2001-12-10 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87 test "${fmt}" || fmt="%ld"
88 test "${print}" || print="(long) ${macro}"
89 case "${invalid_p}" in
90 0 ) valid_p=1 ;;
91 "" )
92 if [ -n "${predefault}" ]
93 then
94 #invalid_p="gdbarch->${function} == ${predefault}"
95 valid_p="gdbarch->${function} != ${predefault}"
96 else
97 #invalid_p="gdbarch->${function} == 0"
98 valid_p="gdbarch->${function} != 0"
99 fi
100 ;;
101 * ) valid_p="!(${invalid_p})"
102 esac
103
104 # PREDEFAULT is a valid fallback definition of MEMBER when
105 # multi-arch is not enabled. This ensures that the
106 # default value, when multi-arch is the same as the
107 # default value when not multi-arch. POSTDEFAULT is
108 # always a valid definition of MEMBER as this again
109 # ensures consistency.
110
111 if [ -n "${postdefault}" ]
112 then
113 fallbackdefault="${postdefault}"
114 elif [ -n "${predefault}" ]
115 then
116 fallbackdefault="${predefault}"
117 else
118 fallbackdefault="0"
119 fi
120
121 #NOT YET: See gdbarch.log for basic verification of
122 # database
123
124 break
125 fi
126 done
127 if [ -n "${class}" ]
128 then
129 true
130 else
131 false
132 fi
133 }
134
135
136 fallback_default_p ()
137 {
138 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
139 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
140 }
141
142 class_is_variable_p ()
143 {
144 case "${class}" in
145 *v* | *V* ) true ;;
146 * ) false ;;
147 esac
148 }
149
150 class_is_function_p ()
151 {
152 case "${class}" in
153 *f* | *F* | *m* | *M* ) true ;;
154 * ) false ;;
155 esac
156 }
157
158 class_is_multiarch_p ()
159 {
160 case "${class}" in
161 *m* | *M* ) true ;;
162 * ) false ;;
163 esac
164 }
165
166 class_is_predicate_p ()
167 {
168 case "${class}" in
169 *F* | *V* | *M* ) true ;;
170 * ) false ;;
171 esac
172 }
173
174 class_is_info_p ()
175 {
176 case "${class}" in
177 *i* ) true ;;
178 * ) false ;;
179 esac
180 }
181
182
183 # dump out/verify the doco
184 for field in ${read}
185 do
186 case ${field} in
187
188 class ) : ;;
189
190 # # -> line disable
191 # f -> function
192 # hiding a function
193 # F -> function + predicate
194 # hiding a function + predicate to test function validity
195 # v -> variable
196 # hiding a variable
197 # V -> variable + predicate
198 # hiding a variable + predicate to test variables validity
199 # i -> set from info
200 # hiding something from the ``struct info'' object
201 # m -> multi-arch function
202 # hiding a multi-arch function (parameterised with the architecture)
203 # M -> multi-arch function + predicate
204 # hiding a multi-arch function + predicate to test function validity
205
206 level ) : ;;
207
208 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
209 # LEVEL is a predicate on checking that a given method is
210 # initialized (using INVALID_P).
211
212 macro ) : ;;
213
214 # The name of the MACRO that this method is to be accessed by.
215
216 returntype ) : ;;
217
218 # For functions, the return type; for variables, the data type
219
220 function ) : ;;
221
222 # For functions, the member function name; for variables, the
223 # variable name. Member function names are always prefixed with
224 # ``gdbarch_'' for name-space purity.
225
226 formal ) : ;;
227
228 # The formal argument list. It is assumed that the formal
229 # argument list includes the actual name of each list element.
230 # A function with no arguments shall have ``void'' as the
231 # formal argument list.
232
233 actual ) : ;;
234
235 # The list of actual arguments. The arguments specified shall
236 # match the FORMAL list given above. Functions with out
237 # arguments leave this blank.
238
239 attrib ) : ;;
240
241 # Any GCC attributes that should be attached to the function
242 # declaration. At present this field is unused.
243
244 staticdefault ) : ;;
245
246 # To help with the GDB startup a static gdbarch object is
247 # created. STATICDEFAULT is the value to insert into that
248 # static gdbarch object. Since this a static object only
249 # simple expressions can be used.
250
251 # If STATICDEFAULT is empty, zero is used.
252
253 predefault ) : ;;
254
255 # An initial value to assign to MEMBER of the freshly
256 # malloc()ed gdbarch object. After initialization, the
257 # freshly malloc()ed object is passed to the target
258 # architecture code for further updates.
259
260 # If PREDEFAULT is empty, zero is used.
261
262 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
263 # INVALID_P are specified, PREDEFAULT will be used as the
264 # default for the non- multi-arch target.
265
266 # A zero PREDEFAULT function will force the fallback to call
267 # internal_error().
268
269 # Variable declarations can refer to ``gdbarch'' which will
270 # contain the current architecture. Care should be taken.
271
272 postdefault ) : ;;
273
274 # A value to assign to MEMBER of the new gdbarch object should
275 # the target architecture code fail to change the PREDEFAULT
276 # value.
277
278 # If POSTDEFAULT is empty, no post update is performed.
279
280 # If both INVALID_P and POSTDEFAULT are non-empty then
281 # INVALID_P will be used to determine if MEMBER should be
282 # changed to POSTDEFAULT.
283
284 # If a non-empty POSTDEFAULT and a zero INVALID_P are
285 # specified, POSTDEFAULT will be used as the default for the
286 # non- multi-arch target (regardless of the value of
287 # PREDEFAULT).
288
289 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
290
291 # Variable declarations can refer to ``gdbarch'' which will
292 # contain the current architecture. Care should be taken.
293
294 invalid_p ) : ;;
295
296 # A predicate equation that validates MEMBER. Non-zero is
297 # returned if the code creating the new architecture failed to
298 # initialize MEMBER or the initialized the member is invalid.
299 # If POSTDEFAULT is non-empty then MEMBER will be updated to
300 # that value. If POSTDEFAULT is empty then internal_error()
301 # is called.
302
303 # If INVALID_P is empty, a check that MEMBER is no longer
304 # equal to PREDEFAULT is used.
305
306 # The expression ``0'' disables the INVALID_P check making
307 # PREDEFAULT a legitimate value.
308
309 # See also PREDEFAULT and POSTDEFAULT.
310
311 fmt ) : ;;
312
313 # printf style format string that can be used to print out the
314 # MEMBER. Sometimes "%s" is useful. For functions, this is
315 # ignored and the function address is printed.
316
317 # If FMT is empty, ``%ld'' is used.
318
319 print ) : ;;
320
321 # An optional equation that casts MEMBER to a value suitable
322 # for formatting by FMT.
323
324 # If PRINT is empty, ``(long)'' is used.
325
326 print_p ) : ;;
327
328 # An optional indicator for any predicte to wrap around the
329 # print member code.
330
331 # () -> Call a custom function to do the dump.
332 # exp -> Wrap print up in ``if (${print_p}) ...
333 # ``'' -> No predicate
334
335 # If PRINT_P is empty, ``1'' is always used.
336
337 description ) : ;;
338
339 # Currently unused.
340
341 *) exit 1;;
342 esac
343 done
344
345
346 function_list ()
347 {
348 # See below (DOCO) for description of each field
349 cat <<EOF
350 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
351 #
352 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
353 # Number of bits in a char or unsigned char for the target machine.
354 # Just like CHAR_BIT in <limits.h> but describes the target machine.
355 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
356 #
357 # Number of bits in a short or unsigned short for the target machine.
358 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
359 # Number of bits in an int or unsigned int for the target machine.
360 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long or unsigned long for the target machine.
