AT_producer compilation options so that
1140 # they can override it. Method may also return NULL.
1141 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1142
1143 # Return a regular expression that matches names used by this
1144 # architecture in GNU configury triplets. The result is statically
1145 # allocated and must not be freed. The default implementation simply
1146 # returns the BFD architecture name, which is correct in nearly every
1147 # case.
1148 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1149
1150 # Return the size in 8-bit bytes of an addressable memory unit on this
1151 # architecture. This corresponds to the number of 8-bit bytes associated to
1152 # each address in memory.
1153 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1154
1155 EOF
1156 }
1157
1158 #
1159 # The .log file
1160 #
1161 exec > new-gdbarch.log
1162 function_list | while do_read
1163 do
1164 cat <<EOF
1165 ${class} ${returntype} ${function} ($formal)
1166 EOF
1167 for r in ${read}
1168 do
1169 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1170 done
1171 if class_is_predicate_p && fallback_default_p
1172 then
1173 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1174 kill $$
1175 exit 1
1176 fi
1177 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1178 then
1179 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1180 kill $$
1181 exit 1
1182 fi
1183 if class_is_multiarch_p
1184 then
1185 if class_is_predicate_p ; then :
1186 elif test "x${predefault}" = "x"
1187 then
1188 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1189 kill $$
1190 exit 1
1191 fi
1192 fi
1193 echo ""
1194 done
1195
1196 exec 1>&2
1197 compare_new gdbarch.log
1198
1199
1200 copyright ()
1201 {
1202 cat <<EOF
1203 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1204 /* vi:set ro: */
1205
1206 /* Dynamic architecture support for GDB, the GNU debugger.
1207
1208 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1209
1210 This file is part of GDB.
1211
1212 This program is free software; you can redistribute it and/or modify
1213 it under the terms of the GNU General Public License as published by
1214 the Free Software Foundation; either version 3 of the License, or
1215 (at your option) any later version.
1216
1217 This program is distributed in the hope that it will be useful,
1218 but WITHOUT ANY WARRANTY; without even the implied warranty of
1219 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1220 GNU General Public License for more details.
1221
1222 You should have received a copy of the GNU General Public License
1223 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1224
1225 /* This file was created with the aid of \`\`gdbarch.sh''.
1226
1227 The Bourne shell script \`\`gdbarch.sh'' creates the files
1228 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1229 against the existing \`\`gdbarch.[hc]''. Any differences found
1230 being reported.
1231
1232 If editing this file, please also run gdbarch.sh and merge any
1233 changes into that script. Conversely, when making sweeping changes
1234 to this file, modifying gdbarch.sh and using its output may prove
1235 easier. */
1236
1237 EOF
1238 }
1239
1240 #
1241 # The .h file
1242 #
1243
1244 exec > new-gdbarch.h
1245 copyright
1246 cat <<EOF
1247 #ifndef GDBARCH_H
1248 #define GDBARCH_H
1249
1250 #include "frame.h"
1251
1252 struct floatformat;
1253 struct ui_file;
1254 struct value;
1255 struct objfile;
1256 struct obj_section;
1257 struct minimal_symbol;
1258 struct regcache;
1259 struct reggroup;
1260 struct regset;
1261 struct disassemble_info;
1262 struct target_ops;
1263 struct obstack;
1264 struct bp_target_info;
1265 struct target_desc;
1266 struct objfile;
1267 struct symbol;
1268 struct displaced_step_closure;
1269 struct syscall;
1270 struct agent_expr;
1271 struct axs_value;
1272 struct stap_parse_info;
1273 struct parser_state;
1274 struct ravenscar_arch_ops;
1275 struct elf_internal_linux_prpsinfo;
1276 struct mem_range;
1277 struct syscalls_info;
1278 struct thread_info;
1279 struct ui_out;
1280
1281 #include "regcache.h"
1282
1283 /* The architecture associated with the inferior through the
1284 connection to the target.
1285
1286 The architecture vector provides some information that is really a
1287 property of the inferior, accessed through a particular target:
1288 ptrace operations; the layout of certain RSP packets; the solib_ops
1289 vector; etc. To differentiate architecture accesses to
1290 per-inferior/target properties from
1291 per-thread/per-frame/per-objfile properties, accesses to
1292 per-inferior/target properties should be made through this
1293 gdbarch. */
1294
1295 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1296 extern struct gdbarch *target_gdbarch (void);
1297
1298 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1299 gdbarch method. */
1300
1301 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1302 (struct objfile *objfile, void *cb_data);
1303
1304 /* Callback type for regset section iterators. The callback usually
1305 invokes the REGSET's supply or collect method, to which it must
1306 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1307 section name, and HUMAN_NAME is used for diagnostic messages.
