Refactor gdbarch method print_float_info
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
989 # True if the list of shared libraries is one and only for all
990 # processes, as opposed to a list of shared libraries per inferior.
991 # This usually means that all processes, although may or may not share
992 # an address space, will see the same set of symbols at the same
993 # addresses.
994 v:int:has_global_solist:::0:0::0
995
996 # On some targets, even though each inferior has its own private
997 # address space, the debug interface takes care of making breakpoints
998 # visible to all address spaces automatically. For such cases,
999 # this property should be set to true.
1000 v:int:has_global_breakpoints:::0:0::0
1001
1002 # True if inferiors share an address space (e.g., uClinux).
1003 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1004
1005 # True if a fast tracepoint can be set at an address.
1006 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1007
1008 # Return the "auto" target charset.
1009 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010 # Return the "auto" target wide charset.
1011 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1012
1013 # If non-empty, this is a file extension that will be opened in place
1014 # of the file extension reported by the shared library list.
1015 #
1016 # This is most useful for toolchains that use a post-linker tool,
1017 # where the names of the files run on the target differ in extension
1018 # compared to the names of the files GDB should load for debug info.
1019 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1020
1021 # If true, the target OS has DOS-based file system semantics. That
1022 # is, absolute paths include a drive name, and the backslash is
1023 # considered a directory separator.
1024 v:int:has_dos_based_file_system:::0:0::0
1025
1026 # Generate bytecodes to collect the return address in a frame.
1027 # Since the bytecodes run on the target, possibly with GDB not even
1028 # connected, the full unwinding machinery is not available, and
1029 # typically this function will issue bytecodes for one or more likely
1030 # places that the return address may be found.
1031 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
1033 # Implement the "info proc" command.
1034 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1035
1036 # Implement the "info proc" command for core files. Noe that there
1037 # are two "info_proc"-like methods on gdbarch -- one for core files,
1038 # one for live targets.
1039 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1040
1041 # Iterate over all objfiles in the order that makes the most sense
1042 # for the architecture to make global symbol searches.
1043 #
1044 # CB is a callback function where OBJFILE is the objfile to be searched,
1045 # and CB_DATA a pointer to user-defined data (the same data that is passed
1046 # when calling this gdbarch method). The iteration stops if this function
1047 # returns nonzero.
1048 #
1049 # CB_DATA is a pointer to some user-defined data to be passed to
1050 # the callback.
1051 #
1052 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053 # inspected when the symbol search was requested.
1054 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
1056 # Ravenscar arch-dependent ops.
1057 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1058
1059 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1067
1068 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069 # Return 0 if *READPTR is already at the end of the buffer.
1070 # Return -1 if there is insufficient buffer for a whole entry.
1071 # Return 1 if an entry was read into *TYPEP and *VALP.
1072 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1073
1074 # Find the address range of the current inferior's vsyscall/vDSO, and
1075 # write it to *RANGE. If the vsyscall's length can't be determined, a
1076 # range with zero length is returned. Returns true if the vsyscall is
1077 # found, false otherwise.
1078 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1079
1080 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1081 # PROT has GDB_MMAP_PROT_* bitmask format.
1082 # Throw an error if it is not possible. Returned address is always valid.
1083 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1084
1085 # Return string (caller has to use xfree for it) with options for GCC
1086 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1087 # These options are put before CU's DW_AT_producer compilation options so that
1088 # they can override it. Method may also return NULL.
1089 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1090
1091 # Return a regular expression that matches names used by this
1092 # architecture in GNU configury triplets. The result is statically
1093 # allocated and must not be freed. The default implementation simply
1094 # returns the BFD architecture name, which is correct in nearly every
1095 # case.
1096 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1097 EOF
1098 }
1099
1100 #
1101 # The .log file
1102 #
1103 exec > new-gdbarch.log
1104 function_list | while do_read
1105 do
1106 cat <<EOF
1107 ${class} ${returntype} ${function} ($formal)
1108 EOF
1109 for r in ${read}
1110 do
1111 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1112 done
1113 if class_is_predicate_p && fallback_default_p
1114 then
1115 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1116 kill $$
1117 exit 1
1118 fi
1119 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1120 then
1121 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1122 kill $$
1123 exit 1
1124 fi
1125 if class_is_multiarch_p
1126 then
1127 if class_is_predicate_p ; then :
1128 elif test "x${predefault}" = "x"
1129 then
1130 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1131 kill $$
1132 exit 1
1133 fi
1134 fi
1135 echo ""
1136 done
1137
1138 exec 1>&2
1139 compare_new gdbarch.log
1140
1141
1142 copyright ()
1143 {
1144 cat <<EOF
1145 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1146 /* vi:set ro: */
1147
1148 /* Dynamic architecture support for GDB, the GNU debugger.
1149
1150 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1151
1152 This file is part of GDB.
1153
1154 This program is free software; you can redistribute it and/or modify
1155 it under the terms of the GNU General Public License as published by
1156 the Free Software Foundation; either version 3 of the License, or
1157 (at your option) any later version.
1158
1159 This program is distributed in the hope that it will be useful,
1160 but WITHOUT ANY WARRANTY; without even the implied warranty of
1161 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1162 GNU General Public License for more details.
1163
1164 You should have received a copy of the GNU General Public License
1165 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1166
1167 /* This file was created with the aid of \`\`gdbarch.sh''.