362 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
363 # Number of bits in a long long or unsigned long long for the target
364 # machine.
365 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
366 # Number of bits in a float for the target machine.
367 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
368 # Number of bits in a double for the target machine.
369 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
370 # Number of bits in a long double for the target machine.
371 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
372 # For most targets, a pointer on the target and its representation as an
373 # address in GDB have the same size and "look the same". For such a
374 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
375 # / addr_bit will be set from it.
376 #
377 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
378 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
379 #
380 # ptr_bit is the size of a pointer on the target
381 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
382 # addr_bit is the size of a target address as represented in gdb
383 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
384 # Number of bits in a BFD_VMA for the target object file format.
385 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
386 #
387 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
388 #
389 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
390 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
391 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
392 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
393 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
394 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
395 # Function for getting target's idea of a frame pointer. FIXME: GDB's
396 # whole scheme for dealing with "frames" and "frame pointers" needs a
397 # serious shakedown.
398 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
399 #
400 M:::void:register_read:int regnum, char *buf:regnum, buf:
401 M:::void:register_write:int regnum, char *buf:regnum, buf:
402 #
403 v:2:NUM_REGS:int:num_regs::::0:-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
409 v:2:SP_REGNUM:int:sp_regnum::::0:-1
410 v:2:FP_REGNUM:int:fp_regnum::::0:-1
411 v:2:PC_REGNUM:int:pc_regnum::::0:-1
412 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
413 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
414 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
415 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
416 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
417 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
418 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
419 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
420 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
421 # Convert from an sdb register number to an internal gdb register number.
422 # This should be defined in tm.h, if REGISTER_NAMES is not set up
423 # to map one to one onto the sdb register numbers.
424 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
425 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
426 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
427 v:2:REGISTER_SIZE:int:register_size::::0:-1
428 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
429 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
430 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
431 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
432 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
433 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
434 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
435 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
436 # MAP a GDB RAW register number onto a simulator register number. See
437 # also include/...-sim.h.
438 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
439 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
440 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
441 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
442 #
443 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
444 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
445 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
446 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
447 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
448 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
449 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
450 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
451 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
452 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
453 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
454 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
455 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
456 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
457 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
458 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
459 #
460 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
461 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
462 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
463 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
464 #
465 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
466 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
467 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be updated. Typically it will be defined on a per-architecture
470 # basis.
471 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
472 # This function is called when the value of a pseudo-register needs to
473 # be set or stored. Typically it will be defined on a
474 # per-architecture basis.
475 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
476 #
477 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
478 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
479 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
480 #
481 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
482 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
483 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
484 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
485 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
486 f:2:POP_FRAME:void:pop_frame:void:-:::0
487 #
488 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
489 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
490 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
491 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
492 #
493 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
494 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
495 #
496 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
497 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
498 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
499 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
500 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
501 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
502 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
503 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
504 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
505 #
506 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
507 #
508 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
509 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
510 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
511 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
512 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
513 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
514 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
515 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
516 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
517 #
518 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
519 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
520 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
521 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
522 v:2:PARM_BOUNDARY:int:parm_boundary
523 #
524 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
525 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
526 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
527 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
528 # On some machines there are bits in addresses which are not really
529 # part of the address, but are used by the kernel, the hardware, etc.
530 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
531 # we get a "real" address such as one would find in a symbol table.
532 # This is used only for addresses of instructions, and even then I'm
533 # not sure it's used in all contexts. It exists to deal with there
534 # being a few stray bits in the PC which would mislead us, not as some
535 # sort of generic thing to handle alignment or segmentation (it's
536 # possible it should be in TARGET_READ_PC instead).
537 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
538 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
539 # the target needs software single step. An ISA method to implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
542 # using the breakpoint system instead of blatting memory directly (as with rs6000).
543 #
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
545 # single step. If not, then implement single step using breakpoints.
546 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
547 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
548 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
549 # For SVR4 shared libraries, each call goes through a small piece of
550 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
551 # to nonzero if we are current stopped in one of these.
552 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
553 # A target might have problems with watchpoints as soon as the stack
554 # frame of the current function has been destroyed. This mostly happens
555 # as the first action in a funtion's epilogue. in_function_epilogue_p()
556 # is defined to return a non-zero value if either the given addr is one
557 # instruction after the stack destroying instruction up to the trailing
558 # return instruction or if we can figure out that the stack frame has
559 # already been invalidated regardless of the value of addr. Targets
560 # which don't suffer from that problem could just let this functionality
561 # untouched.
562 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
563 # Given a vector of command-line arguments, return a newly allocated
564 # string which, when passed to the create_inferior function, will be
565 # parsed (on Unix systems, by the shell) to yield the same vector.
566 # This function should call error() if the argument vector is not
567 # representable for this target or if this target does not support
568 # command-line arguments.
569 # ARGC is the number of elements in the vector.
570 # ARGV is an array of strings, one per argument.
571 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
572 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
573 EOF
574 }
575
576 #
577 # The .log file
578 #
579 exec > new-gdbarch.log
580 function_list | while do_read
581 do
582 cat <<EOF
583 ${class} ${macro}(${actual})
584 ${returntype} ${function} ($formal)${attrib}
585 EOF
586 for r in ${read}
587 do
588 eval echo \"\ \ \ \ ${r}=\${${r}}\"
589 done
590 # #fallbackdefault=${fallbackdefault}
591 # #valid_p=${valid_p}
592 #EOF
593 if class_is_predicate_p && fallback_default_p
594 then
595 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
596 kill $$
597 exit 1
598 fi
599 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
600 then
601 echo "Error: postdefault is useless when invalid_p=0" 1>&2
602 kill $$
603 exit 1
604 fi
605 if class_is_multiarch_p
606 then
607 if class_is_predicate_p ; then :
608 elif test "x${predefault}" = "x"
609 then
610 echo "Error: pure multi-arch function must have a predefault" 1>&2
611 kill $$
612 exit 1
613 fi
614 fi
615 echo ""
616 done
617
618 exec 1>&2
619 compare_new gdbarch.log
620
621
622 copyright ()
623 {
624 cat <<EOF
625 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
626
627 /* Dynamic architecture support for GDB, the GNU debugger.
628 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
629
630 This file is part of GDB.
631
632 This program is free software; you can redistribute it and/or modify
633 it under the terms of the GNU General Public License as published by
634 the Free Software Foundation; either version 2 of the License, or
635 (at your option) any later version.
636
637 This program is distributed in the hope that it will be useful,
638 but WITHOUT ANY WARRANTY; without even the implied warranty of
639 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
640 GNU General Public License for more details.
641
642 You should have received a copy of the GNU General Public License
643 along with this program; if not, write to the Free Software
644 Foundation, Inc., 59 Temple Place - Suite 330,
645 Boston, MA 02111-1307, USA. */
646
647 /* This file was created with the aid of \`\`gdbarch.sh''.
648
649 The Bourne shell script \`\`gdbarch.sh'' creates the files
650 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
651 against the existing \`\`gdbarch.[hc]''. Any differences found
652 being reported.