1308 CB_DATA should have been passed unchanged through the iterator. */
1309
1310 typedef void (iterate_over_regset_sections_cb)
1311 (const char *sect_name, int size, const struct regset *regset,
1312 const char *human_name, void *cb_data);
1313 EOF
1314
1315 # function typedef's
1316 printf "\n"
1317 printf "\n"
1318 printf "/* The following are pre-initialized by GDBARCH. */\n"
1319 function_list | while do_read
1320 do
1321 if class_is_info_p
1322 then
1323 printf "\n"
1324 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1325 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1326 fi
1327 done
1328
1329 # function typedef's
1330 printf "\n"
1331 printf "\n"
1332 printf "/* The following are initialized by the target dependent code. */\n"
1333 function_list | while do_read
1334 do
1335 if [ -n "${comment}" ]
1336 then
1337 echo "${comment}" | sed \
1338 -e '2 s,#,/*,' \
1339 -e '3,$ s,#, ,' \
1340 -e '$ s,$, */,'
1341 fi
1342
1343 if class_is_predicate_p
1344 then
1345 printf "\n"
1346 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1347 fi
1348 if class_is_variable_p
1349 then
1350 printf "\n"
1351 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1352 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1353 fi
1354 if class_is_function_p
1355 then
1356 printf "\n"
1357 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1358 then
1359 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1360 elif class_is_multiarch_p
1361 then
1362 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1363 else
1364 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1365 fi
1366 if [ "x${formal}" = "xvoid" ]
1367 then
1368 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1369 else
1370 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1371 fi
1372 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1373 fi
1374 done
1375
1376 # close it off
1377 cat <<EOF
1378
1379 /* Definition for an unknown syscall, used basically in error-cases. */
1380 #define UNKNOWN_SYSCALL (-1)
1381
1382 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1383
1384
1385 /* Mechanism for co-ordinating the selection of a specific
1386 architecture.
1387
1388 GDB targets (*-tdep.c) can register an interest in a specific
1389 architecture. Other GDB components can register a need to maintain
1390 per-architecture data.
1391
1392 The mechanisms below ensures that there is only a loose connection
1393 between the set-architecture command and the various GDB
1394 components. Each component can independently register their need
1395 to maintain architecture specific data with gdbarch.
1396
1397 Pragmatics:
1398
1399 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1400 didn't scale.
1401
1402 The more traditional mega-struct containing architecture specific
1403 data for all the various GDB components was also considered. Since
1404 GDB is built from a variable number of (fairly independent)
1405 components it was determined that the global aproach was not
1406 applicable. */
1407
1408
1409 /* Register a new architectural family with GDB.
1410
1411 Register support for the specified ARCHITECTURE with GDB. When
1412 gdbarch determines that the specified architecture has been
1413 selected, the corresponding INIT function is called.
1414
1415 --
1416
1417 The INIT function takes two parameters: INFO which contains the
1418 information available to gdbarch about the (possibly new)
1419 architecture; ARCHES which is a list of the previously created
1420 \`\`struct gdbarch'' for this architecture.
1421
1422 The INFO parameter is, as far as possible, be pre-initialized with
1423 information obtained from INFO.ABFD or the global defaults.
1424
1425 The ARCHES parameter is a linked list (sorted most recently used)
1426 of all the previously created architures for this architecture
1427 family. The (possibly NULL) ARCHES->gdbarch can used to access
1428 values from the previously selected architecture for this
1429 architecture family.
1430
1431 The INIT function shall return any of: NULL - indicating that it
1432 doesn't recognize the selected architecture; an existing \`\`struct
1433 gdbarch'' from the ARCHES list - indicating that the new
1434 architecture is just a synonym for an earlier architecture (see
1435 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1436 - that describes the selected architecture (see gdbarch_alloc()).
1437
1438 The DUMP_TDEP function shall print out all target specific values.
1439 Care should be taken to ensure that the function works in both the
1440 multi-arch and non- multi-arch cases. */
1441
1442 struct gdbarch_list
1443 {
1444 struct gdbarch *gdbarch;
1445 struct gdbarch_list *next;
1446 };
1447
1448 struct gdbarch_info
1449 {
1450 /* Use default: NULL (ZERO). */
1451 const struct bfd_arch_info *bfd_arch_info;
1452
1453 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1454 enum bfd_endian byte_order;
1455
1456 enum bfd_endian byte_order_for_code;
1457
1458 /* Use default: NULL (ZERO). */
1459 bfd *abfd;
1460
1461 /* Use default: NULL (ZERO). */
1462 void *tdep_info;
1463
1464 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1465 enum gdb_osabi osabi;
1466
1467 /* Use default: NULL (ZERO). */
1468 const struct target_desc *target_desc;
1469 };
1470
1471 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1472 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1473
1474 /* DEPRECATED - use gdbarch_register() */
1475 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1476
1477 extern void gdbarch_register (enum bfd_architecture architecture,
1478 gdbarch_init_ftype *,
1479 gdbarch_dump_tdep_ftype *);
1480
1481
1482 /* Return a freshly allocated, NULL terminated, array of the valid
1483 architecture names. Since architectures are registered during the
1484 _initialize phase this function only returns useful information
1485 once initialization has been completed. */
1486
1487 extern const char **gdbarch_printable_names (void);
1488
1489
1490 /* Helper function. Search the list of ARCHES for a GDBARCH that
1491 matches the information provided by INFO. */
1492
1493 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1494
1495
1496 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1497 basic initialization using values obtained from the INFO and TDEP
1498 parameters. set_gdbarch_*() functions are called to complete the
1499 initialization of the object. */
1500
1501 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1502
1503
1504 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1505 It is assumed that the caller freeds the \`\`struct
1506 gdbarch_tdep''. */
1507
1508 extern void gdbarch_free (struct gdbarch *);
1509
1510
1511 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1512 obstack. The memory is freed when the corresponding architecture
1513 is also freed. */
1514
1515 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1516 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1517 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1518
1519 /* Duplicate STRING, returning an equivalent string that's allocated on the
1520 obstack associated with GDBARCH. The string is freed when the corresponding
1521 architecture is also freed. */
1522
1523 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1524
1525 /* Helper function. Force an update of the current architecture.