1168
1169 The Bourne shell script \`\`gdbarch.sh'' creates the files
1170 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1171 against the existing \`\`gdbarch.[hc]''. Any differences found
1172 being reported.
1173
1174 If editing this file, please also run gdbarch.sh and merge any
1175 changes into that script. Conversely, when making sweeping changes
1176 to this file, modifying gdbarch.sh and using its output may prove
1177 easier. */
1178
1179 EOF
1180 }
1181
1182 #
1183 # The .h file
1184 #
1185
1186 exec > new-gdbarch.h
1187 copyright
1188 cat <<EOF
1189 #ifndef GDBARCH_H
1190 #define GDBARCH_H
1191
1192 #include "frame.h"
1193
1194 struct floatformat;
1195 struct ui_file;
1196 struct value;
1197 struct objfile;
1198 struct obj_section;
1199 struct minimal_symbol;
1200 struct regcache;
1201 struct reggroup;
1202 struct regset;
1203 struct disassemble_info;
1204 struct target_ops;
1205 struct obstack;
1206 struct bp_target_info;
1207 struct target_desc;
1208 struct objfile;
1209 struct symbol;
1210 struct displaced_step_closure;
1211 struct core_regset_section;
1212 struct syscall;
1213 struct agent_expr;
1214 struct axs_value;
1215 struct stap_parse_info;
1216 struct ravenscar_arch_ops;
1217 struct elf_internal_linux_prpsinfo;
1218 struct mem_range;
1219 struct syscalls_info;
1220
1221 /* The architecture associated with the inferior through the
1222 connection to the target.
1223
1224 The architecture vector provides some information that is really a
1225 property of the inferior, accessed through a particular target:
1226 ptrace operations; the layout of certain RSP packets; the solib_ops
1227 vector; etc. To differentiate architecture accesses to
1228 per-inferior/target properties from
1229 per-thread/per-frame/per-objfile properties, accesses to
1230 per-inferior/target properties should be made through this
1231 gdbarch. */
1232
1233 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1234 extern struct gdbarch *target_gdbarch (void);
1235
1236 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1237 gdbarch method. */
1238
1239 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1240 (struct objfile *objfile, void *cb_data);
1241
1242 typedef void (iterate_over_regset_sections_cb)
1243 (const char *sect_name, int size, const struct regset *regset,
1244 const char *human_name, void *cb_data);
1245 EOF
1246
1247 # function typedef's
1248 printf "\n"
1249 printf "\n"
1250 printf "/* The following are pre-initialized by GDBARCH. */\n"
1251 function_list | while do_read
1252 do
1253 if class_is_info_p
1254 then
1255 printf "\n"
1256 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1257 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1258 fi
1259 done
1260
1261 # function typedef's
1262 printf "\n"
1263 printf "\n"
1264 printf "/* The following are initialized by the target dependent code. */\n"
1265 function_list | while do_read
1266 do
1267 if [ -n "${comment}" ]
1268 then
1269 echo "${comment}" | sed \
1270 -e '2 s,#,/*,' \
1271 -e '3,$ s,#, ,' \
1272 -e '$ s,$, */,'
1273 fi
1274
1275 if class_is_predicate_p
1276 then
1277 printf "\n"
1278 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1279 fi
1280 if class_is_variable_p
1281 then
1282 printf "\n"
1283 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1284 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1285 fi
1286 if class_is_function_p
1287 then
1288 printf "\n"
1289 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1290 then
1291 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1292 elif class_is_multiarch_p
1293 then
1294 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1295 else
1296 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1297 fi
1298 if [ "x${formal}" = "xvoid" ]
1299 then
1300 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1301 else
1302 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1303 fi
1304 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1305 fi
1306 done
1307
1308 # close it off
1309 cat <<EOF
1310
1311 /* Definition for an unknown syscall, used basically in error-cases. */
1312 #define UNKNOWN_SYSCALL (-1)
1313
1314 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1315
1316
1317 /* Mechanism for co-ordinating the selection of a specific
1318 architecture.
1319
1320 GDB targets (*-tdep.c) can register an interest in a specific
1321 architecture. Other GDB components can register a need to maintain
1322 per-architecture data.
1323
1324 The mechanisms below ensures that there is only a loose connection
1325 between the set-architecture command and the various GDB
1326 components. Each component can independently register their need
1327 to maintain architecture specific data with gdbarch.
1328
1329 Pragmatics:
1330
1331 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1332 didn't scale.
1333
1334 The more traditional mega-struct containing architecture specific
1335 data for all the various GDB components was also considered. Since
1336 GDB is built from a variable number of (fairly independent)
1337 components it was determined that the global aproach was not
1338 applicable. */
1339
1340
1341 /* Register a new architectural family with GDB.
1342
1343 Register support for the specified ARCHITECTURE with GDB. When
1344 gdbarch determines that the specified architecture has been
1345 selected, the corresponding INIT function is called.
1346
1347 --
1348
1349 The INIT function takes two parameters: INFO which contains the
1350 information available to gdbarch about the (possibly new)
1351 architecture; ARCHES which is a list of the previously created
1352 \`\`struct gdbarch'' for this architecture.
1353
1354 The INFO parameter is, as far as possible, be pre-initialized with
1355 information obtained from INFO.ABFD or the global defaults.
1356
1357 The ARCHES parameter is a linked list (sorted most recently used)
1358 of all the previously created architures for this architecture
1359 family. The (possibly NULL) ARCHES->gdbarch can used to access
1360 values from the previously selected architecture for this
1361 architecture family.