653
654 If editing this file, please also run gdbarch.sh and merge any
655 changes into that script. Conversely, when making sweeping changes
656 to this file, modifying gdbarch.sh and using its output may prove
657 easier. */
658
659 EOF
660 }
661
662 #
663 # The .h file
664 #
665
666 exec > new-gdbarch.h
667 copyright
668 cat <<EOF
669 #ifndef GDBARCH_H
670 #define GDBARCH_H
671
672 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
673 #if !GDB_MULTI_ARCH
674 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
675 #endif
676
677 struct frame_info;
678 struct value;
679 struct objfile;
680
681 extern struct gdbarch *current_gdbarch;
682
683
684 /* If any of the following are defined, the target wasn't correctly
685 converted. */
686
687 #if GDB_MULTI_ARCH
688 #if defined (EXTRA_FRAME_INFO)
689 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
690 #endif
691 #endif
692
693 #if GDB_MULTI_ARCH
694 #if defined (FRAME_FIND_SAVED_REGS)
695 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
696 #endif
697 #endif
698
699 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
700 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
701 #endif
702 EOF
703
704 # function typedef's
705 printf "\n"
706 printf "\n"
707 printf "/* The following are pre-initialized by GDBARCH. */\n"
708 function_list | while do_read
709 do
710 if class_is_info_p
711 then
712 printf "\n"
713 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
714 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
715 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
716 printf "#error \"Non multi-arch definition of ${macro}\"\n"
717 printf "#endif\n"
718 printf "#if GDB_MULTI_ARCH\n"
719 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
720 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
721 printf "#endif\n"
722 printf "#endif\n"
723 fi
724 done
725
726 # function typedef's
727 printf "\n"
728 printf "\n"
729 printf "/* The following are initialized by the target dependent code. */\n"
730 function_list | while do_read
731 do
732 if [ -n "${comment}" ]
733 then
734 echo "${comment}" | sed \
735 -e '2 s,#,/*,' \
736 -e '3,$ s,#, ,' \
737 -e '$ s,$, */,'
738 fi
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p
742 then
743 printf "\n"
744 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
745 fi
746 else
747 if class_is_predicate_p
748 then
749 printf "\n"
750 printf "#if defined (${macro})\n"
751 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
752 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
753 printf "#if !defined (${macro}_P)\n"
754 printf "#define ${macro}_P() (1)\n"
755 printf "#endif\n"
756 printf "#endif\n"
757 printf "\n"
758 printf "/* Default predicate for non- multi-arch targets. */\n"
759 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
760 printf "#define ${macro}_P() (0)\n"
761 printf "#endif\n"
762 printf "\n"
763 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
764 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
765 printf "#error \"Non multi-arch definition of ${macro}\"\n"
766 printf "#endif\n"
767 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
768 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
769 printf "#endif\n"
770 fi
771 fi
772 if class_is_variable_p
773 then
774 if fallback_default_p || class_is_predicate_p
775 then
776 printf "\n"
777 printf "/* Default (value) for non- multi-arch platforms. */\n"
778 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
779 echo "#define ${macro} (${fallbackdefault})" \
780 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
781 printf "#endif\n"
782 fi
783 printf "\n"
784 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
785 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
786 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
787 printf "#error \"Non multi-arch definition of ${macro}\"\n"
788 printf "#endif\n"
789 printf "#if GDB_MULTI_ARCH\n"
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
791 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
792 printf "#endif\n"
793 printf "#endif\n"
794 fi
795 if class_is_function_p
796 then
797 if class_is_multiarch_p ; then :
798 elif fallback_default_p || class_is_predicate_p
799 then
800 printf "\n"
801 printf "/* Default (function) for non- multi-arch platforms. */\n"
802 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
803 if [ "x${fallbackdefault}" = "x0" ]
804 then
805 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
806 else
807 # FIXME: Should be passing current_gdbarch through!
808 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
809 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
810 fi
811 printf "#endif\n"
812 fi
813 printf "\n"
814 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
815 then
816 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
817 elif class_is_multiarch_p
818 then
819 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
820 else
821 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
822 fi
823 if [ "x${formal}" = "xvoid" ]
824 then
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 else
827 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
828 fi
829 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
830 if class_is_multiarch_p ; then :
831 else
832 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
833 printf "#error \"Non multi-arch definition of ${macro}\"\n"
834 printf "#endif\n"
835 printf "#if GDB_MULTI_ARCH\n"
836 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
837 if [ "x${actual}" = "x" ]
838 then
839 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
840 elif [ "x${actual}" = "x-" ]
841 then
842 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
843 else
844 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
845 fi
846 printf "#endif\n"
847 printf "#endif\n"
848 fi
849 fi
850 done
851
852 # close it off
853 cat <<EOF
854
855 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
856
857
858 /* Mechanism for co-ordinating the selection of a specific
859 architecture.
860
861 GDB targets (*-tdep.c) can register an interest in a specific
862 architecture. Other GDB components can register a need to maintain
863 per-architecture data.
864
865 The mechanisms below ensures that there is only a loose connection
866 between the set-architecture command and the various GDB
867 components. Each component can independently register their need
868 to maintain architecture specific data with gdbarch.
869
870 Pragmatics:
871
872 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
873 didn't scale.
874
875 The more traditional mega-struct containing architecture specific
876 data for all the various GDB components was also considered. Since
877 GDB is built from a variable number of (fairly independent)
878 components it was determined that the global aproach was not
879 applicable. */
880
881
882 /* Register a new architectural family with GDB.
883
884 Register support for the specified ARCHITECTURE with GDB. When
885 gdbarch determines that the specified architecture has been
886 selected, the corresponding INIT function is called.
887
888 --
889
890 The INIT function takes two parameters: INFO which contains the
891 information available to gdbarch about the (possibly new)
892 architecture; ARCHES which is a list of the previously created
893 \`\`struct gdbarch'' for this architecture.
894
895 The INIT function parameter INFO shall, as far as possible, be
896 pre-initialized with information obtained from INFO.ABFD or
897 previously selected architecture (if similar). INIT shall ensure
898 that the INFO.BYTE_ORDER is non-zero.
899
900 The INIT function shall return any of: NULL - indicating that it
901 doesn't recognize the selected architecture; an existing \`\`struct
902 gdbarch'' from the ARCHES list - indicating that the new
903 architecture is just a synonym for an earlier architecture (see
904 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
905 - that describes the selected architecture (see gdbarch_alloc()).
906
907 The DUMP_TDEP function shall print out all target specific values.
908 Care should be taken to ensure that the function works in both the
909 multi-arch and non- multi-arch cases. */
910
911 struct gdbarch_list
912 {
913 struct gdbarch *gdbarch;
914 struct gdbarch_list *next;
915 };
916
917 struct gdbarch_info
918 {
919 /* Use default: NULL (ZERO). */
920 const struct bfd_arch_info *bfd_arch_info;
921
922 /* Use default: 0 (ZERO). */
923 int byte_order;
924
925 /* Use default: NULL (ZERO). */
926 bfd *abfd;
927
928 /* Use default: NULL (ZERO). */
929 struct gdbarch_tdep_info *tdep_info;
930 };
931
932 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
933 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
934
935 /* DEPRECATED - use gdbarch_register() */
936 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
937
938 extern void gdbarch_register (enum bfd_architecture architecture,
939 gdbarch_init_ftype *,
940 gdbarch_dump_tdep_ftype *);
941
942
943 /* Return a freshly allocated, NULL terminated, array of the valid
944 architecture names. Since architectures are registered during the
945 _initialize phase this function only returns useful information
946 once initialization has been completed. */
947
948 extern const char **gdbarch_printable_names (void);
949
950
951 /* Helper function. Search the list of ARCHES for a GDBARCH that
952 matches the information provided by INFO. */
953
954 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
955
956
957 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
958 basic initialization using values obtained from the INFO andTDEP
959 parameters. set_gdbarch_*() functions are called to complete the
960 initialization of the object. */
961
962 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
963
964
965 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
966 It is assumed that the caller freeds the \`\`struct
967 gdbarch_tdep''. */
968
969 extern void gdbarch_free (struct gdbarch *);
970
971
972 /* Helper function. Force an update of the current architecture.