1526
1527 The actual architecture selected is determined by INFO, \`\`(gdb) set
1528 architecture'' et.al., the existing architecture and BFD's default
1529 architecture. INFO should be initialized to zero and then selected
1530 fields should be updated.
1531
1532 Returns non-zero if the update succeeds. */
1533
1534 extern int gdbarch_update_p (struct gdbarch_info info);
1535
1536
1537 /* Helper function. Find an architecture matching info.
1538
1539 INFO should be initialized using gdbarch_info_init, relevant fields
1540 set, and then finished using gdbarch_info_fill.
1541
1542 Returns the corresponding architecture, or NULL if no matching
1543 architecture was found. */
1544
1545 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1546
1547
1548 /* Helper function. Set the target gdbarch to "gdbarch". */
1549
1550 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1551
1552
1553 /* Register per-architecture data-pointer.
1554
1555 Reserve space for a per-architecture data-pointer. An identifier
1556 for the reserved data-pointer is returned. That identifer should
1557 be saved in a local static variable.
1558
1559 Memory for the per-architecture data shall be allocated using
1560 gdbarch_obstack_zalloc. That memory will be deleted when the
1561 corresponding architecture object is deleted.
1562
1563 When a previously created architecture is re-selected, the
1564 per-architecture data-pointer for that previous architecture is
1565 restored. INIT() is not re-called.
1566
1567 Multiple registrarants for any architecture are allowed (and
1568 strongly encouraged). */
1569
1570 struct gdbarch_data;
1571
1572 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1573 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1574 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1575 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1576 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1577 struct gdbarch_data *data,
1578 void *pointer);
1579
1580 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1581
1582
1583 /* Set the dynamic target-system-dependent parameters (architecture,
1584 byte-order, ...) using information found in the BFD. */
1585
1586 extern void set_gdbarch_from_file (bfd *);
1587
1588
1589 /* Initialize the current architecture to the "first" one we find on
1590 our list. */
1591
1592 extern void initialize_current_architecture (void);
1593
1594 /* gdbarch trace variable */
1595 extern unsigned int gdbarch_debug;
1596
1597 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1598
1599 #endif
1600 EOF
1601 exec 1>&2
1602 #../move-if-change new-gdbarch.h gdbarch.h
1603 compare_new gdbarch.h
1604
1605
1606 #
1607 # C file
1608 #
1609
1610 exec > new-gdbarch.c
1611 copyright
1612 cat <<EOF
1613
1614 #include "defs.h"
1615 #include "arch-utils.h"
1616
1617 #include "gdbcmd.h"
1618 #include "inferior.h"
1619 #include "symcat.h"
1620
1621 #include "floatformat.h"
1622 #include "reggroups.h"
1623 #include "osabi.h"
1624 #include "gdb_obstack.h"
1625 #include "observer.h"
1626 #include "regcache.h"
1627 #include "objfiles.h"
1628 #include "auxv.h"
1629
1630 /* Static function declarations */
1631
1632 static void alloc_gdbarch_data (struct gdbarch *);
1633
1634 /* Non-zero if we want to trace architecture code. */
1635
1636 #ifndef GDBARCH_DEBUG
1637 #define GDBARCH_DEBUG 0
1638 #endif
1639 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1640 static void
1641 show_gdbarch_debug (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c, const char *value)
1643 {
1644 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1645 }
1646
1647 static const char *
1648 pformat (const struct floatformat **format)
1649 {
1650 if (format == NULL)
1651 return "(null)";
1652 else
1653 /* Just print out one of them - this is only for diagnostics. */
1654 return format[0]->name;
1655 }
1656
1657 static const char *
1658 pstring (const char *string)
1659 {
1660 if (string == NULL)
1661 return "(null)";
1662 return string;
1663 }
1664
1665 /* Helper function to print a list of strings, represented as "const
1666 char *const *". The list is printed comma-separated. */
1667
1668 static char *
1669 pstring_list (const char *const *list)
1670 {
1671 static char ret[100];
1672 const char *const *p;
1673 size_t offset = 0;
1674
1675 if (list == NULL)
1676 return "(null)";
1677
1678 ret[0] = '\0';
1679 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1680 {
1681 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1682 offset += 2 + s;
1683 }
1684
1685 if (offset > 0)
1686 {
1687 gdb_assert (offset - 2 < sizeof (ret));
1688 ret[offset - 2] = '\0';
1689 }
1690
1691 return ret;
1692 }
1693
1694 EOF
1695
1696 # gdbarch open the gdbarch object
1697 printf "\n"
1698 printf "/* Maintain the struct gdbarch object. */\n"
1699 printf "\n"
1700 printf "struct gdbarch\n"
1701 printf "{\n"
1702 printf " /* Has this architecture been fully initialized? */\n"
1703 printf " int initialized_p;\n"
1704 printf "\n"
1705 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1706 printf " struct obstack *obstack;\n"
1707 printf "\n"
1708 printf " /* basic architectural information. */\n"
1709 function_list | while do_read
1710 do
1711 if class_is_info_p
1712 then
1713 printf " ${returntype} ${function};\n"
1714 fi
1715 done
1716 printf "\n"
1717 printf " /* target specific vector. */\n"
1718 printf " struct gdbarch_tdep *tdep;\n"
1719 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1720 printf "\n"
1721 printf " /* per-architecture data-pointers. */\n"
1722 printf " unsigned nr_data;\n"
1723 printf " void **data;\n"
1724 printf "\n"
1725 cat <<EOF
1726 /* Multi-arch values.
