* gdbarch.sh (LANG): Set to ``c''.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25
26
27 compare_new ()
28 {
29 file=$1
30 if test ! -r ${file}
31 then
32 echo "${file} missing? cp new-${file} ${file}" 1>&2
33 elif diff -u ${file} new-${file}
34 then
35 echo "${file} unchanged" 1>&2
36 else
37 echo "${file} has changed? cp new-${file} ${file}" 1>&2
38 fi
39 }
40
41
42 # Format of the input table
43 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
44
45 do_read ()
46 {
47 comment=""
48 class=""
49 while read line
50 do
51 if test "${line}" = ""
52 then
53 continue
54 elif test "${line}" = "#" -a "${comment}" = ""
55 then
56 continue
57 elif expr "${line}" : "#" > /dev/null
58 then
59 comment="${comment}
60 ${line}"
61 else
62
63 # The semantics of IFS varies between different SH's. Some
64 # treat ``::' as three fields while some treat it as just too.
65 # Work around this by eliminating ``::'' ....
66 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
67
68 OFS="${IFS}" ; IFS="[:]"
69 eval read ${read} <<EOF
70 ${line}
71 EOF
72 IFS="${OFS}"
73
74 # .... and then going back through each field and strip out those
75 # that ended up with just that space character.
76 for r in ${read}
77 do
78 if eval test \"\${${r}}\" = \"\ \"
79 then
80 eval ${r}=""
81 fi
82 done
83
84 case "${level}" in
85 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
86 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
87 "" ) ;;
88 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
89 esac
90
91 case "${class}" in
92 m ) staticdefault="${predefault}" ;;
93 M ) staticdefault="0" ;;
94 * ) test "${staticdefault}" || staticdefault=0 ;;
95 esac
96 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
97 # multi-arch defaults.
98 # test "${predefault}" || predefault=0
99
100 # come up with a format, use a few guesses for variables
101 case ":${class}:${fmt}:${print}:" in
102 :[vV]::: )
103 if [ "${returntype}" = int ]
104 then
105 fmt="%d"
106 print="${macro}"
107 elif [ "${returntype}" = long ]
108 then
109 fmt="%ld"
110 print="${macro}"
111 fi
112 ;;
113 esac
114 test "${fmt}" || fmt="%ld"
115 test "${print}" || print="(long) ${macro}"
116
117 case "${invalid_p}" in
118 0 ) valid_p=1 ;;
119 "" )
120 if [ -n "${predefault}" ]
121 then
122 #invalid_p="gdbarch->${function} == ${predefault}"
123 valid_p="gdbarch->${function} != ${predefault}"
124 else
125 #invalid_p="gdbarch->${function} == 0"
126 valid_p="gdbarch->${function} != 0"
127 fi
128 ;;
129 * ) valid_p="!(${invalid_p})"
130 esac
131
132 # PREDEFAULT is a valid fallback definition of MEMBER when
133 # multi-arch is not enabled. This ensures that the
134 # default value, when multi-arch is the same as the
135 # default value when not multi-arch. POSTDEFAULT is
136 # always a valid definition of MEMBER as this again
137 # ensures consistency.
138
139 if [ -n "${postdefault}" ]
140 then
141 fallbackdefault="${postdefault}"
142 elif [ -n "${predefault}" ]
143 then
144 fallbackdefault="${predefault}"
145 else
146 fallbackdefault="0"
147 fi
148
149 #NOT YET: See gdbarch.log for basic verification of
150 # database
151
152 break
153 fi
154 done
155 if [ -n "${class}" ]
156 then
157 true
158 else
159 false
160 fi
161 }
162
163
164 fallback_default_p ()
165 {
166 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
167 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
168 }
169
170 class_is_variable_p ()
171 {
172 case "${class}" in
173 *v* | *V* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178 class_is_function_p ()
179 {
180 case "${class}" in
181 *f* | *F* | *m* | *M* ) true ;;
182 * ) false ;;
183 esac
184 }
185
186 class_is_multiarch_p ()
187 {
188 case "${class}" in
189 *m* | *M* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_predicate_p ()
195 {
196 case "${class}" in
197 *F* | *V* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_info_p ()
203 {
204 case "${class}" in
205 *i* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210
211 # dump out/verify the doco
212 for field in ${read}
213 do
214 case ${field} in
215
216 class ) : ;;
217
218 # # -> line disable
219 # f -> function
220 # hiding a function
221 # F -> function + predicate
222 # hiding a function + predicate to test function validity
223 # v -> variable
224 # hiding a variable
225 # V -> variable + predicate
226 # hiding a variable + predicate to test variables validity
227 # i -> set from info
228 # hiding something from the ``struct info'' object
229 # m -> multi-arch function
230 # hiding a multi-arch function (parameterised with the architecture)
231 # M -> multi-arch function + predicate
232 # hiding a multi-arch function + predicate to test function validity
233
234 level ) : ;;
235
236 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
237 # LEVEL is a predicate on checking that a given method is
238 # initialized (using INVALID_P).
239
240 macro ) : ;;
241
242 # The name of the MACRO that this method is to be accessed by.
243
244 returntype ) : ;;
245
246 # For functions, the return type; for variables, the data type
247
248 function ) : ;;
249
250 # For functions, the member function name; for variables, the
251 # variable name. Member function names are always prefixed with
252 # ``gdbarch_'' for name-space purity.
253
254 formal ) : ;;
255
256 # The formal argument list. It is assumed that the formal
257 # argument list includes the actual name of each list element.
258 # A function with no arguments shall have ``void'' as the
259 # formal argument list.
260
261 actual ) : ;;
262
263 # The list of actual arguments. The arguments specified shall
264 # match the FORMAL list given above. Functions with out
265 # arguments leave this blank.
266
267 attrib ) : ;;
268
269 # Any GCC attributes that should be attached to the function
270 # declaration. At present this field is unused.
271
272 staticdefault ) : ;;
273
274 # To help with the GDB startup a static gdbarch object is
275 # created. STATICDEFAULT is the value to insert into that
276 # static gdbarch object. Since this a static object only
277 # simple expressions can be used.
278
279 # If STATICDEFAULT is empty, zero is used.
280
281 predefault ) : ;;
282
283 # An initial value to assign to MEMBER of the freshly
284 # malloc()ed gdbarch object. After initialization, the
285 # freshly malloc()ed object is passed to the target
286 # architecture code for further updates.
287
288 # If PREDEFAULT is empty, zero is used.
289
290 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
291 # INVALID_P are specified, PREDEFAULT will be used as the
292 # default for the non- multi-arch target.
293
294 # A zero PREDEFAULT function will force the fallback to call
295 # internal_error().
296
297 # Variable declarations can refer to ``gdbarch'' which will
298 # contain the current architecture. Care should be taken.
299
300 postdefault ) : ;;
301
302 # A value to assign to MEMBER of the new gdbarch object should
303 # the target architecture code fail to change the PREDEFAULT
304 # value.
305
306 # If POSTDEFAULT is empty, no post update is performed.
307
308 # If both INVALID_P and POSTDEFAULT are non-empty then
309 # INVALID_P will be used to determine if MEMBER should be
310 # changed to POSTDEFAULT.
311
312 # If a non-empty POSTDEFAULT and a zero INVALID_P are
313 # specified, POSTDEFAULT will be used as the default for the
314 # non- multi-arch target (regardless of the value of
315 # PREDEFAULT).
316
317 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
318
319 # Variable declarations can refer to ``gdbarch'' which will
320 # contain the current architecture. Care should be taken.
321
322 invalid_p ) : ;;
323
324 # A predicate equation that validates MEMBER. Non-zero is
325 # returned if the code creating the new architecture failed to
326 # initialize MEMBER or the initialized the member is invalid.