973
974 The actual architecture selected is determined by INFO, \`\`(gdb) set
975 architecture'' et.al., the existing architecture and BFD's default
976 architecture. INFO should be initialized to zero and then selected
977 fields should be updated.
978
979 Returns non-zero if the update succeeds */
980
981 extern int gdbarch_update_p (struct gdbarch_info info);
982
983
984
985 /* Register per-architecture data-pointer.
986
987 Reserve space for a per-architecture data-pointer. An identifier
988 for the reserved data-pointer is returned. That identifer should
989 be saved in a local static variable.
990
991 The per-architecture data-pointer can be initialized in one of two
992 ways: The value can be set explicitly using a call to
993 set_gdbarch_data(); the value can be set implicitly using the value
994 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
995 called after the basic architecture vector has been created.
996
997 When a previously created architecture is re-selected, the
998 per-architecture data-pointer for that previous architecture is
999 restored. INIT() is not called.
1000
1001 During initialization, multiple assignments of the data-pointer are
1002 allowed, non-NULL values are deleted by calling FREE(). If the
1003 architecture is deleted using gdbarch_free() all non-NULL data
1004 pointers are also deleted using FREE().
1005
1006 Multiple registrarants for any architecture are allowed (and
1007 strongly encouraged). */
1008
1009 struct gdbarch_data;
1010
1011 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1012 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1013 void *pointer);
1014 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1015 gdbarch_data_free_ftype *free);
1016 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1017 struct gdbarch_data *data,
1018 void *pointer);
1019
1020 extern void *gdbarch_data (struct gdbarch_data*);
1021
1022
1023 /* Register per-architecture memory region.
1024
1025 Provide a memory-region swap mechanism. Per-architecture memory
1026 region are created. These memory regions are swapped whenever the
1027 architecture is changed. For a new architecture, the memory region
1028 is initialized with zero (0) and the INIT function is called.
1029
1030 Memory regions are swapped / initialized in the order that they are
1031 registered. NULL DATA and/or INIT values can be specified.
1032
1033 New code should use register_gdbarch_data(). */
1034
1035 typedef void (gdbarch_swap_ftype) (void);
1036 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1037 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1038
1039
1040
1041 /* The target-system-dependent byte order is dynamic */
1042
1043 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1044 is selectable at runtime. The user can use the \`\`set endian''
1045 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1046 target_byte_order should be auto-detected (from the program image
1047 say). */
1048
1049 #if GDB_MULTI_ARCH
1050 /* Multi-arch GDB is always bi-endian. */
1051 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1052 #endif
1053
1054 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1055 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1056 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1057 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1058 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1059 #else
1060 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1061 #endif
1062 #endif
1063
1064 extern int target_byte_order;
1065 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1066 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1067 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1068 #undef TARGET_BYTE_ORDER
1069 #endif
1070 #ifndef TARGET_BYTE_ORDER
1071 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1072 #endif
1073
1074 extern int target_byte_order_auto;
1075 #ifndef TARGET_BYTE_ORDER_AUTO
1076 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1077 #endif
1078
1079
1080
1081 /* The target-system-dependent BFD architecture is dynamic */
1082
1083 extern int target_architecture_auto;
1084 #ifndef TARGET_ARCHITECTURE_AUTO
1085 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1086 #endif
1087
1088 extern const struct bfd_arch_info *target_architecture;
1089 #ifndef TARGET_ARCHITECTURE
1090 #define TARGET_ARCHITECTURE (target_architecture + 0)
1091 #endif
1092
1093
1094 /* The target-system-dependent disassembler is semi-dynamic */
1095
1096 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1097 unsigned int len, disassemble_info *info);
1098
1099 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1100 disassemble_info *info);
1101
1102 extern void dis_asm_print_address (bfd_vma addr,
1103 disassemble_info *info);
1104
1105 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1106 extern disassemble_info tm_print_insn_info;
1107 #ifndef TARGET_PRINT_INSN_INFO
1108 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1109 #endif
1110
1111
1112
1113 /* Set the dynamic target-system-dependent parameters (architecture,
1114 byte-order, ...) using information found in the BFD */
1115
1116 extern void set_gdbarch_from_file (bfd *);
1117
1118
1119 /* Initialize the current architecture to the "first" one we find on
1120 our list. */
1121
1122 extern void initialize_current_architecture (void);
1123
1124 /* For non-multiarched targets, do any initialization of the default
1125 gdbarch object necessary after the _initialize_MODULE functions
1126 have run. */
1127 extern void initialize_non_multiarch ();
1128
1129 /* gdbarch trace variable */
1130 extern int gdbarch_debug;
1131
1132 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1133
1134 #endif
1135 EOF
1136 exec 1>&2
1137 #../move-if-change new-gdbarch.h gdbarch.h
1138 compare_new gdbarch.h
1139
1140
1141 #
1142 # C file
1143 #
1144
1145 exec > new-gdbarch.c
1146 copyright
1147 cat <<EOF
1148
1149 #include "defs.h"
1150 #include "arch-utils.h"
1151
1152 #if GDB_MULTI_ARCH
1153 #include "gdbcmd.h"
1154 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1155 #else
1156 /* Just include everything in sight so that the every old definition
1157 of macro is visible. */
1158 #include "gdb_string.h"
1159 #include <ctype.h>
1160 #include "symtab.h"
1161 #include "frame.h"
1162 #include "inferior.h"
1163 #include "breakpoint.h"
1164 #include "gdb_wait.h"
1165 #include "gdbcore.h"
1166 #include "gdbcmd.h"
1167 #include "target.h"
1168 #include "gdbthread.h"
1169 #include "annotate.h"
1170 #include "symfile.h" /* for overlay functions */
1171 #include "value.h" /* For old tm.h/nm.h macros. */
1172 #endif
1173 #include "symcat.h"
1174
1175 #include "floatformat.h"
1176
1177 #include "gdb_assert.h"
1178 #include "gdb-events.h"
1179
1180 /* Static function declarations */
1181
1182 static void verify_gdbarch (struct gdbarch *gdbarch);
1183 static void alloc_gdbarch_data (struct gdbarch *);
1184 static void init_gdbarch_data (struct gdbarch *);
1185 static void free_gdbarch_data (struct gdbarch *);
1186 static void init_gdbarch_swap (struct gdbarch *);
1187 static void swapout_gdbarch_swap (struct gdbarch *);
1188 static void swapin_gdbarch_swap (struct gdbarch *);
1189
1190 /* Convenience macro for allocting typesafe memory. */
1191
1192 #ifndef XMALLOC
1193 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1194 #endif
1195
1196
1197 /* Non-zero if we want to trace architecture code. */
1198
1199 #ifndef GDBARCH_DEBUG
1200 #define GDBARCH_DEBUG 0
1201 #endif
1202 int gdbarch_debug = GDBARCH_DEBUG;
1203
1204 EOF
1205
1206 # gdbarch open the gdbarch object
1207 printf "\n"
1208 printf "/* Maintain the struct gdbarch object */\n"
1209 printf "\n"
1210 printf "struct gdbarch\n"
1211 printf "{\n"
1212 printf " /* basic architectural information */\n"
1213 function_list | while do_read
1214 do
1215 if class_is_info_p
1216 then
1217 printf " ${returntype} ${function};\n"
1218 fi
1219 done
1220 printf "\n"
1221 printf " /* target specific vector. */\n"
1222 printf " struct gdbarch_tdep *tdep;\n"
1223 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1224 printf "\n"
1225 printf " /* per-architecture data-pointers */\n"
1226 printf " unsigned nr_data;\n"
1227 printf " void **data;\n"
1228 printf "\n"
1229 printf " /* per-architecture swap-regions */\n"
1230 printf " struct gdbarch_swap *swap;\n"
1231 printf "\n"
1232 cat <<EOF
1233 /* Multi-arch values.