1362
1363 The INIT function shall return any of: NULL - indicating that it
1364 doesn't recognize the selected architecture; an existing \`\`struct
1365 gdbarch'' from the ARCHES list - indicating that the new
1366 architecture is just a synonym for an earlier architecture (see
1367 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1368 - that describes the selected architecture (see gdbarch_alloc()).
1369
1370 The DUMP_TDEP function shall print out all target specific values.
1371 Care should be taken to ensure that the function works in both the
1372 multi-arch and non- multi-arch cases. */
1373
1374 struct gdbarch_list
1375 {
1376 struct gdbarch *gdbarch;
1377 struct gdbarch_list *next;
1378 };
1379
1380 struct gdbarch_info
1381 {
1382 /* Use default: NULL (ZERO). */
1383 const struct bfd_arch_info *bfd_arch_info;
1384
1385 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1386 enum bfd_endian byte_order;
1387
1388 enum bfd_endian byte_order_for_code;
1389
1390 /* Use default: NULL (ZERO). */
1391 bfd *abfd;
1392
1393 /* Use default: NULL (ZERO). */
1394 struct gdbarch_tdep_info *tdep_info;
1395
1396 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1397 enum gdb_osabi osabi;
1398
1399 /* Use default: NULL (ZERO). */
1400 const struct target_desc *target_desc;
1401 };
1402
1403 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1404 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1405
1406 /* DEPRECATED - use gdbarch_register() */
1407 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1408
1409 extern void gdbarch_register (enum bfd_architecture architecture,
1410 gdbarch_init_ftype *,
1411 gdbarch_dump_tdep_ftype *);
1412
1413
1414 /* Return a freshly allocated, NULL terminated, array of the valid
1415 architecture names. Since architectures are registered during the
1416 _initialize phase this function only returns useful information
1417 once initialization has been completed. */
1418
1419 extern const char **gdbarch_printable_names (void);
1420
1421
1422 /* Helper function. Search the list of ARCHES for a GDBARCH that
1423 matches the information provided by INFO. */
1424
1425 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1426
1427
1428 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1429 basic initialization using values obtained from the INFO and TDEP
1430 parameters. set_gdbarch_*() functions are called to complete the
1431 initialization of the object. */
1432
1433 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1434
1435
1436 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1437 It is assumed that the caller freeds the \`\`struct
1438 gdbarch_tdep''. */
1439
1440 extern void gdbarch_free (struct gdbarch *);
1441
1442
1443 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1444 obstack. The memory is freed when the corresponding architecture
1445 is also freed. */
1446
1447 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1448 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1449 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1450
1451
1452 /* Helper function. Force an update of the current architecture.
1453
1454 The actual architecture selected is determined by INFO, \`\`(gdb) set
1455 architecture'' et.al., the existing architecture and BFD's default
1456 architecture. INFO should be initialized to zero and then selected
1457 fields should be updated.
1458
1459 Returns non-zero if the update succeeds. */
1460
1461 extern int gdbarch_update_p (struct gdbarch_info info);
1462
1463
1464 /* Helper function. Find an architecture matching info.
1465
1466 INFO should be initialized using gdbarch_info_init, relevant fields
1467 set, and then finished using gdbarch_info_fill.
1468
1469 Returns the corresponding architecture, or NULL if no matching
1470 architecture was found. */
1471
1472 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1473
1474
1475 /* Helper function. Set the target gdbarch to "gdbarch". */
1476
1477 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1478
1479
1480 /* Register per-architecture data-pointer.
1481
1482 Reserve space for a per-architecture data-pointer. An identifier
1483 for the reserved data-pointer is returned. That identifer should
1484 be saved in a local static variable.
1485
1486 Memory for the per-architecture data shall be allocated using
1487 gdbarch_obstack_zalloc. That memory will be deleted when the
1488 corresponding architecture object is deleted.
1489
1490 When a previously created architecture is re-selected, the
1491 per-architecture data-pointer for that previous architecture is
1492 restored. INIT() is not re-called.