327 # If POSTDEFAULT is non-empty then MEMBER will be updated to
328 # that value. If POSTDEFAULT is empty then internal_error()
329 # is called.
330
331 # If INVALID_P is empty, a check that MEMBER is no longer
332 # equal to PREDEFAULT is used.
333
334 # The expression ``0'' disables the INVALID_P check making
335 # PREDEFAULT a legitimate value.
336
337 # See also PREDEFAULT and POSTDEFAULT.
338
339 fmt ) : ;;
340
341 # printf style format string that can be used to print out the
342 # MEMBER. Sometimes "%s" is useful. For functions, this is
343 # ignored and the function address is printed.
344
345 # If FMT is empty, ``%ld'' is used.
346
347 print ) : ;;
348
349 # An optional equation that casts MEMBER to a value suitable
350 # for formatting by FMT.
351
352 # If PRINT is empty, ``(long)'' is used.
353
354 print_p ) : ;;
355
356 # An optional indicator for any predicte to wrap around the
357 # print member code.
358
359 # () -> Call a custom function to do the dump.
360 # exp -> Wrap print up in ``if (${print_p}) ...
361 # ``'' -> No predicate
362
363 # If PRINT_P is empty, ``1'' is always used.
364
365 description ) : ;;
366
367 # Currently unused.
368
369 *)
370 echo "Bad field ${field}"
371 exit 1;;
372 esac
373 done
374
375
376 function_list ()
377 {
378 # See below (DOCO) for description of each field
379 cat <<EOF
380 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
381 #
382 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
383 # Number of bits in a char or unsigned char for the target machine.
384 # Just like CHAR_BIT in <limits.h> but describes the target machine.
385 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
386 #
387 # Number of bits in a short or unsigned short for the target machine.
388 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
389 # Number of bits in an int or unsigned int for the target machine.
390 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
391 # Number of bits in a long or unsigned long for the target machine.
392 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
393 # Number of bits in a long long or unsigned long long for the target
394 # machine.
395 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
396 # Number of bits in a float for the target machine.
397 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 # Number of bits in a double for the target machine.
399 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 # Number of bits in a long double for the target machine.
401 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
419 #
420 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
421 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
422 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
423 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
424 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
429 #
430 M:::void:register_read:int regnum, char *buf:regnum, buf:
431 M:::void:register_write:int regnum, char *buf:regnum, buf:
432 #
433 v:2:NUM_REGS:int:num_regs::::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
439
440 # GDB's standard (or well known) register numbers. These can map onto
441 # a real register or a pseudo (computed) register or not be defined at
442 # all (-1).
443 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
444 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
445 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
446 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
447 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
448 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
449 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
472 # MAP a GDB RAW register number onto a simulator register number. See
473 # also include/...-sim.h.
474 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
475 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
476 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
477 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
478 # setjmp/longjmp support.
479 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
480 #
481 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
482 # much better but at least they are vaguely consistent). The headers
483 # and body contain convoluted #if/#else sequences for determine how
484 # things should be compiled. Instead of trying to mimic that
485 # behaviour here (and hence entrench it further) gdbarch simply
486 # reqires that these methods be set up from the word go. This also
487 # avoids any potential problems with moving beyond multi-arch partial.
488 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
489 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
490 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
491 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
492 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
493 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
494 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
495 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
496 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
497 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
498 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
499 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
500 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
501 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
502 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
503 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
504 #
505 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
506 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
507 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
508 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
509 # old code has strange #ifdef interaction. So far no one has found
510 # that default_get_saved_register() is the default they are after.
511 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 # This function is called when the value of a pseudo-register needs to
517 # be updated. Typically it will be defined on a per-architecture
518 # basis.
519 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
520 # This function is called when the value of a pseudo-register needs to
521 # be set or stored. Typically it will be defined on a
522 # per-architecture basis.
523 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
524 #
525 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
526 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
527 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
528 #
529 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
530 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
531 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
532 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
533 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
534 f:2:POP_FRAME:void:pop_frame:void:-:::0
535 #
536 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
537 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
539 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
540 #
541 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
542 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
543 #
544 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
545 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
546 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
547 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
548 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
549 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
550 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
551 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
552 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
553 #
554 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
555 #
556 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
557 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
558 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
559 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
560 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
561 # given frame is the outermost one and has no caller.
562 #
563 # XXXX - both default and alternate frame_chain_valid functions are
564 # deprecated. New code should use dummy frames and one of the generic
565 # functions.
566 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
567 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
568 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
569 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
570 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
571 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
572 #
573 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
574 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
575 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
576 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
577 v:2:PARM_BOUNDARY:int:parm_boundary
578 #
579 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
580 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
581 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
582 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
583 # On some machines there are bits in addresses which are not really
584 # part of the address, but are used by the kernel, the hardware, etc.
585 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
586 # we get a "real" address such as one would find in a symbol table.
587 # This is used only for addresses of instructions, and even then I'm
588 # not sure it's used in all contexts. It exists to deal with there
589 # being a few stray bits in the PC which would mislead us, not as some
590 # sort of generic thing to handle alignment or segmentation (it's
591 # possible it should be in TARGET_READ_PC instead).
592 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
593 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
594 # ADDR_BITS_REMOVE.
595 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
596 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
597 # the target needs software single step. An ISA method to implement it.
598 #
599 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
600 # using the breakpoint system instead of blatting memory directly (as with rs6000).
601 #
602 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
603 # single step. If not, then implement single step using breakpoints.
604 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
605 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
606 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
607 # For SVR4 shared libraries, each call goes through a small piece of
608 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
609 # to nonzero if we are current stopped in one of these.
610 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
611 # A target might have problems with watchpoints as soon as the stack
612 # frame of the current function has been destroyed. This mostly happens
613 # as the first action in a funtion's epilogue. in_function_epilogue_p()
614 # is defined to return a non-zero value if either the given addr is one
615 # instruction after the stack destroying instruction up to the trailing
616 # return instruction or if we can figure out that the stack frame has
617 # already been invalidated regardless of the value of addr. Targets
618 # which don't suffer from that problem could just let this functionality
619 # untouched.
620 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
621 # Given a vector of command-line arguments, return a newly allocated
622 # string which, when passed to the create_inferior function, will be
623 # parsed (on Unix systems, by the shell) to yield the same vector.
624 # This function should call error() if the argument vector is not
625 # representable for this target or if this target does not support
626 # command-line arguments.
627 # ARGC is the number of elements in the vector.
628 # ARGV is an array of strings, one per argument.
629 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
630 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
631 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
632 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
633 EOF
634 }
635
636 #
637 # The .log file
638 #
639 exec > new-gdbarch.log
640 function_list | while do_read
641 do
642 cat <<EOF
643 ${class} ${macro}(${actual})
644 ${returntype} ${function} ($formal)${attrib}
645 EOF
646 for r in ${read}
647 do
648 eval echo \"\ \ \ \ ${r}=\${${r}}\"
649 done
650 # #fallbackdefault=${fallbackdefault}
651 # #valid_p=${valid_p}
652 #EOF
653 if class_is_predicate_p && fallback_default_p
654 then
655 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
656 kill $$
657 exit 1
658 fi
659 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
660 then
661 echo "Error: postdefault is useless when invalid_p=0" 1>&2
662 kill $$
663 exit 1
664 fi
665 if class_is_multiarch_p
666 then
667 if class_is_predicate_p ; then :
668 elif test "x${predefault}" = "x"
669 then
670 echo "Error: pure multi-arch function must have a predefault" 1>&2
671 kill $$
672 exit 1
673 fi
674 fi
675 echo ""
676 done
677
678 exec 1>&2
679 compare_new gdbarch.log
680
681
682 copyright ()
683 {
684 cat <<EOF
685 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
686
687 /* Dynamic architecture support for GDB, the GNU debugger.