1234
1235 When extending this structure you must:
1236
1237 Add the field below.
1238
1239 Declare set/get functions and define the corresponding
1240 macro in gdbarch.h.
1241
1242 gdbarch_alloc(): If zero/NULL is not a suitable default,
1243 initialize the new field.
1244
1245 verify_gdbarch(): Confirm that the target updated the field
1246 correctly.
1247
1248 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1249 field is dumped out
1250
1251 \`\`startup_gdbarch()'': Append an initial value to the static
1252 variable (base values on the host's c-type system).
1253
1254 get_gdbarch(): Implement the set/get functions (probably using
1255 the macro's as shortcuts).
1256
1257 */
1258
1259 EOF
1260 function_list | while do_read
1261 do
1262 if class_is_variable_p
1263 then
1264 printf " ${returntype} ${function};\n"
1265 elif class_is_function_p
1266 then
1267 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1268 fi
1269 done
1270 printf "};\n"
1271
1272 # A pre-initialized vector
1273 printf "\n"
1274 printf "\n"
1275 cat <<EOF
1276 /* The default architecture uses host values (for want of a better
1277 choice). */
1278 EOF
1279 printf "\n"
1280 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1281 printf "\n"
1282 printf "struct gdbarch startup_gdbarch =\n"
1283 printf "{\n"
1284 printf " /* basic architecture information */\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf " ${staticdefault},\n"
1290 fi
1291 done
1292 cat <<EOF
1293 /* target specific vector and its dump routine */
1294 NULL, NULL,
1295 /*per-architecture data-pointers and swap regions */
1296 0, NULL, NULL,
1297 /* Multi-arch values */
1298 EOF
1299 function_list | while do_read
1300 do
1301 if class_is_function_p || class_is_variable_p
1302 then
1303 printf " ${staticdefault},\n"
1304 fi
1305 done
1306 cat <<EOF
1307 /* startup_gdbarch() */
1308 };
1309
1310 struct gdbarch *current_gdbarch = &startup_gdbarch;
1311
1312 /* Do any initialization needed for a non-multiarch configuration
1313 after the _initialize_MODULE functions have been run. */
1314 void
1315 initialize_non_multiarch ()
1316 {
1317 alloc_gdbarch_data (&startup_gdbarch);
1318 init_gdbarch_data (&startup_gdbarch);
1319 }
1320 EOF
1321
1322 # Create a new gdbarch struct
1323 printf "\n"
1324 printf "\n"
1325 cat <<EOF
1326 /* Create a new \`\`struct gdbarch'' based on information provided by
1327 \`\`struct gdbarch_info''. */
1328 EOF
1329 printf "\n"
1330 cat <<EOF
1331 struct gdbarch *
1332 gdbarch_alloc (const struct gdbarch_info *info,
1333 struct gdbarch_tdep *tdep)
1334 {
1335 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1336 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1337 the current local architecture and not the previous global
1338 architecture. This ensures that the new architectures initial
1339 values are not influenced by the previous architecture. Once
1340 everything is parameterised with gdbarch, this will go away. */
1341 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1342 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1343
1344 alloc_gdbarch_data (current_gdbarch);
1345
1346 current_gdbarch->tdep = tdep;
1347 EOF
1348 printf "\n"
1349 function_list | while do_read
1350 do
1351 if class_is_info_p
1352 then
1353 printf " current_gdbarch->${function} = info->${function};\n"
1354 fi
1355 done
1356 printf "\n"
1357 printf " /* Force the explicit initialization of these. */\n"
1358 function_list | while do_read
1359 do
1360 if class_is_function_p || class_is_variable_p
1361 then
1362 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1363 then
1364 printf " current_gdbarch->${function} = ${predefault};\n"
1365 fi
1366 fi
1367 done
1368 cat <<EOF
1369 /* gdbarch_alloc() */
1370
1371 return current_gdbarch;
1372 }
1373 EOF
1374
1375 # Free a gdbarch struct.
1376 printf "\n"
1377 printf "\n"
1378 cat <<EOF
1379 /* Free a gdbarch struct. This should never happen in normal
1380 operation --- once you've created a gdbarch, you keep it around.
1381 However, if an architecture's init function encounters an error
1382 building the structure, it may need to clean up a partially
1383 constructed gdbarch. */
1384
1385 void
1386 gdbarch_free (struct gdbarch *arch)
1387 {
1388 gdb_assert (arch != NULL);
1389 free_gdbarch_data (arch);
1390 xfree (arch);
1391 }
1392 EOF
1393
1394 # verify a new architecture
1395 printf "\n"
1396 printf "\n"
1397 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1398 printf "\n"
1399 cat <<EOF
1400 static void
1401 verify_gdbarch (struct gdbarch *gdbarch)
1402 {
1403 struct ui_file *log;
1404 struct cleanup *cleanups;
1405 long dummy;
1406 char *buf;
1407 /* Only perform sanity checks on a multi-arch target. */
1408 if (!GDB_MULTI_ARCH)
1409 return;
1410 log = mem_fileopen ();
1411 cleanups = make_cleanup_ui_file_delete (log);
1412 /* fundamental */
1413 if (gdbarch->byte_order == 0)
1414 fprintf_unfiltered (log, "\n\tbyte-order");
1415 if (gdbarch->bfd_arch_info == NULL)
1416 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1417 /* Check those that need to be defined for the given multi-arch level. */
1418 EOF
1419 function_list | while do_read
1420 do
1421 if class_is_function_p || class_is_variable_p
1422 then
1423 if [ "x${invalid_p}" = "x0" ]
1424 then
1425 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1426 elif class_is_predicate_p
1427 then
1428 printf " /* Skip verify of ${function}, has predicate */\n"
1429 # FIXME: See do_read for potential simplification
1430 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1431 then
1432 printf " if (${invalid_p})\n"
1433 printf " gdbarch->${function} = ${postdefault};\n"
1434 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1435 then
1436 printf " if (gdbarch->${function} == ${predefault})\n"
1437 printf " gdbarch->${function} = ${postdefault};\n"
1438 elif [ -n "${postdefault}" ]
1439 then
1440 printf " if (gdbarch->${function} == 0)\n"
1441 printf " gdbarch->${function} = ${postdefault};\n"
1442 elif [ -n "${invalid_p}" ]
1443 then
1444 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1445 printf " && (${invalid_p}))\n"
1446 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1447 elif [ -n "${predefault}" ]
1448 then
1449 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1450 printf " && (gdbarch->${function} == ${predefault}))\n"
1451 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1452 fi
1453 fi
1454 done
1455 cat <<EOF
1456 buf = ui_file_xstrdup (log, &dummy);
1457 make_cleanup (xfree, buf);
1458 if (strlen (buf) > 0)
1459 internal_error (__FILE__, __LINE__,
1460 "verify_gdbarch: the following are invalid ...%s",
1461 buf);
1462 do_cleanups (cleanups);
1463 }
1464 EOF
1465
1466 # dump the structure
1467 printf "\n"
1468 printf "\n"
1469 cat <<EOF
1470 /* Print out the details of the current architecture. */
1471
1472 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1473 just happens to match the global variable \`\`current_gdbarch''. That
1474 way macros refering to that variable get the local and not the global
1475 version - ulgh. Once everything is parameterised with gdbarch, this
1476 will go away. */
1477
1478 void
1479 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1480 {
1481 fprintf_unfiltered (file,
1482 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1483 GDB_MULTI_ARCH);
1484 EOF
1485 function_list | sort -t: +2 | while do_read
1486 do
1487 # multiarch functions don't have macros.