1727
1728 When extending this structure you must:
1729
1730 Add the field below.
1731
1732 Declare set/get functions and define the corresponding
1733 macro in gdbarch.h.
1734
1735 gdbarch_alloc(): If zero/NULL is not a suitable default,
1736 initialize the new field.
1737
1738 verify_gdbarch(): Confirm that the target updated the field
1739 correctly.
1740
1741 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1742 field is dumped out
1743
1744 get_gdbarch(): Implement the set/get functions (probably using
1745 the macro's as shortcuts).
1746
1747 */
1748
1749 EOF
1750 function_list | while do_read
1751 do
1752 if class_is_variable_p
1753 then
1754 printf " ${returntype} ${function};\n"
1755 elif class_is_function_p
1756 then
1757 printf " gdbarch_${function}_ftype *${function};\n"
1758 fi
1759 done
1760 printf "};\n"
1761
1762 # Create a new gdbarch struct
1763 cat <<EOF
1764
1765 /* Create a new \`\`struct gdbarch'' based on information provided by
1766 \`\`struct gdbarch_info''. */
1767 EOF
1768 printf "\n"
1769 cat <<EOF
1770 struct gdbarch *
1771 gdbarch_alloc (const struct gdbarch_info *info,
1772 struct gdbarch_tdep *tdep)
1773 {
1774 struct gdbarch *gdbarch;
1775
1776 /* Create an obstack for allocating all the per-architecture memory,
1777 then use that to allocate the architecture vector. */
1778 struct obstack *obstack = XNEW (struct obstack);
1779 obstack_init (obstack);
1780 gdbarch = XOBNEW (obstack, struct gdbarch);
1781 memset (gdbarch, 0, sizeof (*gdbarch));
1782 gdbarch->obstack = obstack;
1783
1784 alloc_gdbarch_data (gdbarch);
1785
1786 gdbarch->tdep = tdep;
1787 EOF
1788 printf "\n"
1789 function_list | while do_read
1790 do
1791 if class_is_info_p
1792 then
1793 printf " gdbarch->${function} = info->${function};\n"
1794 fi
1795 done
1796 printf "\n"
1797 printf " /* Force the explicit initialization of these. */\n"
1798 function_list | while do_read
1799 do
1800 if class_is_function_p || class_is_variable_p
1801 then
1802 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1803 then
1804 printf " gdbarch->${function} = ${predefault};\n"
1805 fi
1806 fi
1807 done
1808 cat <<EOF
1809 /* gdbarch_alloc() */
1810
1811 return gdbarch;
1812 }
1813 EOF
1814
1815 # Free a gdbarch struct.
1816 printf "\n"
1817 printf "\n"
1818 cat <<EOF
1819 /* Allocate extra space using the per-architecture obstack. */
1820
1821 void *
1822 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1823 {
1824 void *data = obstack_alloc (arch->obstack, size);
1825
1826 memset (data, 0, size);
1827 return data;
1828 }
1829
1830 /* See gdbarch.h. */
1831
1832 char *
1833 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1834 {
1835 return obstack_strdup (arch->obstack, string);
1836 }
1837
1838
1839 /* Free a gdbarch struct. This should never happen in normal
1840 operation --- once you've created a gdbarch, you keep it around.