1493
1494 Multiple registrarants for any architecture are allowed (and
1495 strongly encouraged). */
1496
1497 struct gdbarch_data;
1498
1499 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1500 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1501 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1502 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1503 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1504 struct gdbarch_data *data,
1505 void *pointer);
1506
1507 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1508
1509
1510 /* Set the dynamic target-system-dependent parameters (architecture,
1511 byte-order, ...) using information found in the BFD. */
1512
1513 extern void set_gdbarch_from_file (bfd *);
1514
1515
1516 /* Initialize the current architecture to the "first" one we find on
1517 our list. */
1518
1519 extern void initialize_current_architecture (void);
1520
1521 /* gdbarch trace variable */
1522 extern unsigned int gdbarch_debug;
1523
1524 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1525
1526 #endif
1527 EOF
1528 exec 1>&2
1529 #../move-if-change new-gdbarch.h gdbarch.h
1530 compare_new gdbarch.h
1531
1532
1533 #
1534 # C file
1535 #
1536
1537 exec > new-gdbarch.c
1538 copyright
1539 cat <<EOF
1540
1541 #include "defs.h"
1542 #include "arch-utils.h"
1543
1544 #include "gdbcmd.h"
1545 #include "inferior.h"
1546 #include "symcat.h"
1547
1548 #include "floatformat.h"
1549 #include "reggroups.h"
1550 #include "osabi.h"
1551 #include "gdb_obstack.h"
1552 #include "observer.h"
1553 #include "regcache.h"
1554 #include "objfiles.h"
1555
1556 /* Static function declarations */
1557
1558 static void alloc_gdbarch_data (struct gdbarch *);
1559
1560 /* Non-zero if we want to trace architecture code. */
1561
1562 #ifndef GDBARCH_DEBUG
1563 #define GDBARCH_DEBUG 0
1564 #endif
1565 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1566 static void
1567 show_gdbarch_debug (struct ui_file *file, int from_tty,
1568 struct cmd_list_element *c, const char *value)
1569 {
1570 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1571 }
1572
1573 static const char *
1574 pformat (const struct floatformat **format)
1575 {
1576 if (format == NULL)
1577 return "(null)";
1578 else
1579 /* Just print out one of them - this is only for diagnostics. */
1580 return format[0]->name;
1581 }
1582
1583 static const char *
1584 pstring (const char *string)
1585 {
1586 if (string == NULL)
1587 return "(null)";
1588 return string;
1589 }
1590
1591 /* Helper function to print a list of strings, represented as "const
1592 char *const *". The list is printed comma-separated. */
1593
1594 static char *
1595 pstring_list (const char *const *list)
1596 {
1597 static char ret[100];
1598 const char *const *p;
1599 size_t offset = 0;
1600
1601 if (list == NULL)
1602 return "(null)";
1603
1604 ret[0] = '\0';
1605 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1606 {
1607 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1608 offset += 2 + s;
1609 }
1610
1611 if (offset > 0)
1612 {
1613 gdb_assert (offset - 2 < sizeof (ret));
1614 ret[offset - 2] = '\0';
1615 }
1616
1617 return ret;
1618 }
1619
1620 EOF
1621
1622 # gdbarch open the gdbarch object
1623 printf "\n"
1624 printf "/* Maintain the struct gdbarch object. */\n"
1625 printf "\n"
1626 printf "struct gdbarch\n"
1627 printf "{\n"
1628 printf " /* Has this architecture been fully initialized? */\n"
1629 printf " int initialized_p;\n"
1630 printf "\n"
1631 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1632 printf " struct obstack *obstack;\n"
1633 printf "\n"
1634 printf " /* basic architectural information. */\n"
1635 function_list | while do_read
1636 do
1637 if class_is_info_p
1638 then
1639 printf " ${returntype} ${function};\n"
1640 fi
1641 done
1642 printf "\n"
1643 printf " /* target specific vector. */\n"
1644 printf " struct gdbarch_tdep *tdep;\n"
1645 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1646 printf "\n"
1647 printf " /* per-architecture data-pointers. */\n"
1648 printf " unsigned nr_data;\n"
1649 printf " void **data;\n"
1650 printf "\n"
1651 cat <<EOF
1652 /* Multi-arch values.
1653
1654 When extending this structure you must:
1655
1656 Add the field below.
1657
1658 Declare set/get functions and define the corresponding
1659 macro in gdbarch.h.
1660
1661 gdbarch_alloc(): If zero/NULL is not a suitable default,
1662 initialize the new field.
1663
1664 verify_gdbarch(): Confirm that the target updated the field
1665 correctly.
1666
1667 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1668 field is dumped out
1669
1670 get_gdbarch(): Implement the set/get functions (probably using
1671 the macro's as shortcuts).
1672
1673 */
1674
1675 EOF
1676 function_list | while do_read
1677 do
1678 if class_is_variable_p
1679 then
1680 printf " ${returntype} ${function};\n"
1681 elif class_is_function_p
1682 then
1683 printf " gdbarch_${function}_ftype *${function};\n"
1684 fi
1685 done
1686 printf "};\n"
1687
1688 # Create a new gdbarch struct
1689 cat <<EOF
1690
1691 /* Create a new \`\`struct gdbarch'' based on information provided by
1692 \`\`struct gdbarch_info''. */
1693 EOF
1694 printf "\n"
1695 cat <<EOF
1696 struct gdbarch *
1697 gdbarch_alloc (const struct gdbarch_info *info,
1698 struct gdbarch_tdep *tdep)
1699 {
1700 struct gdbarch *gdbarch;
1701
1702 /* Create an obstack for allocating all the per-architecture memory,
1703 then use that to allocate the architecture vector. */
1704 struct obstack *obstack = XNEW (struct obstack);
1705 obstack_init (obstack);
1706 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1707 memset (gdbarch, 0, sizeof (*gdbarch));
1708 gdbarch->obstack = obstack;
1709
1710 alloc_gdbarch_data (gdbarch);
1711
1712 gdbarch->tdep = tdep;
1713 EOF
1714 printf "\n"
1715 function_list | while do_read
1716 do
1717 if class_is_info_p
1718 then
1719 printf " gdbarch->${function} = info->${function};\n"
1720 fi
1721 done
1722 printf "\n"
1723 printf " /* Force the explicit initialization of these. */\n"
1724 function_list | while do_read
1725 do
1726 if class_is_function_p || class_is_variable_p
1727 then
1728 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1729 then
1730 printf " gdbarch->${function} = ${predefault};\n"
1731 fi
1732 fi
1733 done
1734 cat <<EOF
1735 /* gdbarch_alloc() */
1736
1737 return gdbarch;
1738 }
1739 EOF
1740
1741 # Free a gdbarch struct.