1488 if class_is_multiarch_p
1489 then
1490 printf " if (GDB_MULTI_ARCH)\n"
1491 printf " fprintf_unfiltered (file,\n"
1492 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1493 printf " (long) current_gdbarch->${function});\n"
1494 continue
1495 fi
1496 printf "#ifdef ${macro}\n"
1497 if [ "x${returntype}" = "xvoid" ]
1498 then
1499 printf "#if GDB_MULTI_ARCH\n"
1500 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1501 fi
1502 if class_is_function_p
1503 then
1504 printf " fprintf_unfiltered (file,\n"
1505 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1506 printf " \"${macro}(${actual})\",\n"
1507 printf " XSTRING (${macro} (${actual})));\n"
1508 else
1509 printf " fprintf_unfiltered (file,\n"
1510 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1511 printf " XSTRING (${macro}));\n"
1512 fi
1513 if [ "x${returntype}" = "xvoid" ]
1514 then
1515 printf "#endif\n"
1516 fi
1517 if [ "x${print_p}" = "x()" ]
1518 then
1519 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1520 elif [ "x${print_p}" = "x0" ]
1521 then
1522 printf " /* skip print of ${macro}, print_p == 0. */\n"
1523 elif [ -n "${print_p}" ]
1524 then
1525 printf " if (${print_p})\n"
1526 printf " fprintf_unfiltered (file,\n"
1527 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1528 printf " ${print});\n"
1529 elif class_is_function_p
1530 then
1531 printf " if (GDB_MULTI_ARCH)\n"
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1534 printf " (long) current_gdbarch->${function}\n"
1535 printf " /*${macro} ()*/);\n"
1536 else
1537 printf " fprintf_unfiltered (file,\n"
1538 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1539 printf " ${print});\n"
1540 fi
1541 printf "#endif\n"
1542 done
1543 cat <<EOF
1544 if (current_gdbarch->dump_tdep != NULL)
1545 current_gdbarch->dump_tdep (current_gdbarch, file);
1546 }
1547 EOF
1548
1549
1550 # GET/SET
1551 printf "\n"
1552 cat <<EOF
1553 struct gdbarch_tdep *
1554 gdbarch_tdep (struct gdbarch *gdbarch)
1555 {
1556 if (gdbarch_debug >= 2)
1557 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1558 return gdbarch->tdep;
1559 }
1560 EOF
1561 printf "\n"
1562 function_list | while do_read
1563 do
1564 if class_is_predicate_p
1565 then
1566 printf "\n"
1567 printf "int\n"
1568 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1569 printf "{\n"
1570 if [ -n "${valid_p}" ]
1571 then
1572 printf " return ${valid_p};\n"
1573 else
1574 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1575 fi
1576 printf "}\n"
1577 fi
1578 if class_is_function_p
1579 then
1580 printf "\n"
1581 printf "${returntype}\n"
1582 if [ "x${formal}" = "xvoid" ]
1583 then
1584 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1585 else
1586 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1587 fi
1588 printf "{\n"
1589 printf " if (gdbarch->${function} == 0)\n"
1590 printf " internal_error (__FILE__, __LINE__,\n"
1591 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1592 printf " if (gdbarch_debug >= 2)\n"
1593 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1594 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1595 then
1596 if class_is_multiarch_p
1597 then
1598 params="gdbarch"
1599 else
1600 params=""
1601 fi
1602 else
1603 if class_is_multiarch_p
1604 then
1605 params="gdbarch, ${actual}"
1606 else
1607 params="${actual}"
1608 fi
1609 fi
1610 if [ "x${returntype}" = "xvoid" ]
1611 then
1612 printf " gdbarch->${function} (${params});\n"
1613 else
1614 printf " return gdbarch->${function} (${params});\n"
1615 fi
1616 printf "}\n"
1617 printf "\n"
1618 printf "void\n"
1619 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1620 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1621 printf "{\n"
1622 printf " gdbarch->${function} = ${function};\n"
1623 printf "}\n"
1624 elif class_is_variable_p
1625 then
1626 printf "\n"
1627 printf "${returntype}\n"
1628 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1629 printf "{\n"
1630 if [ "x${invalid_p}" = "x0" ]
1631 then
1632 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1633 elif [ -n "${invalid_p}" ]
1634 then
1635 printf " if (${invalid_p})\n"
1636 printf " internal_error (__FILE__, __LINE__,\n"
1637 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1638 elif [ -n "${predefault}" ]
1639 then
1640 printf " if (gdbarch->${function} == ${predefault})\n"
1641 printf " internal_error (__FILE__, __LINE__,\n"
1642 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1643 fi
1644 printf " if (gdbarch_debug >= 2)\n"
1645 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1646 printf " return gdbarch->${function};\n"
1647 printf "}\n"
1648 printf "\n"
1649 printf "void\n"
1650 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1651 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1652 printf "{\n"
1653 printf " gdbarch->${function} = ${function};\n"
1654 printf "}\n"
1655 elif class_is_info_p
1656 then
1657 printf "\n"
1658 printf "${returntype}\n"
1659 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1660 printf "{\n"
1661 printf " if (gdbarch_debug >= 2)\n"
1662 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1663 printf " return gdbarch->${function};\n"
1664 printf "}\n"
1665 fi
1666 done
1667
1668 # All the trailing guff
1669 cat <<EOF
1670
1671
1672 /* Keep a registry of per-architecture data-pointers required by GDB
1673 modules. */
1674
1675 struct gdbarch_data
1676 {
1677 unsigned index;
1678 gdbarch_data_init_ftype *init;
1679 gdbarch_data_free_ftype *free;
1680 };
1681
1682 struct gdbarch_data_registration
1683 {
1684 struct gdbarch_data *data;
1685 struct gdbarch_data_registration *next;
1686 };
1687
1688 struct gdbarch_data_registry
1689 {
1690 unsigned nr;
1691 struct gdbarch_data_registration *registrations;
1692 };
1693
1694 struct gdbarch_data_registry gdbarch_data_registry =
1695 {
1696 0, NULL,
1697 };
1698
1699 struct gdbarch_data *
1700 register_gdbarch_data (gdbarch_data_init_ftype *init,
1701 gdbarch_data_free_ftype *free)
1702 {
1703 struct gdbarch_data_registration **curr;
1704 for (curr = &gdbarch_data_registry.registrations;
1705 (*curr) != NULL;
1706 curr = &(*curr)->next);
1707 (*curr) = XMALLOC (struct gdbarch_data_registration);
1708 (*curr)->next = NULL;
1709 (*curr)->data = XMALLOC (struct gdbarch_data);
1710 (*curr)->data->index = gdbarch_data_registry.nr++;
1711 (*curr)->data->init = init;
1712 (*curr)->data->free = free;
1713 return (*curr)->data;
1714 }
1715
1716
1717 /* Walk through all the registered users initializing each in turn. */
1718
1719 static void
1720 init_gdbarch_data (struct gdbarch *gdbarch)
1721 {
1722 struct gdbarch_data_registration *rego;
1723 for (rego = gdbarch_data_registry.registrations;
1724 rego != NULL;
1725 rego = rego->next)
1726 {
1727 struct gdbarch_data *data = rego->data;
1728 gdb_assert (data->index < gdbarch->nr_data);
1729 if (data->init != NULL)
1730 {
1731 void *pointer = data->init (gdbarch);
1732 set_gdbarch_data (gdbarch, data, pointer);
1733 }
1734 }
1735 }
1736
1737 /* Create/delete the gdbarch data vector. */