1841 However, if an architecture's init function encounters an error
1842 building the structure, it may need to clean up a partially
1843 constructed gdbarch. */
1844
1845 void
1846 gdbarch_free (struct gdbarch *arch)
1847 {
1848 struct obstack *obstack;
1849
1850 gdb_assert (arch != NULL);
1851 gdb_assert (!arch->initialized_p);
1852 obstack = arch->obstack;
1853 obstack_free (obstack, 0); /* Includes the ARCH. */
1854 xfree (obstack);
1855 }
1856 EOF
1857
1858 # verify a new architecture
1859 cat <<EOF
1860
1861
1862 /* Ensure that all values in a GDBARCH are reasonable. */
1863
1864 static void
1865 verify_gdbarch (struct gdbarch *gdbarch)
1866 {
1867 struct ui_file *log;
1868 struct cleanup *cleanups;
1869 long length;
1870 char *buf;
1871
1872 log = mem_fileopen ();
1873 cleanups = make_cleanup_ui_file_delete (log);
1874 /* fundamental */
1875 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1876 fprintf_unfiltered (log, "\n\tbyte-order");
1877 if (gdbarch->bfd_arch_info == NULL)
1878 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1879 /* Check those that need to be defined for the given multi-arch level. */
1880 EOF
1881 function_list | while do_read
1882 do
1883 if class_is_function_p || class_is_variable_p
1884 then
1885 if [ "x${invalid_p}" = "x0" ]
1886 then
1887 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1888 elif class_is_predicate_p
1889 then
1890 printf " /* Skip verify of ${function}, has predicate. */\n"
1891 # FIXME: See do_read for potential simplification
1892 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1893 then
1894 printf " if (${invalid_p})\n"
1895 printf " gdbarch->${function} = ${postdefault};\n"
1896 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1897 then
1898 printf " if (gdbarch->${function} == ${predefault})\n"
1899 printf " gdbarch->${function} = ${postdefault};\n"
1900 elif [ -n "${postdefault}" ]
1901 then
1902 printf " if (gdbarch->${function} == 0)\n"
1903 printf " gdbarch->${function} = ${postdefault};\n"
1904 elif [ -n "${invalid_p}" ]
1905 then
1906 printf " if (${invalid_p})\n"
1907 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1908 elif [ -n "${predefault}" ]
1909 then
1910 printf " if (gdbarch->${function} == ${predefault})\n"
1911 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1912 fi
1913 fi
1914 done
1915 cat <<EOF
1916 buf = ui_file_xstrdup (log, &length);
1917 make_cleanup (xfree, buf);
1918 if (length > 0)
1919 internal_error (__FILE__, __LINE__,
1920 _("verify_gdbarch: the following are invalid ...%s"),
1921 buf);
1922 do_cleanups (cleanups);
1923 }
1924 EOF
1925
1926 # dump the structure
1927 printf "\n"
1928 printf "\n"
1929 cat <<EOF
1930 /* Print out the details of the current architecture. */
1931
1932 void
1933 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1934 {
1935 const char *gdb_nm_file = "<not-defined>";
1936
1937 #if defined (GDB_NM_FILE)
1938 gdb_nm_file = GDB_NM_FILE;
1939 #endif
1940 fprintf_unfiltered (file,
1941 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1942 gdb_nm_file);
1943 EOF
1944 function_list | sort -t: -k 3 | while do_read
1945 do
1946 # First the predicate
1947 if class_is_predicate_p
1948 then
1949 printf " fprintf_unfiltered (file,\n"
1950 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1951 printf " gdbarch_${function}_p (gdbarch));\n"
1952 fi
1953 # Print the corresponding value.
1954 if class_is_function_p
1955 then
1956 printf " fprintf_unfiltered (file,\n"
1957 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1958 printf " host_address_to_string (gdbarch->${function}));\n"
1959 else
1960 # It is a variable
1961 case "${print}:${returntype}" in
1962 :CORE_ADDR )
1963 fmt="%s"
1964 print="core_addr_to_string_nz (gdbarch->${function})"
1965 ;;
1966 :* )
1967 fmt="%s"
1968 print="plongest (gdbarch->${function})"
1969 ;;
1970 * )
1971 fmt="%s"
1972 ;;
1973 esac
1974 printf " fprintf_unfiltered (file,\n"
1975 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1976 printf " ${print});\n"
1977 fi
1978 done
1979 cat <<EOF
1980 if (gdbarch->dump_tdep != NULL)
1981 gdbarch->dump_tdep (gdbarch, file);
1982 }
1983 EOF
1984
1985
1986 # GET/SET
1987 printf "\n"
1988 cat <<EOF
1989 struct gdbarch_tdep *
1990 gdbarch_tdep (struct gdbarch *gdbarch)
1991 {
1992 if (gdbarch_debug >= 2)
1993 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1994 return gdbarch->tdep;
1995 }
1996 EOF
1997 printf "\n"
1998 function_list | while do_read
1999 do
2000 if class_is_predicate_p
2001 then
2002 printf "\n"
2003 printf "int\n"
2004 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2005 printf "{\n"
2006 printf " gdb_assert (gdbarch != NULL);\n"
2007 printf " return ${predicate};\n"
2008 printf "}\n"
2009 fi
2010 if class_is_function_p
2011 then
2012 printf "\n"
2013 printf "${returntype}\n"
2014 if [ "x${formal}" = "xvoid" ]
2015 then
2016 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2017 else
2018 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2019 fi
2020 printf "{\n"
2021 printf " gdb_assert (gdbarch != NULL);\n"
2022 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2023 if class_is_predicate_p && test -n "${predefault}"
2024 then
2025 # Allow a call to a function with a predicate.