688 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
689
690 This file is part of GDB.
691
692 This program is free software; you can redistribute it and/or modify
693 it under the terms of the GNU General Public License as published by
694 the Free Software Foundation; either version 2 of the License, or
695 (at your option) any later version.
696
697 This program is distributed in the hope that it will be useful,
698 but WITHOUT ANY WARRANTY; without even the implied warranty of
699 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
700 GNU General Public License for more details.
701
702 You should have received a copy of the GNU General Public License
703 along with this program; if not, write to the Free Software
704 Foundation, Inc., 59 Temple Place - Suite 330,
705 Boston, MA 02111-1307, USA. */
706
707 /* This file was created with the aid of \`\`gdbarch.sh''.
708
709 The Bourne shell script \`\`gdbarch.sh'' creates the files
710 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
711 against the existing \`\`gdbarch.[hc]''. Any differences found
712 being reported.
713
714 If editing this file, please also run gdbarch.sh and merge any
715 changes into that script. Conversely, when making sweeping changes
716 to this file, modifying gdbarch.sh and using its output may prove
717 easier. */
718
719 EOF
720 }
721
722 #
723 # The .h file
724 #
725
726 exec > new-gdbarch.h
727 copyright
728 cat <<EOF
729 #ifndef GDBARCH_H
730 #define GDBARCH_H
731
732 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
733 #if !GDB_MULTI_ARCH
734 /* Pull in function declarations refered to, indirectly, via macros. */
735 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
736 #include "inferior.h" /* For unsigned_address_to_pointer(). */
737 #endif
738
739 struct frame_info;
740 struct value;
741 struct objfile;
742 struct minimal_symbol;
743
744 extern struct gdbarch *current_gdbarch;
745
746
747 /* If any of the following are defined, the target wasn't correctly
748 converted. */
749
750 #if GDB_MULTI_ARCH
751 #if defined (EXTRA_FRAME_INFO)
752 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
753 #endif
754 #endif
755
756 #if GDB_MULTI_ARCH
757 #if defined (FRAME_FIND_SAVED_REGS)
758 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
759 #endif
760 #endif
761
762 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
763 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
764 #endif
765 EOF
766
767 # function typedef's
768 printf "\n"
769 printf "\n"
770 printf "/* The following are pre-initialized by GDBARCH. */\n"
771 function_list | while do_read
772 do
773 if class_is_info_p
774 then
775 printf "\n"
776 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
777 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
778 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
779 printf "#error \"Non multi-arch definition of ${macro}\"\n"
780 printf "#endif\n"
781 printf "#if GDB_MULTI_ARCH\n"
782 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
783 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
784 printf "#endif\n"
785 printf "#endif\n"
786 fi
787 done
788
789 # function typedef's
790 printf "\n"
791 printf "\n"
792 printf "/* The following are initialized by the target dependent code. */\n"
793 function_list | while do_read
794 do
795 if [ -n "${comment}" ]
796 then
797 echo "${comment}" | sed \
798 -e '2 s,#,/*,' \
799 -e '3,$ s,#, ,' \
800 -e '$ s,$, */,'
801 fi
802 if class_is_multiarch_p
803 then
804 if class_is_predicate_p
805 then
806 printf "\n"
807 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
808 fi
809 else
810 if class_is_predicate_p
811 then
812 printf "\n"
813 printf "#if defined (${macro})\n"
814 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
815 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
816 printf "#if !defined (${macro}_P)\n"
817 printf "#define ${macro}_P() (1)\n"
818 printf "#endif\n"
819 printf "#endif\n"
820 printf "\n"
821 printf "/* Default predicate for non- multi-arch targets. */\n"
822 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
823 printf "#define ${macro}_P() (0)\n"
824 printf "#endif\n"
825 printf "\n"
826 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
830 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
831 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
832 printf "#endif\n"
833 fi
834 fi
835 if class_is_variable_p
836 then
837 if fallback_default_p || class_is_predicate_p
838 then
839 printf "\n"
840 printf "/* Default (value) for non- multi-arch platforms. */\n"
841 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
842 echo "#define ${macro} (${fallbackdefault})" \
843 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
844 printf "#endif\n"
845 fi
846 printf "\n"
847 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
848 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if GDB_MULTI_ARCH\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
854 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
855 printf "#endif\n"
856 printf "#endif\n"
857 fi
858 if class_is_function_p
859 then
860 if class_is_multiarch_p ; then :
861 elif fallback_default_p || class_is_predicate_p
862 then
863 printf "\n"
864 printf "/* Default (function) for non- multi-arch platforms. */\n"
865 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
866 if [ "x${fallbackdefault}" = "x0" ]
867 then
868 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
869 else
870 # FIXME: Should be passing current_gdbarch through!
871 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
872 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
873 fi
874 printf "#endif\n"
875 fi
876 printf "\n"
877 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
878 then
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
880 elif class_is_multiarch_p
881 then
882 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
883 else
884 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
885 fi
886 if [ "x${formal}" = "xvoid" ]
887 then
888 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
889 else
890 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
891 fi
892 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
893 if class_is_multiarch_p ; then :
894 else
895 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
896 printf "#error \"Non multi-arch definition of ${macro}\"\n"
897 printf "#endif\n"
898 printf "#if GDB_MULTI_ARCH\n"
899 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
900 if [ "x${actual}" = "x" ]
901 then
902 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
903 elif [ "x${actual}" = "x-" ]
904 then
905 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
906 else
907 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
908 fi
909 printf "#endif\n"
910 printf "#endif\n"
911 fi
912 fi
913 done
914
915 # close it off
916 cat <<EOF
917
918 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
919
920
921 /* Mechanism for co-ordinating the selection of a specific
922 architecture.
923
924 GDB targets (*-tdep.c) can register an interest in a specific
925 architecture. Other GDB components can register a need to maintain
926 per-architecture data.
927
928 The mechanisms below ensures that there is only a loose connection
929 between the set-architecture command and the various GDB
930 components. Each component can independently register their need
931 to maintain architecture specific data with gdbarch.
932
933 Pragmatics:
934
935 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
936 didn't scale.
937
938 The more traditional mega-struct containing architecture specific
939 data for all the various GDB components was also considered. Since
940 GDB is built from a variable number of (fairly independent)
941 components it was determined that the global aproach was not
942 applicable. */
943
944
945 /* Register a new architectural family with GDB.
946
947 Register support for the specified ARCHITECTURE with GDB. When
948 gdbarch determines that the specified architecture has been
949 selected, the corresponding INIT function is called.
950
951 --
952
953 The INIT function takes two parameters: INFO which contains the
954 information available to gdbarch about the (possibly new)
955 architecture; ARCHES which is a list of the previously created
956 \`\`struct gdbarch'' for this architecture.
957
958 The INIT function parameter INFO shall, as far as possible, be
959 pre-initialized with information obtained from INFO.ABFD or
960 previously selected architecture (if similar).
961
962 The INIT function shall return any of: NULL - indicating that it
963 doesn't recognize the selected architecture; an existing \`\`struct
964 gdbarch'' from the ARCHES list - indicating that the new
965 architecture is just a synonym for an earlier architecture (see
966 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
967 - that describes the selected architecture (see gdbarch_alloc()).