1738
1739 static void
1740 alloc_gdbarch_data (struct gdbarch *gdbarch)
1741 {
1742 gdb_assert (gdbarch->data == NULL);
1743 gdbarch->nr_data = gdbarch_data_registry.nr;
1744 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1745 }
1746
1747 static void
1748 free_gdbarch_data (struct gdbarch *gdbarch)
1749 {
1750 struct gdbarch_data_registration *rego;
1751 gdb_assert (gdbarch->data != NULL);
1752 for (rego = gdbarch_data_registry.registrations;
1753 rego != NULL;
1754 rego = rego->next)
1755 {
1756 struct gdbarch_data *data = rego->data;
1757 gdb_assert (data->index < gdbarch->nr_data);
1758 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1759 {
1760 data->free (gdbarch, gdbarch->data[data->index]);
1761 gdbarch->data[data->index] = NULL;
1762 }
1763 }
1764 xfree (gdbarch->data);
1765 gdbarch->data = NULL;
1766 }
1767
1768
1769 /* Initialize the current value of thee specified per-architecture
1770 data-pointer. */
1771
1772 void
1773 set_gdbarch_data (struct gdbarch *gdbarch,
1774 struct gdbarch_data *data,
1775 void *pointer)
1776 {
1777 gdb_assert (data->index < gdbarch->nr_data);
1778 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1779 data->free (gdbarch, gdbarch->data[data->index]);
1780 gdbarch->data[data->index] = pointer;
1781 }
1782
1783 /* Return the current value of the specified per-architecture
1784 data-pointer. */
1785
1786 void *
1787 gdbarch_data (struct gdbarch_data *data)
1788 {
1789 gdb_assert (data->index < current_gdbarch->nr_data);
1790 return current_gdbarch->data[data->index];
1791 }
1792
1793
1794
1795 /* Keep a registry of swapped data required by GDB modules. */
1796
1797 struct gdbarch_swap
1798 {
1799 void *swap;
1800 struct gdbarch_swap_registration *source;
1801 struct gdbarch_swap *next;
1802 };
1803
1804 struct gdbarch_swap_registration
1805 {
1806 void *data;
1807 unsigned long sizeof_data;
1808 gdbarch_swap_ftype *init;
1809 struct gdbarch_swap_registration *next;
1810 };
1811
1812 struct gdbarch_swap_registry
1813 {
1814 int nr;
1815 struct gdbarch_swap_registration *registrations;
1816 };
1817
1818 struct gdbarch_swap_registry gdbarch_swap_registry =
1819 {
1820 0, NULL,
1821 };
1822
1823 void
1824 register_gdbarch_swap (void *data,
1825 unsigned long sizeof_data,
1826 gdbarch_swap_ftype *init)
1827 {
1828 struct gdbarch_swap_registration **rego;
1829 for (rego = &gdbarch_swap_registry.registrations;
1830 (*rego) != NULL;
1831 rego = &(*rego)->next);
1832 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1833 (*rego)->next = NULL;
1834 (*rego)->init = init;
1835 (*rego)->data = data;
1836 (*rego)->sizeof_data = sizeof_data;
1837 }
1838
1839
1840 static void
1841 init_gdbarch_swap (struct gdbarch *gdbarch)
1842 {
1843 struct gdbarch_swap_registration *rego;
1844 struct gdbarch_swap **curr = &gdbarch->swap;
1845 for (rego = gdbarch_swap_registry.registrations;
1846 rego != NULL;
1847 rego = rego->next)
1848 {
1849 if (rego->data != NULL)
1850 {
1851 (*curr) = XMALLOC (struct gdbarch_swap);
1852 (*curr)->source = rego;
1853 (*curr)->swap = xmalloc (rego->sizeof_data);
1854 (*curr)->next = NULL;
1855 memset (rego->data, 0, rego->sizeof_data);
1856 curr = &(*curr)->next;
1857 }
1858 if (rego->init != NULL)
1859 rego->init ();
1860 }
1861 }
1862
1863 static void
1864 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1865 {
1866 struct gdbarch_swap *curr;
1867 for (curr = gdbarch->swap;
1868 curr != NULL;
1869 curr = curr->next)
1870 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1871 }
1872
1873 static void
1874 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1875 {
1876 struct gdbarch_swap *curr;
1877 for (curr = gdbarch->swap;
1878 curr != NULL;
1879 curr = curr->next)
1880 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1881 }
1882
1883
1884 /* Keep a registry of the architectures known by GDB. */
1885
1886 struct gdbarch_registration
1887 {
1888 enum bfd_architecture bfd_architecture;
1889 gdbarch_init_ftype *init;
1890 gdbarch_dump_tdep_ftype *dump_tdep;
1891 struct gdbarch_list *arches;
1892 struct gdbarch_registration *next;
1893 };
1894
1895 static struct gdbarch_registration *gdbarch_registry = NULL;
1896
1897 static void
1898 append_name (const char ***buf, int *nr, const char *name)
1899 {
1900 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1901 (*buf)[*nr] = name;
1902 *nr += 1;
1903 }
1904
1905 const char **
1906 gdbarch_printable_names (void)
1907 {
1908 if (GDB_MULTI_ARCH)
1909 {
1910 /* Accumulate a list of names based on the registed list of
1911 architectures. */
1912 enum bfd_architecture a;
1913 int nr_arches = 0;
1914 const char **arches = NULL;
1915 struct gdbarch_registration *rego;
1916 for (rego = gdbarch_registry;
1917 rego != NULL;
1918 rego = rego->next)
1919 {
1920 const struct bfd_arch_info *ap;
1921 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1922 if (ap == NULL)
1923 internal_error (__FILE__, __LINE__,
1924 "gdbarch_architecture_names: multi-arch unknown");
1925 do
1926 {
1927 append_name (&arches, &nr_arches, ap->printable_name);
1928 ap = ap->next;
1929 }
1930 while (ap != NULL);
1931 }
1932 append_name (&arches, &nr_arches, NULL);
1933 return arches;
1934 }
1935 else
1936 /* Just return all the architectures that BFD knows. Assume that
1937 the legacy architecture framework supports them. */
1938 return bfd_arch_list ();
1939 }
1940
1941
1942 void
1943 gdbarch_register (enum bfd_architecture bfd_architecture,
1944 gdbarch_init_ftype *init,
1945 gdbarch_dump_tdep_ftype *dump_tdep)
1946 {
1947 struct gdbarch_registration **curr;
1948 const struct bfd_arch_info *bfd_arch_info;
1949 /* Check that BFD recognizes this architecture */
1950 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1951 if (bfd_arch_info == NULL)
1952 {
1953 internal_error (__FILE__, __LINE__,
1954 "gdbarch: Attempt to register unknown architecture (%d)",
1955 bfd_architecture);
1956 }
1957 /* Check that we haven't seen this architecture before */
1958 for (curr = &gdbarch_registry;
1959 (*curr) != NULL;
1960 curr = &(*curr)->next)
1961 {
1962 if (bfd_architecture == (*curr)->bfd_architecture)
1963 internal_error (__FILE__, __LINE__,
1964 "gdbarch: Duplicate registraration of architecture (%s)",
1965 bfd_arch_info->printable_name);
1966 }
1967 /* log it */
1968 if (gdbarch_debug)
1969 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1970 bfd_arch_info->printable_name,
1971 (long) init);
1972 /* Append it */
1973 (*curr) = XMALLOC (struct gdbarch_registration);
1974 (*curr)->bfd_architecture = bfd_architecture;
1975 (*curr)->init = init;
1976 (*curr)->dump_tdep = dump_tdep;
1977 (*curr)->arches = NULL;
1978 (*curr)->next = NULL;
1979 /* When non- multi-arch, install whatever target dump routine we've
1980 been provided - hopefully that routine has been written correctly
1981 and works regardless of multi-arch. */
1982 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1983 && startup_gdbarch.dump_tdep == NULL)
1984 startup_gdbarch.dump_tdep = dump_tdep;
1985 }
1986
1987 void