2026 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2027 fi
2028 printf " if (gdbarch_debug >= 2)\n"
2029 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2030 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2031 then
2032 if class_is_multiarch_p
2033 then
2034 params="gdbarch"
2035 else
2036 params=""
2037 fi
2038 else
2039 if class_is_multiarch_p
2040 then
2041 params="gdbarch, ${actual}"
2042 else
2043 params="${actual}"
2044 fi
2045 fi
2046 if [ "x${returntype}" = "xvoid" ]
2047 then
2048 printf " gdbarch->${function} (${params});\n"
2049 else
2050 printf " return gdbarch->${function} (${params});\n"
2051 fi
2052 printf "}\n"
2053 printf "\n"
2054 printf "void\n"
2055 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2056 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2057 printf "{\n"
2058 printf " gdbarch->${function} = ${function};\n"
2059 printf "}\n"
2060 elif class_is_variable_p
2061 then
2062 printf "\n"
2063 printf "${returntype}\n"
2064 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2065 printf "{\n"
2066 printf " gdb_assert (gdbarch != NULL);\n"
2067 if [ "x${invalid_p}" = "x0" ]
2068 then
2069 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2070 elif [ -n "${invalid_p}" ]
2071 then
2072 printf " /* Check variable is valid. */\n"
2073 printf " gdb_assert (!(${invalid_p}));\n"
2074 elif [ -n "${predefault}" ]
2075 then
2076 printf " /* Check variable changed from pre-default. */\n"
2077 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2078 fi
2079 printf " if (gdbarch_debug >= 2)\n"
2080 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2081 printf " return gdbarch->${function};\n"
2082 printf "}\n"
2083 printf "\n"
2084 printf "void\n"
2085 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2086 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2087 printf "{\n"
2088 printf " gdbarch->${function} = ${function};\n"
2089 printf "}\n"
2090 elif class_is_info_p
2091 then
2092 printf "\n"
2093 printf "${returntype}\n"
2094 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2095 printf "{\n"
2096 printf " gdb_assert (gdbarch != NULL);\n"
2097 printf " if (gdbarch_debug >= 2)\n"
2098 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2099 printf " return gdbarch->${function};\n"
2100 printf "}\n"
2101 fi
2102 done
2103
2104 # All the trailing guff
2105 cat <<EOF
2106
2107
2108 /* Keep a registry of per-architecture data-pointers required by GDB
2109 modules. */
2110
2111 struct gdbarch_data
2112 {
2113 unsigned index;
2114 int init_p;
2115 gdbarch_data_pre_init_ftype *pre_init;
2116 gdbarch_data_post_init_ftype *post_init;
2117 };
2118
2119 struct gdbarch_data_registration
2120 {
2121 struct gdbarch_data *data;
2122 struct gdbarch_data_registration *next;
2123 };
2124
2125 struct gdbarch_data_registry
2126 {
2127 unsigned nr;
2128 struct gdbarch_data_registration *registrations;
2129 };
2130
2131 struct gdbarch_data_registry gdbarch_data_registry =
2132 {
2133 0, NULL,
2134 };
2135
2136 static struct gdbarch_data *
2137 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2138 gdbarch_data_post_init_ftype *post_init)
2139 {
2140 struct gdbarch_data_registration **curr;
2141
2142 /* Append the new registration. */
2143 for (curr = &gdbarch_data_registry.registrations;
2144 (*curr) != NULL;
2145 curr = &(*curr)->next);
2146 (*curr) = XNEW (struct gdbarch_data_registration);
2147 (*curr)->next = NULL;
2148 (*curr)->data = XNEW (struct gdbarch_data);
2149 (*curr)->data->index = gdbarch_data_registry.nr++;
2150 (*curr)->data->pre_init = pre_init;
2151 (*curr)->data->post_init = post_init;
2152 (*curr)->data->init_p = 1;
2153 return (*curr)->data;
2154 }
2155
2156 struct gdbarch_data *
2157 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2158 {
2159 return gdbarch_data_register (pre_init, NULL);
2160 }
2161
2162 struct gdbarch_data *
2163 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2164 {
2165 return gdbarch_data_register (NULL, post_init);
2166 }
2167
2168 /* Create/delete the gdbarch data vector. */
2169
2170 static void
2171 alloc_gdbarch_data (struct gdbarch *gdbarch)
2172 {
2173 gdb_assert (gdbarch->data == NULL);
2174 gdbarch->nr_data = gdbarch_data_registry.nr;
2175 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2176 }
2177
2178 /* Initialize the current value of the specified per-architecture
2179 data-pointer. */
2180
2181 void
2182 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2183 struct gdbarch_data *data,
2184 void *pointer)
2185 {
2186 gdb_assert (data->index < gdbarch->nr_data);
2187 gdb_assert (gdbarch->data[data->index] == NULL);
2188 gdb_assert (data->pre_init == NULL);
2189 gdbarch->data[data->index] = pointer;
2190 }
2191
2192 /* Return the current value of the specified per-architecture
2193 data-pointer. */
2194
2195 void *
2196 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2197 {
2198 gdb_assert (data->index < gdbarch->nr_data);