968
969 The DUMP_TDEP function shall print out all target specific values.
970 Care should be taken to ensure that the function works in both the
971 multi-arch and non- multi-arch cases. */
972
973 struct gdbarch_list
974 {
975 struct gdbarch *gdbarch;
976 struct gdbarch_list *next;
977 };
978
979 struct gdbarch_info
980 {
981 /* Use default: NULL (ZERO). */
982 const struct bfd_arch_info *bfd_arch_info;
983
984 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
985 int byte_order;
986
987 /* Use default: NULL (ZERO). */
988 bfd *abfd;
989
990 /* Use default: NULL (ZERO). */
991 struct gdbarch_tdep_info *tdep_info;
992 };
993
994 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
995 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
996
997 /* DEPRECATED - use gdbarch_register() */
998 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
999
1000 extern void gdbarch_register (enum bfd_architecture architecture,
1001 gdbarch_init_ftype *,
1002 gdbarch_dump_tdep_ftype *);
1003
1004
1005 /* Return a freshly allocated, NULL terminated, array of the valid
1006 architecture names. Since architectures are registered during the
1007 _initialize phase this function only returns useful information
1008 once initialization has been completed. */
1009
1010 extern const char **gdbarch_printable_names (void);
1011
1012
1013 /* Helper function. Search the list of ARCHES for a GDBARCH that
1014 matches the information provided by INFO. */
1015
1016 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1017
1018
1019 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1020 basic initialization using values obtained from the INFO andTDEP
1021 parameters. set_gdbarch_*() functions are called to complete the
1022 initialization of the object. */
1023
1024 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1025
1026
1027 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1028 It is assumed that the caller freeds the \`\`struct
1029 gdbarch_tdep''. */
1030
1031 extern void gdbarch_free (struct gdbarch *);
1032
1033
1034 /* Helper function. Force an update of the current architecture.
1035
1036 The actual architecture selected is determined by INFO, \`\`(gdb) set
1037 architecture'' et.al., the existing architecture and BFD's default
1038 architecture. INFO should be initialized to zero and then selected
1039 fields should be updated.
1040
1041 Returns non-zero if the update succeeds */
1042
1043 extern int gdbarch_update_p (struct gdbarch_info info);
1044
1045
1046
1047 /* Register per-architecture data-pointer.
1048
1049 Reserve space for a per-architecture data-pointer. An identifier
1050 for the reserved data-pointer is returned. That identifer should
1051 be saved in a local static variable.
1052
1053 The per-architecture data-pointer can be initialized in one of two
1054 ways: The value can be set explicitly using a call to
1055 set_gdbarch_data(); the value can be set implicitly using the value
1056 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1057 called after the basic architecture vector has been created.
1058
1059 When a previously created architecture is re-selected, the
1060 per-architecture data-pointer for that previous architecture is
1061 restored. INIT() is not called.
1062
1063 During initialization, multiple assignments of the data-pointer are
1064 allowed, non-NULL values are deleted by calling FREE(). If the
1065 architecture is deleted using gdbarch_free() all non-NULL data
1066 pointers are also deleted using FREE().
1067
1068 Multiple registrarants for any architecture are allowed (and
1069 strongly encouraged). */
1070
1071 struct gdbarch_data;
1072
1073 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1074 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1075 void *pointer);
1076 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1077 gdbarch_data_free_ftype *free);
1078 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1079 struct gdbarch_data *data,
1080 void *pointer);
1081
1082 extern void *gdbarch_data (struct gdbarch_data*);
1083
1084
1085 /* Register per-architecture memory region.
1086
1087 Provide a memory-region swap mechanism. Per-architecture memory
1088 region are created. These memory regions are swapped whenever the
1089 architecture is changed. For a new architecture, the memory region
1090 is initialized with zero (0) and the INIT function is called.
1091
1092 Memory regions are swapped / initialized in the order that they are
1093 registered. NULL DATA and/or INIT values can be specified.
1094
1095 New code should use register_gdbarch_data(). */
1096
1097 typedef void (gdbarch_swap_ftype) (void);
1098 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1099 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1100
1101
1102
1103 /* The target-system-dependent byte order is dynamic */
1104
1105 extern int target_byte_order;
1106 #ifndef TARGET_BYTE_ORDER
1107 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1108 #endif
1109
1110 extern int target_byte_order_auto;
1111 #ifndef TARGET_BYTE_ORDER_AUTO
1112 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1113 #endif
1114
1115
1116
1117 /* The target-system-dependent BFD architecture is dynamic */
1118
1119 extern int target_architecture_auto;
1120 #ifndef TARGET_ARCHITECTURE_AUTO
1121 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1122 #endif
1123
1124 extern const struct bfd_arch_info *target_architecture;
1125 #ifndef TARGET_ARCHITECTURE
1126 #define TARGET_ARCHITECTURE (target_architecture + 0)
1127 #endif
1128
1129
1130 /* The target-system-dependent disassembler is semi-dynamic */
1131
1132 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1133 unsigned int len, disassemble_info *info);
1134
1135 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1136 disassemble_info *info);
1137
1138 extern void dis_asm_print_address (bfd_vma addr,
1139 disassemble_info *info);
1140
1141 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1142 extern disassemble_info tm_print_insn_info;
1143 #ifndef TARGET_PRINT_INSN_INFO
1144 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1145 #endif
1146
1147
1148
1149 /* Set the dynamic target-system-dependent parameters (architecture,
1150 byte-order, ...) using information found in the BFD */
1151
1152 extern void set_gdbarch_from_file (bfd *);
1153
1154
1155 /* Initialize the current architecture to the "first" one we find on
1156 our list. */
1157
1158 extern void initialize_current_architecture (void);
1159
1160 /* For non-multiarched targets, do any initialization of the default
1161 gdbarch object necessary after the _initialize_MODULE functions
1162 have run. */
1163 extern void initialize_non_multiarch ();
1164
1165 /* gdbarch trace variable */
1166 extern int gdbarch_debug;
1167
1168 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1169
1170 #endif
1171 EOF
1172 exec 1>&2
1173 #../move-if-change new-gdbarch.h gdbarch.h
1174 compare_new gdbarch.h
1175
1176
1177 #
1178 # C file
1179 #
1180
1181 exec > new-gdbarch.c
1182 copyright
1183 cat <<EOF
1184
1185 #include "defs.h"
1186 #include "arch-utils.h"
1187
1188 #if GDB_MULTI_ARCH
1189 #include "gdbcmd.h"
1190 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1191 #else
1192 /* Just include everything in sight so that the every old definition
1193 of macro is visible. */
1194 #include "gdb_string.h"
1195 #include <ctype.h>
1196 #include "symtab.h"
1197 #include "frame.h"
1198 #include "inferior.h"
1199 #include "breakpoint.h"
1200 #include "gdb_wait.h"
1201 #include "gdbcore.h"
1202 #include "gdbcmd.h"
1203 #include "target.h"
1204 #include "gdbthread.h"
1205 #include "annotate.h"
1206 #include "symfile.h" /* for overlay functions */
1207 #include "value.h" /* For old tm.h/nm.h macros. */
1208 #endif
1209 #include "symcat.h"
1210
1211 #include "floatformat.h"
1212
1213 #include "gdb_assert.h"
1214 #include "gdb-events.h"
1215
1216 /* Static function declarations */
1217
1218 static void verify_gdbarch (struct gdbarch *gdbarch);
1219 static void alloc_gdbarch_data (struct gdbarch *);
1220 static void init_gdbarch_data (struct gdbarch *);
1221 static void free_gdbarch_data (struct gdbarch *);
1222 static void init_gdbarch_swap (struct gdbarch *);
1223 static void swapout_gdbarch_swap (struct gdbarch *);
1224 static void swapin_gdbarch_swap (struct gdbarch *);
1225
1226 /* Non-zero if we want to trace architecture code. */
1227
1228 #ifndef GDBARCH_DEBUG
1229 #define GDBARCH_DEBUG 0
1230 #endif
1231 int gdbarch_debug = GDBARCH_DEBUG;
1232
1233 EOF
1234
1235 # gdbarch open the gdbarch object
1236 printf "\n"
1237 printf "/* Maintain the struct gdbarch object */\n"
1238 printf "\n"
1239 printf "struct gdbarch\n"
1240 printf "{\n"
1241 printf " /* basic architectural information */\n"
1242 function_list | while do_read
1243 do
1244 if class_is_info_p
1245 then
1246 printf " ${returntype} ${function};\n"
1247 fi
1248 done
1249 printf "\n"
1250 printf " /* target specific vector. */\n"
1251 printf " struct gdbarch_tdep *tdep;\n"
1252 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1253 printf "\n"
1254 printf " /* per-architecture data-pointers */\n"
1255 printf " unsigned nr_data;\n"
1256 printf " void **data;\n"
1257 printf "\n"
1258 printf " /* per-architecture swap-regions */\n"
1259 printf " struct gdbarch_swap *swap;\n"
1260 printf "\n"
1261 cat <<EOF
1262 /* Multi-arch values.