1742 printf "\n"
1743 printf "\n"
1744 cat <<EOF
1745 /* Allocate extra space using the per-architecture obstack. */
1746
1747 void *
1748 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1749 {
1750 void *data = obstack_alloc (arch->obstack, size);
1751
1752 memset (data, 0, size);
1753 return data;
1754 }
1755
1756
1757 /* Free a gdbarch struct. This should never happen in normal
1758 operation --- once you've created a gdbarch, you keep it around.
1759 However, if an architecture's init function encounters an error
1760 building the structure, it may need to clean up a partially
1761 constructed gdbarch. */
1762
1763 void
1764 gdbarch_free (struct gdbarch *arch)
1765 {
1766 struct obstack *obstack;
1767
1768 gdb_assert (arch != NULL);
1769 gdb_assert (!arch->initialized_p);
1770 obstack = arch->obstack;
1771 obstack_free (obstack, 0); /* Includes the ARCH. */
1772 xfree (obstack);
1773 }
1774 EOF
1775
1776 # verify a new architecture
1777 cat <<EOF
1778
1779
1780 /* Ensure that all values in a GDBARCH are reasonable. */
1781
1782 static void
1783 verify_gdbarch (struct gdbarch *gdbarch)
1784 {
1785 struct ui_file *log;
1786 struct cleanup *cleanups;
1787 long length;
1788 char *buf;
1789
1790 log = mem_fileopen ();
1791 cleanups = make_cleanup_ui_file_delete (log);
1792 /* fundamental */
1793 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1794 fprintf_unfiltered (log, "\n\tbyte-order");
1795 if (gdbarch->bfd_arch_info == NULL)
1796 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1797 /* Check those that need to be defined for the given multi-arch level. */
1798 EOF
1799 function_list | while do_read
1800 do
1801 if class_is_function_p || class_is_variable_p
1802 then
1803 if [ "x${invalid_p}" = "x0" ]
1804 then
1805 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1806 elif class_is_predicate_p
1807 then
1808 printf " /* Skip verify of ${function}, has predicate. */\n"
1809 # FIXME: See do_read for potential simplification
1810 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1811 then
1812 printf " if (${invalid_p})\n"
1813 printf " gdbarch->${function} = ${postdefault};\n"
1814 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1815 then
1816 printf " if (gdbarch->${function} == ${predefault})\n"
1817 printf " gdbarch->${function} = ${postdefault};\n"
1818 elif [ -n "${postdefault}" ]
1819 then
1820 printf " if (gdbarch->${function} == 0)\n"
1821 printf " gdbarch->${function} = ${postdefault};\n"
1822 elif [ -n "${invalid_p}" ]
1823 then
1824 printf " if (${invalid_p})\n"
1825 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1826 elif [ -n "${predefault}" ]
1827 then
1828 printf " if (gdbarch->${function} == ${predefault})\n"
1829 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1830 fi
1831 fi
1832 done
1833 cat <<EOF
1834 buf = ui_file_xstrdup (log, &length);
1835 make_cleanup (xfree, buf);
1836 if (length > 0)
1837 internal_error (__FILE__, __LINE__,
1838 _("verify_gdbarch: the following are invalid ...%s"),
1839 buf);
1840 do_cleanups (cleanups);
1841 }
1842 EOF
1843
1844 # dump the structure
1845 printf "\n"
1846 printf "\n"
1847 cat <<EOF
1848 /* Print out the details of the current architecture. */
1849
1850 void
1851 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1852 {
1853 const char *gdb_nm_file = "<not-defined>";
1854
1855 #if defined (GDB_NM_FILE)
1856 gdb_nm_file = GDB_NM_FILE;
1857 #endif
1858 fprintf_unfiltered (file,
1859 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1860 gdb_nm_file);
1861 EOF
1862 function_list | sort -t: -k 3 | while do_read
1863 do
1864 # First the predicate
1865 if class_is_predicate_p
1866 then
1867 printf " fprintf_unfiltered (file,\n"
1868 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1869 printf " gdbarch_${function}_p (gdbarch));\n"
1870 fi
1871 # Print the corresponding value.
1872 if class_is_function_p
1873 then
1874 printf " fprintf_unfiltered (file,\n"
1875 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1876 printf " host_address_to_string (gdbarch->${function}));\n"
1877 else
1878 # It is a variable
1879 case "${print}:${returntype}" in
1880 :CORE_ADDR )
1881 fmt="%s"
1882 print="core_addr_to_string_nz (gdbarch->${function})"
1883 ;;
1884 :* )
1885 fmt="%s"
1886 print="plongest (gdbarch->${function})"
1887 ;;
1888 * )
1889 fmt="%s"
1890 ;;
1891 esac
1892 printf " fprintf_unfiltered (file,\n"
1893 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1894 printf " ${print});\n"
1895 fi
1896 done
1897 cat <<EOF
1898 if (gdbarch->dump_tdep != NULL)
1899 gdbarch->dump_tdep (gdbarch, file);
1900 }
1901 EOF
1902
1903
1904 # GET/SET
1905 printf "\n"
1906 cat <<EOF
1907 struct gdbarch_tdep *
1908 gdbarch_tdep (struct gdbarch *gdbarch)
1909 {
1910 if (gdbarch_debug >= 2)
1911 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1912 return gdbarch->tdep;
1913 }
1914 EOF
1915 printf "\n"
1916 function_list | while do_read
1917 do
1918 if class_is_predicate_p
1919 then
1920 printf "\n"
1921 printf "int\n"
1922 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1923 printf "{\n"
1924 printf " gdb_assert (gdbarch != NULL);\n"
1925 printf " return ${predicate};\n"
1926 printf "}\n"
1927 fi
1928 if class_is_function_p
1929 then
1930 printf "\n"
1931 printf "${returntype}\n"
1932 if [ "x${formal}" = "xvoid" ]
1933 then
1934 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1935 else
1936 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1937 fi
1938 printf "{\n"
1939 printf " gdb_assert (gdbarch != NULL);\n"
1940 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1941 if class_is_predicate_p && test -n "${predefault}"
1942 then
1943 # Allow a call to a function with a predicate.