1988 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1989 gdbarch_init_ftype *init)
1990 {
1991 gdbarch_register (bfd_architecture, init, NULL);
1992 }
1993
1994
1995 /* Look for an architecture using gdbarch_info. Base search on only
1996 BFD_ARCH_INFO and BYTE_ORDER. */
1997
1998 struct gdbarch_list *
1999 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2000 const struct gdbarch_info *info)
2001 {
2002 for (; arches != NULL; arches = arches->next)
2003 {
2004 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2005 continue;
2006 if (info->byte_order != arches->gdbarch->byte_order)
2007 continue;
2008 return arches;
2009 }
2010 return NULL;
2011 }
2012
2013
2014 /* Update the current architecture. Return ZERO if the update request
2015 failed. */
2016
2017 int
2018 gdbarch_update_p (struct gdbarch_info info)
2019 {
2020 struct gdbarch *new_gdbarch;
2021 struct gdbarch_list **list;
2022 struct gdbarch_registration *rego;
2023
2024 /* Fill in missing parts of the INFO struct using a number of
2025 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2026
2027 /* \`\`(gdb) set architecture ...'' */
2028 if (info.bfd_arch_info == NULL
2029 && !TARGET_ARCHITECTURE_AUTO)
2030 info.bfd_arch_info = TARGET_ARCHITECTURE;
2031 if (info.bfd_arch_info == NULL
2032 && info.abfd != NULL
2033 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2034 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2035 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2036 if (info.bfd_arch_info == NULL)
2037 info.bfd_arch_info = TARGET_ARCHITECTURE;
2038
2039 /* \`\`(gdb) set byte-order ...'' */
2040 if (info.byte_order == 0
2041 && !TARGET_BYTE_ORDER_AUTO)
2042 info.byte_order = TARGET_BYTE_ORDER;
2043 /* From the INFO struct. */
2044 if (info.byte_order == 0
2045 && info.abfd != NULL)
2046 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2047 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2048 : 0);
2049 /* From the current target. */
2050 if (info.byte_order == 0)
2051 info.byte_order = TARGET_BYTE_ORDER;
2052
2053 /* Must have found some sort of architecture. */
2054 gdb_assert (info.bfd_arch_info != NULL);
2055
2056 if (gdbarch_debug)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "gdbarch_update: info.bfd_arch_info %s\n",
2060 (info.bfd_arch_info != NULL
2061 ? info.bfd_arch_info->printable_name
2062 : "(null)"));
2063 fprintf_unfiltered (gdb_stdlog,
2064 "gdbarch_update: info.byte_order %d (%s)\n",
2065 info.byte_order,
2066 (info.byte_order == BIG_ENDIAN ? "big"
2067 : info.byte_order == LITTLE_ENDIAN ? "little"
2068 : "default"));
2069 fprintf_unfiltered (gdb_stdlog,
2070 "gdbarch_update: info.abfd 0x%lx\n",
2071 (long) info.abfd);
2072 fprintf_unfiltered (gdb_stdlog,
2073 "gdbarch_update: info.tdep_info 0x%lx\n",
2074 (long) info.tdep_info);
2075 }
2076
2077 /* Find the target that knows about this architecture. */
2078 for (rego = gdbarch_registry;
2079 rego != NULL;
2080 rego = rego->next)
2081 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2082 break;
2083 if (rego == NULL)
2084 {
2085 if (gdbarch_debug)
2086 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2087 return 0;
2088 }
2089
2090 /* Ask the target for a replacement architecture. */
2091 new_gdbarch = rego->init (info, rego->arches);
2092
2093 /* Did the target like it? No. Reject the change. */
2094 if (new_gdbarch == NULL)
2095 {
2096 if (gdbarch_debug)
2097 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2098 return 0;
2099 }
2100
2101 /* Did the architecture change? No. Do nothing. */
2102 if (current_gdbarch == new_gdbarch)
2103 {
2104 if (gdbarch_debug)
2105 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2106 (long) new_gdbarch,
2107 new_gdbarch->bfd_arch_info->printable_name);
2108 return 1;
2109 }
2110
2111 /* Swap all data belonging to the old target out */
2112 swapout_gdbarch_swap (current_gdbarch);
2113
2114 /* Is this a pre-existing architecture? Yes. Swap it in. */
2115 for (list = &rego->arches;
2116 (*list) != NULL;
2117 list = &(*list)->next)
2118 {
2119 if ((*list)->gdbarch == new_gdbarch)
2120 {
2121 if (gdbarch_debug)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2124 (long) new_gdbarch,
2125 new_gdbarch->bfd_arch_info->printable_name);
2126 current_gdbarch = new_gdbarch;
2127 swapin_gdbarch_swap (new_gdbarch);
2128 architecture_changed_event ();
2129 return 1;
2130 }
2131 }
2132
2133 /* Append this new architecture to this targets list. */
2134 (*list) = XMALLOC (struct gdbarch_list);
2135 (*list)->next = NULL;
2136 (*list)->gdbarch = new_gdbarch;
2137
2138 /* Switch to this new architecture. Dump it out. */
2139 current_gdbarch = new_gdbarch;
2140 if (gdbarch_debug)
2141 {
2142 fprintf_unfiltered (gdb_stdlog,
2143 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2144 (long) new_gdbarch,
2145 new_gdbarch->bfd_arch_info->printable_name);
2146 }
2147
2148 /* Check that the newly installed architecture is valid. Plug in
2149 any post init values. */
2150 new_gdbarch->dump_tdep = rego->dump_tdep;
2151 verify_gdbarch (new_gdbarch);
2152
2153 /* Initialize the per-architecture memory (swap) areas.
2154 CURRENT_GDBARCH must be update before these modules are
2155 called. */
2156 init_gdbarch_swap (new_gdbarch);
2157
2158 /* Initialize the per-architecture data-pointer of all parties that
2159 registered an interest in this architecture. CURRENT_GDBARCH
2160 must be updated before these modules are called. */
2161 init_gdbarch_data (new_gdbarch);
2162 architecture_changed_event ();
2163
2164 if (gdbarch_debug)
2165 gdbarch_dump (current_gdbarch, gdb_stdlog);
2166
2167 return 1;
2168 }
2169
2170
2171 /* Disassembler */
2172
2173 /* Pointer to the target-dependent disassembly function. */
2174 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2175 disassemble_info tm_print_insn_info;
2176
2177
2178 extern void _initialize_gdbarch (void);
2179
2180 void
2181 _initialize_gdbarch (void)
2182 {
2183 struct cmd_list_element *c;
2184
2185 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2186 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2187 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2188 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2189 tm_print_insn_info.print_address_func = dis_asm_print_address;
2190
2191 add_show_from_set (add_set_cmd ("arch",
2192 class_maintenance,
2193 var_zinteger,
2194 (char *)&gdbarch_debug,
2195 "Set architecture debugging.\\n\\
2196 When non-zero, architecture debugging is enabled.", &setdebuglist),
2197 &showdebuglist);
2198 c = add_set_cmd ("archdebug",
2199 class_maintenance,
2200 var_zinteger,
2201 (char *)&gdbarch_debug,
2202 "Set architecture debugging.\\n\\
2203 When non-zero, architecture debugging is enabled.", &setlist);
2204
2205 deprecate_cmd (c, "set debug arch");
2206 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2207 }
2208 EOF
2209
2210 # close things off
2211 exec 1>&2
2212 #../move-if-change new-gdbarch.c gdbarch.c
2213 compare_new gdbarch.c
This page took 0.077524 seconds and 5 git commands to generate.