1263
1264 When extending this structure you must:
1265
1266 Add the field below.
1267
1268 Declare set/get functions and define the corresponding
1269 macro in gdbarch.h.
1270
1271 gdbarch_alloc(): If zero/NULL is not a suitable default,
1272 initialize the new field.
1273
1274 verify_gdbarch(): Confirm that the target updated the field
1275 correctly.
1276
1277 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1278 field is dumped out
1279
1280 \`\`startup_gdbarch()'': Append an initial value to the static
1281 variable (base values on the host's c-type system).
1282
1283 get_gdbarch(): Implement the set/get functions (probably using
1284 the macro's as shortcuts).
1285
1286 */
1287
1288 EOF
1289 function_list | while do_read
1290 do
1291 if class_is_variable_p
1292 then
1293 printf " ${returntype} ${function};\n"
1294 elif class_is_function_p
1295 then
1296 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1297 fi
1298 done
1299 printf "};\n"
1300
1301 # A pre-initialized vector
1302 printf "\n"
1303 printf "\n"
1304 cat <<EOF
1305 /* The default architecture uses host values (for want of a better
1306 choice). */
1307 EOF
1308 printf "\n"
1309 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1310 printf "\n"
1311 printf "struct gdbarch startup_gdbarch =\n"
1312 printf "{\n"
1313 printf " /* basic architecture information */\n"
1314 function_list | while do_read
1315 do
1316 if class_is_info_p
1317 then
1318 printf " ${staticdefault},\n"
1319 fi
1320 done
1321 cat <<EOF
1322 /* target specific vector and its dump routine */
1323 NULL, NULL,
1324 /*per-architecture data-pointers and swap regions */
1325 0, NULL, NULL,
1326 /* Multi-arch values */
1327 EOF
1328 function_list | while do_read
1329 do
1330 if class_is_function_p || class_is_variable_p
1331 then
1332 printf " ${staticdefault},\n"
1333 fi
1334 done
1335 cat <<EOF
1336 /* startup_gdbarch() */
1337 };
1338
1339 struct gdbarch *current_gdbarch = &startup_gdbarch;
1340
1341 /* Do any initialization needed for a non-multiarch configuration
1342 after the _initialize_MODULE functions have been run. */
1343 void
1344 initialize_non_multiarch ()
1345 {
1346 alloc_gdbarch_data (&startup_gdbarch);
1347 init_gdbarch_swap (&startup_gdbarch);
1348 init_gdbarch_data (&startup_gdbarch);
1349 }
1350 EOF
1351
1352 # Create a new gdbarch struct
1353 printf "\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* Create a new \`\`struct gdbarch'' based on information provided by
1357 \`\`struct gdbarch_info''. */
1358 EOF
1359 printf "\n"
1360 cat <<EOF
1361 struct gdbarch *
1362 gdbarch_alloc (const struct gdbarch_info *info,
1363 struct gdbarch_tdep *tdep)
1364 {
1365 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1366 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1367 the current local architecture and not the previous global
1368 architecture. This ensures that the new architectures initial
1369 values are not influenced by the previous architecture. Once
1370 everything is parameterised with gdbarch, this will go away. */
1371 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1372 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1373
1374 alloc_gdbarch_data (current_gdbarch);
1375
1376 current_gdbarch->tdep = tdep;
1377 EOF
1378 printf "\n"
1379 function_list | while do_read
1380 do
1381 if class_is_info_p
1382 then
1383 printf " current_gdbarch->${function} = info->${function};\n"
1384 fi
1385 done
1386 printf "\n"
1387 printf " /* Force the explicit initialization of these. */\n"
1388 function_list | while do_read
1389 do
1390 if class_is_function_p || class_is_variable_p
1391 then
1392 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1393 then
1394 printf " current_gdbarch->${function} = ${predefault};\n"
1395 fi
1396 fi
1397 done
1398 cat <<EOF
1399 /* gdbarch_alloc() */
1400
1401 return current_gdbarch;
1402 }
1403 EOF
1404
1405 # Free a gdbarch struct.
1406 printf "\n"
1407 printf "\n"
1408 cat <<EOF
1409 /* Free a gdbarch struct. This should never happen in normal
1410 operation --- once you've created a gdbarch, you keep it around.
1411 However, if an architecture's init function encounters an error
1412 building the structure, it may need to clean up a partially
1413 constructed gdbarch. */
1414
1415 void
1416 gdbarch_free (struct gdbarch *arch)
1417 {
1418 gdb_assert (arch != NULL);
1419 free_gdbarch_data (arch);
1420 xfree (arch);
1421 }
1422 EOF
1423
1424 # verify a new architecture
1425 printf "\n"
1426 printf "\n"
1427 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1428 printf "\n"
1429 cat <<EOF
1430 static void
1431 verify_gdbarch (struct gdbarch *gdbarch)
1432 {
1433 struct ui_file *log;
1434 struct cleanup *cleanups;
1435 long dummy;
1436 char *buf;
1437 /* Only perform sanity checks on a multi-arch target. */
1438 if (!GDB_MULTI_ARCH)
1439 return;
1440 log = mem_fileopen ();
1441 cleanups = make_cleanup_ui_file_delete (log);
1442 /* fundamental */
1443 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1444 fprintf_unfiltered (log, "\n\tbyte-order");
1445 if (gdbarch->bfd_arch_info == NULL)
1446 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1447 /* Check those that need to be defined for the given multi-arch level. */
1448 EOF
1449 function_list | while do_read
1450 do
1451 if class_is_function_p || class_is_variable_p
1452 then
1453 if [ "x${invalid_p}" = "x0" ]
1454 then
1455 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1456 elif class_is_predicate_p
1457 then
1458 printf " /* Skip verify of ${function}, has predicate */\n"
1459 # FIXME: See do_read for potential simplification
1460 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1461 then
1462 printf " if (${invalid_p})\n"
1463 printf " gdbarch->${function} = ${postdefault};\n"
1464 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1465 then
1466 printf " if (gdbarch->${function} == ${predefault})\n"
1467 printf " gdbarch->${function} = ${postdefault};\n"
1468 elif [ -n "${postdefault}" ]
1469 then
1470 printf " if (gdbarch->${function} == 0)\n"
1471 printf " gdbarch->${function} = ${postdefault};\n"
1472 elif [ -n "${invalid_p}" ]
1473 then
1474 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1475 printf " && (${invalid_p}))\n"
1476 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1477 elif [ -n "${predefault}" ]
1478 then
1479 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1480 printf " && (gdbarch->${function} == ${predefault}))\n"
1481 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1482 fi
1483 fi
1484 done
1485 cat <<EOF
1486 buf = ui_file_xstrdup (log, &dummy);
1487 make_cleanup (xfree, buf);
1488 if (strlen (buf) > 0)
1489 internal_error (__FILE__, __LINE__,
1490 "verify_gdbarch: the following are invalid ...%s",
1491 buf);
1492 do_cleanups (cleanups);
1493 }
1494 EOF
1495
1496 # dump the structure
1497 printf "\n"
1498 printf "\n"
1499 cat <<EOF
1500 /* Print out the details of the current architecture. */
1501
1502 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1503 just happens to match the global variable \`\`current_gdbarch''. That
1504 way macros refering to that variable get the local and not the global
1505 version - ulgh. Once everything is parameterised with gdbarch, this
1506 will go away. */
1507
1508 void
1509 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1510 {
1511 fprintf_unfiltered (file,
1512 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1513 GDB_MULTI_ARCH);
1514 EOF
1515 function_list | sort -t: +2 | while do_read
1516 do
1517 # multiarch functions don't have macros.