1944 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1945 fi
1946 printf " if (gdbarch_debug >= 2)\n"
1947 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1948 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1949 then
1950 if class_is_multiarch_p
1951 then
1952 params="gdbarch"
1953 else
1954 params=""
1955 fi
1956 else
1957 if class_is_multiarch_p
1958 then
1959 params="gdbarch, ${actual}"
1960 else
1961 params="${actual}"
1962 fi
1963 fi
1964 if [ "x${returntype}" = "xvoid" ]
1965 then
1966 printf " gdbarch->${function} (${params});\n"
1967 else
1968 printf " return gdbarch->${function} (${params});\n"
1969 fi
1970 printf "}\n"
1971 printf "\n"
1972 printf "void\n"
1973 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1974 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1975 printf "{\n"
1976 printf " gdbarch->${function} = ${function};\n"
1977 printf "}\n"
1978 elif class_is_variable_p
1979 then
1980 printf "\n"
1981 printf "${returntype}\n"
1982 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1983 printf "{\n"
1984 printf " gdb_assert (gdbarch != NULL);\n"
1985 if [ "x${invalid_p}" = "x0" ]
1986 then
1987 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1988 elif [ -n "${invalid_p}" ]
1989 then
1990 printf " /* Check variable is valid. */\n"
1991 printf " gdb_assert (!(${invalid_p}));\n"
1992 elif [ -n "${predefault}" ]
1993 then
1994 printf " /* Check variable changed from pre-default. */\n"
1995 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1996 fi
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1999 printf " return gdbarch->${function};\n"
2000 printf "}\n"
2001 printf "\n"
2002 printf "void\n"
2003 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2004 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2005 printf "{\n"
2006 printf " gdbarch->${function} = ${function};\n"
2007 printf "}\n"
2008 elif class_is_info_p
2009 then
2010 printf "\n"
2011 printf "${returntype}\n"
2012 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2013 printf "{\n"
2014 printf " gdb_assert (gdbarch != NULL);\n"
2015 printf " if (gdbarch_debug >= 2)\n"
2016 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2017 printf " return gdbarch->${function};\n"
2018 printf "}\n"
2019 fi
2020 done
2021
2022 # All the trailing guff
2023 cat <<EOF
2024
2025
2026 /* Keep a registry of per-architecture data-pointers required by GDB
2027 modules. */
2028
2029 struct gdbarch_data
2030 {
2031 unsigned index;
2032 int init_p;
2033 gdbarch_data_pre_init_ftype *pre_init;
2034 gdbarch_data_post_init_ftype *post_init;
2035 };
2036
2037 struct gdbarch_data_registration
2038 {
2039 struct gdbarch_data *data;
2040 struct gdbarch_data_registration *next;
2041 };
2042
2043 struct gdbarch_data_registry
2044 {
2045 unsigned nr;
2046 struct gdbarch_data_registration *registrations;
2047 };
2048
2049 struct gdbarch_data_registry gdbarch_data_registry =
2050 {
2051 0, NULL,
2052 };
2053
2054 static struct gdbarch_data *
2055 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2056 gdbarch_data_post_init_ftype *post_init)
2057 {
2058 struct gdbarch_data_registration **curr;
2059
2060 /* Append the new registration. */
2061 for (curr = &gdbarch_data_registry.registrations;
2062 (*curr) != NULL;
2063 curr = &(*curr)->next);
2064 (*curr) = XNEW (struct gdbarch_data_registration);
2065 (*curr)->next = NULL;
2066 (*curr)->data = XNEW (struct gdbarch_data);
2067 (*curr)->data->index = gdbarch_data_registry.nr++;
2068 (*curr)->data->pre_init = pre_init;
2069 (*curr)->data->post_init = post_init;
2070 (*curr)->data->init_p = 1;
2071 return (*curr)->data;
2072 }
2073
2074 struct gdbarch_data *
2075 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2076 {
2077 return gdbarch_data_register (pre_init, NULL);
2078 }
2079
2080 struct gdbarch_data *
2081 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2082 {
2083 return gdbarch_data_register (NULL, post_init);
2084 }
2085
2086 /* Create/delete the gdbarch data vector. */
2087
2088 static void
2089 alloc_gdbarch_data (struct gdbarch *gdbarch)
2090 {
2091 gdb_assert (gdbarch->data == NULL);
2092 gdbarch->nr_data = gdbarch_data_registry.nr;
2093 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2094 }
2095
2096 /* Initialize the current value of the specified per-architecture
2097 data-pointer. */
2098
2099 void
2100 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2101 struct gdbarch_data *data,
2102 void *pointer)
2103 {
2104 gdb_assert (data->index < gdbarch->nr_data);
2105 gdb_assert (gdbarch->data[data->index] == NULL);
2106 gdb_assert (data->pre_init == NULL);
2107 gdbarch->data[data->index] = pointer;
2108 }
2109
2110 /* Return the current value of the specified per-architecture
2111 data-pointer. */
2112
2113 void *
2114 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2115 {
2116 gdb_assert (data->index < gdbarch->nr_data);
2117 if (gdbarch->data[data->index] == NULL)
2118 {