2199 if (gdbarch->data[data->index] == NULL)
2200 {
2201 /* The data-pointer isn't initialized, call init() to get a
2202 value. */
2203 if (data->pre_init != NULL)
2204 /* Mid architecture creation: pass just the obstack, and not
2205 the entire architecture, as that way it isn't possible for
2206 pre-init code to refer to undefined architecture
2207 fields. */
2208 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2209 else if (gdbarch->initialized_p
2210 && data->post_init != NULL)
2211 /* Post architecture creation: pass the entire architecture
2212 (as all fields are valid), but be careful to also detect
2213 recursive references. */
2214 {
2215 gdb_assert (data->init_p);
2216 data->init_p = 0;
2217 gdbarch->data[data->index] = data->post_init (gdbarch);
2218 data->init_p = 1;
2219 }
2220 else
2221 /* The architecture initialization hasn't completed - punt -
2222 hope that the caller knows what they are doing. Once
2223 deprecated_set_gdbarch_data has been initialized, this can be
2224 changed to an internal error. */
2225 return NULL;
2226 gdb_assert (gdbarch->data[data->index] != NULL);
2227 }
2228 return gdbarch->data[data->index];
2229 }
2230
2231
2232 /* Keep a registry of the architectures known by GDB. */
2233
2234 struct gdbarch_registration
2235 {
2236 enum bfd_architecture bfd_architecture;
2237 gdbarch_init_ftype *init;
2238 gdbarch_dump_tdep_ftype *dump_tdep;
2239 struct gdbarch_list *arches;
2240 struct gdbarch_registration *next;
2241 };
2242
2243 static struct gdbarch_registration *gdbarch_registry = NULL;
2244
2245 static void
2246 append_name (const char ***buf, int *nr, const char *name)
2247 {
2248 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2249 (*buf)[*nr] = name;
2250 *nr += 1;
2251 }
2252
2253 const char **
2254 gdbarch_printable_names (void)
2255 {
2256 /* Accumulate a list of names based on the registed list of
2257 architectures. */
2258 int nr_arches = 0;
2259 const char **arches = NULL;
2260 struct gdbarch_registration *rego;
2261
2262 for (rego = gdbarch_registry;
2263 rego != NULL;
2264 rego = rego->next)
2265 {
2266 const struct bfd_arch_info *ap;
2267 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2268 if (ap == NULL)
2269 internal_error (__FILE__, __LINE__,
2270 _("gdbarch_architecture_names: multi-arch unknown"));
2271 do
2272 {
2273 append_name (&arches, &nr_arches, ap->printable_name);
2274 ap = ap->next;
2275 }
2276 while (ap != NULL);
2277 }
2278 append_name (&arches, &nr_arches, NULL);
2279 return arches;
2280 }
2281
2282
2283 void
2284 gdbarch_register (enum bfd_architecture bfd_architecture,
2285 gdbarch_init_ftype *init,
2286 gdbarch_dump_tdep_ftype *dump_tdep)
2287 {
2288 struct gdbarch_registration **curr;
2289 const struct bfd_arch_info *bfd_arch_info;
2290
2291 /* Check that BFD recognizes this architecture */
2292 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2293 if (bfd_arch_info == NULL)
2294 {
2295 internal_error (__FILE__, __LINE__,
2296 _("gdbarch: Attempt to register "
2297 "unknown architecture (%d)"),
2298 bfd_architecture);
2299 }
2300 /* Check that we haven't seen this architecture before. */
2301 for (curr = &gdbarch_registry;
2302 (*curr) != NULL;
2303 curr = &(*curr)->next)
2304 {
2305 if (bfd_architecture == (*curr)->bfd_architecture)
2306 internal_error (__FILE__, __LINE__,
2307 _("gdbarch: Duplicate registration "
2308 "of architecture (%s)"),
2309 bfd_arch_info->printable_name);
2310 }
2311 /* log it */
2312 if (gdbarch_debug)
2313 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2314 bfd_arch_info->printable_name,
2315 host_address_to_string (init));
2316 /* Append it */
2317 (*curr) = XNEW (struct gdbarch_registration);
2318 (*curr)->bfd_architecture = bfd_architecture;
2319 (*curr)->init = init;
2320 (*curr)->dump_tdep = dump_tdep;
2321 (*curr)->arches = NULL;
2322 (*curr)->next = NULL;
2323 }
2324
2325 void
2326 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2327 gdbarch_init_ftype *init)
2328 {
2329 gdbarch_register (bfd_architecture, init, NULL);
2330 }
2331
2332
2333 /* Look for an architecture using gdbarch_info. */
2334
2335 struct gdbarch_list *
2336 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2337 const struct gdbarch_info *info)
2338 {
2339 for (; arches != NULL; arches = arches->next)
2340 {
2341 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2342 continue;
2343 if (info->byte_order != arches->gdbarch->byte_order)
2344 continue;
2345 if (info->osabi != arches->gdbarch->osabi)
2346 continue;
2347 if (info->target_desc != arches->gdbarch->target_desc)
2348 continue;
2349 return arches;
2350 }
2351 return NULL;
2352 }
2353
2354
2355 /* Find an architecture that matches the specified INFO. Create a new
2356 architecture if needed. Return that new architecture. */
2357
2358 struct gdbarch *
2359 gdbarch_find_by_info (struct gdbarch_info info)
2360 {
2361 struct gdbarch *new_gdbarch;
2362 struct gdbarch_registration *rego;
2363