1518 if class_is_multiarch_p
1519 then
1520 printf " if (GDB_MULTI_ARCH)\n"
1521 printf " fprintf_unfiltered (file,\n"
1522 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1523 printf " (long) current_gdbarch->${function});\n"
1524 continue
1525 fi
1526 # Print the macro definition.
1527 printf "#ifdef ${macro}\n"
1528 if [ "x${returntype}" = "xvoid" ]
1529 then
1530 printf "#if GDB_MULTI_ARCH\n"
1531 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1532 fi
1533 if class_is_function_p
1534 then
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1537 printf " \"${macro}(${actual})\",\n"
1538 printf " XSTRING (${macro} (${actual})));\n"
1539 else
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1542 printf " XSTRING (${macro}));\n"
1543 fi
1544 # Print the architecture vector value
1545 if [ "x${returntype}" = "xvoid" ]
1546 then
1547 printf "#endif\n"
1548 fi
1549 if [ "x${print_p}" = "x()" ]
1550 then
1551 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1552 elif [ "x${print_p}" = "x0" ]
1553 then
1554 printf " /* skip print of ${macro}, print_p == 0. */\n"
1555 elif [ -n "${print_p}" ]
1556 then
1557 printf " if (${print_p})\n"
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1560 printf " ${print});\n"
1561 elif class_is_function_p
1562 then
1563 printf " if (GDB_MULTI_ARCH)\n"
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1566 printf " (long) current_gdbarch->${function}\n"
1567 printf " /*${macro} ()*/);\n"
1568 else
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1571 printf " ${print});\n"
1572 fi
1573 printf "#endif\n"
1574 done
1575 cat <<EOF
1576 if (current_gdbarch->dump_tdep != NULL)
1577 current_gdbarch->dump_tdep (current_gdbarch, file);
1578 }
1579 EOF
1580
1581
1582 # GET/SET
1583 printf "\n"
1584 cat <<EOF
1585 struct gdbarch_tdep *
1586 gdbarch_tdep (struct gdbarch *gdbarch)
1587 {
1588 if (gdbarch_debug >= 2)
1589 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1590 return gdbarch->tdep;
1591 }
1592 EOF
1593 printf "\n"
1594 function_list | while do_read
1595 do
1596 if class_is_predicate_p
1597 then
1598 printf "\n"
1599 printf "int\n"
1600 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1601 printf "{\n"
1602 if [ -n "${valid_p}" ]
1603 then
1604 printf " return ${valid_p};\n"
1605 else
1606 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1607 fi
1608 printf "}\n"
1609 fi
1610 if class_is_function_p
1611 then
1612 printf "\n"
1613 printf "${returntype}\n"
1614 if [ "x${formal}" = "xvoid" ]
1615 then
1616 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1617 else
1618 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1619 fi
1620 printf "{\n"
1621 printf " if (gdbarch->${function} == 0)\n"
1622 printf " internal_error (__FILE__, __LINE__,\n"
1623 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1624 printf " if (gdbarch_debug >= 2)\n"
1625 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1626 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1627 then
1628 if class_is_multiarch_p
1629 then
1630 params="gdbarch"
1631 else
1632 params=""
1633 fi
1634 else
1635 if class_is_multiarch_p
1636 then
1637 params="gdbarch, ${actual}"
1638 else
1639 params="${actual}"
1640 fi
1641 fi
1642 if [ "x${returntype}" = "xvoid" ]
1643 then
1644 printf " gdbarch->${function} (${params});\n"
1645 else
1646 printf " return gdbarch->${function} (${params});\n"
1647 fi
1648 printf "}\n"
1649 printf "\n"
1650 printf "void\n"
1651 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1652 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1653 printf "{\n"
1654 printf " gdbarch->${function} = ${function};\n"
1655 printf "}\n"
1656 elif class_is_variable_p
1657 then
1658 printf "\n"
1659 printf "${returntype}\n"
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1661 printf "{\n"
1662 if [ "x${invalid_p}" = "x0" ]
1663 then
1664 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1665 elif [ -n "${invalid_p}" ]
1666 then
1667 printf " if (${invalid_p})\n"
1668 printf " internal_error (__FILE__, __LINE__,\n"
1669 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1670 elif [ -n "${predefault}" ]
1671 then
1672 printf " if (gdbarch->${function} == ${predefault})\n"
1673 printf " internal_error (__FILE__, __LINE__,\n"
1674 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1675 fi
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_info_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1696 printf "}\n"
1697 fi
1698 done
1699
1700 # All the trailing guff
1701 cat <<EOF
1702
1703
1704 /* Keep a registry of per-architecture data-pointers required by GDB
1705 modules. */
1706
1707 struct gdbarch_data
1708 {
1709 unsigned index;
1710 gdbarch_data_init_ftype *init;
1711 gdbarch_data_free_ftype *free;
1712 };
1713
1714 struct gdbarch_data_registration
1715 {
1716 struct gdbarch_data *data;
1717 struct gdbarch_data_registration *next;
1718 };
1719
1720 struct gdbarch_data_registry
1721 {
1722 unsigned nr;
1723 struct gdbarch_data_registration *registrations;
1724 };
1725
1726 struct gdbarch_data_registry gdbarch_data_registry =
1727 {
1728 0, NULL,
1729 };
1730
1731 struct gdbarch_data *
1732 register_gdbarch_data (gdbarch_data_init_ftype *init,
1733 gdbarch_data_free_ftype *free)
1734 {
1735 struct gdbarch_data_registration **curr;
1736 for (curr = &gdbarch_data_registry.registrations;
1737 (*curr) != NULL;
1738 curr = &(*curr)->next);
1739 (*curr) = XMALLOC (struct gdbarch_data_registration);
1740 (*curr)->next = NULL;
1741 (*curr)->data = XMALLOC (struct gdbarch_data);
1742 (*curr)->data->index = gdbarch_data_registry.nr++;
1743 (*curr)->data->init = init;
1744 (*curr)->data->free = free;
1745 return (*curr)->data;
1746 }
1747
1748
1749 /* Walk through all the registered users initializing each in turn. */
1750
1751 static void
1752 init_gdbarch_data (struct gdbarch *gdbarch)
1753 {
1754 struct gdbarch_data_registration *rego;
1755 for (rego = gdbarch_data_registry.registrations;
1756 rego != NULL;
1757 rego = rego->next)
1758 {
1759 struct gdbarch_data *data = rego->data;
1760 gdb_assert (data->index < gdbarch->nr_data);
1761 if (data->init != NULL)
1762 {
1763 void *pointer = data->init (gdbarch);
1764 set_gdbarch_data (gdbarch, data, pointer);
1765 }
1766 }
1767 }
1768
1769 /* Create/delete the gdbarch data vector. */
1770
1771 static void
1772 alloc_gdbarch_data (struct gdbarch *gdbarch)
1773 {
1774 gdb_assert (gdbarch->data == NULL);
1775 gdbarch->nr_data = gdbarch_data_registry.nr;
1776 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1777 }
1778
1779 static void
1780 free_gdbarch_data (struct gdbarch *gdbarch)
1781 {
1782 struct gdbarch_data_registration *rego;
1783 gdb_assert (gdbarch->data != NULL);
1784 for (rego = gdbarch_data_registry.registrations;
1785 rego != NULL;
1786 rego = rego->next)
1787 {