2119 /* The data-pointer isn't initialized, call init() to get a
2120 value. */
2121 if (data->pre_init != NULL)
2122 /* Mid architecture creation: pass just the obstack, and not
2123 the entire architecture, as that way it isn't possible for
2124 pre-init code to refer to undefined architecture
2125 fields. */
2126 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2127 else if (gdbarch->initialized_p
2128 && data->post_init != NULL)
2129 /* Post architecture creation: pass the entire architecture
2130 (as all fields are valid), but be careful to also detect
2131 recursive references. */
2132 {
2133 gdb_assert (data->init_p);
2134 data->init_p = 0;
2135 gdbarch->data[data->index] = data->post_init (gdbarch);
2136 data->init_p = 1;
2137 }
2138 else
2139 /* The architecture initialization hasn't completed - punt -
2140 hope that the caller knows what they are doing. Once
2141 deprecated_set_gdbarch_data has been initialized, this can be
2142 changed to an internal error. */
2143 return NULL;
2144 gdb_assert (gdbarch->data[data->index] != NULL);
2145 }
2146 return gdbarch->data[data->index];
2147 }
2148
2149
2150 /* Keep a registry of the architectures known by GDB. */
2151
2152 struct gdbarch_registration
2153 {
2154 enum bfd_architecture bfd_architecture;
2155 gdbarch_init_ftype *init;
2156 gdbarch_dump_tdep_ftype *dump_tdep;
2157 struct gdbarch_list *arches;
2158 struct gdbarch_registration *next;
2159 };
2160
2161 static struct gdbarch_registration *gdbarch_registry = NULL;
2162
2163 static void
2164 append_name (const char ***buf, int *nr, const char *name)
2165 {
2166 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2167 (*buf)[*nr] = name;
2168 *nr += 1;
2169 }
2170
2171 const char **
2172 gdbarch_printable_names (void)
2173 {
2174 /* Accumulate a list of names based on the registed list of
2175 architectures. */
2176 int nr_arches = 0;
2177 const char **arches = NULL;
2178 struct gdbarch_registration *rego;
2179
2180 for (rego = gdbarch_registry;
2181 rego != NULL;
2182 rego = rego->next)
2183 {
2184 const struct bfd_arch_info *ap;
2185 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2186 if (ap == NULL)
2187 internal_error (__FILE__, __LINE__,
2188 _("gdbarch_architecture_names: multi-arch unknown"));
2189 do
2190 {
2191 append_name (&arches, &nr_arches, ap->printable_name);
2192 ap = ap->next;
2193 }
2194 while (ap != NULL);
2195 }
2196 append_name (&arches, &nr_arches, NULL);
2197 return arches;
2198 }
2199
2200
2201 void
2202 gdbarch_register (enum bfd_architecture bfd_architecture,
2203 gdbarch_init_ftype *init,
2204 gdbarch_dump_tdep_ftype *dump_tdep)
2205 {
2206 struct gdbarch_registration **curr;
2207 const struct bfd_arch_info *bfd_arch_info;
2208
2209 /* Check that BFD recognizes this architecture */
2210 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2211 if (bfd_arch_info == NULL)
2212 {
2213 internal_error (__FILE__, __LINE__,
2214 _("gdbarch: Attempt to register "
2215 "unknown architecture (%d)"),
2216 bfd_architecture);
2217 }
2218 /* Check that we haven't seen this architecture before. */
2219 for (curr = &gdbarch_registry;
2220 (*curr) != NULL;
2221 curr = &(*curr)->next)
2222 {
2223 if (bfd_architecture == (*curr)->bfd_architecture)
2224 internal_error (__FILE__, __LINE__,
2225 _("gdbarch: Duplicate registration "
2226 "of architecture (%s)"),
2227 bfd_arch_info->printable_name);
2228 }
2229 /* log it */
2230 if (gdbarch_debug)
2231 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2232 bfd_arch_info->printable_name,
2233 host_address_to_string (init));
2234 /* Append it */
2235 (*curr) = XNEW (struct gdbarch_registration);
2236 (*curr)->bfd_architecture = bfd_architecture;
2237 (*curr)->init = init;
2238 (*curr)->dump_tdep = dump_tdep;
2239 (*curr)->arches = NULL;
2240 (*curr)->next = NULL;
2241 }
2242
2243 void
2244 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2245 gdbarch_init_ftype *init)
2246 {
2247 gdbarch_register (bfd_architecture, init, NULL);
2248 }
2249
2250
2251 /* Look for an architecture using gdbarch_info. */
2252
2253 struct gdbarch_list *
2254 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2255 const struct gdbarch_info *info)
2256 {
2257 for (; arches != NULL; arches = arches->next)
2258 {
2259 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2260 continue;
2261 if (info->byte_order != arches->gdbarch->byte_order)
2262 continue;
2263 if (info->osabi != arches->gdbarch->osabi)
2264 continue;
2265 if (info->target_desc != arches->gdbarch->target_desc)
2266 continue;
2267 return arches;
2268 }
2269 return NULL;
2270 }
2271
2272
2273 /* Find an architecture that matches the specified INFO. Create a new
2274 architecture if needed. Return that new architecture. */
2275
2276 struct gdbarch *
2277 gdbarch_find_by_info (struct gdbarch_info info)
2278 {
2279 struct gdbarch *new_gdbarch;
2280 struct gdbarch_registration *rego;
2281
2282 /* Fill in missing parts of the INFO struct using a number of