2364 /* Fill in missing parts of the INFO struct using a number of
2365 sources: "set ..."; INFOabfd supplied; and the global
2366 defaults. */
2367 gdbarch_info_fill (&info);
2368
2369 /* Must have found some sort of architecture. */
2370 gdb_assert (info.bfd_arch_info != NULL);
2371
2372 if (gdbarch_debug)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2376 (info.bfd_arch_info != NULL
2377 ? info.bfd_arch_info->printable_name
2378 : "(null)"));
2379 fprintf_unfiltered (gdb_stdlog,
2380 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2381 info.byte_order,
2382 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2383 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2384 : "default"));
2385 fprintf_unfiltered (gdb_stdlog,
2386 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2387 info.osabi, gdbarch_osabi_name (info.osabi));
2388 fprintf_unfiltered (gdb_stdlog,
2389 "gdbarch_find_by_info: info.abfd %s\n",
2390 host_address_to_string (info.abfd));
2391 fprintf_unfiltered (gdb_stdlog,
2392 "gdbarch_find_by_info: info.tdep_info %s\n",
2393 host_address_to_string (info.tdep_info));
2394 }
2395
2396 /* Find the tdep code that knows about this architecture. */
2397 for (rego = gdbarch_registry;
2398 rego != NULL;
2399 rego = rego->next)
2400 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2401 break;
2402 if (rego == NULL)
2403 {
2404 if (gdbarch_debug)
2405 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2406 "No matching architecture\n");
2407 return 0;
2408 }
2409
2410 /* Ask the tdep code for an architecture that matches "info". */
2411 new_gdbarch = rego->init (info, rego->arches);
2412
2413 /* Did the tdep code like it? No. Reject the change and revert to
2414 the old architecture. */
2415 if (new_gdbarch == NULL)
2416 {
2417 if (gdbarch_debug)
2418 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2419 "Target rejected architecture\n");
2420 return NULL;
2421 }
2422
2423 /* Is this a pre-existing architecture (as determined by already
2424 being initialized)? Move it to the front of the architecture
2425 list (keeping the list sorted Most Recently Used). */
2426 if (new_gdbarch->initialized_p)
2427 {
2428 struct gdbarch_list **list;
2429 struct gdbarch_list *self;
2430 if (gdbarch_debug)
2431 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2432 "Previous architecture %s (%s) selected\n",
2433 host_address_to_string (new_gdbarch),
2434 new_gdbarch->bfd_arch_info->printable_name);
2435 /* Find the existing arch in the list. */
2436 for (list = &rego->arches;
2437 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2438 list = &(*list)->next);
2439 /* It had better be in the list of architectures. */
2440 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2441 /* Unlink SELF. */
2442 self = (*list);
2443 (*list) = self->next;
2444 /* Insert SELF at the front. */
2445 self->next = rego->arches;
2446 rego->arches = self;
2447 /* Return it. */
2448 return new_gdbarch;
2449 }
2450
2451 /* It's a new architecture. */
2452 if (gdbarch_debug)
2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2454 "New architecture %s (%s) selected\n",
2455 host_address_to_string (new_gdbarch),
2456 new_gdbarch->bfd_arch_info->printable_name);
2457
2458 /* Insert the new architecture into the front of the architecture
2459 list (keep the list sorted Most Recently Used). */
2460 {
2461 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2462 self->next = rego->arches;
2463 self->gdbarch = new_gdbarch;
2464 rego->arches = self;
2465 }
2466
2467 /* Check that the newly installed architecture is valid. Plug in
2468 any post init values. */
2469 new_gdbarch->dump_tdep = rego->dump_tdep;
2470 verify_gdbarch (new_gdbarch);
2471 new_gdbarch->initialized_p = 1;
2472
2473 if (gdbarch_debug)
2474 gdbarch_dump (new_gdbarch, gdb_stdlog);
2475
2476 return new_gdbarch;
2477 }
2478
2479 /* Make the specified architecture current. */
2480
2481 void
2482 set_target_gdbarch (struct gdbarch *new_gdbarch)
2483 {
2484 gdb_assert (new_gdbarch != NULL);
2485 gdb_assert (new_gdbarch->initialized_p);
2486 current_inferior ()->gdbarch = new_gdbarch;
2487 observer_notify_architecture_changed (new_gdbarch);
2488 registers_changed ();
2489 }
2490
2491 /* Return the current inferior's arch. */
2492
2493 struct gdbarch *
2494 target_gdbarch (void)
2495 {
2496 return current_inferior ()->gdbarch;
2497 }
2498
2499 extern void _initialize_gdbarch (void);
2500
2501 void
2502 _initialize_gdbarch (void)
2503 {
2504 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2505 Set architecture debugging."), _("\\
2506 Show architecture debugging."), _("\\
2507 When non-zero, architecture debugging is enabled."),
2508 NULL,
2509 show_gdbarch_debug,
2510 &setdebuglist, &showdebuglist);
2511 }
2512 EOF
2513
2514 # close things off
2515 exec 1>&2
2516 #../move-if-change new-gdbarch.c gdbarch.c
2517 compare_new gdbarch.c
This page took 0.099864 seconds and 5 git commands to generate.