1788 struct gdbarch_data *data = rego->data;
1789 gdb_assert (data->index < gdbarch->nr_data);
1790 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1791 {
1792 data->free (gdbarch, gdbarch->data[data->index]);
1793 gdbarch->data[data->index] = NULL;
1794 }
1795 }
1796 xfree (gdbarch->data);
1797 gdbarch->data = NULL;
1798 }
1799
1800
1801 /* Initialize the current value of thee specified per-architecture
1802 data-pointer. */
1803
1804 void
1805 set_gdbarch_data (struct gdbarch *gdbarch,
1806 struct gdbarch_data *data,
1807 void *pointer)
1808 {
1809 gdb_assert (data->index < gdbarch->nr_data);
1810 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1811 data->free (gdbarch, gdbarch->data[data->index]);
1812 gdbarch->data[data->index] = pointer;
1813 }
1814
1815 /* Return the current value of the specified per-architecture
1816 data-pointer. */
1817
1818 void *
1819 gdbarch_data (struct gdbarch_data *data)
1820 {
1821 gdb_assert (data->index < current_gdbarch->nr_data);
1822 return current_gdbarch->data[data->index];
1823 }
1824
1825
1826
1827 /* Keep a registry of swapped data required by GDB modules. */
1828
1829 struct gdbarch_swap
1830 {
1831 void *swap;
1832 struct gdbarch_swap_registration *source;
1833 struct gdbarch_swap *next;
1834 };
1835
1836 struct gdbarch_swap_registration
1837 {
1838 void *data;
1839 unsigned long sizeof_data;
1840 gdbarch_swap_ftype *init;
1841 struct gdbarch_swap_registration *next;
1842 };
1843
1844 struct gdbarch_swap_registry
1845 {
1846 int nr;
1847 struct gdbarch_swap_registration *registrations;
1848 };
1849
1850 struct gdbarch_swap_registry gdbarch_swap_registry =
1851 {
1852 0, NULL,
1853 };
1854
1855 void
1856 register_gdbarch_swap (void *data,
1857 unsigned long sizeof_data,
1858 gdbarch_swap_ftype *init)
1859 {
1860 struct gdbarch_swap_registration **rego;
1861 for (rego = &gdbarch_swap_registry.registrations;
1862 (*rego) != NULL;
1863 rego = &(*rego)->next);
1864 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1865 (*rego)->next = NULL;
1866 (*rego)->init = init;
1867 (*rego)->data = data;
1868 (*rego)->sizeof_data = sizeof_data;
1869 }
1870
1871
1872 static void
1873 init_gdbarch_swap (struct gdbarch *gdbarch)
1874 {
1875 struct gdbarch_swap_registration *rego;
1876 struct gdbarch_swap **curr = &gdbarch->swap;
1877 for (rego = gdbarch_swap_registry.registrations;
1878 rego != NULL;
1879 rego = rego->next)
1880 {
1881 if (rego->data != NULL)
1882 {
1883 (*curr) = XMALLOC (struct gdbarch_swap);
1884 (*curr)->source = rego;
1885 (*curr)->swap = xmalloc (rego->sizeof_data);
1886 (*curr)->next = NULL;
1887 memset (rego->data, 0, rego->sizeof_data);
1888 curr = &(*curr)->next;
1889 }
1890 if (rego->init != NULL)
1891 rego->init ();
1892 }
1893 }
1894
1895 static void
1896 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1897 {
1898 struct gdbarch_swap *curr;
1899 for (curr = gdbarch->swap;
1900 curr != NULL;
1901 curr = curr->next)
1902 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1903 }
1904
1905 static void
1906 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1907 {
1908 struct gdbarch_swap *curr;
1909 for (curr = gdbarch->swap;
1910 curr != NULL;
1911 curr = curr->next)
1912 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1913 }
1914
1915
1916 /* Keep a registry of the architectures known by GDB. */
1917
1918 struct gdbarch_registration
1919 {
1920 enum bfd_architecture bfd_architecture;
1921 gdbarch_init_ftype *init;
1922 gdbarch_dump_tdep_ftype *dump_tdep;
1923 struct gdbarch_list *arches;
1924 struct gdbarch_registration *next;
1925 };
1926
1927 static struct gdbarch_registration *gdbarch_registry = NULL;
1928
1929 static void
1930 append_name (const char ***buf, int *nr, const char *name)
1931 {
1932 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1933 (*buf)[*nr] = name;
1934 *nr += 1;
1935 }
1936
1937 const char **
1938 gdbarch_printable_names (void)
1939 {
1940 if (GDB_MULTI_ARCH)
1941 {
1942 /* Accumulate a list of names based on the registed list of
1943 architectures. */
1944 enum bfd_architecture a;
1945 int nr_arches = 0;
1946 const char **arches = NULL;
1947 struct gdbarch_registration *rego;
1948 for (rego = gdbarch_registry;
1949 rego != NULL;
1950 rego = rego->next)
1951 {
1952 const struct bfd_arch_info *ap;
1953 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1954 if (ap == NULL)
1955 internal_error (__FILE__, __LINE__,
1956 "gdbarch_architecture_names: multi-arch unknown");
1957 do
1958 {
1959 append_name (&arches, &nr_arches, ap->printable_name);
1960 ap = ap->next;
1961 }
1962 while (ap != NULL);
1963 }
1964 append_name (&arches, &nr_arches, NULL);
1965 return arches;
1966 }
1967 else
1968 /* Just return all the architectures that BFD knows. Assume that
1969 the legacy architecture framework supports them. */
1970 return bfd_arch_list ();
1971 }
1972
1973
1974 void
1975 gdbarch_register (enum bfd_architecture bfd_architecture,
1976 gdbarch_init_ftype *init,
1977 gdbarch_dump_tdep_ftype *dump_tdep)
1978 {
1979 struct gdbarch_registration **curr;
1980 const struct bfd_arch_info *bfd_arch_info;
1981 /* Check that BFD recognizes this architecture */
1982 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1983 if (bfd_arch_info == NULL)
1984 {
1985 internal_error (__FILE__, __LINE__,
1986 "gdbarch: Attempt to register unknown architecture (%d)",
1987 bfd_architecture);
1988 }
1989 /* Check that we haven't seen this architecture before */
1990 for (curr = &gdbarch_registry;
1991 (*curr) != NULL;
1992 curr = &(*curr)->next)
1993 {
1994 if (bfd_architecture == (*curr)->bfd_architecture)
1995 internal_error (__FILE__, __LINE__,
1996 "gdbarch: Duplicate registraration of architecture (%s)",
1997 bfd_arch_info->printable_name);
1998 }
1999 /* log it */
2000 if (gdbarch_debug)
2001 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2002 bfd_arch_info->printable_name,
2003 (long) init);
2004 /* Append it */
2005 (*curr) = XMALLOC (struct gdbarch_registration);
2006 (*curr)->bfd_architecture = bfd_architecture;
2007 (*curr)->init = init;
2008 (*curr)->dump_tdep = dump_tdep;
2009 (*curr)->arches = NULL;
2010 (*curr)->next = NULL;
2011 /* When non- multi-arch, install whatever target dump routine we've
2012 been provided - hopefully that routine has been written correctly
2013 and works regardless of multi-arch. */
2014 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2015 && startup_gdbarch.dump_tdep == NULL)
2016 startup_gdbarch.dump_tdep = dump_tdep;
2017 }
2018
2019 void
2020 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2021 gdbarch_init_ftype *init)
2022 {
2023 gdbarch_register (bfd_architecture, init, NULL);
2024 }
2025
2026
2027 /* Look for an architecture using gdbarch_info. Base search on only
2028 BFD_ARCH_INFO and BYTE_ORDER. */
2029
2030 struct gdbarch_list *