2283 sources: "set ..."; INFOabfd supplied; and the global
2284 defaults. */
2285 gdbarch_info_fill (&info);
2286
2287 /* Must have found some sort of architecture. */
2288 gdb_assert (info.bfd_arch_info != NULL);
2289
2290 if (gdbarch_debug)
2291 {
2292 fprintf_unfiltered (gdb_stdlog,
2293 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2294 (info.bfd_arch_info != NULL
2295 ? info.bfd_arch_info->printable_name
2296 : "(null)"));
2297 fprintf_unfiltered (gdb_stdlog,
2298 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2299 info.byte_order,
2300 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2301 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2302 : "default"));
2303 fprintf_unfiltered (gdb_stdlog,
2304 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2305 info.osabi, gdbarch_osabi_name (info.osabi));
2306 fprintf_unfiltered (gdb_stdlog,
2307 "gdbarch_find_by_info: info.abfd %s\n",
2308 host_address_to_string (info.abfd));
2309 fprintf_unfiltered (gdb_stdlog,
2310 "gdbarch_find_by_info: info.tdep_info %s\n",
2311 host_address_to_string (info.tdep_info));
2312 }
2313
2314 /* Find the tdep code that knows about this architecture. */
2315 for (rego = gdbarch_registry;
2316 rego != NULL;
2317 rego = rego->next)
2318 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2319 break;
2320 if (rego == NULL)
2321 {
2322 if (gdbarch_debug)
2323 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2324 "No matching architecture\n");
2325 return 0;
2326 }
2327
2328 /* Ask the tdep code for an architecture that matches "info". */
2329 new_gdbarch = rego->init (info, rego->arches);
2330
2331 /* Did the tdep code like it? No. Reject the change and revert to
2332 the old architecture. */
2333 if (new_gdbarch == NULL)
2334 {
2335 if (gdbarch_debug)
2336 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2337 "Target rejected architecture\n");
2338 return NULL;
2339 }
2340
2341 /* Is this a pre-existing architecture (as determined by already
2342 being initialized)? Move it to the front of the architecture
2343 list (keeping the list sorted Most Recently Used). */
2344 if (new_gdbarch->initialized_p)
2345 {
2346 struct gdbarch_list **list;
2347 struct gdbarch_list *this;
2348 if (gdbarch_debug)
2349 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2350 "Previous architecture %s (%s) selected\n",
2351 host_address_to_string (new_gdbarch),
2352 new_gdbarch->bfd_arch_info->printable_name);
2353 /* Find the existing arch in the list. */
2354 for (list = &rego->arches;
2355 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2356 list = &(*list)->next);
2357 /* It had better be in the list of architectures. */
2358 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2359 /* Unlink THIS. */
2360 this = (*list);
2361 (*list) = this->next;
2362 /* Insert THIS at the front. */
2363 this->next = rego->arches;
2364 rego->arches = this;
2365 /* Return it. */
2366 return new_gdbarch;
2367 }
2368
2369 /* It's a new architecture. */
2370 if (gdbarch_debug)
2371 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2372 "New architecture %s (%s) selected\n",
2373 host_address_to_string (new_gdbarch),
2374 new_gdbarch->bfd_arch_info->printable_name);
2375
2376 /* Insert the new architecture into the front of the architecture
2377 list (keep the list sorted Most Recently Used). */
2378 {
2379 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2380 this->next = rego->arches;
2381 this->gdbarch = new_gdbarch;
2382 rego->arches = this;
2383 }
2384
2385 /* Check that the newly installed architecture is valid. Plug in
2386 any post init values. */
2387 new_gdbarch->dump_tdep = rego->dump_tdep;
2388 verify_gdbarch (new_gdbarch);
2389 new_gdbarch->initialized_p = 1;
2390
2391 if (gdbarch_debug)
2392 gdbarch_dump (new_gdbarch, gdb_stdlog);
2393
2394 return new_gdbarch;
2395 }
2396
2397 /* Make the specified architecture current. */
2398
2399 void
2400 set_target_gdbarch (struct gdbarch *new_gdbarch)
2401 {
2402 gdb_assert (new_gdbarch != NULL);
2403 gdb_assert (new_gdbarch->initialized_p);
2404 current_inferior ()->gdbarch = new_gdbarch;
2405 observer_notify_architecture_changed (new_gdbarch);
2406 registers_changed ();
2407 }
2408
2409 /* Return the current inferior's arch. */
2410
2411 struct gdbarch *
2412 target_gdbarch (void)
2413 {
2414 return current_inferior ()->gdbarch;
2415 }
2416
2417 extern void _initialize_gdbarch (void);
2418
2419 void
2420 _initialize_gdbarch (void)
2421 {
2422 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2423 Set architecture debugging."), _("\\
2424 Show architecture debugging."), _("\\
2425 When non-zero, architecture debugging is enabled."),
2426 NULL,
2427 show_gdbarch_debug,
2428 &setdebuglist, &showdebuglist);
2429 }
2430 EOF
2431
2432 # close things off
2433 exec 1>&2
2434 #../move-if-change new-gdbarch.c gdbarch.c
2435 compare_new gdbarch.c
This page took 0.090041 seconds and 5 git commands to generate.