2031 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2032 const struct gdbarch_info *info)
2033 {
2034 for (; arches != NULL; arches = arches->next)
2035 {
2036 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2037 continue;
2038 if (info->byte_order != arches->gdbarch->byte_order)
2039 continue;
2040 return arches;
2041 }
2042 return NULL;
2043 }
2044
2045
2046 /* Update the current architecture. Return ZERO if the update request
2047 failed. */
2048
2049 int
2050 gdbarch_update_p (struct gdbarch_info info)
2051 {
2052 struct gdbarch *new_gdbarch;
2053 struct gdbarch_list **list;
2054 struct gdbarch_registration *rego;
2055
2056 /* Fill in missing parts of the INFO struct using a number of
2057 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2058
2059 /* \`\`(gdb) set architecture ...'' */
2060 if (info.bfd_arch_info == NULL
2061 && !TARGET_ARCHITECTURE_AUTO)
2062 info.bfd_arch_info = TARGET_ARCHITECTURE;
2063 if (info.bfd_arch_info == NULL
2064 && info.abfd != NULL
2065 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2066 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2067 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2068 if (info.bfd_arch_info == NULL)
2069 info.bfd_arch_info = TARGET_ARCHITECTURE;
2070
2071 /* \`\`(gdb) set byte-order ...'' */
2072 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2073 && !TARGET_BYTE_ORDER_AUTO)
2074 info.byte_order = TARGET_BYTE_ORDER;
2075 /* From the INFO struct. */
2076 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2077 && info.abfd != NULL)
2078 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2079 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2080 : BFD_ENDIAN_UNKNOWN);
2081 /* From the current target. */
2082 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2083 info.byte_order = TARGET_BYTE_ORDER;
2084
2085 /* Must have found some sort of architecture. */
2086 gdb_assert (info.bfd_arch_info != NULL);
2087
2088 if (gdbarch_debug)
2089 {
2090 fprintf_unfiltered (gdb_stdlog,
2091 "gdbarch_update: info.bfd_arch_info %s\n",
2092 (info.bfd_arch_info != NULL
2093 ? info.bfd_arch_info->printable_name
2094 : "(null)"));
2095 fprintf_unfiltered (gdb_stdlog,
2096 "gdbarch_update: info.byte_order %d (%s)\n",
2097 info.byte_order,
2098 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2099 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2100 : "default"));
2101 fprintf_unfiltered (gdb_stdlog,
2102 "gdbarch_update: info.abfd 0x%lx\n",
2103 (long) info.abfd);
2104 fprintf_unfiltered (gdb_stdlog,
2105 "gdbarch_update: info.tdep_info 0x%lx\n",
2106 (long) info.tdep_info);
2107 }
2108
2109 /* Find the target that knows about this architecture. */
2110 for (rego = gdbarch_registry;
2111 rego != NULL;
2112 rego = rego->next)
2113 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2114 break;
2115 if (rego == NULL)
2116 {
2117 if (gdbarch_debug)
2118 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2119 return 0;
2120 }
2121
2122 /* Ask the target for a replacement architecture. */
2123 new_gdbarch = rego->init (info, rego->arches);
2124
2125 /* Did the target like it? No. Reject the change. */
2126 if (new_gdbarch == NULL)
2127 {
2128 if (gdbarch_debug)
2129 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2130 return 0;
2131 }
2132
2133 /* Did the architecture change? No. Do nothing. */
2134 if (current_gdbarch == new_gdbarch)
2135 {
2136 if (gdbarch_debug)
2137 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2138 (long) new_gdbarch,
2139 new_gdbarch->bfd_arch_info->printable_name);
2140 return 1;
2141 }
2142
2143 /* Swap all data belonging to the old target out */
2144 swapout_gdbarch_swap (current_gdbarch);
2145
2146 /* Is this a pre-existing architecture? Yes. Swap it in. */
2147 for (list = &rego->arches;
2148 (*list) != NULL;
2149 list = &(*list)->next)
2150 {
2151 if ((*list)->gdbarch == new_gdbarch)
2152 {
2153 if (gdbarch_debug)
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2156 (long) new_gdbarch,
2157 new_gdbarch->bfd_arch_info->printable_name);
2158 current_gdbarch = new_gdbarch;
2159 swapin_gdbarch_swap (new_gdbarch);
2160 architecture_changed_event ();
2161 return 1;
2162 }
2163 }
2164
2165 /* Append this new architecture to this targets list. */
2166 (*list) = XMALLOC (struct gdbarch_list);
2167 (*list)->next = NULL;
2168 (*list)->gdbarch = new_gdbarch;
2169
2170 /* Switch to this new architecture. Dump it out. */
2171 current_gdbarch = new_gdbarch;
2172 if (gdbarch_debug)
2173 {
2174 fprintf_unfiltered (gdb_stdlog,
2175 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2176 (long) new_gdbarch,
2177 new_gdbarch->bfd_arch_info->printable_name);
2178 }
2179
2180 /* Check that the newly installed architecture is valid. Plug in
2181 any post init values. */
2182 new_gdbarch->dump_tdep = rego->dump_tdep;
2183 verify_gdbarch (new_gdbarch);
2184
2185 /* Initialize the per-architecture memory (swap) areas.
2186 CURRENT_GDBARCH must be update before these modules are
2187 called. */
2188 init_gdbarch_swap (new_gdbarch);
2189
2190 /* Initialize the per-architecture data-pointer of all parties that
2191 registered an interest in this architecture. CURRENT_GDBARCH
2192 must be updated before these modules are called. */
2193 init_gdbarch_data (new_gdbarch);
2194 architecture_changed_event ();
2195
2196 if (gdbarch_debug)
2197 gdbarch_dump (current_gdbarch, gdb_stdlog);
2198
2199 return 1;
2200 }
2201
2202
2203 /* Disassembler */
2204
2205 /* Pointer to the target-dependent disassembly function. */
2206 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2207 disassemble_info tm_print_insn_info;
2208
2209
2210 extern void _initialize_gdbarch (void);
2211
2212 void
2213 _initialize_gdbarch (void)
2214 {
2215 struct cmd_list_element *c;
2216
2217 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2218 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2219 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2220 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2221 tm_print_insn_info.print_address_func = dis_asm_print_address;
2222
2223 add_show_from_set (add_set_cmd ("arch",
2224 class_maintenance,
2225 var_zinteger,
2226 (char *)&gdbarch_debug,
2227 "Set architecture debugging.\\n\\
2228 When non-zero, architecture debugging is enabled.", &setdebuglist),
2229 &showdebuglist);
2230 c = add_set_cmd ("archdebug",
2231 class_maintenance,
2232 var_zinteger,
2233 (char *)&gdbarch_debug,
2234 "Set architecture debugging.\\n\\
2235 When non-zero, architecture debugging is enabled.", &setlist);
2236
2237 deprecate_cmd (c, "set debug arch");
2238 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2239 }
2240 EOF
2241
2242 # close things off
2243 exec 1>&2
2244 #../move-if-change new-gdbarch.c gdbarch.c
2245 compare_new gdbarch.c
This page took 0.114632 seconds and 5 git commands to generate.